1
|
Yang M, Xuan Y, Hao P, Li Y, Zhang C, Zhao W, Zhang Y, Zhang X, Zhou X, Zhu H, Li H, Yang Y, Wang J, Yan R, Qu Y, Ke X. TRAF2 mediates Wnt-induced β-catenin nuclear translocation by associating with the nuclear pore complex. Life Sci 2025:123722. [PMID: 40393561 DOI: 10.1016/j.lfs.2025.123722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/25/2025] [Accepted: 05/16/2025] [Indexed: 05/22/2025]
Abstract
AIMS Colorectal cancer (CRC), driven by Wnt/β-catenin hyperactivation, relies on nuclear import of β-catenin, but the underlying mechanism is not fully clarified. Given that tumor necrosis factor receptor-associated factor 2 (TRAF2) is a positive regulator of Wnt signaling by directly interacting with β-catenin, we aim to demonstrate the role of TRAF2 in Wnt-induced β-catenin nuclear translocation. MATERIALS AND METHODS Wild-type and TRAF2 knockout cells (generated via CRISPR-Cas9) were utilized to validate the role of TRAF2 in β-catenin nuclear translocation through immunofluorescence and nucleoplasm separation assay. Proteomic profiling of TRAF2 condensates and interactomes was performed to identify proteins linked to nucleocytoplasmic transport. The interactions among TRAF2, β-catenin, nucleoporins (Nups) and B-cell lymphoma 9 (BCL9), as well as the inhibitory effects of small molecule liquidambaric acid (LDA) on these interactions were confirmed using proximity ligation assay (PLA), fluorescence resonance energy transfer (FRET), and co-immunoprecipitation (Co-IP) in cellular models and small intestine of mice. KEY FINDINGS TRAF2 is required for Wnt-induced β-catenin nuclear translocation. TRAF2 interacts with numerous Nups within the nuclear pore complex (NPC), and is upregulated upon Wnt stimulation. In the small intestine of mice, TRAF2/Nups interaction is mainly detected in the crypts-regions known to harbor colorectal cancer stem cells, as well as in APCmin/+ intestinal organoids. Of note, TRAF2 is indispensable for β-catenin interaction with Nups and the known chaperone BCL9. Finally, LDA blocks TRAF2/Nups interaction, inhibiting β-catenin nuclear translocation. SIGNIFICANCE This study unveils TRAF2-mediated nucleocytoplasmic transport as a druggable mechanism, advancing targeted therapies against Wnt-driven colorectal cancers.
Collapse
Affiliation(s)
- Min Yang
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Ying Xuan
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Piliang Hao
- School of Life Science and Technology, Shanghai Tech University, Shanghai, PR China
| | - Yushu Li
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Chengqian Zhang
- School of Life Science and Technology, Shanghai Tech University, Shanghai, PR China
| | - Weiwei Zhao
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Yiyuan Zhang
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Xue Zhang
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Xianglian Zhou
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Hongyan Zhu
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Huihui Li
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Yan Yang
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Jiaqi Wang
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Rong Yan
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China.
| | - Yi Qu
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China.
| | - Xisong Ke
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China.
| |
Collapse
|
2
|
Hedayati N, Mafi A, Farahani A, Hashemi M, Nabavi N, Alimohammadi M, Rahimzadeh P, Taheriazam A, Farahani N. The importance of the circRNA/Wnt axis in gliomas: Biological functions and clinical opportunities. Pathol Res Pract 2024; 261:155510. [PMID: 39116573 DOI: 10.1016/j.prp.2024.155510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Gliomas are among the most common cancers in the central nervous system, arising through various signaling pathways. One significant pathway is Wnt signaling, a tightly regulated process that plays a crucial role in gliomagenesis and development. The current study aims to explore the relationship between circular RNAs (circRNAs) and the Wnt/β-catenin signaling pathway in gliomas, considering the growing recognition of circRNAs in disease pathogenesis. A comprehensive review of recent research was conducted to investigate the roles of circRNAs in gliomas, focusing on their expression patterns and interactions with the Wnt signaling pathway. The analysis included studies examining circRNAs' function as microRNA sponges and their impact on glioma biology. The findings reveal that circRNAs are differentially expressed in gliomas and significantly influence the occurrence, growth, and metastasis of these tumors. Specifically, circRNAs interact with the Wnt signaling pathway, affecting glioma development and progression. This interaction highlights the importance of circRNAs in glioma pathophysiology. Understanding the regulatory network involving circRNAs and Wnt signaling offers valuable insights into glioma pathophysiology. CircRNAs hold promise as diagnostic and prognostic biomarkers and may serve as targets for novel therapeutic strategies in glioma treatment.
Collapse
Affiliation(s)
- Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Alireza Mafi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Aryan Farahani
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical sciences, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, Canada
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
3
|
Sun X, Xiao C, Wang X, Wu S, Yang Z, Sui B, Song Y. Role of post-translational modifications of Sp1 in cancer: state of the art. Front Cell Dev Biol 2024; 12:1412461. [PMID: 39228402 PMCID: PMC11368732 DOI: 10.3389/fcell.2024.1412461] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/16/2024] [Indexed: 09/05/2024] Open
Abstract
Specific protein 1 (Sp1) is central to regulating transcription factor activity and cell signaling pathways. Sp1 is highly associated with the poor prognosis of various cancers; it is considered a non-oncogene addiction gene. The function of Sp1 is complex and contributes to regulating extensive transcriptional activity, apart from maintaining basal transcription. Sp1 activity and stability are affected by post-translational modifications (PTMs), including phosphorylation, ubiquitination, acetylation, glycosylation, and SUMOylation. These modifications help to determine genetic programs that alter the Sp1 structure in different cells and increase or decrease its transcriptional activity and DNA binding stability in response to pathophysiological stimuli. Investigating the PTMs of Sp1 will contribute to a deeper understanding of the mechanism underlying the cell signaling pathway regulating Sp1 stability and the regulatory mechanism by which Sp1 affects cancer progression. Furthermore, it will facilitate the development of new drug targets and biomarkers, thereby elucidating considerable implications in the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Xutao Sun
- Department of Typhoid, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chengpu Xiao
- Department of Chinese Internal Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinyang Wang
- Department of Pneumology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Siyu Wu
- Department of Pneumology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhendong Yang
- Department of Pneumology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Bowen Sui
- Department of Pneumology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yunjia Song
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
4
|
Ko BS, Han MH, Kwon MJ, Cha DG, Ji Y, Park ES, Jeon MJ, Kim S, Lee K, Choi YH, Lee J, Torras-Llort M, Yoon KJ, Lee H, Kim JK, Lee SB. Baf-mediated transcriptional regulation of teashirt is essential for the development of neural progenitor cell lineages. Exp Mol Med 2024; 56:422-440. [PMID: 38374207 PMCID: PMC10907700 DOI: 10.1038/s12276-024-01169-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 09/20/2023] [Accepted: 12/10/2023] [Indexed: 02/21/2024] Open
Abstract
Accumulating evidence hints heterochromatin anchoring to the inner nuclear membrane as an upstream regulatory process of gene expression. Given that the formation of neural progenitor cell lineages and the subsequent maintenance of postmitotic neuronal cell identity critically rely on transcriptional regulation, it seems possible that the development of neuronal cells is influenced by cell type-specific and/or context-dependent programmed regulation of heterochromatin anchoring. Here, we explored this possibility by genetically disrupting the evolutionarily conserved barrier-to-autointegration factor (Baf) in the Drosophila nervous system. Through single-cell RNA sequencing, we demonstrated that Baf knockdown induces prominent transcriptomic changes, particularly in type I neuroblasts. Among the differentially expressed genes, our genetic analyses identified teashirt (tsh), a transcription factor that interacts with beta-catenin, to be closely associated with Baf knockdown-induced phenotypes that were suppressed by the overexpression of tsh or beta-catenin. We also found that Baf and tsh colocalized in a region adjacent to heterochromatin in type I NBs. Notably, the subnuclear localization pattern remained unchanged when one of these two proteins was knocked down, indicating that both proteins contribute to the anchoring of heterochromatin to the inner nuclear membrane. Overall, this study reveals that the Baf-mediated transcriptional regulation of teashirt is a novel molecular mechanism that regulates the development of neural progenitor cell lineages.
Collapse
Affiliation(s)
- Byung Su Ko
- Department of Brain Sciences, DGIST, Daegu, 42988, Republic of Korea
| | - Myeong Hoon Han
- Department of Brain Sciences, DGIST, Daegu, 42988, Republic of Korea
| | - Min Jee Kwon
- Department of Brain Sciences, DGIST, Daegu, 42988, Republic of Korea
| | - Dong Gon Cha
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Yuri Ji
- Department of Brain Sciences, DGIST, Daegu, 42988, Republic of Korea
| | - Eun Seo Park
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Min Jae Jeon
- Department of Brain Sciences, DGIST, Daegu, 42988, Republic of Korea
| | - Somi Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Kyeongho Lee
- Department of Brain Sciences, DGIST, Daegu, 42988, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, DGIST, Daegu, 42988, Republic of Korea
| | - Yoon Ha Choi
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jusung Lee
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | | | - Ki-Jun Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyosang Lee
- Department of Brain Sciences, DGIST, Daegu, 42988, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, DGIST, Daegu, 42988, Republic of Korea
| | - Jong Kyoung Kim
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea.
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Sung Bae Lee
- Department of Brain Sciences, DGIST, Daegu, 42988, Republic of Korea.
| |
Collapse
|
5
|
Wu X, Cesarovic N, Falk V, Mazza E, Giampietro C. Mechanical factors influence β-catenin localization and barrier properties. Integr Biol (Camb) 2024; 16:zyae013. [PMID: 38952079 DOI: 10.1093/intbio/zyae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/03/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
Mechanical forces are of major importance in regulating vascular homeostasis by influencing endothelial cell behavior and functions. Adherens junctions are critical sites for mechanotransduction in endothelial cells. β-catenin, a component of adherens junctions and the canonical Wnt signaling pathway, plays a role in mechanoactivation. Evidence suggests that β-catenin is involved in flow sensing and responds to tensional forces, impacting junction dynamics. The mechanoregulation of β-catenin signaling is context-dependent, influenced by the type and duration of mechanical loads. In endothelial cells, β-catenin's nuclear translocation and signaling are influenced by shear stress and strain, affecting endothelial permeability. The study investigates how shear stress, strain, and surface topography impact adherens junction dynamics, regulate β-catenin localization, and influence endothelial barrier properties. Insight box Mechanical loads are potent regulators of endothelial functions through not completely elucidated mechanisms. Surface topography, wall shear stress and cyclic wall deformation contribute overlapping mechanical stimuli to which endothelial monolayer respond to adapt and maintain barrier functions. The use of custom developed flow chamber and bioreactor allows quantifying the response of mature human endothelial to well-defined wall shear stress and gradients of strain. Here, the mechanoregulation of β-catenin by substrate topography, wall shear stress, and cyclic stretch is analyzed and linked to the monolayer control of endothelial permeability.
Collapse
Affiliation(s)
- Xi Wu
- ETH Zürich, DMAVT, Experimental Continuum Mechanics, Leonhardstrasse 21, Zurich 8092, Switzerland
| | - Nikola Cesarovic
- Department of Health Sciences and Technology, ETH Zürich, Leopold-Ruzicka-Weg 4, 8093 Zürich, Switzerland
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Augustenburger Platz 1, 13353 Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Volkmar Falk
- Department of Health Sciences and Technology, ETH Zürich, Leopold-Ruzicka-Weg 4, 8093 Zürich, Switzerland
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Augustenburger Platz 1, 13353 Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Edoardo Mazza
- ETH Zürich, DMAVT, Experimental Continuum Mechanics, Leonhardstrasse 21, Zurich 8092, Switzerland
- EMPA, Swiss Federal Laboratories for Materials Science and Technology, Experimental Continuum Mechanics, Überlandstrasse 129, Dübendorf 8600, Switzerland
| | - Costanza Giampietro
- ETH Zürich, DMAVT, Experimental Continuum Mechanics, Leonhardstrasse 21, Zurich 8092, Switzerland
- EMPA, Swiss Federal Laboratories for Materials Science and Technology, Experimental Continuum Mechanics, Überlandstrasse 129, Dübendorf 8600, Switzerland
| |
Collapse
|
6
|
Mihoub I, Rharass T, Ouriemmi S, Oudar A, Aubard L, Gratio V, Lazarian G, Ferreira J, Dondi E, Cymbalista F, Levy V, Baran-Marszak F, Varin-Blank N, Ledoux D, Le Roy C, Gardano L. Identification of the Axis β-Catenin-BTK in the Dynamic Adhesion of Chronic Lymphocytic Leukemia Cells to Their Microenvironment. Int J Mol Sci 2023; 24:17623. [PMID: 38139452 PMCID: PMC10744074 DOI: 10.3390/ijms242417623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
In the microenvironment, cell interactions are established between different cell types to regulate their migration, survival and activation. β-Catenin is a multifunctional protein that stabilizes cell-cell interactions and regulates cell survival through its transcriptional activity. We used chronic lymphocytic leukemia (CLL) cells as a cellular model to study the role of β-catenin in regulating the adhesion of tumor cells to their microenvironment, which is necessary for tumor cell survival and accumulation. When co-cultured with a stromal cell line (HS-5), a fraction of the CLL cells adhere to stromal cells in a dynamic fashion regulated by the different levels of β-catenin expression. In non-adherent cells, β-catenin is stabilized in the cytosol and translocates into the nucleus, increasing the expression of cyclin D1. In adherent cells, the level of cytosolic β-catenin is low but membrane β-catenin helps to stabilize the adhesion of CLL to stromal cells. Indeed, the overexpression of β-catenin enhances the interaction of CLL with HS-5 cells, suggesting that this protein behaves as a regulator of cell adhesion to the stromal component and of the transcriptional regulation of cell survival. Inhibitors that block the stabilization of β-catenin alter this equilibrium and effectively disrupt the support that CLL cells receive from the cross-talk with the stroma.
