1
|
Nolan A, Heaton RA, Adamova P, Cole P, Turton N, Gillham SH, Owens DJ, Sexton DW. Fluorescent characterization of differentiated myotubes using flow cytometry. Cytometry A 2024; 105:332-344. [PMID: 38092660 DOI: 10.1002/cyto.a.24822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/23/2023] [Accepted: 12/11/2023] [Indexed: 12/27/2023]
Abstract
Flow cytometry is routinely used in the assessment of skeletal muscle progenitor cell (myoblast) populations. However, a full gating strategy, inclusive of difficult to interpret forward and side scatter data, which documents cytometric analysis of differentiated myoblasts (myotubes) has not been reported. Beyond changes in size and shape, there are substantial metabolic and protein changes in myotubes allowing for their potential identification within heterogenous cell suspensions. To establish the utility of flow cytometry for determination of myoblasts and myotubes, C2C12 murine cell populations were assessed for cell morphology and metabolic reprogramming. Laser scatter, both forward (FSC; size) and side (SSC; granularity), measured cell morphology, while mitochondrial mass, reactive oxygen species (ROS) generation and DNA content were quantified using the fluorescent probes, MitoTracker green, CM-H2DCFDA and Vybrant DyeCycle, respectively. Immunophenotyping for myosin heavy chain (MyHC) was utilized to confirm myotube differentiation. Cellular viability was determined using Annexin V/propidium iodide dual labelling. Fluorescent microscopy was employed to visualize fluorescence and morphology. Myotube and myoblast populations were resolvable through non-intuitive interpretation of laser scatter-based morphology assessment and mitochondrial mass and activity assessment. Myotubes appeared to have similar sizes to the myoblasts based on laser scatter but exhibited greater mitochondrial mass (159%, p < 0.0001), ROS production (303%, p < 0.0001), DNA content (18%, p < 0.001) and expression of MyHC (147%, p < 0.001) compared to myoblasts. Myotube sub-populations contained a larger viable cluster of cells which were unable to be fractionated from myoblast populations and a smaller population cluster which likely contains apoptotic bodies. Imaging of differentiated myoblasts that had transited through the flow cytometer revealed the presence of intact, 'rolled-up' myotubes, which would alter laser scatter properties and potential transit through the laser beam. Our results indicate that myotubes can be analyzed successfully using flow cytometry. Increased mitochondrial mass, ROS and DNA content are key features that correlate with MyHC expression but due to myotubes 'rolling up' during flow cytometric analysis, laser scatter determination of size is not positively correlated; a phenomenon observed with some size determination particles and related to surface properties of said particles. We also note a greater heterogeneity of myotubes compared to myoblasts as evidenced by the 2 distinct sub-populations. We suggest that acoustic focussing may prove effective in identifying myotube sub populations compared to traditional hydrodynamic focussing.
Collapse
Affiliation(s)
- Andy Nolan
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Robert A Heaton
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Petra Adamova
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Paige Cole
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Nadia Turton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Scott H Gillham
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Daniel J Owens
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Darren W Sexton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
2
|
Chu LT, Kwong HK, Cui C, Chen TH. Theranostic DNA nanostructure based on phenotype-specific activation of antisense oligonucleotides. Talanta 2024; 269:125399. [PMID: 37979506 DOI: 10.1016/j.talanta.2023.125399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/29/2023] [Accepted: 11/05/2023] [Indexed: 11/20/2023]
Abstract
Antisense oligonucleotide (ASO) is a powerful agent for gene therapy, designed to form complementary pairs with specific mRNA to inhibit gene expression. However, low specificity limits its potential. To overcome this challenge, we developed a Y-shape DNA nanostructure that enhances the specificity in ASO-based treatment by introducing a detection trigger. The design incorporates the phenotype-specific miR21 activation and the sequential release of Bcl2 ASO. As a result, our Y-shape DNA nanostructure downregulates >50 % Bcl2 mRNA expression and induces >60 % cell death in breast cancer cells. Meanwhile, this approach shows no obvious damage to the non-cancerous cells, indicating the therapeutic potential as a theranostics agent in precision medicine with the combination of biomarker sensing and treatment. Overall, our Y-shape DNA nanostructure serves as a promising strategy providing potential in customized conformation design with specific target sequences in gene therapy.
