1
|
Wang W, Gao Y, Ji J, Huang Z, Xiong B, Xiang S. Trends and advances in Leptospira, a bibliometric analysis. Front Microbiol 2025; 15:1514738. [PMID: 39845041 PMCID: PMC11750782 DOI: 10.3389/fmicb.2024.1514738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Abstract
Background Leptospirosis is an acute zoonotic disease caused by pathogenic Leptospira, primarily transmitted to humans through contact with water or soil contaminated by the bacteria. It is globally distributed, with heightened prevalence in tropical regions. While prior studies have examined the pathophysiology, epidemiology, and risk factors of leptospirosis, few have explored trends and emerging topics in the field. This study applies bibliometric analysis to generate a visual knowledge map, identifying research hotspots and forecasting future trends in leptospirosis investigations. Methods Data were extracted from the Web of Science Core Collection (WOSCC), encompassing all publications up to May 1, 2024. CiteSpace and VOSViewer software were used to analyze annual publication trends, as well as contributions from countries, institutions, journals, authors, references, and keywords, thereby pinpointing current research priorities and potential future directions. Results A total of 5,244 articles were included, sourced from 4,716 institutions, 955 journals, and 156 countries or regions. The United States led with 1,315 publications and had the most significant influence in the field. "PLOS Neglected Tropical Diseases" published the highest number of articles (166), while "Infection and Immunity" garnered the most citations (6,591). Prominent research areas included restriction endonucleases, monoclonal antibodies, outer membrane proteins, water environments, detection methods, and antimicrobial agents. Research focus has shifted from early genomic and antigenic studies to investigations into outer membrane protein functions and environmental persistence, culminating in recent advances in molecular mechanisms and diagnostic technology development. Conclusion This bibliometric analysis provides a comprehensive snapshot of leptospirosis research, emphasizing collaborations and impact among authors, countries, institutions, and journals. It offers valuable insights into ongoing trends and serves as a reference for future collaboration and research opportunities in the field.
Collapse
Affiliation(s)
- Wei Wang
- Department of Intensive Care Unit, The Peoples Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Research Center of Communicable and Severe Diseases, Guangxi Academy of Medical Sciences, Nanning, Guangxi, China
- Guangxi Health Commission Key Laboratory of Diagnosis and Treatment of Acute Respiratory Distress Syndrome, Nanning, Guangxi, China
| | - Yamin Gao
- Department of Intensive Care Unit, The Peoples Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Research Center of Communicable and Severe Diseases, Guangxi Academy of Medical Sciences, Nanning, Guangxi, China
- Guangxi Health Commission Key Laboratory of Diagnosis and Treatment of Acute Respiratory Distress Syndrome, Nanning, Guangxi, China
| | - Jianyu Ji
- Department of Intensive Care Unit, The Peoples Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Research Center of Communicable and Severe Diseases, Guangxi Academy of Medical Sciences, Nanning, Guangxi, China
- Guangxi Health Commission Key Laboratory of Diagnosis and Treatment of Acute Respiratory Distress Syndrome, Nanning, Guangxi, China
| | - Zhai Huang
- Department of Intensive Care Unit, The Peoples Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Guangxi Academy of Medical Sciences, Nanning, Guangxi, China
| | - Bin Xiong
- Research Center of Communicable and Severe Diseases, Guangxi Academy of Medical Sciences, Nanning, Guangxi, China
- Guangxi Health Commission Key Laboratory of Diagnosis and Treatment of Acute Respiratory Distress Syndrome, Nanning, Guangxi, China
| | - Shulin Xiang
- Department of Intensive Care Unit, The Peoples Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Guangxi Academy of Medical Sciences, Nanning, Guangxi, China
| |
Collapse
|
2
|
Di Azevedo MIN, Kremer F, Ezepha C, Greco JPG, da Silva ICV, Bourhy P, Lilenbaum W. Comparative genomics of Leptospira santarosai reveals genomic adaptations in bovine genital strains. Front Microbiol 2025; 15:1517151. [PMID: 39839101 PMCID: PMC11747425 DOI: 10.3389/fmicb.2024.1517151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/19/2024] [Indexed: 01/23/2025] Open
Abstract
Bovine genital leptospirosis (BGL) is a silent and chronic reproductive syndrome associated with reproductive failures that result in animal suffering and substantial financial losses for farmers. Important aspects of the interactions between the host and the pathogen during chronic leptospirosis have been well described in the kidney, but little is known about the genital infection mechanisms. The present study sheds light on the pathophysiology of BGL based on comparative genomic analysis of renal versus genital isolates of Leptospira santarosai genomes, an endemic species on Latin America. A significant number of genes were exclusive of the genital strains, with emphasis on genes associated with cell wall/membrane/envelope biogenesis, mobilome: prophages and transposons, and signal transduction mechanisms. Overall, these gene clusters play crucial roles in bacterial colonization and evasion of the immune response, which can reflect leptospiral tissue tropism to the genital niche. We provide new insights into the pathophysiology of an important and neglected syndrome in bovine, helping to elucidate the evolution of adaptation of leptospires in the genital tract of cows.