Collapse
Affiliation(s)
- Imane Mihoub
- INSERM, U978, 93000 Bobigny, France; (I.M.); (S.O.); (A.O.); (L.A.); (G.L.); (J.F.); (E.D.); (F.C.); (F.B.-M.); (D.L.); (C.L.R.)
- UFR SMBH, LabEx INFLAMEX, Université Paris 13—«Sorbonne Paris Nord», 93000 Bobigny, France
| | - Tareck Rharass
- INSERM, U978, 93000 Bobigny, France; (I.M.); (S.O.); (A.O.); (L.A.); (G.L.); (J.F.); (E.D.); (F.C.); (F.B.-M.); (D.L.); (C.L.R.)
- UFR SMBH, LabEx INFLAMEX, Université Paris 13—«Sorbonne Paris Nord», 93000 Bobigny, France
| | - Souhaïl Ouriemmi
- INSERM, U978, 93000 Bobigny, France; (I.M.); (S.O.); (A.O.); (L.A.); (G.L.); (J.F.); (E.D.); (F.C.); (F.B.-M.); (D.L.); (C.L.R.)
- UFR SMBH, LabEx INFLAMEX, Université Paris 13—«Sorbonne Paris Nord», 93000 Bobigny, France
| | - Antonin Oudar
- INSERM, U978, 93000 Bobigny, France; (I.M.); (S.O.); (A.O.); (L.A.); (G.L.); (J.F.); (E.D.); (F.C.); (F.B.-M.); (D.L.); (C.L.R.)
- UFR SMBH, LabEx INFLAMEX, Université Paris 13—«Sorbonne Paris Nord», 93000 Bobigny, France
| | - Laure Aubard
- INSERM, U978, 93000 Bobigny, France; (I.M.); (S.O.); (A.O.); (L.A.); (G.L.); (J.F.); (E.D.); (F.C.); (F.B.-M.); (D.L.); (C.L.R.)
- UFR SMBH, LabEx INFLAMEX, Université Paris 13—«Sorbonne Paris Nord», 93000 Bobigny, France
| | - Valérie Gratio
- INSERM U1149, Université Paris Cité, Hôpital Bichat, 75018 Paris, France;
| | - Gregory Lazarian
- INSERM, U978, 93000 Bobigny, France; (I.M.); (S.O.); (A.O.); (L.A.); (G.L.); (J.F.); (E.D.); (F.C.); (F.B.-M.); (D.L.); (C.L.R.)
- UFR SMBH, LabEx INFLAMEX, Université Paris 13—«Sorbonne Paris Nord», 93000 Bobigny, France
- AP-HP Hôpital Avicenne, 93000 Bobigny, France
| | - Jordan Ferreira
- INSERM, U978, 93000 Bobigny, France; (I.M.); (S.O.); (A.O.); (L.A.); (G.L.); (J.F.); (E.D.); (F.C.); (F.B.-M.); (D.L.); (C.L.R.)
- UFR SMBH, LabEx INFLAMEX, Université Paris 13—«Sorbonne Paris Nord», 93000 Bobigny, France
| | - Elisabetta Dondi
- INSERM, U978, 93000 Bobigny, France; (I.M.); (S.O.); (A.O.); (L.A.); (G.L.); (J.F.); (E.D.); (F.C.); (F.B.-M.); (D.L.); (C.L.R.)
- UFR SMBH, LabEx INFLAMEX, Université Paris 13—«Sorbonne Paris Nord», 93000 Bobigny, France
| | - Florence Cymbalista
- INSERM, U978, 93000 Bobigny, France; (I.M.); (S.O.); (A.O.); (L.A.); (G.L.); (J.F.); (E.D.); (F.C.); (F.B.-M.); (D.L.); (C.L.R.)
- UFR SMBH, LabEx INFLAMEX, Université Paris 13—«Sorbonne Paris Nord», 93000 Bobigny, France
- AP-HP Hôpital Avicenne, 93000 Bobigny, France
| | - Vincent Levy
- URC, AP-HP Hôpital Avicenne, 93000 Bobigny, France;
| | - Fanny Baran-Marszak
- INSERM, U978, 93000 Bobigny, France; (I.M.); (S.O.); (A.O.); (L.A.); (G.L.); (J.F.); (E.D.); (F.C.); (F.B.-M.); (D.L.); (C.L.R.)
- UFR SMBH, LabEx INFLAMEX, Université Paris 13—«Sorbonne Paris Nord», 93000 Bobigny, France
- AP-HP Hôpital Avicenne, 93000 Bobigny, France
| | - Nadine Varin-Blank
- INSERM, U978, 93000 Bobigny, France; (I.M.); (S.O.); (A.O.); (L.A.); (G.L.); (J.F.); (E.D.); (F.C.); (F.B.-M.); (D.L.); (C.L.R.)
- UFR SMBH, LabEx INFLAMEX, Université Paris 13—«Sorbonne Paris Nord», 93000 Bobigny, France
| | - Dominique Ledoux
- INSERM, U978, 93000 Bobigny, France; (I.M.); (S.O.); (A.O.); (L.A.); (G.L.); (J.F.); (E.D.); (F.C.); (F.B.-M.); (D.L.); (C.L.R.)
- UFR SMBH, LabEx INFLAMEX, Université Paris 13—«Sorbonne Paris Nord», 93000 Bobigny, France
| | - Christine Le Roy
- INSERM, U978, 93000 Bobigny, France; (I.M.); (S.O.); (A.O.); (L.A.); (G.L.); (J.F.); (E.D.); (F.C.); (F.B.-M.); (D.L.); (C.L.R.)
- UFR SMBH, LabEx INFLAMEX, Université Paris 13—«Sorbonne Paris Nord», 93000 Bobigny, France
| | - Laura Gardano
- INSERM, U978, 93000 Bobigny, France; (I.M.); (S.O.); (A.O.); (L.A.); (G.L.); (J.F.); (E.D.); (F.C.); (F.B.-M.); (D.L.); (C.L.R.)
- UFR SMBH, LabEx INFLAMEX, Université Paris 13—«Sorbonne Paris Nord», 93000 Bobigny, France
| |
Collapse
|
7
|
Chen X, Zhang Y, Zhang P, Wei M, Tian T, Guan Y, Han C, Wei W, Ma Y. IGFBP2 drives epithelial-mesenchymal transition in hepatocellular carcinoma via activating the Wnt/β-catenin pathway. Infect Agent Cancer 2023; 18:73. [PMID: 37957694 PMCID: PMC10644524 DOI: 10.1186/s13027-023-00543-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/04/2023] [Indexed: 11/15/2023] Open
Abstract
Metastasis has emerged as a major impediment to achieve successful therapeutic outcomes in hepatocellular carcinoma (HCC). Nonetheless, the intricate molecular mechanisms governing the progression of HCC remain elusive. Herein, we present evidence highlighting the influence exerted by insulin-like growth factor-binding protein 2 (IGFBP2) as a potent oncogene driving the malignant phenotype. Our investigation reveals a marked elevation of IGFBP2 expression in primary tumors, concomitant with the presence of mesenchymal biomarkers in HCC. Through in vitro and in vivo experimentation, we demonstrate that the overexpression of IGFBP2 expedites the progression of epithelial-mesenchymal transition (EMT) and facilitates the metastatic potential of HCC cells, chiefly mediated by the Wnt/β-catenin signaling pathway. Notably, knockdown of IGFBP2 significantly decreased the expression of total and nuclear β-catenin, N-cadherin and vimentin in the treatment of the specific activator of Wnt/β-catenin CHIR-99021. Collectively, our findings identify IGFBP2 as a pivotal regulator within the HCC EMT axis, whereby its overexpression confers the distinctly aggressive clinical features characteristic of the disease.
Collapse
Grants
- 82104187 National Natural Science Foundation of China
- 82104187 National Natural Science Foundation of China
- 82104187 National Natural Science Foundation of China
- 1308085QH130 the Natural Science Foundation of Anhui Province
- 1308085QH130 the Natural Science Foundation of Anhui Province
- JKZD20212 the Open Project Program of MOE Key Laboratory of Population Health Across Life Cycle
- JKZD20212 the Open Project Program of MOE Key Laboratory of Population Health Across Life Cycle
- KFJJ-2020-12 the Open Fund of Key Laboratory of Anti Inflammatory and Immune Medicine, Ministry of Education
- KFJJ-2020-12 the Open Fund of Key Laboratory of Anti Inflammatory and Immune Medicine, Ministry of Education
- KFJJ-2021-9 the Open Fund of Key Laboratory of Anti Inflammatory and Immune Medicine, Ministry of Education, China
- KFJJ-2021-9 the Open Fund of Key Laboratory of Anti Inflammatory and Immune Medicine, Ministry of Education, China
- AYPYS2021-2 the Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, China
- AYPYS2021-2 the Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, China
Collapse
Affiliation(s)
- Xiu Chen
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Yu Zhang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Pingping Zhang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Mengzhu Wei
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Tian Tian
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Yanling Guan
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Chenchen Han
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Medical University, Hefei, 230032, China.
| | - Yang Ma
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
8
|
Hwang WY, Kostiuk V, González DP, Lusk CP, Khokha MK. Kap-β2/Transportin mediates β-catenin nuclear transport in Wnt signaling. eLife 2022; 11:e70495. [PMID: 36300792 PMCID: PMC9665845 DOI: 10.7554/elife.70495] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Wnt signaling is essential for many aspects of embryonic development including the formation of the primary embryonic axis. In addition, excessive Wnt signaling drives multiple diseases including cancer, highlighting its importance for disease pathogenesis. β-catenin is a key effector in this pathway that translocates into the nucleus and activates Wnt responsive genes. However, due to our lack of understanding of β-catenin nuclear transport, therapeutic modulation of Wnt signaling has been challenging. Here, we took an unconventional approach to address this long-standing question by exploiting a heterologous model system, the budding yeast Saccharomyces cerevisiae, which contains a conserved nuclear transport machinery. In contrast to prior work, we demonstrate that β-catenin accumulates in the nucleus in a Ran-dependent manner, suggesting the use of a nuclear transport receptor (NTR). Indeed, a systematic and conditional inhibition of NTRs revealed that only Kap104, the ortholog of Kap-β2/Transportin-1 (TNPO1), was required for β-catenin nuclear import. We further demonstrate direct binding between TNPO1 and β-catenin that is mediated by a conserved PY-NLS. Finally, using Xenopus secondary axis and TCF/LEF (T Cell factor/lymphoid enhancer factor family) reporter assays, we demonstrate that our results in yeast can be directly translated to vertebrates. By elucidating the nuclear localization signal in β-catenin and its cognate NTR, our study suggests new therapeutic targets for a host of human diseases caused by excessive Wnt signaling. Indeed, we demonstrate that a small chimeric peptide designed to target TNPO1 can reduce Wnt signaling as a first step toward therapeutics.
Collapse
Affiliation(s)
- Woong Y Hwang
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale School of MedicineNew HavenUnited States
| | - Valentyna Kostiuk
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale School of MedicineNew HavenUnited States
| | - Delfina P González
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale School of MedicineNew HavenUnited States
| | - C Patrick Lusk
- Department of Cell Biology, Yale School of MedicineNew HavenUnited States
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale School of MedicineNew HavenUnited States
| |
Collapse
|
9
|
Tian H, Zhao H, Qu B, Chu X, Xin X, Zhang Q, Li W, Yang S. TRIM24 promotes colorectal cancer cell progression via the Wnt/β-catenin signaling pathway activation. Am J Transl Res 2022; 14:831-848. [PMID: 35273688 PMCID: PMC8902576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 10/12/2021] [Indexed: 06/14/2023]
Abstract
Overexpression of TRIM24 is observed in several human cancers and is correlated with an increase in the progression and metastasis of tumors. In this study, we investigated the changes in activity and biochemical events that occur after overexpression of TRIM24 in a colorectal cancer (CRC) mouse model. We observed upregulated TRIM24 expression in CRC tissues compared to that in nonneoplastic adjacent tissues. Enhanced expression of TRIM24 was significantly associated with the status of lymph nodes and poor recurrence-free survival of patients with CRC. The role of TRIM24 in CRC tumor growth was investigated using an orthotopic model of MC38 mouse colon cancer cells overexpressing TRIM24, and CRC tumor growth was found to increase dramatically by TRIM24 overexpression. Moreover, angiogenesis was stimulated by TRIM24 overexpression via the upregulation of vascular endothelial growth factor (VEGF) expression. Overexpression of TRIM24 in MC38 cells led to an increase in the protein levels of ALDH1 and other stem cell markers. In addition, we observed that Wnt/β-catenin signaling is required for the function of TRIM24 in CRC cells. Tumor-associated macrophages (TAMs) were found to be recruited by tumor cells overexpressing TRIM24 via the increased expression of CCL2/5, CSF-1, and VEGF, further enhancing CRC tumor growth. In conclusion, overexpression of TRIM24 facilitates the growth of CRC and the remodeling of the tumor stroma via angiogenesis stimulation and TAM recruitment. The Wnt/β-catenin pathway is a possible crucial link in the TRIM24-associated progression of tumors, which may provide opportunities for pharmacological intervention.