Collapse
Affiliation(s)
- Lok Ting Chu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong Special Administrative Region, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guang Dong Medical University, 524023, Zhanjiang, China
| | - Hoi Kwan Kwong
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong Special Administrative Region, China
| | - Chenyu Cui
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong Special Administrative Region, China
| | - Ting-Hsuan Chen
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong Special Administrative Region, China; City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
3
|
Lu J, Zhang LM, Liu JJ, Liu YT, Lin XY, Wang XQ, Zhang Y, Tang Q, Liu L. High-intensity interval training alleviates exhaustive exercise-induced HSP70-assisted selective autophagy in skeletal muscle. J Physiol Sci 2023; 73:32. [PMID: 37990150 PMCID: PMC10717669 DOI: 10.1186/s12576-023-00884-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/20/2023] [Indexed: 11/23/2023]
Abstract
This study was designed to probe the effect of chaperone-assisted selective autophagy (CASA) on the maintenance of proteostasis during exhaustive exercise and uncover the alteration of CASA in muscle fibers with pre-high-intensity interval training (HIIT) intervention-induced muscle adaptation in response to exhaustive exercise. Rats were randomly divided into a control group; an exhaustive exercise group; and an HIIT + exhaustive exercise group. Results show myofibril damage and BiP levels were increased after exhaustive exercise, and the levels of the HSP70, BAG3, ubiquitin, autophagy-related proteins, and their interactions were increased. HIIT intervention before exhaustive exercise could decrease myofibril injury and BiP levels, accompanied by down-regulation of HSP70/BAG3 complex and selective autophagy. In conclusion, exhaustive exercise promotes CASA to clear protein aggregation for keeping proteostasis in muscle fibers; pre-HIIT intervention improves myofibril injury and unfold protein response caused by exhaustive exercise, which might contribute to inhibit the augmentation of CASA.
Collapse
Affiliation(s)
- Jiao Lu
- School of Sports and Health, Nanjing Sport Institute, Nanjing, 210014, China
- Jiangsu Collaborative Innovation Center for Sport and Health Project, Nanjing, 210014, China
| | - Liu-Mei Zhang
- School of Sports and Health, Nanjing Sport Institute, Nanjing, 210014, China
| | - Jing-Jing Liu
- School of Sports and Health, Nanjing Sport Institute, Nanjing, 210014, China
| | - Yu-Ting Liu
- School of Sports and Health, Nanjing Sport Institute, Nanjing, 210014, China
| | - Xiao-Ye Lin
- School of Sports and Health, Shanghai University·of Sport, Shanghai, 200000, China
| | - Xue-Qi Wang
- School of Sports and Health, Nanjing Sport Institute, Nanjing, 210014, China
| | - Yuan Zhang
- School of Sports and Health, Nanjing Sport Institute, Nanjing, 210014, China
| | - Qiang Tang
- School of Sports and Health, Nanjing Sport Institute, Nanjing, 210014, China
- Jiangsu Collaborative Innovation Center for Sport and Health Project, Nanjing, 210014, China
| | - Lin Liu
- School of Sports and Health, Nanjing Sport Institute, Nanjing, 210014, China.
| |
Collapse
|
4
|
Kirk JA. Going Further With Half as Much: It's in the BAG. JACC Basic Transl Sci 2023; 8:1212-1214. [PMID: 37791297 PMCID: PMC10544100 DOI: 10.1016/j.jacbts.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Affiliation(s)
- Jonathan A. Kirk
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA
| |
Collapse
|
5
|
Zhang Y, Beketaev I, Ma Y, Wang J. Sumoylation-deficient phosphoglycerate mutase 2 impairs myogenic differentiation. Front Cell Dev Biol 2022; 10:1052363. [PMID: 36589741 PMCID: PMC9795042 DOI: 10.3389/fcell.2022.1052363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Phosphoglycerate mutase 2 (PGAM2) is a critical glycolytic enzyme that is highly expressed in skeletal muscle. In humans, naturally occurring mutations in Phosphoglycerate mutase 2 have been etiologically linked to glycogen storage disease X (GSDX). Phosphoglycerate mutase 2 activity is regulated by several posttranslational modifications such as ubiquitination and acetylation. Here, we report that Phosphoglycerate mutase 2 activity is regulated by sumoylation-a covalent conjugation involved in a wide spectrum of cellular events. We found that Phosphoglycerate mutase 2 contains two primary SUMO acceptor sites, lysine (K)49 and K176, and that the mutation of either K to arginine (R) abolished Phosphoglycerate mutase 2 sumoylation. Given that K176 is more highly evolutionarily conserved across paralogs and orthologs than K49 is, we used the CRISPR-mediated homologous recombination technique in myogenic C2C12 cells to generate homozygous K176R knock-in cells (PGAM2K176R/K176R). Compared with wild-type (WT) C2C12 cells, PGAM2K176R/K176R C2C12 cells exhibited impaired myogenic differentiation, as indicated by decreased differentiation and fusion indexes. Furthermore, the results of glycolytic and mitochondrial stress assays with the XF96 Extracellular Flux analyzer revealed a reduced proton efflux rate (PER), glycolytic PER (glycoPER), extracellular acidification rate (ECAR), and oxygen consumption rate (OCR) in PGAM2K176R/K176R C2C12 cells, both at baseline and in response to stress. Impaired mitochondrial function was also observed in PGAM2K176R/K176R P19 cells, a carcinoma cell line. These findings indicate that the PGAM2-K176R mutation impaired glycolysis and mitochondrial function. Gene ontology term analysis of RNA sequencing data further revealed that several downregulated genes in PGAM2K176R/K176R C2C12 cells were associated with muscle differentiation/development/contraction programs. Finally, PGAM2 with either of two naturally occurring missense mutations linked to GSDX, E89A (conversion of glutamic acid 89 to alanine) or R90W (conversion of arginine 90 to tryptophan), exhibited reduced Phosphoglycerate mutase 2 sumoylation. Thus, sumoylation is an important mechanism that mediates Phosphoglycerate mutase 2 activity and is potentially implicated in Phosphoglycerate mutase 2 mutation-linked disease in humans.