Collapse
Affiliation(s)
| | - Frederico Kremer
- Laboratory of Bioinformatics - Omixlab, Technological Development Center, Federal University of Pelotas, Capão do Leão, Rio Grande do Sul, Brazil
| | - Camila Ezepha
- Laboratory of Veterinary Bacteriology, Biomedical Institute, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - João Pedro Gomes Greco
- Laboratory of Bioinformatics - Omixlab, Technological Development Center, Federal University of Pelotas, Capão do Leão, Rio Grande do Sul, Brazil
| | - Isadora Cosenza Vieira da Silva
- Laboratory of Bioinformatics - Omixlab, Technological Development Center, Federal University of Pelotas, Capão do Leão, Rio Grande do Sul, Brazil
| | - Pascale Bourhy
- Institut Pasteur, Biology of Spirochetes Unit, National Reference Center for Leptospirosis, Paris, France
| | - Walter Lilenbaum
- Laboratory of Veterinary Bacteriology, Biomedical Institute, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Tantiapibalkun Y, Nuchpun S, Mekseriwattana W, Limsampan S, Doungchawee G, Jangpatarapongsa K, Srikhirin T, Katewongsa KP. Quantum dots as a fluorescent labeling tool for live-cell imaging of Leptospira. NANOSCALE 2024; 16:13677-13686. [PMID: 38967236 DOI: 10.1039/d4nr00543k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Leptospirosis is a global public health problem caused by Gram-negative pathogenic bacteria belonging to the genus Leptospira. The disease is transmitted through the urine of infected animals, which contaminates water and soil, leading to the infection of other animals and humans. Currently, several approaches exist to detect these bacteria; however, a new sensitive method for the live-cell imaging of Leptospira is required. In this study, we report the green synthesis of cadmium telluride quantum dots (CdTe QDs) which are unique fluorescent nanocrystals with a high fluorescence quantum yield capable of modifying cell surfaces and are biocompatible with cells. The fabrication of QDs with concanavalin A (ConA), a carbohydrate-binding lectin and known biological probe for Gram-negative bacteria, produced ConA-QDs which can effectively bind on Leptospira and exhibit strong fluorescence under simple fluorescence microscopy, allowing the live-cell imaging of the bacteria. Overall, we performed the simple synthesis of ConA-QDs and demonstrated their potential use as versatile fluorescent probes for the live-cell imaging of Leptospira. This technique could be further applied to track leptospiral cells and study the infection mechanism, contributing to a more thorough understanding of leptospirosis and how to control it in the future.
Collapse
Affiliation(s)
| | - Sopon Nuchpun
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | - Wid Mekseriwattana
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sukhonta Limsampan
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Galayanee Doungchawee
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Kulachart Jangpatarapongsa
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Toemsak Srikhirin
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Kanlaya Prapainop Katewongsa
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
4
|
Guzmán DA, Diaz E, Sáenz C, Álvarez H, Cueva R, Zapata-Ríos G, Prado-Vivar B, Falconí M, Pearson T, Barragán V. Domestic dogs in indigenous Amazonian communities: key players in Leptospira cycling and transmission? BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558554. [PMID: 37786682 PMCID: PMC10541607 DOI: 10.1101/2023.09.19.558554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Background Leptospirosis is the world's most common zoonotic disease. Mitigation and control rely on pathogen identification and understanding the roles of potential reservoirs in cycling and transmission. Underreporting and misdiagnosis obscure the magnitude of the problem and confound efforts to understand key epidemiological components. Difficulties in culturing hamper the use of serological diagnostics and delay the development of DNA detection methods. As a result, especially in complex ecosystems, we know very little about the importance of different mammalian host species in cycling and transmission to humans. Methodology/Principal Findings We sampled five indigenous Kichwa communities living in the Yasuní National Park in the Ecuadorian Amazon basin. Blood and urine samples from domestic dogs were collected to assess the exposure of these animals to Leptospira, and to identify the circulating species. Microscopic Agglutination Tests with a panel of 22 different serovars showed anti-leptospira antibodies in 36 sampled dogs (75%), and 10 serotypes were detected. Two DNA-based detection assays revealed pathogenic Leptospira DNA in 18 of 19 dog urine samples (94.7%). Amplicon sequencing and phylogenetic analysis of 16s rDNA and SecY genes from 15 urine samples revealed genetic diversity within two of three different Leptospira species: noguchii (n=7), santarosai (n=7), and interrogans (n=1). Conclusions/Significance The high prevalence of antibodies and Leptospira DNA provides strong evidence for high rates of past and current infections. Such high prevalence has not been previously reported for dogs. These dogs live in the peridomestic environment in close contact with humans, yet they are free-ranging animals that interact with wildlife. This complex web of interactions may explain the diverse types of pathogenic Leptospira observed in this study. Our results suggest that domestic dogs are likely to play an important role in the cycling and transmission of Leptospira. Future studies in areas with complex ecoepidemiology will enable better parsing of the significance of genotypic, environmental, and host characteristics.