Collapse
Affiliation(s)
- Hong Tian
- Oncology Department, The 4th People’s Hospital of ShenyangShenyang 110013, Liaoning, China
| | - Hongmei Zhao
- Department of Laboratory Medicine, The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province)Shenyang 110016, Liaoning, China
| | - Bo Qu
- Department of Laboratory Medicine, The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province)Shenyang 110016, Liaoning, China
| | - Xiaoli Chu
- Oncology Department, The 4th People’s Hospital of ShenyangShenyang 110013, Liaoning, China
| | - Xing Xin
- Oncology Department, The 4th People’s Hospital of ShenyangShenyang 110013, Liaoning, China
| | - Qingwei Zhang
- General Surgery Dept. VI Ward (Biliary-Pancreatic Surgery), The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province)Shenyang 110016, Liaoning, China
| | - Weizhou Li
- Department of Laboratory Medicine, The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province)Shenyang 110016, Liaoning, China
| | - Shida Yang
- Department of Laboratory Medicine, The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province)Shenyang 110016, Liaoning, China
| |
Collapse
|
10
|
Huang Z, Liu J, Yang J, Yan Y, Yang C, He X, Huang R, Tan M, Wu D, Yan J, Shen B. PDE4B Induces Epithelial-to-Mesenchymal Transition in Bladder Cancer Cells and Is Transcriptionally Suppressed by CBX7. Front Cell Dev Biol 2021; 9:783050. [PMID: 34977026 PMCID: PMC8716816 DOI: 10.3389/fcell.2021.783050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/25/2021] [Indexed: 11/18/2022] Open
Abstract
Urinary bladder cancer (UBC) is a common malignant tumor with high incidence. Advances in the diagnosis and treatment of this disease demand the identification of novel therapeutic targets. Multiple studies demonstrated that PDE4B level was upregulated in malignancies and high PDE4B expression was correlated with poor outcomes. Herein, we identified that PDE4B was a potential therapeutic target in UBC. We confirmed that PDE4B expression was correlated with aggressive clinicopathological characteristics and unfavorable prognosis. Functional studies demonstrated that ectopic expression of PDE4B promoted UBC cells proliferation, migration and invasion, whereas PDE4B depletion suppressed cancer cell aggressiveness. We also identified CBX7 as a regulator of PDE4B to suppress the expression of PDE4B at the transcription level in a PRC1-dependent manner. Moreover, our results indicated that PDE4B induced epithelial-to-mesenchymal transition (EMT) in UBC cells via β-catenin pathway, whereas inhibition of PDE4B by its small molecule inhibitor, rolipram, effectively reversed the PDE4B overexpression-induced effects. To sum up, our results indicated that PDE4B acts as an oncogene by promoting UBC cell migration and invasion via β-catenin/EMT pathway.
Collapse
Affiliation(s)
- Zhengnan Huang
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiakuan Liu
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Jiale Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Yilin Yan
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chenkai Yang
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao He
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ruimin Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingyue Tan
- Department of Urology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Denglong Wu
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Denglong Wu, ; Jun Yan, ; Bing Shen,
| | - Jun Yan
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
- *Correspondence: Denglong Wu, ; Jun Yan, ; Bing Shen,
| | - Bing Shen
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Denglong Wu, ; Jun Yan, ; Bing Shen,
| |
Collapse
|
11
|
Zhang S, Wang J, Chen T, Wang J, Wang Y, Yu Z, Zhao K, Zheng K, Chen Y, Wang Z, Li B, Wang C, Huang W, Fu Z, Chen J. α-Actinin1 promotes tumorigenesis and epithelial-mesenchymal transition of gastric cancer via the AKT/GSK3β/β-Catenin pathway. Bioengineered 2021; 12:5688-5704. [PMID: 34546849 PMCID: PMC8806412 DOI: 10.1080/21655979.2021.1967713] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/10/2021] [Indexed: 12/25/2022] Open
Abstract
α-Actinin1 (ACTN1), an actin cross-linking protein, is implicated in cytokinesis, cell adhesion, and cell migration. In addition, it is involved in the tumorigenesis and development of certain cancers, such as breast cancer. We explored the function of ACTN1 in gastric cancer (GC), which has largely remained unclear. High-throughput sequencing and public microarray datasets from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) revealed the upregulation of ACTN1 in gastric cancer with a poor prognosis. These results were further verified by western blotting (WB), Real-Time Quantitative polymerase chain reaction (RT-qPCR), and immunohistochemistry. We constructed loss and gain of function gastric cancer cells, which revealed the effect of ACTN1 over-expression on promoting GC cell proliferation, invasion, migration, and inhibited apoptosis. Mechanistic studies revealed that ACTN1 regulates the epithelial-mesenchymal transition (EMT) and tumorigenesis of gastric cancer via the AKT/GSK3β/β-catenin pathway, confirmed by the inhibitor of AKT MK2206. Altogether, these results demonstrated that ACTN1 could be a promising candidate for gastric cancer treatment.
Collapse
Affiliation(s)
- Siwen Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Junfu Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ting Chen
- Graduate College, The Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, People’s Republic of China
| | - Jiancheng Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ye Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhu Yu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Kun Zhao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Kaitian Zheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yeyang Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhen Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bopei Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Congjun Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weijia Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhao Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Junqiang Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
12
|
Zheng H, Ning Y, Yang Y, Zhan Y, Wang H, Wen Q, Peng J, Fan S. Aberrant Expression of β-Catenin Correlates with Infiltrating Immune Cells and Prognosis in NSCLC. Pathol Oncol Res 2021; 27:1609981. [PMID: 34764821 PMCID: PMC8575687 DOI: 10.3389/pore.2021.1609981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022]
Abstract
Aims: β-catenin is a critical regulating factor of the Wnt pathway, which is closely linked to tumorigenesis, tumor growth, metastasis, and tumor immunity. Our study focused on exploring the relationship between β-catenin and clinicopathological features, prognosis, as well as infiltrating immune cells and immune scores, so as to illustrate its clinical significance in NSCLC. Materials and Methods: The β-catenin mRNA (CTNNB1) and protein expression data were downloaded from the UALCAN and the UCSC Xena website, respectively. All tumor-immune infiltrating cells' data were downloaded from the TIMER platform and immune scores were downloaded from ESTIMATE website. The expression of β-catenin protein in our cohort was measured by immunohistochemistry. Results: β-catenin mRNA level was higher in lung adenocarcinoma (LUAD) compared to normal tissues (p < 0.001) and was related to overall survival (OS) (p < 0.001) and post-progression survival (PPS) (both p = 0.049) in LUAD. Aberrant β-catenin protein expression was higher in male and lung squamous cell carcinoma (LUSC) patients (both p = 0.001). Also, it was considered to be a prognosis factor independently (p = 0.034). In addition, β-catenin protein was negatively correlated with CD8+T cells (r = -0.128, p = 0.008), neutrophils (r = -0.198, p < 0.001), immune score (r = -0.109, p = 0.024), stromal score (r = -0.097, p = 0.045), and ESTIMATE score (r = -0.113, p = 0.020). Conclusions: Aberrant β-catenin protein expression was evidently higher in NSCLC and might serve as a biomarker for poor prognosis. Most importantly, β-catenin protein might play an important part in tumor immunity and the tumor microenvironment by inhibiting the infiltration of CD8+ T cells and neutrophils.
Collapse
Affiliation(s)
- Hongmei Zheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yue Ning
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yang Yang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuting Zhan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Haihua Wang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiuyuan Wen
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinwu Peng
- Department of Pathology, Xiangya Basic Medical School, Central South University, Changsha, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Le Rolle M, Massa F, Siggers P, Turchi L, Loubat A, Koo BK, Clevers H, Greenfield A, Schedl A, Chaboissier MC, Chassot AA. Arrest of WNT/β-catenin signaling enables the transition from pluripotent to differentiated germ cells in mouse ovaries. Proc Natl Acad Sci U S A 2021; 118:e2023376118. [PMID: 34301885 PMCID: PMC8325354 DOI: 10.1073/pnas.2023376118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Germ cells form the basis for sexual reproduction by producing gametes. In ovaries, primordial germ cells exit the cell cycle and the pluripotency-associated state, differentiate into oogonia, and initiate meiosis. Despite the importance of germ cell differentiation for sexual reproduction, signaling pathways regulating their fate remain largely unknown. Here, we show in mouse embryonic ovaries that germ cell-intrinsic β-catenin activity maintains pluripotency and that its repression is essential to allow differentiation and meiosis entry in a timely manner. Accordingly, in β-catenin loss-of-function and gain-of-function mouse models, the germ cells precociously enter meiosis or remain in the pluripotent state, respectively. We further show that interaction of β-catenin and the pluripotent-associated factor POU5F1 in the nucleus is associated with germ cell pluripotency. The exit of this complex from the nucleus correlates with germ cell differentiation, a process promoted by the up-regulation of Znrf3, a negative regulator of WNT/β-catenin signaling. Together, these data identify the molecular basis of the transition from primordial germ cells to oogonia and demonstrate that β-catenin is a central gatekeeper in ovarian differentiation and gametogenesis.
Collapse
Affiliation(s)
- Morgane Le Rolle
- CNRS, Inserm, Institut de Biologie Valrose, Université Côte d'Azur, Parc Valrose, 06108 Nice Cedex 2, France
| | - Filippo Massa
- CNRS, Inserm, Institut de Biologie Valrose, Université Côte d'Azur, Parc Valrose, 06108 Nice Cedex 2, France
- Inovarion, 75005 Paris, France
| | - Pam Siggers
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Oxfordshire OX11 0RD, United Kingdom
| | - Laurent Turchi
- CNRS, Inserm, Institut de Biologie Valrose, Université Côte d'Azur, Parc Valrose, 06108 Nice Cedex 2, France
- Délégation à la Recherche Clinique et à l'Innovation, Centre Hospitalier Universitaire de Nice, 06000 Nice, France
| | - Agnès Loubat
- CNRS, Inserm, Institut de Biologie Valrose, Université Côte d'Azur, Parc Valrose, 06108 Nice Cedex 2, France
| | - Bon-Kyoung Koo
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, 3584 CT Utrecht, The Netherlands
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, 3584 CT Utrecht, The Netherlands
| | - Andy Greenfield
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Oxfordshire OX11 0RD, United Kingdom
| | - Andreas Schedl
- CNRS, Inserm, Institut de Biologie Valrose, Université Côte d'Azur, Parc Valrose, 06108 Nice Cedex 2, France
| | - Marie-Christine Chaboissier
- CNRS, Inserm, Institut de Biologie Valrose, Université Côte d'Azur, Parc Valrose, 06108 Nice Cedex 2, France
| | - Anne-Amandine Chassot
- CNRS, Inserm, Institut de Biologie Valrose, Université Côte d'Azur, Parc Valrose, 06108 Nice Cedex 2, France;
| |
Collapse
|
14
|
Abstract
Congenital birth defects result from an abnormal development of an embryo and have detrimental effects on children's health. Specifically, congenital heart malformations are a leading cause of death among pediatric patients and often require surgical interventions within the first year of life. Increased efforts to navigate the human genome provide an opportunity to discover multiple candidate genes in patients suffering from birth defects. These efforts, however, fail to provide an explanation regarding the mechanisms of disease pathogenesis and emphasize the need for an efficient platform to screen candidate genes. Xenopus is a rapid, cost effective, high-throughput vertebrate organism to model the mechanisms behind human disease. This review provides numerous examples describing the successful use of Xenopus to investigate the contribution of patient mutations to complex phenotypes including congenital heart disease and heterotaxy. Moreover, we describe a variety of unique methods that allow us to rapidly recapitulate patients' phenotypes in frogs: gene knockout and knockdown strategies, the use of fate maps for targeted manipulations, and novel imaging modalities. The combination of patient genomics data and the functional studies in Xenopus will provide necessary answers to the patients suffering from birth defects. Furthermore, it will allow for the development of better diagnostic methods to ensure early detection and intervention. Finally, with better understanding of disease pathogenesis, new treatment methods can be tailored specifically to address patient's phenotype and genotype.
Collapse
Affiliation(s)
- Valentyna Kostiuk
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT, United States
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|
15
|
Lai KKY, Kahn M. Pharmacologically Targeting the WNT/β-Catenin Signaling Cascade: Avoiding the Sword of Damocles. Handb Exp Pharmacol 2021; 269:383-422. [PMID: 34463849 DOI: 10.1007/164_2021_523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
WNT/β-catenin signaling plays fundamental roles in numerous developmental processes and in adult tissue homeostasis and repair after injury, by controlling cellular self-renewal, activation, division, differentiation, movement, genetic stability, and apoptosis. As such, it comes as no surprise that dysregulation of WNT/β-catenin signaling is associated with various diseases, including cancer, fibrosis, neurodegeneration, etc. Although multiple agents that specifically target the WNT/β-catenin signaling pathway have been studied preclinically and a number have entered clinical trials, none has been approved by the FDA to date. In this chapter, we provide our insights as to the reason(s) it has been so difficult to safely pharmacologically target the WNT/β-catenin signaling pathway and discuss the significant efforts undertaken towards this goal.