Collapse
Affiliation(s)
- Yi Zhang
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Reproductive Medical Center, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China,Stem Cell Engineering, Texas Heart Institute, Houston, TX, United States
| | - Ilimbek Beketaev
- Stem Cell Engineering, Texas Heart Institute, Houston, TX, United States
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Reproductive Medical Center, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China,*Correspondence: Yanlin Ma, ; Jun Wang,
| | - Jun Wang
- Stem Cell Engineering, Texas Heart Institute, Houston, TX, United States,*Correspondence: Yanlin Ma, ; Jun Wang,
| |
Collapse
|
6
|
Chu LT, Kwong HK, Hartanto H, Chen TH. Detection of intracellular sodium ions based on phenotype-specific activation of NaA43 DNAzyme. Biosens Bioelectron 2022; 218:114753. [DOI: 10.1016/j.bios.2022.114753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/02/2022]
|
7
|
Fu X, Matsui T, Funaba M. Enhancement of vitamin C-induced myogenesis by inhibition of extracellular signal-regulated kinase (ERK) 1/2 pathway. Biochem Biophys Res Commun 2022; 612:57-62. [DOI: 10.1016/j.bbrc.2022.04.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 11/02/2022]
|
8
|
Yun HH, Jung SY, Park BW, Ko JS, Yoo K, Yeo J, Kim HL, Park HJ, Youn HJ, Lee JH. An Adult Mouse Model of Dilated Cardiomyopathy Caused by Inducible Cardiac-Specific Bis Deletion. Int J Mol Sci 2021; 22:ijms22031343. [PMID: 33572816 PMCID: PMC7866246 DOI: 10.3390/ijms22031343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 01/06/2023] Open
Abstract
BCL-2 interacting cell death suppressor (BIS) is a multifunctional protein that has been implicated in cancer and myopathy. Various mutations of the BIS gene have been identified as causative of cardiac dysfunction in some dilated cardiomyopathy (DCM) patients. This was recently verified in cardiac-specific knock-out (KO) mice. In this study, we developed tamoxifen-inducible cardiomyocyte-specific BIS-KO (Bis-iCKO) mice to assess the role of BIS in the adult heart using the Cre-loxP strategy. The disruption of the Bis gene led to impaired ventricular function and subsequent heart failure due to DCM, characterized by reduced left ventricular contractility and dilatation that were observed using serial echocardiography and histology. The development of DCM was confirmed by alterations in Z-disk integrity and increased expression of several mRNAs associated with heart failure and remodeling. Furthermore, aggregation of desmin was correlated with loss of small heat shock protein in the Bis-iCKO mice, indicating that BIS plays an essential role in the quality control of cardiac proteins, as has been suggested in constitutive cardiac-specific KO mice. Our cardiac-specific BIS-KO mice may be a useful model for developing therapeutic interventions for DCM, especially late-onset DCM, based on the distinct phenotypes and rapid progressions.
Collapse
Affiliation(s)
- Hye Hyeon Yun
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 16591, Korea; (H.H.Y.); (S.Y.J.); (K.Y.); (J.Y.)
- Institute of Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 16591, Korea
| | - Soon Young Jung
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 16591, Korea; (H.H.Y.); (S.Y.J.); (K.Y.); (J.Y.)
- Institute of Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 16591, Korea
| | - Bong Woo Park
- Department of Internal Medicine, Division of Cardiology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 16591, Korea; (B.W.P.); (H.J.P.); (H.J.Y.)
| | - Ji Seung Ko
- Laboratory Animal Research Center, Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, Seoul 16591, Korea;
| | - Kyunghyun Yoo
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 16591, Korea; (H.H.Y.); (S.Y.J.); (K.Y.); (J.Y.)
- Institute of Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 16591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, College of Medicine, The Catholic University of Korea, Seoul 16591, Korea
| | - Jiyoung Yeo
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 16591, Korea; (H.H.Y.); (S.Y.J.); (K.Y.); (J.Y.)
- Institute of Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 16591, Korea
| | - Hong Lim Kim
- Integrative Research Support Center, Laboratory of Electron Microscope, College of Medicine, The Catholic University of Korea, Seoul 16591, Korea;
| | - Hun Jun Park
- Department of Internal Medicine, Division of Cardiology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 16591, Korea; (B.W.P.); (H.J.P.); (H.J.Y.)
| | - Ho Joong Youn
- Department of Internal Medicine, Division of Cardiology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 16591, Korea; (B.W.P.); (H.J.P.); (H.J.Y.)
| | - Jeong Hwa Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 16591, Korea; (H.H.Y.); (S.Y.J.); (K.Y.); (J.Y.)