Collapse
Affiliation(s)
- Diego A. Guzmán
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Eduardo Diaz
- Escuela de Medicina Veterinaria, Colegio de Ciencias de la Salud, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Carolina Sáenz
- Hospital de Fauna Silvestre TUERI, Instituto de Biodiversidad Tropical IBIOTROP, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Hernán Álvarez
- Wildlife Conservation Society – Ecuador Program, Quito, Ecuador
| | - Rubén Cueva
- Wildlife Conservation Society – Ecuador Program, Quito, Ecuador
| | | | - Belén Prado-Vivar
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Mercy Falconí
- Agencia de Regulación y Control Fito y Zoosanitario – Agrocalidad, Quito, Ecuador
| | - Talima Pearson
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Verónica Barragán
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| |
Collapse
|
5
|
Kavela S, Vyas P, CP J, Kushwaha SK, Majumdar SS, Faisal SM. Use of an Integrated Multi-Omics Approach To Identify Molecular Mechanisms and Critical Factors Involved in the Pathogenesis of Leptospira. Microbiol Spectr 2023; 11:e0313522. [PMID: 36853003 PMCID: PMC10100824 DOI: 10.1128/spectrum.03135-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/06/2023] [Indexed: 03/01/2023] Open
Abstract
Leptospirosis, a bacterial zoonosis caused by pathogenic Leptospira spp., is prevalent worldwide and has become a serious threat in recent years. Limited understanding of Leptospira pathogenesis and host response has hampered the development of effective vaccine and diagnostics. Although Leptospira is phagocytosed by innate immune cells, it resists its destruction, and the evading mechanism involved is unclear. In the present study, we used an integrative multi-omics approach to identify the critical molecular factors of Leptospira involved in pathogenesis during interaction with human macrophages. Transcriptomic and proteomic analyses were performed at 24 h postinfection of human macrophages (phorbol-12-myristate-13-acetate differentiated THP-1 cells) with the pathogenic Leptospira interrogans serovar Icterohaemorrhagiae strain RGA (LEPIRGA). Our results identified a total of 1,528 transcripts and 871 proteins that were significantly expressed with an adjusted P value of <0.05. The correlations between the transcriptomic and proteomic data were above average (r = 0.844), suggesting the role of the posttranscriptional processes during host interaction. The conjoint analysis revealed the expression of several virulence-associated proteins such as adhesins, invasins, and secretory and chemotaxis proteins that might be involved in various processes of attachment and invasion and as effectors during pathogenesis in the host. Further, the interaction of bacteria with the host cell (macrophages) was a major factor in the differential expression of these proteins. Finally, eight common differentially expressed RNA-protein pairs, predicted as virulent, outer membrane/extracellular proteins were validated by quantitative PCR. This is the first report using integrated multi-omics approach to identify critical factors involved in Leptospira pathogenesis. Validation of these critical factors may lead to the identification of target antigens for the development of improved diagnostics and vaccines against leptospirosis. IMPORTANCE Leptospirosis is a zoonotic disease of global importance. It is caused by a Gram-negative bacterial spirochete of the genus Leptospira. The current challenge is to detect the infection at early stage for treatment or to develop potent vaccines that can induce cross-protection against various pathogenic serovars. Understanding host-pathogen interactions is important to identify the critical factors involved in pathogenesis and host defense for developing improved vaccines and diagnostics. Utilizing an integrated multi-omics approach, our study provides important insight into the interaction of Leptospira with human macrophages and identifies a few critical factors (such as virulence-associated proteins) involved in pathogenesis. These factors can be exploited for the development of novel tools for the detection, treatment, or prevention of leptospirosis.