Collapse
Affiliation(s)
- Keane K Y Lai
- Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Michael Kahn
- Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
16
|
van der Wal T, van Amerongen R. Walking the tight wire between cell adhesion and WNT signalling: a balancing act for β-catenin. Open Biol 2020; 10:200267. [PMID: 33292105 PMCID: PMC7776579 DOI: 10.1098/rsob.200267] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
CTNNB1 (catenin β-1, also known as β-catenin) plays a dual role in the cell. It is the key effector of WNT/CTNNB1 signalling, acting as a transcriptional co-activator of TCF/LEF target genes. It is also crucial for cell adhesion and a critical component of cadherin-based adherens junctions. Two functional pools of CTNNB1, a transcriptionally active and an adhesive pool, can therefore be distinguished. Whether cells merely balance the distribution of available CTNNB1 between these functional pools or whether interplay occurs between them has long been studied and debated. While interplay has been indicated upon artificial modulation of cadherin expression levels and during epithelial-mesenchymal transition, it is unclear to what extent CTNNB1 exchange occurs under physiological conditions and in response to WNT stimulation. Here, we review the available evidence for both of these models, discuss how CTNNB1 binding to its many interaction partners is controlled and propose avenues for future studies.
Collapse
Affiliation(s)
| | - Renée van Amerongen
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
17
|
Alternative isoforms of KDM2A and KDM2B lysine demethylases negatively regulate canonical Wnt signaling. PLoS One 2020; 15:e0236612. [PMID: 33104714 PMCID: PMC7588095 DOI: 10.1371/journal.pone.0236612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022] Open
Abstract
A precisely balanced activity of canonical Wnt signaling is essential for a number of biological processes and its perturbation leads to developmental defects or diseases. Here, we demonstrate that alternative isoforms of the KDM2A and KDM2B lysine demethylases have the ability to negatively regulate canonical Wnt signaling. These KDM2A and KDM2B isoforms (KDM2A-SF and KDM2B-SF) lack the N-terminal demethylase domain, but they still have the ability to bind to CpG islands in promoters and to interact with their protein partners via their other functional domains. We have observed that KDM2A-SF and KDM2B-SF bind to the promoters of axin 2 and cyclin D1, two canonical Wnt signaling target genes, and repress their activity. Moreover, KDM2A-SF and KDM2B-SF are both able to strongly repress a Wnt-responsive luciferase reporter. The transcriptional repression mediated by KDM2A-SF and KDM2B-SF, but also by KDM2A-LF, is dependent on their DNA binding domain, while the N-terminal demethylase domain is dispensable for this process. Surprisingly, KDM2B-LF is unable to repress both the endogenous promoters and the luciferase reporter. Finally, we show that both KDM2A-SF and KDM2B-SF are able to interact with TCF7L1, one of the transcriptional mediators of canonical Wnt signaling. KDM2A-SF and KDM2B-SF are thus likely to negatively affect the transcription of canonical Wnt signaling target genes by binding to their promoters and by interacting with TCF7L1 and other co-repressors.
Collapse
|
18
|
Shao Z, Liu L, Zheng Y, Tu S, Pan Y, Yan S, Wei Q, Shao A, Zhang J. Molecular Mechanism and Approach in Progression of Meningioma. Front Oncol 2020; 10:538845. [PMID: 33042832 PMCID: PMC7518150 DOI: 10.3389/fonc.2020.538845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
Meningioma is the most common tumor of the central nervous system, most of which is benign. Even after complete resection, a high rate of recurrence of meningioma is observed. From in-depth study of its pathogenesis, it has been found that a number of chromosomal variations and abnormal molecular signals are closely related to the occurrence and development of malignancy in meningioma, which may provide the theoretical basis and potential direction for accurate and targeted treatment. We have reviewed advances in chromosomal variations and molecular mechanisms involved in the progression of meningioma, and have highlighted the association with malignant biological behavior including cell proliferation, angiogenesis, increased invasiveness, and inhibition of apoptosis. In addition, the chemotherapy of meningioma is summarized and discussed.
Collapse
Affiliation(s)
- Zhiwei Shao
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lihong Liu
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanghao Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanbo Pan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Yan
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qichun Wei
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Brain Research Institute, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Covello G, Rossello FJ, Filosi M, Gajardo F, Duchemin A, Tremonti BF, Eichenlaub M, Polo JM, Powell D, Ngai J, Allende ML, Domenici E, Ramialison M, Poggi L. Transcriptome analysis of the zebrafish atoh7-/- Mutant, lakritz, highlights Atoh7-dependent genetic networks with potential implications for human eye diseases. FASEB Bioadv 2020; 2:434-448. [PMID: 32676583 PMCID: PMC7354691 DOI: 10.1096/fba.2020-00030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/02/2020] [Accepted: 04/28/2020] [Indexed: 12/21/2022] Open
Abstract
Expression of the bHLH transcription protein Atoh7 is a crucial factor conferring competence to retinal progenitor cells for the development of retinal ganglion cells. Several studies have emerged establishing ATOH7 as a retinal disease gene. Remarkably, such studies uncovered ATOH7 variants associated with global eye defects including optic nerve hypoplasia, microphthalmia, retinal vascular disorders, and glaucoma. The complex genetic networks and cellular decisions arising downstream of atoh7 expression, and how their dysregulation cause development of such disease traits remains unknown. To begin to understand such Atoh7-dependent events in vivo, we performed transcriptome analysis of wild-type and atoh7 mutant (lakritz) zebrafish embryos at the onset of retinal ganglion cell differentiation. We investigated in silico interplays of atoh7 and other disease-related genes and pathways. By network reconstruction analysis of differentially expressed genes, we identified gene clusters enriched in retinal development, cell cycle, chromatin remodeling, stress response, and Wnt pathways. By weighted gene coexpression network, we identified coexpression modules affected by the mutation and enriched in retina development genes tightly connected to atoh7. We established the groundwork whereby Atoh7-linked cellular and molecular processes can be investigated in the dynamic multi-tissue environment of the developing normal and diseased vertebrate eye.
Collapse
Affiliation(s)
- Giuseppina Covello
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
- Present address:
Department of BiologyUniversity of PadovaPadovaItaly
| | - Fernando J. Rossello
- Australian Regenerative Medicine InstituteMonash University Clayton VICClaytonAustralia
- Present address:
University of Melbourne Centre for Cancer ResearchUniversity of MelbourneMelbourneVictoriaAustralia
| | - Michele Filosi
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
| | - Felipe Gajardo
- Center for Genome RegulationFacultad de Ciencias, SantiagoUniversidad de ChileSantiagoChile
| | | | - Beatrice F. Tremonti
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
| | - Michael Eichenlaub
- Australian Regenerative Medicine InstituteMonash University Clayton VICClaytonAustralia
| | - Jose M. Polo
- Australian Regenerative Medicine InstituteMonash University Clayton VICClaytonAustralia
- BDIMonash University Clayton VICClaytonAustralia
| | - David Powell
- Monash Bioinformatics PlatformMonash University Clayton VICClaytonAustralia
| | - John Ngai
- Department of Molecular and Cell Biology & Helen Wills Neuroscience InstituteUniversity of CaliforniaBerkeleyCAUSA
| | - Miguel L. Allende
- Center for Genome RegulationFacultad de Ciencias, SantiagoUniversidad de ChileSantiagoChile
| | - Enrico Domenici
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
- Fondazione The Microsoft Research ‐ University of Trento Centre for Computational and Systems BiologyTrentoItaly
| | - Mirana Ramialison
- Australian Regenerative Medicine InstituteMonash University Clayton VICClaytonAustralia
| | - Lucia Poggi
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
- Centre for Organismal StudyHeidelberg UniversityHeidelbergGermany
- Department of PhysiologyDevelopment and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
20
|
Extracellular matrix stiffness and Wnt/β-catenin signaling in physiology and disease. Biochem Soc Trans 2020; 48:1187-1198. [DOI: 10.1042/bst20200026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022]
Abstract
The Wnt/β-catenin signaling pathway plays fundamental roles during development, stem cell differentiation, and homeostasis, and its abnormal activation can lead to diseases. In recent years, it has become clear that this pathway integrates signals not only from Wnt ligands but also from other proteins and signaling routes. For instance, Wnt/β-catenin signaling involves YAP and TAZ, which are transcription factors with crucial roles in mechanotransduction. On the other hand, Wnt/β-catenin signaling is also modulated by integrins. Therefore, mechanical signals might similarly modulate the Wnt/β-catenin pathway. However, and despite the relevance that mechanosensitive Wnt/β-catenin signaling might have during physiology and diseases such as cancer, the role of mechanical cues on Wnt/β-catenin signaling has received less attention. This review aims to summarize recent evidence regarding the modulation of the Wnt/β-catenin signaling by a specific type of mechanical signal, the stiffness of the extracellular matrix. The review shows that mechanical stiffness can indeed modulate this pathway in several cell types, through differential expression of Wnt ligands, receptors and inhibitors, as well as by modulating β-catenin levels. However, the specific mechanisms are yet to be fully elucidated.
Collapse
|
21
|
Warzych E, Pawlak P, Lechniak D, Madeja ZE. WNT signalling supported by MEK/ERK inhibition is essential to maintain pluripotency in bovine preimplantation embryo. Dev Biol 2020; 463:63-76. [PMID: 32360193 DOI: 10.1016/j.ydbio.2020.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 12/21/2022]
Abstract
Capturing stable embryonic stem cell (ESC) lines from domesticated animals still remains one of the challenges of non-rodent embryology. The stake is high, as stable ESCs derived from species such as cattle present high economic and scientific value. Understanding of the processes leading to the embryonic lineage segregation is crucial to provide species-orientated molecular environment capable of supporting self-renewal and pluripotency. Therefore, the aim of this study was to validate the action of the two core regulatory pathways (WNT and MEK/ERK) during bovine embryo development. In vitro produced bovine embryos were obtained in the presence of inhibitors (i), which enable activation of the WNT pathway (via GSK3i, CHIR99021) and suppression of MEK signalling by PD0325901 in the 2i system and PD184325 and SU5402 in the 3i system. We have followed the changes in the distribution of the key lineage specific markers both at the transcript and protein level. Our results showed that WNT signalling promotes the expression of key inner cell mass (ICM) specific markers in bovine embryos, regardless of the MEK/ERK inhibitor cocktail used. MEK/ERK downregulation is crucial to maintain OCT4 and NANOG expression within the ICM and to prevent their exclusion from the trophectoderm (TE). At the same time, the classical TE marker (CDX2) was downregulated at the mRNA and protein level. As a follow up for the observed pluripotency stimulating effect of the inhibitors, we have tested the potential of the 2i and the 3i culture conditions (supported by LIF) to derive primary bovine ESC lines. As a result, we propose a model in which all of the primary signalling pathways determining embryonic cell fate are active in bovine embryos, yet the requirement for pluripotency maintenance in cattle may differ from the described standards. WNT activation leads to the formation (and stabilisation of the ICM) and MEK/ERK signalling is maintained at low levels. Unlike in the mouse, GATA6 is expressed in both ICM and TE. MEK/ERK signalling affects HP formation in cattle, but this process is activated at the post-blastocyst stage. With regard to self-renewal, 2i is preferable, as 3i also blocks the FGF receptor, what may prevent PI3K signalling, important for pluripotency and self-renewal.
Collapse
Affiliation(s)
- Ewelina Warzych
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland.
| | - Piotr Pawlak
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland.
| | - Dorota Lechniak
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland.
| | - Zofia Eliza Madeja
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland.
| |
Collapse
|
22
|
Tutunea-Fatan E, Lee JC, Denker BM, Gunaratnam L. Heterotrimeric Gα 12/13 proteins in kidney injury and disease. Am J Physiol Renal Physiol 2020; 318:F660-F672. [PMID: 31984793 DOI: 10.1152/ajprenal.00453.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Gα12 and Gα13 are ubiquitous members of the heterotrimeric guanine nucleotide-binding protein (G protein) family that play central and integrative roles in the regulation of signal transduction cascades within various cell types in the kidney. Gα12/Gα13 proteins enable the kidney to adapt to an ever-changing environment by transducing stimuli from cell surface receptors and accessory proteins to effector systems. Therefore, perturbations in Gα12/Gα13 levels or their activity can contribute to the pathogenesis of various renal diseases, including renal cancer. This review will highlight and discuss the complex and expanding roles of Gα12/Gα13 proteins on distinct renal pathologies, with emphasis on more recently reported findings. Deciphering how the different Gα12/Gα13 interaction networks participate in the onset and development of renal diseases may lead to the discovery of new therapeutic strategies.