- Institute of Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 16591, Korea
- Correspondence: ; Tel.: +82-2-2258-7293
| |
Collapse
|
9
|
Luthold C, Varlet AA, Lambert H, Bordeleau F, Lavoie JN. Chaperone-Assisted Mitotic Actin Remodeling by BAG3 and HSPB8 Involves the Deacetylase HDAC6 and Its Substrate Cortactin. Int J Mol Sci 2020; 22:ijms22010142. [PMID: 33375626 PMCID: PMC7795263 DOI: 10.3390/ijms22010142] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022] Open
Abstract
The fidelity of actin dynamics relies on protein quality control, but the underlying molecular mechanisms are poorly defined. During mitosis, the cochaperone BCL2-associated athanogene 3 (BAG3) modulates cell rounding, cortex stability, spindle orientation, and chromosome segregation. Mitotic BAG3 shows enhanced interactions with its preferred chaperone partner HSPB8, the autophagic adaptor p62/SQSTM1, and HDAC6, a deacetylase with cytoskeletal substrates. Here, we show that depletion of BAG3, HSPB8, or p62/SQSTM1 can recapitulate the same inhibition of mitotic cell rounding. Moreover, depletion of either of these proteins also interfered with the dynamic of the subcortical actin cloud that contributes to spindle positioning. These phenotypes were corrected by drugs that limit the Arp2/3 complex or HDAC6 activity, arguing for a role for BAG3 in tuning branched actin network assembly. Mechanistically, we found that cortactin acetylation/deacetylation is mitotically regulated and is correlated with a reduced association of cortactin with HDAC6 in situ. Remarkably, BAG3 depletion hindered the mitotic decrease in cortactin–HDAC6 association. Furthermore, expression of an acetyl-mimic cortactin mutant in BAG3-depleted cells normalized mitotic cell rounding and the subcortical actin cloud organization. Together, these results reinforce a BAG3′s function for accurate mitotic actin remodeling, via tuning cortactin and HDAC6 spatial dynamics.
Collapse
Affiliation(s)
- Carole Luthold
- Centre de Recherche sur le Cancer, Université Laval, Québec, QC G1R 3S3, Canada; (C.L.); (A.-A.V.); (H.L.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Québec, QC G1R 3S3, Canada
| | - Alice-Anaïs Varlet
- Centre de Recherche sur le Cancer, Université Laval, Québec, QC G1R 3S3, Canada; (C.L.); (A.-A.V.); (H.L.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Québec, QC G1R 3S3, Canada
| | - Herman Lambert
- Centre de Recherche sur le Cancer, Université Laval, Québec, QC G1R 3S3, Canada; (C.L.); (A.-A.V.); (H.L.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Québec, QC G1R 3S3, Canada
| | - François Bordeleau
- Centre de Recherche sur le Cancer, Université Laval, Québec, QC G1R 3S3, Canada; (C.L.); (A.-A.V.); (H.L.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Québec, QC G1R 3S3, Canada
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: (F.B.); (J.N.L.)
| | - Josée N. Lavoie
- Centre de Recherche sur le Cancer, Université Laval, Québec, QC G1R 3S3, Canada; (C.L.); (A.-A.V.); (H.L.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Québec, QC G1R 3S3, Canada
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: (F.B.); (J.N.L.)
| |
Collapse
|
10
|
Benissan-Messan DZ, Zhu H, Zhong W, Tan T, Ma J, Lee PHU. Multi-Cellular Functions of MG53 in Muscle Calcium Signaling and Regeneration. Front Physiol 2020; 11:583393. [PMID: 33240103 PMCID: PMC7677405 DOI: 10.3389/fphys.2020.583393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/09/2020] [Indexed: 12/28/2022] Open
Abstract
Since its identification in 2009, multiple studies have indicated the importance of MG53 in muscle physiology. The protein is produced in striated muscles but has physiologic implications reaching beyond the confines of striated muscles. Roles in muscle regeneration, calcium homeostasis, excitation-contraction coupling, myogenesis, and the mitochondria highlight the protein's wide-reaching impact. Numerous therapeutic applications could potentially emerge from these physiologic roles. This review summarizes the current literature regarding the role of MG53 in the skeletal muscle. Therapeutic applications are discussed.