Collapse
Affiliation(s)
- Sridhar Kavela
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
| | - Pallavi Vyas
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Jusail CP
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Sandeep K. Kushwaha
- Bioinformatics Lab, National Institute of Animal Biotechnology, Hyderabad, India
| | - Subeer S. Majumdar
- Gene and Protein Engineering Lab, National Institute of Animal Biotechnology, Hyderabad, India
| | - Syed M. Faisal
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| |
Collapse
|
6
|
Ashaiba A, Arun AB, Prasad KS, Tellis RC. Leptospiral sphingomyelinase Sph2 as a potential biomarker for diagnosis of leptospirosis. J Microbiol Methods 2022; 203:106621. [PMID: 36375539 DOI: 10.1016/j.mimet.2022.106621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Leptospirosis is an underestimated infectious tropical disease caused by the spirochetes belonging to the genus Leptospira. Leptospirosis is grossly underdiagnosed due to its myriad symptoms, varying from mild febrile illness to severe haemorrhage. Laboratory tests for leptospirosis is an extremely important and potent way for disease diagnosis, as the clinical manifestations are very similar to other febrile diseases. Currently available diagnostic techniques are time-consuming, require expertise and sophisticated instruments, and cannot identify the disease at an early phase of infection. Early diagnosis of leptospirosis is the need of the hour while considering the severe complications after the infection and the rate of mortality after misdiagnosis. Secretion of Leptospira-specific sphingomyelinases in leptospirosis patient's urine within a few days of the onset of infection is quite common and is a virulence factor present only in pathogenic Leptospira species. Herein, the structural and functional importance of leptospiral sphingomyelinase Sph2 in leptospirosis pathogenesis, as well as the potential of screening urinary Sph2 for diagnosis and the scope for developing a rapid and easily affordable point-of-care test for urinary leptospiral sphingomyelinase Sph2 as an alternative to current diagnostic methods are discussed.
Collapse
Affiliation(s)
- A Ashaiba
- Department of Microbiology, Yenepoya Medical College, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, India; Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, India
| | - A B Arun
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, India
| | - K Sudhakara Prasad
- Nano Materials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, India; Centre for Nutrition Studies, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, India.
| | - Rouchelle C Tellis
- Department of Microbiology, Yenepoya Medical College, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, India.
| |
Collapse
|
7
|
Lauretti-Ferreira F, Teixeira AAR, Giordano RJ, da Silva JB, Abreu PAE, Barbosa AS, Akamatsu MA, Ho PL. Characterization of a virulence-modifying protein of Leptospira interrogans identified by shotgun phage display. Front Microbiol 2022; 13:1051698. [PMID: 36519163 PMCID: PMC9742253 DOI: 10.3389/fmicb.2022.1051698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/08/2022] [Indexed: 09/02/2023] Open
Abstract
Pathogenic species of Leptospira are etiologic agents of leptospirosis, an emerging zoonotic disease of worldwide extent and endemic in tropical regions. The growing number of identified leptospiral species sheds light to their genetic diversity and unique virulence mechanisms, many of them still remain unknown. Toxins and adhesins are important virulence factors in several pathogens, constituting promising antigens for the development of vaccines with cross-protection and long-lasting effect against leptospirosis. For this aim, we used the shotgun phage display technique to unravel new proteins with adhesive properties. A shotgun library was constructed using fragmented genomic DNA from Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130 and pG8SAET phagemid vector. Selection of phages bearing new possible cell-binding antigens was performed against VERO cells, using BRASIL biopanning methodology. Analysis of selected clones revealed the hypothetical protein LIC10778, a potentially exposed virulence factor that belongs to the virulence-modifying (VM) protein family (PF07598), composed of 13 members in the leptospiral strain Fiocruz L1-130. Prediction of LIC10778 tertiary structure indicates that the protein contains a cellular-binding domain (N-terminal portion) and an unknown domain of no assigned activity (C-terminal portion). The predicted N-terminal domain shared structural similarities with the cell-binding and internalization domain of toxins like Ricin and Abrin, as well as to the Community-Acquired Respiratory Distress Syndrome (CARDS) toxin in Mycoplasma pneumoniae. Interestingly, recombinant portions of the N-terminal region of LIC10778 protein showed binding to laminin, collagens I and IV, vitronectin, and plasma and cell fibronectins using overlay blotting technique, especially regarding the binding site identified by phage display. These data validate our preliminary phage display biopanning and support the predicted three-dimensional models of LIC10778 protein and other members of PF07598 protein family, confirming the identification of the N-terminal cell-binding domains that are similar to ricin-like toxins. Moreover, fluorescent fused proteins also confirmed that N-terminal region of LIC10778 is capable of binding to VERO and A549 cell lines, further highlighting its virulence role during host-pathogen interaction in leptospirosis probably mediated by its C-terminal domain. Indeed, recent results in the literature confirmed this assumption by demonstrating the cytotoxicity of a closely related PF07598 member.