Collapse
Affiliation(s)
- Elena Tutunea-Fatan
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
| | - Jasper C Lee
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Bradley M Denker
- Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Lakshman Gunaratnam
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada.,Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada.,Division of Nephrology, Department of Medicine, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
23
|
Devaux CA, Mezouar S, Mege JL. The E-Cadherin Cleavage Associated to Pathogenic Bacteria Infections Can Favor Bacterial Invasion and Transmigration, Dysregulation of the Immune Response and Cancer Induction in Humans. Front Microbiol 2019; 10:2598. [PMID: 31781079 PMCID: PMC6857109 DOI: 10.3389/fmicb.2019.02598] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/25/2019] [Indexed: 12/21/2022] Open
Abstract
Once bound to the epithelium, pathogenic bacteria have to cross epithelial barriers to invade their human host. In order to achieve this goal, they have to destroy the adherens junctions insured by cell adhesion molecules (CAM), such as E-cadherin (E-cad). The invasive bacteria use more or less sophisticated mechanisms aimed to deregulate CAM genes expression or to modulate the cell-surface expression of CAM proteins, which are otherwise rigorously regulated by a molecular crosstalk essential for homeostasis. Apart from the repression of CAM genes, a drastic decrease in adhesion molecules on human epithelial cells can be obtained by induction of eukaryotic endoproteases named sheddases or through synthesis of their own (prokaryotic) sheddases. Cleavage of CAM by sheddases results in the release of soluble forms of CAM. The overexpression of soluble CAM in body fluids can trigger inflammation and pro-carcinogenic programming leading to tumor induction and metastasis. In addition, the reduction of the surface expression of E-cad on epithelia could be accompanied by an alteration of the anti-bacterial and anti-tumoral immune responses. This immune response dysfunction is likely to occur through the deregulation of immune cells homing, which is controlled at the level of E-cad interaction by surface molecules αE integrin (CD103) and lectin receptor KLRG1. In this review, we highlight the central role of CAM cell-surface expression during pathogenic microbial invasion, with a particular focus on bacterial-induced cleavage of E-cad. We revisit herein the rapidly growing body of evidence indicating that high levels of soluble E-cad (sE-cad) in patients’ sera could serve as biomarker of bacterial-induced diseases.
Collapse
Affiliation(s)
- Christian A Devaux
- IRD, MEPHI, APHM, Aix-Marseille University, Marseille, France.,CNRS, Institute of Biological Science (INSB), Marseille, France.,Institut Hospitalo-Universitaire (IHU)-Mediterranee Infection, Marseille, France
| | - Soraya Mezouar
- IRD, MEPHI, APHM, Aix-Marseille University, Marseille, France.,Institut Hospitalo-Universitaire (IHU)-Mediterranee Infection, Marseille, France
| | - Jean-Louis Mege
- IRD, MEPHI, APHM, Aix-Marseille University, Marseille, France.,Institut Hospitalo-Universitaire (IHU)-Mediterranee Infection, Marseille, France.,APHM, UF Immunology Department, Marseille, France
| |
Collapse
|
24
|
Dong W, Liu J, Lv Y, Wang F, Liu T, Sun S, Liao B, Shu Z, Qian J. miR-640 aggravates intervertebral disc degeneration via NF-κB and WNT signalling pathway. Cell Prolif 2019; 52:e12664. [PMID: 31343104 PMCID: PMC6797513 DOI: 10.1111/cpr.12664] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/29/2019] [Accepted: 06/17/2019] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Low back pain becomes a common orthopaedic disease today. It is mainly induced by the degeneration of the intervertebral disc. In this study, we tried to reveal the pathogenesis of the degeneration and the relative therapeutic strategy, which are still elusive. MATERIALS AND METHODS We collected 15 degenerative intervertebral tissues and five healthy donors. Nucleus pulposus and annulus fibrosus cells were subcultured. miR-640 expression was determined by qPCR. Computer analysis and luciferase reporter assay were used to confirm miR-640 target genes. Immunohistochemical and immunocytochemical staining was used to trace the proinflammatory cytokines and key transductor of signalling pathways. We also used β-galactosidase staining, flow cytometry, and cell viability assay to monitor the degenerative index. RESULTS miR-640 overexpressed in patients derived degenerative nucleus pulposus tissues and cells. The inflammatory environment promoted miR-640 expression via NF-κB signalling pathway. In addition, miR-640 targeted to LRP1 and enhances NF-κB signal activity, which built a positive feedback loop. miR-640 inhibited the expression of β-catenin and EP300, therefore, restrained WNT signal and induced the degeneration in nucleus pulposus cells. miR-640 inhibitor treatment exhibited the effects of anti-inflammation, reverse WNT signalling pathway exhaustion, and remission of degenerative characteristics in vitro. CONCLUSIONS miR-640 plays an important role in the degeneration of intervertebral disc and the relative inflammatory microenvironment. It is a promising potential therapeutic target for the low back pain biotherapy.
Collapse
Affiliation(s)
- Wengang Dong
- Department of OrthopaedicsThe Second Affiliated Hospital of Air Force Medical UniversityXi’anChina
- Department of OrthopaedicsGeneral Hospital of Lanzhou Military CommandLanzhouChina
| | - Jun Liu
- Laboratory of Molecular BiologyDisease Control and Prevention Center of PLA’s Southern Theatre CommandGuangzhouChina
- Biotechnology Center, School of PharmacyAir Force Medical UniversityXi’anChina
| | - Yang Lv
- Department of OrthopaedicsGeneral Hospital of Lanzhou Military CommandLanzhouChina
- Department of OphthalmologyEye Institute of China PLA, The First Affiliated Hospital of Air Force Medical UniversityXi’anChina
| | - Fei Wang
- Department of OrthopaedicsGeneral Hospital of Lanzhou Military CommandLanzhouChina
| | - Tao Liu
- Department of OrthopaedicsThe Second Affiliated Hospital of Air Force Medical UniversityXi’anChina
| | - Siguo Sun
- Department of OrthopaedicsThe Second Affiliated Hospital of Air Force Medical UniversityXi’anChina
| | - Bo Liao
- Department of OrthopaedicsThe Second Affiliated Hospital of Air Force Medical UniversityXi’anChina
| | - Zhen Shu
- Department of Radiation OncologyWinship Cancer Institute, Emory University School of MedicineAtlantaGAUSA
| | - Jixian Qian
- Department of OrthopaedicsThe Second Affiliated Hospital of Air Force Medical UniversityXi’anChina
| |
Collapse
|
25
|
Li S, Liu D, Fu Y, Zhang C, Tong H, Li S, Yan Y. Podocan Promotes Differentiation of Bovine Skeletal Muscle Satellite Cells by Regulating the Wnt4-β-Catenin Signaling Pathway. Front Physiol 2019; 10:1010. [PMID: 31447699 PMCID: PMC6692459 DOI: 10.3389/fphys.2019.01010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/22/2019] [Indexed: 02/03/2023] Open
Abstract
Background Small leucine-rich repeat proteins (SLRPs) are highly effective and selective modulators of cell proliferation and differentiation. Podocan is a newly discovered member of the SLRP family. Its potential roles in the differentiation of bovine muscle-derived satellite cells (MDSCs) and its underlying functional mechanism remain unclear. Our study aimed to characterize the function of the podocan gene in the differentiation of bovine MDSCs and to clarify the molecular mechanism by which podocan functions in order to contribute to a better understanding of the molecular mechanism by which extracellular matrix promotes bovine MDSC differentiation and provide a theoretical basis for the improvement of beef quality. Methods Bovine MDSCs were transfected with vectors to overexpress or inhibit podocan, and podocan protein was added to differentiation culture medium. qRT-PCR, western blotting, and immunofluorescence were performed to investigate the effects of podocan on MDSC differentiation. Confocal microscopy and western blotting were used to assess the nuclear translocation and expression of β-catenin. An inhibitor and activator of β-catenin were used to assess the effects of the Wnt/β-catenin signaling pathway on MDSC differentiation. We inhibited β-catenin while overexpressing podocan in MDSCs. Then, we performed mass spectrometry to identify which proteins interact with podocan to regulate the Wnt/β-catenin signaling pathway. Finally, we confirmed the relationship between podocan and Wnt4 by co-immunoprecipitation and western blotting. Results Podocan protein expression increased significantly during bovine MDSC differentiation. Differentiation of bovine MDSC was promoted and suppressed by podocan overexpression or inhibition, respectively. Podocan was also shown to modulate the Wnt/β-catenin signaling pathway. Treatment of bovine MDSCs with β-catenin inhibitor and activator showed that the Wnt/β-catenin pathway is involved in bovine MDSC differentiation. Furthermore, the effect of podocan on bovine MDSC differentiation was suppressed when this pathway was inhibited. We also found that podocan interacts with Wnt4. When Wnt4 was inhibited, podocan-induced promotion of bovine MDSC differentiation was attenuated through Wnt/β-catenin signaling. Conclusion Podocan regulates Wnt/β-catenin through Wnt4 to promote bovine MDSC differentiation.
Collapse
Affiliation(s)
- Shuang Li
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, China
| | - Dan Liu
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, China
| | - Yuying Fu
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, China
| | - Chunyu Zhang
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, China
| | - Huili Tong
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, China
| | - Shufeng Li
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, China
| | - Yunqin Yan
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, China
| |
Collapse
|
26
|
MicroRNA-214-3p Targeting Ctnnb1 Promotes 3T3-L1 Preadipocyte Differentiation by Interfering with the Wnt/β-Catenin Signaling Pathway. Int J Mol Sci 2019; 20:ijms20081816. [PMID: 31013762 PMCID: PMC6515133 DOI: 10.3390/ijms20081816] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/04/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023] Open
Abstract
Differentiation from preadipocytes into mature adipocytes is a complex biological process in which miRNAs play an important role. Previous studies showed that miR-214-3p facilitates adipocyte differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) in vitro. The detailed function and molecular mechanism of miR-214-3p in adipocyte development is unclear. In this study, the 3T3-L1 cell line was used to analyze the function of miR-214-3p in vitro. Using 5-Ethynyl-2′-deoxyuridine (EdU) staining and the CCK-8 assay, we observed that transfection with the miR-214-3p agomir visibly promoted proliferation of 3T3-L1 preadipocytes by up-regulating the expression of cell cycle-related genes. Interestingly, overexpression of miR-214-3p promoted 3T3-L1 preadipocyte differentiation and up-regulated the expression of key genes for lipogenesis: PPARγ, FABP4, and Adiponectin. Conversely, inhibition of miR-214-3p repressed 3T3-L1 preadipocyte proliferation and differentiation, and down-regulated the expression of cell cycle-related genes and adipogenic markers. Furthermore, we proved that miR-214-3p regulates 3T3-L1 preadipocyte differentiation by directly targeting the 3′-untranslated regions (3′UTR) of Ctnnb1, which is an important transcriptional regulatory factor of the Wnt/β-Catenin pathway. Taken together, the data indicate that miR-214-3p may positively regulate preadipocyte proliferation and enhance differentiation through the Wnt/β-Catenin signaling pathway.
Collapse
|
27
|
NMIIA promotes tumor growth and metastasis by activating the Wnt/β-catenin signaling pathway and EMT in pancreatic cancer. Oncogene 2019; 38:5500-5515. [PMID: 30967633 DOI: 10.1038/s41388-019-0806-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/27/2019] [Accepted: 03/20/2019] [Indexed: 12/13/2022]
Abstract
Non-muscle myosin IIA (NMIIA) protein plays an important role in cell cytokinesis and cell migration. The role and underlying regulatory mechanisms of NMIIA in pancreatic cancer (PC) remain elusive. We found that NMIIA is highly expressed in PC tissues and contributes to PC poor progression by using open microarray datasets from the Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), and PC tissue arrays. NMIIA regulates β-catenin mediated EMT to promote the proliferation, migration, invasion, and sphere formation of PC cells in vitro and in vivo. NMIIA controls the β-catenin transcriptional activity by interacting with β-catenin. Moreover, MEK/ERK signaling is critical in MLC2 (Ser19) phosphorylation, which can mediate NMIIA activity and regulate Wnt/β-catenin signaling. These findings highlight the significance of NMIIA in tumor regression and implicate NMIIA as a promising candidate for PC treatment.
Collapse
|
28
|
Wnt3a disrupts GR-TEAD4-PPARγ2 positive circuits and cytoskeletal rearrangement in a β-catenin-dependent manner during early adipogenesis. Cell Death Dis 2019; 10:16. [PMID: 30622240 PMCID: PMC6325140 DOI: 10.1038/s41419-018-1249-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/25/2018] [Accepted: 11/30/2018] [Indexed: 11/09/2022]
Abstract
Adipogenesis is a process which induces or represses many genes in a way to drive irreversible changes of cell phenotypes; lipid accumulation, round cell-shape, secreting many adipokines. As a master transcription factor (TF), PPARγ2 induces several target genes to orchestrate these adipogenic changes. Thus induction of Pparg2 gene is tightly regulated by many adipogenic and also anti-adipogenic factors. Four hours after the treatment of adipogenic hormones, more than fifteen TFs including glucocorticoid receptor (GR), C/EBPβ and AP-1 cooperatively bind the promoter of Pparg2 gene covering 400 bps, termed "hotspot". In this study, we show that TEA domain family transcription factor (TEAD)4 reinforces occupancy of both GR and C/EBPβ on the hotspot of Pparg2 during early adipogenesis. Our findings that TEAD4 requires GR for its expression and for the ability to bind its own promoter and the hotspot region of Pparg2 gene indicate that GR is a common component of two positive circuits, which regulates the expression of both Tead4 and Pparg2. Wnt3a disrupts these mutually related positive circuits by limiting the nuclear location of GR in a β-catenin dependent manner. The antagonistic effects of β-catenin extend to cytoskeletal remodeling during the early phase of adipogenesis. GR is necessary for the rearrangements of both cytoskeleton and chromatin of Pparg2, whereas Wnt3a inhibits both processes in a β-catenin-dependent manner. Our results suggest that hotspot formation during early adipogenesis is related to cytoskeletal remodeling, which is regulated by the antagonistic action of GR and β-catenin, and that Wnt3a reinforces β-catenin function.