Collapse
Affiliation(s)
| | - Hua Zhu
- Department of Surgery, The Ohio State University, Columbus, OH, United States
| | - Weina Zhong
- Department of Surgery, The Ohio State University, Columbus, OH, United States
| | - Tao Tan
- Department of Surgery, The Ohio State University, Columbus, OH, United States
| | - Jianjie Ma
- Department of Surgery, The Ohio State University, Columbus, OH, United States
| | - Peter H. U. Lee
- Department of Surgery, The Ohio State University, Columbus, OH, United States
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
- Department of Cardiothoracic Surgery, Southcoast Health, Fall River, MA, United States
| |
Collapse
|
11
|
Under construction: The dynamic assembly, maintenance, and degradation of the cardiac sarcomere. J Mol Cell Cardiol 2020; 148:89-102. [PMID: 32920010 DOI: 10.1016/j.yjmcc.2020.08.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/11/2022]
Abstract
The sarcomere is the basic contractile unit of striated muscle and is a highly ordered protein complex with the actin and myosin filaments at its core. Assembling the sarcomere constituents into this organized structure in development, and with muscle growth as new sarcomeres are built, is a complex process coordinated by numerous factors. Once assembled, the sarcomere requires constant maintenance as its continuous contraction is accompanied by elevated mechanical, thermal, and oxidative stress, which predispose proteins to misfolding and toxic aggregation. To prevent protein misfolding and maintain sarcomere integrity, the sarcomere is monitored by an assortment of protein quality control (PQC) mechanisms. The need for effective PQC is heightened in cardiomyocytes which are terminally differentiated and must survive for many years while preserving optimal mechanical output. To prevent toxic protein aggregation, molecular chaperones stabilize denatured sarcomere proteins and promote their refolding. However, when old and misfolded proteins cannot be salvaged by chaperones, they must be recycled via degradation pathways: the calpain and ubiquitin-proteasome systems, which operate under basal conditions, and the stress-responsive autophagy-lysosome pathway. Mutations to and deficiency of the molecular chaperones and associated factors charged with sarcomere maintenance commonly lead to sarcomere structural disarray and the progression of heart disease, highlighting the necessity of effective sarcomere PQC for maintaining cardiac function. This review focuses on the dynamic regulation of assembly and turnover at the sarcomere with an emphasis on the chaperones involved in these processes and describes the alterations to chaperones - through mutations and deficient expression - implicated in disease progression to heart failure.
Collapse
|
12
|
Zhang Z, Du H, Yang C, Li Q, Qiu M, Song X, Yu C, Jiang X, Liu L, Hu C, Xia B, Xiong X, Yang L, Peng H, Jiang X. Comparative transcriptome analysis reveals regulators mediating breast muscle growth and development in three chicken breeds. Anim Biotechnol 2019; 30:233-241. [PMID: 30601081 DOI: 10.1080/10495398.2018.1476377] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objective: The goal of this study was to investigate the mechanisms of muscle growth and development of three chicken breeds. Participants: Eighteen chickens, including three different breeds with different growth speeds (White Broiler, Daheng, and Commercial Layers of Roman), were used. Methods: Total RNA from breast muscle of these chickens was subjected to a gene expression microarray. Differentially expressed genes (DEGs) were screened and functional enrichment analysis was performed using DAVID. Seven DEGs were confirmed by quantitative reverse transcription PCR. Results: Overall, 8,398 DEGs were found among the different lines. The DEGs between each two lines that were unique for a developmental stage were greater than those that were common during all stages. Functional analysis revealed that DEGs across the entire developmental process were primarily involved in positive cell proliferation, growth, cell differentiation, and developmental processes. Genes involved in muscle regulation, muscle construction, and muscle cell differentiation were upregulated in the faster-growing breed compared to the slower-growing breed. DEGs including myosin heavy chain 15 (MYH15), myozenin 2 (MYOZ2), myosin-binding protein C (MYBPC3), insulin-like growth factor 2 (IGF2), apoptosis regulator (BCL-2), AP-1 transcription factor subunit (JUN), and AP-1 transcription factor subunit (FOS) directly regulated muscle growth or were in the center of the protein-protein interaction network. Pathways, including the extracellular matrix (ECM)-receptor interaction, mitogen-activated protein kinase (MAPK) signaling pathway, and focal adhesion, were the most enriched DEGs between lines or within lines under different developmental stages. Conclusions: Genes involved in muscle construction and cell differentiation were differentially expressed among the three breeds.