Collapse
Affiliation(s)
- Fabiana Lauretti-Ferreira
- Bioindustrial Division, Butantan Institute, São Paulo, Brazil
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Ricardo José Giordano
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | - Paulo Lee Ho
- Bioindustrial Division, Butantan Institute, São Paulo, Brazil
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Hsu SH, Yang CW. Insight into the Structure, Functions, and Dynamics of the Leptospira Outer Membrane Proteins with the Pathogenicity. MEMBRANES 2022; 12:membranes12030300. [PMID: 35323775 PMCID: PMC8951592 DOI: 10.3390/membranes12030300] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023]
Abstract
Leptospirosis is a widespread zoonosis that frequently occurs in tropical and subtropical countries. Leptospira enters the host through wounds or mucous membranes and spreads to the whole body through the blood, causing systemic infection. Kidneys are the preferential site where Leptospira accumulates, especially in the renal interstitium and renal tubule epithelial cells. Clinical symptoms in humans include high fever, jaundice, renal failure, and severe multiple-organ failure (Weil’s syndrome). Surface-exposed antigens are located at the outermost layer of Leptospira and these potential virulence factors are likely involved in primary host-pathogen interactions, adhesion, and/or invasion. Using the knockout/knockdown techniques to the evaluation of pathogenicity in the virulence factor are the most direct and effective methods and many virulence factors are evaluated including lipopolysaccharides (LPS), Leptospira lipoprotein 32 (LipL32), Leptospira ompA domain protein 22 (Loa22), LipL41, LipL71, Leptospira immunoglobulin-like repeat A (LigA), LigB, and LipL21. In this review, we will discuss the structure, functions, and dynamics of these virulence factors and the roles of these virulence factors in Leptospira pathogenicity. In addition, a protein family with special Leucine-rich repeat (LRR) will also be discussed for their vital role in Leptospira pathogenicity. Finally, these surface-exposed antigens are discussed in the application of the diagnosis target for leptospirosis and compared with the serum microscope agglutination test (MAT), the gold standard for leptospirosis.
Collapse
|
9
|
Whole genome sequencing and de novo assembly of three virulent Indian isolates of Leptospira. INFECTION GENETICS AND EVOLUTION 2020; 85:104579. [PMID: 33017688 DOI: 10.1016/j.meegid.2020.104579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/09/2020] [Accepted: 09/30/2020] [Indexed: 12/26/2022]
Abstract
Leptospirosis is a re-emerging bacterial zoonosis caused by pathogenic Leptospira, with a worldwide distribution and becoming a major public health concern. Prophylaxis of this disease is difficult due to several factors such as non-specific variable clinical manifestation, presence of a large number of serovar, species and asymptomatic reservoir hosts, lack of proper diagnostics and vaccines. Despite its global importance and severity of the disease, knowledge about the molecular mechanism of pathogenesis and evolution of pathogenic species of Leptospira remains limited. In this study, we sequenced and analyzed three highly pathogenic species of Indian isolates of Leptospira (interrogans, santarosai, and kirschneri). Additionally, we identified some virulence-related and CRISPR-Cas genes. The virulent analysis showed 232 potential virulence factors encoding proteins in L. interrogans strain Salinem and L. santarosai strain M-4 genome. While the genome of L. kirschneri strain Wumalasena was predicted to encode 198 virulence factor proteins. The variant calling analysis revealed 1151, 19,786, and 22,996 single nucleotide polymorphisms (SNPs) for L. interrogans strain Salinem, L. kirschneri strain Wumalasena and L. santarosai strain M-4, respectively, with a maximum of 5315 missense and 12,221 synonymous mutations for L. santarosai strain M-4. The structural analyses of genomes indicated potential evidence of inversions and structural rearrangment in all three genomes. The availability of these genome sequences and in silico analysis of Leptospira will provide a basis for a deeper understanding of their molecular diversity and pathogenesis mechanism, and further pave a way towards proper management of the disease.
Collapse
|
10
|
Chou LF, Chen TW, Yang HY, Chang MY, Hsu SH, Tsai CY, Ko YC, Huang CT, Tian YC, Hung CC, Yang CW. Murine Renal Transcriptome Profiles Upon Leptospiral Infection: Implications for Chronic Kidney Diseases. J Infect Dis 2019; 218:1411-1423. [PMID: 29868892 DOI: 10.1093/infdis/jiy339] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/01/2018] [Indexed: 01/21/2023] Open
Abstract
Background Leptospirosis caused by pathogenic Leptospira spp leads to kidney damage that may progress to chronic kidney disease. However, how leptospiral infections induced renal damage is unclear. Methods We apply microarray and next-generation sequencing technologies to investigate the first murine transcriptome-wide, leptospires-mediated changes in renal gene expression to identify biological pathways associated with kidney damage. Results Leptospiral genes were detected in renal transcriptomes of mice infected with Leptospira interrogans at day 28 postinfection, suggesting colonization of leptospires within the kidney with propensity of chronicity. Comparative differential gene expression and pathway analysis were investigated in renal transcriptomes of mice infected with pathogens and nonpathogens. Pathways analysis showed that Toll-like receptor signaling, complements activation, T-helper 1 type immune response, and T cell-mediated immunity/chemotaxis/proliferation were strongly associated with progressive tubulointerstitial damage caused by pathogenic leptospiral infection. In addition, 26 genes related with complement system, immune function, and cell-cell interactions were found to be significantly up-regulated in the L interrogans-infected renal transcriptome. Conclusions Our results provided comprehensive knowledge regarding the host transcriptional response to leptospiral infection in murine kidneys, particularly the involvement of cell-to-cell interaction in the immune response. It would provide valuable resources to explore functional studies of chronic renal damage caused by leptospiral infection.