Collapse
|
29
|
Mir R, Sharma A, Pradhan SJ, Galande S. Regulation of Transcription Factor SP1 by the β-Catenin Destruction Complex Modulates Wnt Response. Mol Cell Biol 2018; 38:e00188-18. [PMID: 30181396 PMCID: PMC6206460 DOI: 10.1128/mcb.00188-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/22/2018] [Accepted: 08/28/2018] [Indexed: 01/05/2023] Open
Abstract
The ubiquitous transcription factor specificity protein 1 (SP1) is heavily modified posttranslationally. These modifications are critical for switching its functions and modulation of its transcriptional activity and DNA binding and stability. However, the mechanism governing the stability of SP1 by cellular signaling pathways is not well understood. Here, we provide biochemical and functional evidence that SP1 is an integral part of the Wnt signaling pathway. We identified a phosphodegron motif in SP1 that is specific to mammals. In the absence of Wnt signaling, glycogen synthase kinase 3β (GSK3β)-mediated phosphorylation and β-TrCP E3 ubiquitin ligase-mediated ubiquitination are required to induce SP1 degradation. When Wnt signaling is on, SP1 is stabilized in a β-catenin-dependent manner. SP1 directly interacts with β-catenin, and Wnt signaling induces the stabilization of SP1 by impeding its interaction with β-TrCP and axin1, components of the destruction complex. Wnt signaling suppresses ubiquitination and subsequent proteosomal degradation of SP1. Furthermore, SP1 regulates Wnt-dependent stability of β-catenin and their mutual stabilization is critical for target gene expression, suggesting a feedback mechanism. Upon stabilization, SP1 and β-catenin cooccupy the promoters of TCFL2/β-catenin target genes. Collectively, this study uncovers a direct link between SP1 and β-catenin in the Wnt signaling pathway.
Collapse
Affiliation(s)
- Rafeeq Mir
- Indian Institute of Science Education and Research, Pune, India
| | - Ankita Sharma
- Indian Institute of Science Education and Research, Pune, India
| | | | - Sanjeev Galande
- Indian Institute of Science Education and Research, Pune, India
| |
Collapse
|
30
|
Qiong W, Xiaofeng G, Junfang W. Transforming growth factor-β1 (TGF-β1) induces mouse precartilaginous stem cell differentiation through TGFRII-CK1ε-β-catenin signalling. Int J Exp Pathol 2018; 99:113-120. [PMID: 30073722 DOI: 10.1111/iep.12275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/06/2018] [Indexed: 12/27/2022] Open
Abstract
Precartilaginous stem cells (PSCs) are adult stem cells which could self-renew or differentiate into chondrocytes to promote bone growth. In this study, we aimed to understand the role of transforming growth factor-β1 (TGF-β1) in precartilaginous stem cell (PSC) differentiation and to study the mechanisms that underlie this role. We purified PSCs from the neonatal murine perichondrial mesenchyme using immunomagnetic beads, and primary cultured them. Their phenotype was confirmed by the PSC marker fibroblast growth factor receptor-3 (FGFR-3) overexpression. TGF-β1 was added to induce PSCs differentiation. TGF-β1 increased mRNA expression of chondrogenesis-related genes (collagen type II, Sox 9 and aggrecan) in the cultured PSCs. This was abolished by TGF-β receptor II (TGFRII) and Casein kinase 1 epsilon (CK1ε) lentiviral shRNA depletion. Meanwhile, we found that TGF-β1 induced CK1ε activation, glycogen synthase kinase-3β (GSK3β) phosphorylation and β-catenin nuclear translocation in the mouse PSCs, which was almost completely blocked by TGFRII and CK1ε shRNA knockdown. Based on these results, we suggest that TGF-β1 induces CK1ε activation to promote β-catenin nuclear accumulation, which then regulates chondrogenesis-related gene transcription to eventually promote mouse PSC differentiation.
Collapse
Affiliation(s)
- Wang Qiong
- Department of Clinical Laboratory, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Gu Xiaofeng
- Department of Orthopedics, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Wang Junfang
- Department of Orthopedics, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| |
Collapse
|
31
|
Abstract
Obesity has become epidemic worldwide, which triggers several obesity-associated complications. Obesity is characterized by excess fat storage mainly in the visceral white adipose tissue (vWAT), subcutaneous WAT (sWAT), and other tissues. Myriad studies have demonstrated the crucial role of canonical Wnt/β-catenin cascade in the development of organs and physiological homeostasis, whereas recent studies show that genetic variations/mutations in the Wnt/β-catenin pathway are associated with human metabolic diseases. In this review, we highlight the regulation of updated Wnt/β-catenin signaling in obesity, especially the distinctly depot-specific roles between subcutaneous and visceral adipose tissue under high-fed diet stimulation and WAT browning process.
Collapse
Affiliation(s)
- Na Chen
- Department of Endocrinology and Metabolism, China National Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiqiu Wang
- Department of Endocrinology and Metabolism, China National Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Hosoda K, Motoishi M, Kunimoto T, Nishimura O, Hwang B, Kobayashi S, Yazawa S, Mochii M, Agata K, Umesono Y. Role of MEKK1 in the anterior-posterior patterning during planarian regeneration. Dev Growth Differ 2018; 60:341-353. [PMID: 29900546 DOI: 10.1111/dgd.12541] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/26/2018] [Accepted: 04/30/2018] [Indexed: 11/29/2022]
Abstract
Planarians have established a unique body pattern along the anterior-posterior (AP) axis, which consists of at least four distinct body regions arranged in an anterior to posterior sequence: head, prepharyngeal, pharyngeal (containing a pharynx), and tail regions, and possess high regenerative ability. How they reconstruct the regional continuity in a head-to-tail sequence after amputation still remains unknown. We use as a model planarian Dugesia japonica head regeneration from tail fragments, which involves dynamic rearrangement of the body regionality of preexisting tail tissues along the AP axis, and show here that RNA interference of the gene D. japonica mek kinase 1 (Djmekk1) caused a significant anterior shift in the position of pharynx regeneration at the expense of the prepharyngeal region, while keeping the head region relatively constant in size, and accordingly led to development of a relatively longer tail region. Our data suggest that DjMEKK1 regulates anterior extracellular signal-regulated kinase (ERK) and posterior β-catenin signaling pathways in a positive and negative manner, respectively, to establish a proper balance resulting in the regeneration of planarian's scale-invariant trunk-to-tail patterns across individuals. Furthermore, we demonstrated that DjMEKK1 negatively modulates planarian β-catenin activity via its serine/threonine kinase domain, but not its PHD/RING finger domain, by testing secondary axis formation in Xenopus embryos. The data suggest that Djmekk1 plays an instructive role in the coordination between the establishment of the prepharyngeal region and posteriorizing of pharynx formation by balancing the two opposing morphogenetic signals along the AP axis during planarian regeneration.
Collapse
Affiliation(s)
- Kazutaka Hosoda
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.,Graduate School of Life Science, University of Hyogo, Kamigori-cho, Japan
| | - Minako Motoishi
- Graduate School of Life Science, University of Hyogo, Kamigori-cho, Japan
| | - Takuya Kunimoto
- Graduate School of Life Science, University of Hyogo, Kamigori-cho, Japan
| | - Osamu Nishimura
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.,Phyloinformatics Unit, RIKEN Center for Life Science Technologies, Kobe, Japan
| | - Byulnim Hwang
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Sumire Kobayashi
- Graduate School of Life Science, University of Hyogo, Kamigori-cho, Japan
| | - Shigenobu Yazawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.,Cellular and Structural Physiology Institute, Nagoya University, Nagoya, Japan
| | - Makoto Mochii
- Graduate School of Life Science, University of Hyogo, Kamigori-cho, Japan
| | - Kiyokazu Agata
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.,Department of Life Science, Faculty of Science Graduate Course in Life Science, Graduate School of Science, Gakushuin University, Tokyo, Japan
| | - Yoshihiko Umesono
- Graduate School of Life Science, University of Hyogo, Kamigori-cho, Japan
| |
Collapse
|
33
|
Järvinen E, Shimomura-Kuroki J, Balic A, Jussila M, Thesleff I. Mesenchymal Wnt/β-catenin signaling limits tooth number. Development 2018; 145:dev.158048. [PMID: 29437780 DOI: 10.1242/dev.158048] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 01/21/2018] [Indexed: 12/29/2022]
Abstract
Tooth agenesis is one of the predominant developmental anomalies in humans, usually affecting the permanent dentition generated by sequential tooth formation and, in most cases, caused by mutations perturbing epithelial Wnt/β-catenin signaling. In addition, loss-of-function mutations in the Wnt feedback inhibitor AXIN2 lead to human tooth agenesis. We have investigated the functions of Wnt/β-catenin signaling during sequential formation of molar teeth using mouse models. Continuous initiation of new teeth, which is observed after genetic activation of Wnt/β-catenin signaling in the oral epithelium, was accompanied by enhanced expression of Wnt antagonists and a downregulation of Wnt/β-catenin signaling in the dental mesenchyme. Genetic and pharmacological activation of mesenchymal Wnt/β-catenin signaling negatively regulated sequential tooth formation, an effect partly mediated by Bmp4. Runx2, a gene whose loss-of-function mutations result in sequential formation of supernumerary teeth in the human cleidocranial dysplasia syndrome, suppressed the expression of Wnt inhibitors Axin2 and Drapc1 in dental mesenchyme. Our data indicate that increased mesenchymal Wnt signaling inhibits the sequential formation of teeth, and suggest that Axin2/Runx2 antagonistic interactions modulate the level of mesenchymal Wnt/β-catenin signaling, underlying the contrasting dental phenotypes caused by human AXIN2 and RUNX2 mutations.
Collapse
Affiliation(s)
- Elina Järvinen
- Institute of Biotechnology, University of Helsinki, Helsinki 007100, Finland.,Merck Oy, Espoo 02150, Finland
| | - Junko Shimomura-Kuroki
- Institute of Biotechnology, University of Helsinki, Helsinki 007100, Finland.,Department of Pediatric Dentistry, The Nippon Dental University, School of Life Dentistry at Niigata, Niigata 951-8580, Japan
| | - Anamaria Balic
- Institute of Biotechnology, University of Helsinki, Helsinki 007100, Finland
| | - Maria Jussila
- Institute of Biotechnology, University of Helsinki, Helsinki 007100, Finland
| | - Irma Thesleff
- Institute of Biotechnology, University of Helsinki, Helsinki 007100, Finland
| |
Collapse
|
34
|
Griffin JN, del Viso F, Duncan AR, Robson A, Hwang W, Kulkarni S, Liu KJ, Khokha MK. RAPGEF5 Regulates Nuclear Translocation of β-Catenin. Dev Cell 2018; 44:248-260.e4. [PMID: 29290587 PMCID: PMC5818985 DOI: 10.1016/j.devcel.2017.12.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 09/04/2017] [Accepted: 11/30/2017] [Indexed: 12/16/2022]
Abstract
Canonical Wnt signaling coordinates many critical aspects of embryonic development, while dysregulated Wnt signaling contributes to common diseases, including congenital malformations and cancer. The nuclear localization of β-catenin is the defining step in pathway activation. However, despite intensive investigation, the mechanisms regulating β-catenin nuclear transport remain undefined. In a patient with congenital heart disease and heterotaxy, a disorder of left-right patterning, we previously identified the guanine nucleotide exchange factor, RAPGEF5. Here, we demonstrate that RAPGEF5 regulates left-right patterning via Wnt signaling. In particular, RAPGEF5 regulates the nuclear translocation of β-catenin independently of both β-catenin cytoplasmic stabilization and the importin β1/Ran-mediated transport system. We propose a model whereby RAPGEF5 activates the nuclear GTPases, Rap1a/b, to facilitate the nuclear transport of β-catenin, defining a parallel nuclear transport pathway to Ran. Our results suggest new targets for modulating Wnt signaling in disease states.
Collapse
Affiliation(s)
- John N. Griffin
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA,Centre for Craniofacial and Regenerative Biology, King’s College London, London SE1 9RT, United Kingdom
| | - Florencia del Viso
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Anna R. Duncan
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Andrew Robson
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Woong Hwang
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Saurabh Kulkarni
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Karen J. Liu
- Centre for Craniofacial and Regenerative Biology, King’s College London, London SE1 9RT, United Kingdom
| | - Mustafa K. Khokha
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA,Correspondence to: Lead contact Mustafa Khokha,
| |
Collapse
|
35
|
Imamoto N. Regulating β-Catenin Nuclear Import with the Small GTPase Rap. Dev Cell 2018; 44:135-136. [PMID: 29401416 DOI: 10.1016/j.devcel.2018.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
β-catenin acts as a key mediator of Wnt signaling by migrating into the nucleus. In this issue of Developmental Cell, Griffin et al. (2018) propose that facilitated nuclear import of β-catenin is actively regulated by the nuclear small GTPase Rap through its guanine nucleotide exchange factor, RAPGEF5.