Collapse
Affiliation(s)
- Zengrong Zhang
- a Sichuan Animal Science Academy , Chengdu , Sichuan , China.,b Sichuan Daheng Poultry Breeding Company , Chengdu , Sichuan , China
| | - Huarui Du
- a Sichuan Animal Science Academy , Chengdu , Sichuan , China
| | - Chaowu Yang
- a Sichuan Animal Science Academy , Chengdu , Sichuan , China
| | - Qingyun Li
- c Animal Breeding and Genetics Key Laboratory of Sichuan Province , Chengdu , Sichuan , China
| | - Mohan Qiu
- a Sichuan Animal Science Academy , Chengdu , Sichuan , China
| | - Xiaoyan Song
- b Sichuan Daheng Poultry Breeding Company , Chengdu , Sichuan , China
| | - Chunlin Yu
- c Animal Breeding and Genetics Key Laboratory of Sichuan Province , Chengdu , Sichuan , China
| | - Xiaoyu Jiang
- c Animal Breeding and Genetics Key Laboratory of Sichuan Province , Chengdu , Sichuan , China
| | - Lan Liu
- c Animal Breeding and Genetics Key Laboratory of Sichuan Province , Chengdu , Sichuan , China
| | - Chenming Hu
- c Animal Breeding and Genetics Key Laboratory of Sichuan Province , Chengdu , Sichuan , China
| | - Bo Xia
- a Sichuan Animal Science Academy , Chengdu , Sichuan , China
| | - Xia Xiong
- a Sichuan Animal Science Academy , Chengdu , Sichuan , China
| | - Li Yang
- c Animal Breeding and Genetics Key Laboratory of Sichuan Province , Chengdu , Sichuan , China
| | - Han Peng
- b Sichuan Daheng Poultry Breeding Company , Chengdu , Sichuan , China
| | - Xiaosong Jiang
- a Sichuan Animal Science Academy , Chengdu , Sichuan , China.,b Sichuan Daheng Poultry Breeding Company , Chengdu , Sichuan , China
| |
Collapse
|
13
|
Park JS, Lee H, Choi BW, Ro S, Lee D, Na JE, Hong JH, Lee JS, Kim BW, Ko YG. An MG53-IRS1-interaction disruptor ameliorates insulin resistance. Exp Mol Med 2018; 50:1-12. [PMID: 29884820 PMCID: PMC5994830 DOI: 10.1038/s12276-018-0099-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/08/2018] [Accepted: 03/16/2018] [Indexed: 12/24/2022] Open
Abstract
Mitsugumin 53 (MG53) is an E3 ligase that induces insulin receptor substrate-1 (IRS-1) ubiquitination and degradation in skeletal muscle. We previously demonstrated that the pharmaceutical disruption of the MG53-IRS-1 interaction improves insulin sensitivity by abrogating IRS-1 ubiquitination and increasing IRS-1 levels in C2C12 myotubes. Here, we developed a novel MG53-IRS-1 interaction disruptor (MID-00935) that ameliorates insulin resistance in diet-induced obese (DIO) mice. MID-00935 disrupted the molecular interaction of MG53 and IRS-1, abrogated MG53-induced IRS-1 ubiquitination and degradation and improved insulin signaling in C2C12 myotubes. Oral administration of MID-00935 increased insulin-induced IRS-1, Akt, and Erk phosphorylation via increasing IRS-1 levels in the skeletal muscle of DIO mice. In DIO mice, MID-00935 treatment lowered fasting blood glucose levels and improved glucose disposal in glucose and insulin tolerance tests. These results suggest that MID-00935 may be a potential muscle-targeting drug candidate for treating insulin resistance.
Collapse
Affiliation(s)
- Jun Sub Park
- Division of Life Sciences, Korea University, Seoul, Korea.,Tunneling Nanotube Research Center, Korea University, Seoul, Korea
| | - Hyun Lee
- Division of Life Sciences, Korea University, Seoul, Korea.,Tunneling Nanotube Research Center, Korea University, Seoul, Korea
| | - Bo Woon Choi
- Division of Life Sciences, Korea University, Seoul, Korea.,Tunneling Nanotube Research Center, Korea University, Seoul, Korea
| | - Seonggu Ro
- CrystalGenomics, Inc., Seongnam-si, Gyeonggi-do, Korea
| | - Doyoung Lee
- CrystalGenomics, Inc., Seongnam-si, Gyeonggi-do, Korea
| | - Jeong Eun Na
- CrystalGenomics, Inc., Seongnam-si, Gyeonggi-do, Korea
| | - Jeoung-Ho Hong
- Division of Life Sciences, Korea University, Seoul, Korea.,Tunneling Nanotube Research Center, Korea University, Seoul, Korea
| | - Jae-Seon Lee
- Department of Molecular Medicine, College of Medicine, INHA University, Incheon, Korea
| | - Bong-Woo Kim
- Division of Life Sciences, Korea University, Seoul, Korea. .,Tunneling Nanotube Research Center, Korea University, Seoul, Korea.
| | - Young-Gyu Ko
- Division of Life Sciences, Korea University, Seoul, Korea. .,Tunneling Nanotube Research Center, Korea University, Seoul, Korea.
| |
Collapse
|
14
|
Im CN, Yun HH, Song B, Youn DY, Cui MN, Kim HS, Park GS, Lee JH. BIS-mediated STAT3 stabilization regulates glioblastoma stem cell-like phenotypes. Oncotarget 2018; 7:35056-70. [PMID: 27145367 PMCID: PMC5085209 DOI: 10.18632/oncotarget.9039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/16/2016] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma stem cells (GSCs) are a subpopulation of highly tumorigenic and stem-like cells that are responsible for resistance to conventional therapy. Bcl-2-intreacting cell death suppressor (BIS; also known as BAG3) is an anti-apoptotic protein that is highly expressed in human cancers with various origins, including glioblastoma. In the present study, to investigate the role of BIS in GSC subpopulation, we examined the expression profile of BIS in A172 and U87-MG glioblastoma cell lines under specific in vitro culture conditions that enrich GSC-like cells in spheres. Both BIS mRNA and protein levels significantly increased under the sphere-forming condition as compared with standard culture conditions. BIS depletion resulted in notable decreases in sphere-forming activity and was accompanied with decreases in SOX-2 expression. The expression of STAT3, a master regulator of stemness, also decreased following BIS depletion concomitant with decreases in the nuclear levels of active phosphorylated STAT3, while ectopic STAT3 overexpression resulted in recovery of sphere-forming activity in BIS-knockdown glioblastoma cells. Additionally, immunoprecipitation and confocal microscopy revealed that BIS physically interacts with STAT3. Furthermore, BIS depletion increased STAT3 ubiquitination, suggesting that BIS is necessary for STAT3 stabilization in GSC-like cells. BIS depletion also affected epithelial-to-mesenchymal transition-related genes as evidenced by decrease in SNAIL and MMP-2 expression and increase in E-cadherin expression in GSC-like cells. Our findings suggest that high levels of BIS expression might confer stem-cell-like properties on cancer cells through STAT3 stabilization, indicating that BIS is a potential target in cancer therapy.