Collapse
Affiliation(s)
- Li-Fang Chou
- Kidney Research Center, Chang Gung Memorial Hospital, Linkou
| | - Ting-Wen Chen
- Molecular Medicine Research Center, Chang Gung University, Taoyuan.,Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Huang-Yu Yang
- Kidney Research Center, Chang Gung Memorial Hospital, Linkou.,College of Medicine, Chang Gung University, Taoyuan
| | - Ming-Yang Chang
- Kidney Research Center, Chang Gung Memorial Hospital, Linkou.,College of Medicine, Chang Gung University, Taoyuan
| | - Shen-Hsing Hsu
- Kidney Research Center, Chang Gung Memorial Hospital, Linkou
| | - Chung-Ying Tsai
- Kidney Research Center, Chang Gung Memorial Hospital, Linkou
| | - Yi-Ching Ko
- Kidney Research Center, Chang Gung Memorial Hospital, Linkou
| | | | - Ya-Chung Tian
- Kidney Research Center, Chang Gung Memorial Hospital, Linkou.,College of Medicine, Chang Gung University, Taoyuan
| | - Cheng-Chieh Hung
- Kidney Research Center, Chang Gung Memorial Hospital, Linkou.,College of Medicine, Chang Gung University, Taoyuan
| | - Chih-Wei Yang
- Kidney Research Center, Chang Gung Memorial Hospital, Linkou.,College of Medicine, Chang Gung University, Taoyuan
| |
Collapse
|
11
|
Miotto BA, Guilloux AGA, Tozzi BF, Moreno LZ, da Hora AS, Dias RA, Heinemann MB, Moreno AM, Filho AFDS, Lilenbaum W, Hagiwara MK. Prospective study of canine leptospirosis in shelter and stray dog populations: Identification of chronic carriers and different Leptospira species infecting dogs. PLoS One 2018; 13:e0200384. [PMID: 29995963 PMCID: PMC6040711 DOI: 10.1371/journal.pone.0200384] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/24/2018] [Indexed: 01/09/2023] Open
Abstract
Dogs are highly susceptible to the leptospiral infection, notably stray and sheltered dogs. Unsanitary conditions often observed in dog shelters may predispose the introduction and spread of leptospires among sheltered populations, potentially increasing the chances for the inadvertent adoption of asymptomatically infected animals. The present work describes a longitudinal study using a multidisciplinary approach for the identification of chronically infected dogs and the characterization of potentially pathogenic strains circulating among stray and sheltered dog populations in São Paulo, Brazil. A total of 123 dogs from three populations were included. The initial evaluation consisted of blood and urine quantitative PCR testing (qPCR), the detection of specific antibodies by microscopic agglutination test (MAT), physical examination and hematological and serum biochemistry analyses. The qPCR-positive dogs were prospectively examined, and reevaluations also included culture from urine samples. Positive qPCR samples were subjected to 16S rRNA and secY gene phylogenetic analysis. The recovered strains were characterized by Multilocus Sequence Typing, polyclonal serogroup identification and virulence determination. Leptospiruria was detected in all populations studied (13/123), and phylogenetic analysis revealed that 10 dogs had L. interrogans infection. Three dogs (3/13) had L. santarosai infection. The secY phylogenetic analysis revealed that the L. santarosai sequences clustered separately from those obtained from other hosts. Ten leptospiruric dogs were reevaluated, and three dogs presented persistent leptospiruria, allowing culturing from two dogs. The strains were characterized as L. interrogans serogroup Canicola (virulent) and L. santarosai serogroup Sejroe (not virulent). Serum samples were retested by MAT using the DU92 and DU114 strains as antigens, and no increased seroreactivity was detected. Asymptomatic L. santarosai infection was observed in all populations studied, suggesting a possible role of dogs in the chain of transmission of this leptospiral species. The results suggest a genetic distinction between lineages of Brazilian L. santarosai maintained by dogs and other animal hosts. Our findings revealed that dogs could act as maintenance hosts for distinct pathogenic Leptospira, highlighting also that asymptomatically infected dogs can be inadvertently admitted and adopted in dog shelters, potentially increasing the risks of zoonotic transmission.