Collapse
Affiliation(s)
- Naoko Imamoto
- Cellular Dynamics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
36
|
Umesono Y. Postembryonic Axis Formation in Planarians. DIVERSITY AND COMMONALITY IN ANIMALS 2018. [DOI: 10.1007/978-4-431-56609-0_33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
37
|
Matsukawa T, Morita K, Omizu S, Kato S, Koriyama Y. Mechanisms of RhoA inactivation and CDC42 and Rac1 activation during zebrafish optic nerve regeneration. Neurochem Int 2017; 112:71-80. [PMID: 29129556 DOI: 10.1016/j.neuint.2017.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/30/2017] [Accepted: 11/07/2017] [Indexed: 10/18/2022]
Abstract
When axons of the mammalian central nervous system (CNS) are injured, they fail to regenerate, while those of lower vertebrates undergo regeneration after injury. Wingless-type MMTV integration site family (Wnt) proteins play important roles in the CNS, and are reported to be activated after mammalian spinal cord or brain injury. Moreover, for axon growth to proceed, it is thought that small G-proteins, such as CDC42 and Rac1, need to be activated, whereas RhoA must be inactivated. However, the cell and molecular mechanisms involved in optic nerve regeneration remain unclear. In this study, we investigated axonal regeneration after injury using the zebrafish optic nerve as a model system. We sought to clarify the role of Wnt proteins and the mechanisms involved in the activation and inactivation of small G-proteins in nerve regeneration. After optic nerve injury, mRNA levels of Wnt5b, TAX1BP3 and ICAT increased in the retina, while those of Wnt10a decreased. These changes were associated with a reduction in β-catenin in nuclei. We found that Wnt5b activated CDC42 and Rac1, leading to the inactivation of RhoA, which appeared to be dependent on increased TAX1BP3 mRNA levels. Furthermore, we found that mRNA levels of Daam1a and ARHGEF16 decreased. We speculate that the decrease in β-catenin levels, which also further reduces levels of active RhoA, might contribute to regeneration in the zebrafish. Collectively, our novel results suggest that Wnt5b, Wnt10a, ICAT and TAX1BP3 participate in the activation and inactivation of small G-proteins, such as CDC42, Rac1 and RhoA, during the early stage of optic nerve regeneration in the zebrafish.
Collapse
Affiliation(s)
- Toru Matsukawa
- Faculty of Science and Engineering, Department of Life Science, Setsunan University, Neyagawa, Osaka, 572-8508, Japan.
| | - Kazune Morita
- Faculty of Science and Engineering, Department of Life Science, Setsunan University, Neyagawa, Osaka, 572-8508, Japan
| | - Shou Omizu
- Faculty of Science and Engineering, Department of Life Science, Setsunan University, Neyagawa, Osaka, 572-8508, Japan
| | - Satoru Kato
- Wellness Promotion Science Center, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 920-0942, Japan
| | - Yoshiki Koriyama
- Graduate School and Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, 513-8670, Japan
| |
Collapse
|
38
|
Beck M, Schirmacher P, Singer S. Alterations of the nuclear transport system in hepatocellular carcinoma - New basis for therapeutic strategies. J Hepatol 2017; 67:1051-1061. [PMID: 28673770 DOI: 10.1016/j.jhep.2017.06.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 12/20/2022]
Abstract
Hepatocellular carcinoma (HCC) is among the most prevalent human malignancies worldwide with rising incidence in industrialised countries, few therapeutic options and poor prognosis. To expand and improve therapeutic strategies, identification of drug targets involved in several liver cancer-related pathways is crucial. Virtually all signal transduction cascades cross the nuclear envelope and therefore require components of the nuclear transport system (NTS), including nuclear transport receptors (e.g. importins and exportins) and the nuclear pore complex. Accordingly, members of the NTS represent promising targets for therapeutic intervention. Selective inhibitors of nuclear export have already entered clinical trials for various malignancies. Herein, we review the current knowledge regarding alterations of the NTS and their potential for targeted therapy in HCC.
Collapse
Affiliation(s)
- Martin Beck
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Stephan Singer
- European Molecular Biology Laboratory, Heidelberg, Germany; Institute of Pathology, University Hospital Heidelberg, Germany.
| |
Collapse
|
39
|
Expression Levels and Localizations of DVL3 and sFRP3 in Glioblastoma. DISEASE MARKERS 2017; 2017:9253495. [PMID: 29200599 PMCID: PMC5671711 DOI: 10.1155/2017/9253495] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/14/2017] [Indexed: 12/28/2022]
Abstract
The expression patterns of critical molecular components of Wnt signaling, sFRP3 and DVL3, were investigated in glioblastoma, the most aggressive form of primary brain tumors, with the aim to offer potential biomarkers. The protein expression levels and localizations in tumor tissue were revealed by immunohistochemistry and evaluated by the semiquantitative method and immunoreactivity score. Majority of glioblastomas had moderate expression levels for both DVL3 (52.4%) and sFRP3 (52.3%). Strong expression levels were observed in 23.1% and 36.0% of samples, respectively. DVL3 was localized in cytoplasm in 97% of glioblastomas, of which 44% coexpressed the protein in the nucleus. sFRP3 subcellular distribution showed that it was localized in the cytoplasm in 94% of cases. Colocalization in the cytoplasm and nucleus was observed in 50% of samples. Wilcox test indicated that the domination of the strong signal is in connection with simultaneous localization of DVL3 protein in the cytoplasm and the nucleus. Patients with strong expression of DVL3 will significantly more often have the protein in the nucleus (P = 6.33 × 10−5). No significant correlation between the two proteins was established, nor were their signal strengths correlated with epidemiological parameters. Our study contributes to better understanding of glioblastoma molecular profile.
Collapse
|
40
|
Tafrihi M, Nakhaei Sistani R. E-Cadherin/β-Catenin Complex: A Target for Anticancer and Antimetastasis Plants/Plant-derived Compounds. Nutr Cancer 2017; 69:702-722. [PMID: 28524727 DOI: 10.1080/01635581.2017.1320415] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Plants reputed to have cancer-inhibiting potential and putative active components derived from those plants have emerged as an exciting new field in cancer study. Some of these compounds have cancer-inhibiting potential in different clinical staging levels, especially metastasis. A few of them which stabilize cell-cell adhesions are controversial topics. This review article introduces some effective herbal compounds that target E-cadherin/β-catenin protein complex. In this article, at first, we briefly review the structure and function of E-cadherin and β-catenin proteins, Wnt signaling pathway, and its target genes. Then, effective compounds of the Teucrium persicum, Teucrium polium, Allium sativum (garlic), Glycine max (soy), and Brassica oleracea (broccoli) plants, which influence stability and cellular localization of E-cadherin/β-catenin complex, were studied. Based on literature review, there are some compounds in these plants, including genistein of soy, sulforaphane of broccoli, organosulfur compounds of garlic, and the total extract of Teucrium genus that change the expression of variety of Wnt target genes such as MMPs, E-cadherin, p21, p53, c-myc, and cyclin D1. So they may induce cell-cycle arrest, apoptosis and/or inhibition of Epithelial-Mesenchymal Transition (EMT) and metastasis.
Collapse
Affiliation(s)
- Majid Tafrihi
- a Molecular and Cell Biology Research Laboratory, Department of Molecular and Cell Biology, Faculty of Basic Sciences , University of Mazandaran , Babolsar , Mazandaran , Iran
| | | |
Collapse
|
41
|
Pai SG, Carneiro BA, Mota JM, Costa R, Leite CA, Barroso-Sousa R, Kaplan JB, Chae YK, Giles FJ. Wnt/beta-catenin pathway: modulating anticancer immune response. J Hematol Oncol 2017; 10:101. [PMID: 28476164 PMCID: PMC5420131 DOI: 10.1186/s13045-017-0471-6] [Citation(s) in RCA: 498] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 04/25/2017] [Indexed: 02/08/2023] Open
Abstract
Wnt/β-catenin signaling, a highly conserved pathway through evolution, regulates key cellular functions including proliferation, differentiation, migration, genetic stability, apoptosis, and stem cell renewal. The Wnt pathway mediates biological processes by a canonical or noncanonical pathway, depending on the involvement of β-catenin in signal transduction. β-catenin is a core component of the cadherin protein complex, whose stabilization is essential for the activation of Wnt/β-catenin signaling. As multiple aberrations in this pathway occur in numerous cancers, WNT-directed therapy represents an area of significant developmental therapeutics focus. The recently described role of Wnt/β-catenin pathway in regulating immune cell infiltration of the tumor microenvironment renewed the interest, given its potential impact on responses to immunotherapy treatments. This article summarizes the role of Wnt/β-catenin pathway in cancer and ongoing therapeutic strategies involving this pathway.
Collapse
Affiliation(s)
- Sachin Gopalkrishna Pai
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, IL, USA. .,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA. .,Current Address: Department of Interdisciplinary Clinical Oncology, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, USA.
| | - Benedito A Carneiro
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Jose Mauricio Mota
- Instituto do Câncer do Estado de São Paulo, University of São Paulo, São Paulo, Brazil
| | - Ricardo Costa
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | | | | | - Jason Benjamin Kaplan
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Young Kwang Chae
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Francis Joseph Giles
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| |
Collapse
|
42
|
Kuslansky Y, Sominsky S, Jackman A, Gamell C, Monahan BJ, Haupt Y, Rosin-Arbesfeld R, Sherman L. Ubiquitin ligase E6AP mediates nonproteolytic polyubiquitylation of β-catenin independent of the E6 oncoprotein. J Gen Virol 2016; 97:3313-3330. [DOI: 10.1099/jgv.0.000624] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Yael Kuslansky
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sophia Sominsky
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anna Jackman
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Cristina Gamell
- Research Division, The Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Brendon J. Monahan
- Division of Systems Biology and Personalized Medicine, Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia
| | - Ygal Haupt
- Research Division, The Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Rina Rosin-Arbesfeld
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Levana Sherman
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
43
|
Bassino E, Vallariello E, Gasparri F, Munaron L. Dermal-Epidermal Cross-Talk: Differential Interactions With Microvascular Endothelial Cells. J Cell Physiol 2016; 232:897-903. [PMID: 27764901 DOI: 10.1002/jcp.25657] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 10/18/2016] [Indexed: 12/18/2022]
Abstract
The biological importance of circulatory blood supply and angiogenesis for hair growth is now well recognized, but the their regulatory mechanisms require more mechanistic investigation. In vitro cocultures and tricultures can be successfully employed to greatly improve our knowledge on paracrine crosstalk between cell types that populate the dermal-epidermal interface and cutaneous vasculature. Here we report that human dermal fibroblasts (NHDF) promote viability and proliferation of microvascular endothelial cells (HMVEC), while HMVEC are not mitogenic for NHDF. In triculture setup, conditioned media (CM) obtained by cocultures (HMVEC/NHDF or HMVEC/follicle fibroblasts) differently modulate growth and proliferation of keratinocytes and alter the expression of metabolic and pro-inflammatory markers. In conclusion, tricultures were successfully employed to characterize in vitro dermal-epithelial and endothelial interactions and could integrate ex vivo and in vivo approaches by the use of high-throughput and standardized protocols in controlled conditions. J. Cell. Physiol. 232: 897-903, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Eleonora Bassino
- Deparment of Life Sciences and Systems Biology, University of Turin, Italy
| | | | | | - Luca Munaron
- Deparment of Life Sciences and Systems Biology, University of Turin, Italy
| |
Collapse
|
44
|
Serini S, Zinzi A, Ottes Vasconcelos R, Fasano E, Riillo MG, Celleno L, Trombino S, Cassano R, Calviello G. Role of β-catenin signaling in the anti-invasive effect of the omega-3 fatty acid DHA in human melanoma cells. J Dermatol Sci 2016; 84:149-159. [PMID: 27600927 DOI: 10.1016/j.jdermsci.2016.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND We previously found that docosahexaenoic acid (DHA), a dietary polyunsaturated fatty acid present at high level in fatty fish, inhibited cell growth and induced differentiation of melanoma cells in vitro by increasing nuclear β-catenin content. An anti-neoplastic role of nuclear β-catenin was suggested in melanoma, and related to the presence in the melanocyte lineage of the microphtalmia transcription factor (MITF), which interferes with the transcription of β-catenin/TCF/LEF pro-invasive target genes. OBJECTIVE In the present work we investigated if DHA could inhibit the invasive potential of melanoma cells, and if this effect could be related to DHA-induced alterations of the Wnt/β-catenin signaling, including changes in MITF expression. METHODS WM115 and WM266-4 human melanoma, and B16-F10 murine melanoma cell lines were used. Cell invasion was evaluated by Wound Healing and Matrigel transwell assays. Protein expression was analyzed by Western Blotting and β-catenin phosphorylation by immunoprecipitation. The role of MITF in the anti-invasive effect of DHA was analyzed by siRNA gene silencing. RESULTS We found that DHA inhibited anchorage-independent cell growth, reduced their migration/invasion in vitro and down-regulated several Matrix Metalloproteinases (MMP: MMP-2, MT1-MMP and MMP-13), known to be involved in melanoma invasion. We related these effects to the β-catenin increased nuclear expression and PKA-dependent phosphorylation, as well as to the increased expression of MITF. CONCLUSION The data obtained further support the potential role of dietary DHA as suppressor of melanoma progression to invasive malignancy through its ability to enhance MITF expression and PKA-dependent nuclear β-catenin phosphorylation.