Collapse
Affiliation(s)
- Chang-Nim Im
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hye Hyeon Yun
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Byunghoo Song
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dong-Ye Youn
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Mei Nu Cui
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hong Sug Kim
- NGS Clinical Department, Macrogen Inc., Seoul, Korea
| | - Gyeong Sin Park
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jeong-Hwa Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
15
|
Varlet AA, Fuchs M, Luthold C, Lambert H, Landry J, Lavoie JN. Fine-tuning of actin dynamics by the HSPB8-BAG3 chaperone complex facilitates cytokinesis and contributes to its impact on cell division. Cell Stress Chaperones 2017; 22:553-567. [PMID: 28275944 PMCID: PMC5465032 DOI: 10.1007/s12192-017-0780-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 11/28/2022] Open
Abstract
The small heat shock protein HSPB8 and its co-chaperone BAG3 are proposed to regulate cytoskeletal proteostasis in response to mechanical signaling in muscle cells. Here, we show that in dividing cells, the HSPB8-BAG3 complex is instrumental to the accurate disassembly of the actin-based contractile ring during cytokinesis, a process required to allow abscission of daughter cells. Silencing of HSPB8 markedly decreased the mitotic levels of BAG3 in HeLa cells, supporting its crucial role in BAG3 mitotic functions. Cells depleted of HSPB8 were delayed in cytokinesis, remained connected via a disorganized intercellular bridge, and exhibited increased incidence of nuclear abnormalities that result from failed cytokinesis (i.e., bi- and multi-nucleation). Such phenotypes were associated with abnormal accumulation of F-actin at the intercellular bridge of daughter cells at telophase. Remarkably, the actin sequestering drug latrunculin A, like the inhibitor of branched actin polymerization CK666, normalized F-actin during cytokinesis and restored proper cell division in HSPB8-depleted cells, implicating deregulated actin dynamics as a cause of abscission failure. Moreover, this HSPB8-dependent phenotype could be corrected by rapamycin, an autophagy-promoting drug, whereas it was mimicked by drugs impairing lysosomal function. Together, the results further support a role for the HSPB8-BAG3 chaperone complex in quality control of actin-based structure dynamics that are put under high tension, notably during cell cytokinesis. They expand a so-far under-appreciated connection between selective autophagy and cellular morphodynamics that guide cell division.
Collapse
Affiliation(s)
- Alice Anaïs Varlet
- Centre de recherche sur le cancer de l'Université Laval, Québec, Canada
- Oncology, Centre de recherche du CHU de Québec-Université Laval, Québec, G1R 3S3, Canada
| | - Margit Fuchs
- Centre de recherche sur le cancer de l'Université Laval, Québec, Canada
- Oncology, Centre de recherche du CHU de Québec-Université Laval, Québec, G1R 3S3, Canada
| | - Carole Luthold
- Centre de recherche sur le cancer de l'Université Laval, Québec, Canada
- Oncology, Centre de recherche du CHU de Québec-Université Laval, Québec, G1R 3S3, Canada
| | - Herman Lambert
- Centre de recherche sur le cancer de l'Université Laval, Québec, Canada
- Oncology, Centre de recherche du CHU de Québec-Université Laval, Québec, G1R 3S3, Canada
| | - Jacques Landry
- Centre de recherche sur le cancer de l'Université Laval, Québec, Canada
- Oncology, Centre de recherche du CHU de Québec-Université Laval, Québec, G1R 3S3, Canada
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie Université Laval, Québec, G1V OA6, Canada
| | - Josée N Lavoie
- Centre de recherche sur le cancer de l'Université Laval, Québec, Canada.
- Oncology, Centre de recherche du CHU de Québec-Université Laval, Québec, G1R 3S3, Canada.