Collapse
Affiliation(s)
- Bruno Alonso Miotto
- Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, São Paulo, Brasil
- * E-mail:
| | - Aline Gil Alves Guilloux
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, São Paulo, Brasil
| | - Barbara Furlan Tozzi
- Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, São Paulo, Brasil
| | - Luisa Zanolli Moreno
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, São Paulo, Brasil
| | - Aline Santana da Hora
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, São Paulo, Brasil
| | - Ricardo Augusto Dias
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, São Paulo, Brasil
| | - Marcos Bryan Heinemann
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, São Paulo, Brasil
| | - Andrea Micke Moreno
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, São Paulo, Brasil
| | - Antônio Francisco de Souza Filho
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, São Paulo, Brasil
| | - Walter Lilenbaum
- Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil
| | - Mitika Kuribayashi Hagiwara
- Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, São Paulo, Brasil
| |
Collapse
|
12
|
Chaurasia R, Thresiamma KC, Eapen CK, Zachariah BJ, Paul R, Sritharan M. Pathogen-specific leptospiral proteins in urine of patients with febrile illness aids in differential diagnosis of leptospirosis from dengue. Eur J Clin Microbiol Infect Dis 2018; 37:423-433. [PMID: 29332210 DOI: 10.1007/s10096-018-3187-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/05/2018] [Indexed: 01/19/2023]
Abstract
Leptospirosis and dengue are two commonly seen infectious diseases of the tropics. Differential diagnosis of leptospirosis from dengue fever is often difficult due to overlapping clinical symptoms and lack of economically viable and easy-to-perform laboratory tests. The gold standard for diagnosis is the microscopic agglutination test (MAT). In this study, the diagnostic potential of screening for pathogen-specific leptospiral antigens in urine samples is presented as a non-invasive method of disease diagnosis. In a study group of 40 patients, the serum was tested for anti-leptospiral antibodies by MAT and enzyme-linked immunosorbent assay (ELISA). Urine of these patients was screened for leptospiral antigens by ELISA using specific antibodies against LipL32, LipL41, Fla1, HbpA and sphingomyelinase. Group I patients (n = 23) were classified as leptospirosis-positive based on MAT and high titres of circulating IgM-specific anti-leptospiral antibodies. All of these patients excreted all five leptospiral antigens in the urine. The 17 MAT-negative cases included six patients with pyrexia of unknown origin (PUO; Group II) and 11 confirmed dengue patients (Group III). The latter tested negative for both serum anti-leptospiral antibodies and urinary leptospiral antigens. A salient outcome of this study was highlighting the usefulness of screening for urinary leptospiral antigens in disease diagnosis, as their presence confirmed leptospiral aetiology in two PUO patients. Immunoblots of urinary antigens identified well-defined bands corresponding to LipL32, HbpA and sphingomyelinase; the significance of the 42- and 58-kDa sphingomyelinase bands is discussed.
Collapse
Affiliation(s)
- R Chaurasia
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Prof. CR Rao Road, Gachibowli, Hyderabad, 500 046, India
| | - K C Thresiamma
- Departments of Biochemistry and Medicine, MOSC Medical College, Kerala, India
| | - C K Eapen
- Departments of Biochemistry and Medicine, MOSC Medical College, Kerala, India
| | - B J Zachariah
- Departments of Biochemistry and Medicine, MOSC Medical College, Kerala, India
| | - R Paul
- Departments of Biochemistry and Medicine, MOSC Medical College, Kerala, India
| | - M Sritharan
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Prof. CR Rao Road, Gachibowli, Hyderabad, 500 046, India.