Collapse
Affiliation(s)
- Simona Serini
- Institute of General Pathology, Università Cattolica del S. Cuore, Rome, Italy
| | - Antonio Zinzi
- Department of Pharmacy, Health and Nutritional Sciences, Università della Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Renata Ottes Vasconcelos
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, RS, Brazil
| | - Elena Fasano
- Institute of General Pathology, Università Cattolica del S. Cuore, Rome, Italy
| | - Maria Greca Riillo
- Department of Pharmacy, Health and Nutritional Sciences, Università della Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Leonardo Celleno
- Institute of Dermatology, Università Cattolica del S. Cuore, Rome, Italy; Research Center for Biotechnology Applied to Cosmetology, Università Cattolica del S. Cuore, Rome, Italy
| | - Sonia Trombino
- Department of Pharmacy, Health and Nutritional Sciences, Università della Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Roberta Cassano
- Department of Pharmacy, Health and Nutritional Sciences, Università della Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Gabriella Calviello
- Institute of General Pathology, Università Cattolica del S. Cuore, Rome, Italy; Research Center for Biotechnology Applied to Cosmetology, Università Cattolica del S. Cuore, Rome, Italy.
| |
Collapse
|
45
|
Liu CC, Cai DL, Sun F, Wu ZH, Yue B, Zhao SL, Wu XS, Zhang M, Zhu XW, Peng ZH, Yan DW. FERMT1 mediates epithelial-mesenchymal transition to promote colon cancer metastasis via modulation of β-catenin transcriptional activity. Oncogene 2016; 36:1779-1792. [PMID: 27641329 DOI: 10.1038/onc.2016.339] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 07/10/2016] [Accepted: 08/02/2016] [Indexed: 02/08/2023]
Abstract
We previously demonstrated that fermitin family member 1 (FERMT1) was significantly overexpressed in colon cancer (CC) and associated with poor metastasis-free survival. This study aimed to investigate the precise role of FERMT1 in CC metastasis and the mechanism by which FERMT1 is involved in the epithelial-mesenchymal transition (EMT). Correlations between FERMT1 and EMT markers (E-cadherin, Slug, N-cadherin and β-catenin) were examined via immunohistochemistry in a cohort of CC tissues and adjacent normal colon mucosae. A series of in vitro and in vivo assays were performed to elucidate the function of FERMT1 in CC metastasis and underlying mechanisms. The upregulated expression of FERMT1 in CC tissues correlated positively with that of Slug, N-cadherin and β-catenin, but correlated inversely with E-cadherin expression. Altered FERMT1 expression led to marked changes in the proliferation, migration, invasion and EMT markers of CC cells both in vitro and in vivo. Investigations of underlying mechanisms found that FERMT1 interacted directly with β-catenin and activated the Wnt/β-catenin signaling pathway by decreasing the phosphorylation level of β-catenin, enhancing β-catenin nuclear translocation and increasing the transcriptional activity of β-catenin/TCF/LEF. Activation of the Wnt/β-catenin pathway by CHIR99021 reversed the effect of FERMT1 knockdown, whereas inhibition of the Wnt/β-catenin pathway by XAV939 impaired the effect of FERMT1 overexpression on EMT and cell motility. In conclusion, findings of this study suggest that FERMT1 activates the β-catenin transcriptional activity to promote EMT in CC metastasis.
Collapse
Affiliation(s)
- C-C Liu
- Department of General Surgery, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - D-L Cai
- Department of Drug allocation center, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - F Sun
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Z-H Wu
- Department of Hapatobiliary Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - B Yue
- Department of General Surgery, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - S-L Zhao
- Department of General Surgery, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - X-S Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - M Zhang
- Department of Pathology, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - X-W Zhu
- Department of General Surgery, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Z-H Peng
- Department of General Surgery, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - D-W Yan
- Department of General Surgery, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
46
|
Dar MS, Singh P, Singh G, Jamwal G, Hussain SS, Rana A, Akhter Y, Monga SP, Dar MJ. Terminal regions of β-catenin are critical for regulating its adhesion and transcription functions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2345-57. [DOI: 10.1016/j.bbamcr.2016.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/31/2016] [Accepted: 06/27/2016] [Indexed: 11/25/2022]
|
47
|
Lafourcade C, Ramírez JP, Luarte A, Fernández A, Wyneken U. MiRNAs in Astrocyte-Derived Exosomes as Possible Mediators of Neuronal Plasticity. J Exp Neurosci 2016; 10:1-9. [PMID: 27547038 PMCID: PMC4978198 DOI: 10.4137/jen.s39916] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/07/2016] [Accepted: 07/09/2016] [Indexed: 12/21/2022] Open
Abstract
Astrocytes use gliotransmitters to modulate neuronal function and plasticity. However, the role of small extracellular vesicles, called exosomes, in astrocyte-to-neuron signaling is mostly unknown. Exosomes originate in multivesicular bodies of parent cells and are secreted by fusion of the multivesicular body limiting membrane with the plasma membrane. Their molecular cargo, consisting of RNA species, proteins, and lipids, is in part cell type and cell state specific. Among the RNA species transported by exosomes, microRNAs (miRNAs) are able to modify gene expression in recipient cells. Several miRNAs present in astrocytes are regulated under pathological conditions, and this may have far-reaching consequences if they are loaded in exosomes. We propose that astrocyte-derived miRNA-loaded exosomes, such as miR-26a, are dysregulated in several central nervous system diseases; thus potentially controlling neuronal morphology and synaptic transmission through validated and predicted targets. Unraveling the contribution of this new signaling mechanism to the maintenance and plasticity of neuronal networks will impact our understanding on the physiology and pathophysiology of the central nervous system.
Collapse
Affiliation(s)
- Carlos Lafourcade
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Chile
| | - Juan Pablo Ramírez
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Chile
| | - Alejandro Luarte
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Chile
| | - Anllely Fernández
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Chile
| | - Ursula Wyneken
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Chile
| |
Collapse
|
48
|
Pećina-Šlaus N, Kafka A, Lechpammer M. Molecular Genetics of Intracranial Meningiomas with Emphasis on Canonical Wnt Signalling. Cancers (Basel) 2016; 8:E67. [PMID: 27429002 PMCID: PMC4963809 DOI: 10.3390/cancers8070067] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/27/2016] [Accepted: 07/07/2016] [Indexed: 12/15/2022] Open
Abstract
Research over the last decade recognized the importance of novel molecular pathways in pathogenesis of intracranial meningiomas. In this review, we focus on human brain tumours meningiomas and the involvement of Wnt signalling pathway genes and proteins in this common brain tumour, describing their known functional effects. Meningiomas originate from the meningeal layers of the brain and the spinal cord. Most meningiomas have benign clinical behaviour and are classified as grade I by World Health Organization (WHO). However, up to 20% histologically classified as atypical (grade II) or anaplastic (grade III) are associated with higher recurrent rate and have overall less favourable clinical outcome. Recently, there is emerging evidence that multiple signalling pathways including Wnt pathway contribute to the formation and growth of meningiomas. In the review we present the synopsis on meningioma histopathology and genetics and discuss our research regarding Wnt in meningioma. Epithelial-to-mesenchymal transition, a process in which Wnt signalling plays an important role, is shortly discussed.
Collapse
Affiliation(s)
- Nives Pećina-Šlaus
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, Zagreb 10000, Croatia.
- Department of Biology, School of Medicine, University of Zagreb, Salata 3, Zagreb 10000, Croatia.
| | - Anja Kafka
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, Zagreb 10000, Croatia.
- Department of Biology, School of Medicine, University of Zagreb, Salata 3, Zagreb 10000, Croatia.
| | - Mirna Lechpammer
- Department of Pathology & Laboratory Medicine, University of California, Davis, Medical Center 4400 V Street, Sacramento, CA 95817, USA.
| |
Collapse
|
49
|
Pećina-Šlaus N, Kafka A, Vladušić T, Tomas D, Logara M, Skoko J, Hrašćan R. Loss of p53 expression is accompanied by upregulation of beta-catenin in meningiomas: a concomitant reciprocal expression. Int J Exp Pathol 2016; 97:159-69. [PMID: 27292269 DOI: 10.1111/iep.12186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 03/13/2016] [Indexed: 12/13/2022] Open
Abstract
Crosstalk between Wnt and p53 signalling pathways in cancer has long been suggested. Therefore in this study we have investigated the involvement of these pathways in meningiomas by analysing their main effector molecules, beta-catenin and p53. Cellular expression of p53 and beta-catenin proteins and genetic changes in TP53 were analysed by immunohistochemistry, PCR/RFLP and direct sequencing of TP53 exon 4. All the findings were analysed statistically. Our analysis showed that 47.5% of the 59 meningiomas demonstrated loss of expression of p53 protein. Moderate and strong p53 expression in the nuclei was observed in 8.5% and 6.8% of meningiomas respectively. Gross deletion of TP53 gene was observed in one meningioma, but nucleotide alterations were observed in 35.7% of meningiomas. In contrast, beta-catenin, the main Wnt signalling molecule, was upregulated in 71.2%, while strong expression was observed in 28.8% of meningiomas. The concomitant expressions of p53 and beta-catenin were investigated in the same patients. In the analysed meningiomas, the levels of the two proteins were significantly negatively correlated (P = 0.002). This indicates that meningiomas with lost p53 upregulate beta-catenin and activate Wnt signalling. Besides showing the reciprocal relationship between proteins, we also showed that the expression of p53 was significantly (P = 0.021) associated with higher meningioma grades (II and III), while beta-catenin upregulation was not associated with malignancy grades. Additionally, women exhibited significantly higher values of p53 loss when compared to males (P = 0.005). Our findings provide novel information about p53 involvement in meningeal brain tumours and reveal the complex relationship between Wnt and p53 signalling, they suggest an important role for beta-catenin in these tumours.
Collapse
Affiliation(s)
- Nives Pećina-Šlaus
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia.,Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Anja Kafka
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia.,Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Tomislav Vladušić
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Davor Tomas
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia.,Hospital Centre 'Sisters of Charity', Zagreb, Croatia
| | - Monika Logara
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia
| | - Josip Skoko
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia.,University of Stuttgart Institute of Cell Biology and Immunology, D-70569 Stuttgart, Germany
| | - Reno Hrašćan
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
50
|
Pećina-Šlaus N, Kafka A, Varošanec AM, Marković L, Krsnik Ž, Njirić N, Mrak G. Expression patterns of Wnt signaling component, secreted frizzled‑related protein 3 in astrocytoma and glioblastoma. Mol Med Rep 2016; 13:4245-51. [PMID: 27035837 PMCID: PMC4838070 DOI: 10.3892/mmr.2016.5061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/16/2016] [Indexed: 02/06/2023] Open
Abstract
Secreted frizzled-related protein 3 (SFRP3) is a member of the family of soluble proteins, which modulate the Wnt signaling cascade. Novel research has identified aberrant expression of SFRPs in different types of cancer. In the present study the expression intensities and localizations of the SFRP3 protein across different histopathological grades of astrocytic brain tumors were investigated by immunohistochemistry, digital scanning and image analysis. The results demonstrated that the differences between expression levels and malignancy grades were statistically significant. Tumors were classified into four malignancy grades according to the World Health Organization guidelines. Moderate (P=0.014) and strong (P=0.028) nuclear expression levels were significantly different in pilocytic (grade I) and diffuse (grade II) astrocytomas demonstrating higher expression values, as compared with anaplastic astrocytoma (grade III) and glioblastoma (grade IV). When the sample was divided into two groups, the moderate and high cytoplasmic expression levels were observed to be significantly higher in glioblastomas than in the group comprising astrocytoma II and III. Furthermore, the results indicated that high grade tumors were associated with lower values of moderate (P=0.002) and strong (P=0.018) nuclear expression in comparison to low grade tumors. Analysis of cytoplasmic staining demonstrated that strong cytoplasmic expression was significantly higher in the astrocytoma III and IV group than in the astrocytoma I and II group (P=0.048). Furthermore, lower grade astrocytomas exhibited reduced membranous SFRP3 staining when compared with higher grade astrocytomas and this difference was statistically significant (P=0.036). The present results demonstrated that SFRP3 protein expression levels were decreased in the nucleus in higher grade astrocytoma (indicating the expected behavior of an antagonist of Wnt signaling), whereas when the SFRP3 was located in the cytoplasm an increased expression level of SFRP3 was identified in the high grade astrocytomas when compared with those of a low grade. This may suggest that SFRP3 acts as an agonist of Wnt signaling and promotes invasive behavior.
Collapse
Affiliation(s)
- Nives Pećina-Šlaus
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb HR‑10000, Croatia
| | - Anja Kafka
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb HR‑10000, Croatia
| | - Ana Maria Varošanec
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb HR‑10000, Croatia
| | - Leon Marković
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb HR‑10000, Croatia
| | - Željka Krsnik
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb HR‑10000, Croatia
| | - Niko Njirić
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb HR‑10000, Croatia
| | - Goran Mrak
- Department of Neurosurgery, University Hospital Center Zagreb, School of Medicine, University of Zagreb, Zagreb HR‑10000, Croatia
| |
Collapse
|