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie Université Laval, Québec, G1V OA6, Canada.
| |
Collapse
|
16
|
BIS overexpression does not affect the sensitivity of HEK 293T cells against apoptosis. Mol Cell Toxicol 2017. [DOI: 10.1007/s13273-017-0010-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Witt R, Weigand A, Boos AM, Cai A, Dippold D, Boccaccini AR, Schubert DW, Hardt M, Lange C, Arkudas A, Horch RE, Beier JP. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering. BMC Cell Biol 2017; 18:15. [PMID: 28245809 PMCID: PMC5331627 DOI: 10.1186/s12860-017-0131-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/22/2017] [Indexed: 02/07/2023] Open
Abstract
Background Volumetric muscle loss caused by trauma or after tumour surgery exceeds the natural regeneration capacity of skeletal muscle. Hence, the future goal of tissue engineering (TE) is the replacement and repair of lost muscle tissue by newly generating skeletal muscle combining different cell sources, such as myoblasts and mesenchymal stem cells (MSCs), within a three-dimensional matrix. Latest research showed that seeding skeletal muscle cells on aligned constructs enhance the formation of myotubes as well as cell alignment and may provide a further step towards the clinical application of engineered skeletal muscle. In this study the myogenic differentiation potential of MSCs upon co-cultivation with myoblasts and under stimulation with hepatocyte growth factor (HGF) and insulin-like growth factor-1 (IGF-1) was evaluated. We further analysed the behaviour of MSC-myoblast co-cultures in different 3D matrices. Results Primary rat myoblasts and rat MSCs were mono- and co-cultivated for 2, 7 or 14 days. The effect of different concentrations of HGF and IGF-1 alone, as well as in combination, on myogenic differentiation was analysed using microscopy, multicolour flow cytometry and real-time PCR. Furthermore, the influence of different three-dimensional culture models, such as fibrin, fibrin-collagen-I gels and parallel aligned electrospun poly-ε-caprolacton collagen-I nanofibers, on myogenic differentiation was analysed. MSCs could be successfully differentiated into the myogenic lineage both in mono- and in co-cultures independent of HGF and IGF-1 stimulation by expressing desmin, myocyte enhancer factor 2, myosin heavy chain 2 and alpha-sarcomeric actinin. An increased expression of different myogenic key markers could be observed under HGF and IGF-1 stimulation. Even though, stimulation with HGF/IGF-1 does not seem essential for sufficient myogenic differentiation. Three-dimensional cultivation in fibrin-collagen-I gels induced higher levels of myogenic differentiation compared with two-dimensional experiments. Cultivation on poly-ε-caprolacton-collagen-I nanofibers induced parallel alignment of cells and positive expression of desmin. Conclusions In this study, we were able to myogenically differentiate MSC upon mono- and co-cultivation with myoblasts. The addition of HGF/IGF-1 might not be essential for achieving successful myogenic differentiation. Furthermore, with the development of a biocompatible nanofiber scaffold we established the basis for further experiments aiming at the generation of functional muscle tissue. Electronic supplementary material The online version of this article (doi:10.1186/s12860-017-0131-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- R Witt
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany
| | - A Weigand
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany
| | - A M Boos
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany
| | - A Cai
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany
| | - D Dippold
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nürnberg (FAU), Cauerstraße 6, 91058, Erlangen, Germany.,Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen- Nürnberg (FAU), Martensstrasse 7, 91058, Erlangen, Germany
| | - A R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nürnberg (FAU), Cauerstraße 6, 91058, Erlangen, Germany
| | - D W Schubert
- Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen- Nürnberg (FAU), Martensstrasse 7, 91058, Erlangen, Germany
| | - M Hardt
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany
| | - C Lange
- Interdisciplinary Clinic for Stem Cell Transplantation, University Cancer Center Hamburg (UCCH), 20246, Hamburg, Germany
| | - A Arkudas
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany
| | - R E Horch
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany
| | - J P Beier
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany.
| |
Collapse
|
18
|
Heat Shock Factor 1 Depletion Sensitizes A172 Glioblastoma Cells to Temozolomide via Suppression of Cancer Stem Cell-Like Properties. Int J Mol Sci 2017; 18:ijms18020468. [PMID: 28241425 PMCID: PMC5344000 DOI: 10.3390/ijms18020468] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 02/15/2017] [Accepted: 02/17/2017] [Indexed: 01/13/2023] Open
Abstract
Heat shock factor 1 (HSF1), a transcription factor activated by various stressors, regulates proliferation and apoptosis by inducing expression of target genes, such as heat shock proteins and Bcl-2 (B-cell lymphoma 2) interacting cell death suppressor (BIS). HSF1 also directly interacts with BIS, although it is still unclear whether this interaction is critical in the regulation of glioblastoma stem cells (GSCs). In this study, we examined whether small interfering RNA-mediated BIS knockdown decreased protein levels of HSF1 and subsequent nuclear localization under GSC-like sphere (SP)-forming conditions. Consistent with BIS depletion, HSF1 knockdown also reduced sex determining region Y (SRY)-box 2 (SOX2) expression, a marker of stemness, accompanying the decrease in SP-forming ability and matrix metalloprotease 2 (MMP2) activity. When HSF1 or BIS knockdown was combined with temozolomide (TMZ) treatment, a standard drug used in glioblastoma therapy, apoptosis increased, as measured by an increase in poly (ADP-ribose) polymerase (PARP) cleavage, whereas cancer stem-like properties, such as colony-forming activity and SOX2 protein expression, decreased. Taken together, our findings suggest that targeting BIS or HSF1 could be a viable therapeutic strategy for GSCs resistant to conventional TMZ treatment.
Collapse
|