| |
Collapse
|
13
|
Xia B, Sun L, Fan X, Xiao H, Zhu Y, Qin J, Cai C, Zhao W, Chang YF, Zhang Y, Guo X, He P. A new model of self-resolving leptospirosis in mice infected with a strain of Leptospira interrogans serovar Autumnalis harboring LPS signaling only through TLR4. Emerg Microbes Infect 2017; 6:e36. [PMID: 28536433 PMCID: PMC5520481 DOI: 10.1038/emi.2017.16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/19/2017] [Accepted: 02/13/2017] [Indexed: 12/14/2022]
Abstract
Leptospirosis is an emerging worldwide zoonosis caused by pathogenic Leptospira spp. Our understanding of leptospirosis pathogenesis and host immune response remains limited, while mechanistic studies are hindered by a lack of proper animal models and immunological reagents. Here we established a murine model of acute and self-resolving leptospirosis by infecting 10-week-old C57BL/6 mice with Leptospira interrogans serovar Autumnalis strain 56606v, with characteristic manifestations including jaundice as well as subcutaneous and pulmonary bleeding, but no kidney lesions. We also verified that the lipopolysaccharide (LPS) of strain 56606v signaled through a TLR4-dependent pathway in murine bone marrow-derived macrophages (BMDMs), rather than the previously reported TLR2. In addition, upon infection with Leptospira strain 56606v, TLR4−/− C57BL/6 mice presented more severe jaundice and liver injury as well as higher bacterial loads than WT mice but milder pulmonary hemorrhaging. Molecular studies showed that leptospirosis-related bleeding coincides with the temporal kinetics of iNOS production, while jaundice and liver injury are probably due to insufficiently controlled bacterial loads in the liver. These results suggested that TLR4 is essential in mediating host leptospiral clearance and, to some extent, is associated with pulmonary and subcutaneous hemorrhage, probably through downstream inflammatory mediators, iNOS in particular. Overall, our murine model using immunocompetent mice might facilitate future studies into the pathogenesis of jaundice and bleeding in leptospirosis. Meanwhile, our study suggests the prospect of combining antibiotics and immunosuppressants in the treatment of severe leptospirosis presenting with pulmonary hemorrhage.
Collapse
Affiliation(s)
- Bili Xia
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Le Sun
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xia Fan
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haihan Xiao
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yongzhang Zhu
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jinhong Qin
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chengsong Cai
- Department of Laboratory Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou 311121, Zhejiang Province, China
| | - Wei Zhao
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Yan Zhang
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaokui Guo
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ping He
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
14
|
Miotto BA, Moreno LZ, Guilloux AGA, Sousa GOD, Loureiro AP, Moreno AM, Lilenbaum W, Vasconcellos SA, Heinemann MB, Hagiwara MK. Molecular and serological characterization of the first Leptospira santarosai strain isolated from a dog. Acta Trop 2016; 162:1-4. [PMID: 27282095 DOI: 10.1016/j.actatropica.2016.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/05/2016] [Indexed: 01/23/2023]
Abstract
Leptospirosis is a zoonotic disease of global importance caused by pathogenic Leptospira species. Dogs can become asymptomatically infected, acting like reservoir hosts for pathogenic Leptospira, notably Leptospira interrogans serovar Canicola. Identification of such individuals and characterization of leptospires involved in chronic infections may unravel the role of dogs in the epidemiology of particular leptospiral strains. The aim of the present work was to describe the first Leptospira santarosai strain isolated from a dog. The dog was kept in a public shelter in São Paulo city, Brazil, and presented asymptomatic urinary shedding detected by PCR. Prospective evaluation was performed to fully characterize its chronic carrier state. The dog did not present anti-Leptospira titles or clinical/laboratorial abnormalities during the evaluations; nevertheless long-term urinary shedding was confirmed by PCR and leptospires were recovered from two occasions. The isolated strain was molecularly characterized by partial 16S rRNA and secY gene sequencing and MLST analysis. Serogroup identification was performed using polyclonal antibodies. The strain was identified as Leptospira santarosai, serogroup Sejroe. This is the first evidence in the literature of the isolation of L. santarosai in dogs. Our findings show that dogs can persistently harbor leptospires other than L. interrogans.
Collapse
|
15
|
Suut L, Mazlan MNA, Arif MT, Yusoff H, Abdul Rahim NA, Safii R, Suhaili MR. Serological Prevalence of Leptospirosis Among Rural Communities in the Rejang Basin, Sarawak, Malaysia. Asia Pac J Public Health 2016; 28:450-7. [DOI: 10.1177/1010539516648003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Leptospirosis is an important zoonotic disease globally and is endemic in Malaysia. A study was conducted in the Rejang basin of Sarawak from June 2011 to May 2013 to determine the seroprevalence of leptospirosis among the communities and dominant infecting Leptospira serovars. A total of 508 human sera were analyzed using ELISA and the microscopic agglutination test (MAT). The seroprevalence of leptospirosis in the study area was 37.4%, with the highest prevalence in Kapit division. More women were positive for leptospirosis (59.5%), and the mean age of seropositive individuals was 42.2 (SD = 18.7) years. Antibody titers between 1:50 and 1:1600 were reported, and serovars djasiman (22.1%), shermani (13.2%), and pomona (7.9%) predominated, with varied distribution between geographical locations. This study highlighted the endemicity and diversity of existing Leptospira serovars within the community. This information should be communicated to local health personnel and communities at risk, and rapid diagnostic capability should be made available to local health facilities.
Collapse
Affiliation(s)
- Lela Suut
- Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | | | | | - Haironi Yusoff
- Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | | | | | | |
Collapse
|