1
|
Elsayed MEAA, Ali SM, Gardner C, Kozak I. Novel ocular observations in a child with Joubert syndrome type 6 due to pathogenic variant in TMEM67 gene. Am J Ophthalmol Case Rep 2024; 36:102091. [PMID: 39027323 PMCID: PMC11253217 DOI: 10.1016/j.ajoc.2024.102091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/26/2024] [Accepted: 06/01/2024] [Indexed: 07/20/2024] Open
Abstract
Purpose To describe unique ocular features in a child with Joubert syndrome type 6. Observations A 4-year-old male patient presented with right microphthalmia and non-dilating pupil and left primary position nystagmus. Brain MRI revealed a "molar tooth sign" of the midbrain and a "batwing sign" of the fourth ventricle along with large retroorbital cysts bilaterally. The diagnosis of autosomal recessive Joubert syndrome type 6 due to homozygous pathogenic variant c.725A > G p. (Asn242Ser) in TMEM67 gene was confirmed by whole exome sequencing. Left eye had nystagmus and the left optic nerve and retina showed epipapillary and subretinal fibrosis, respectively. Scleral buckle was performed for left non-rhegmatogenous retinal detachment which then improved and has been stable. Conclusions and Importance We present a rare case of JS with some unique ophthalmic features which expand clinical knowledge on this complex systemic and ocular entity.
Collapse
Affiliation(s)
| | - Syed M. Ali
- Moorfields Eye Hospitals UAE, Abu Dhabi, United Arab Emirates
- Danat Al Emarat Hospital, Abu Dhabi, United Arab Emirates
- Mohammed Bin Rashed University, Dubai, United Arab Emirates
| | - Carly Gardner
- Department of Diagnostic Radiology, Cleveland Clinic, Cleveland, OH, USA
| | - Igor Kozak
- Moorfields Eye Hospitals UAE, Abu Dhabi, United Arab Emirates
- Danat Al Emarat Hospital, Abu Dhabi, United Arab Emirates
- Mohammed Bin Rashed University, Dubai, United Arab Emirates
| |
Collapse
|
2
|
Lin Z, Shen Y, Li Y, Lu C, Zhu Y, He R, Cao Z, Yin Z, Gao H, Guo B, Ma X, Cao M, Luo M. Novel compound heterozygous variants in ARL13B lead to Joubert syndrome. J Cell Physiol 2024; 239:e31189. [PMID: 38219074 DOI: 10.1002/jcp.31189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/07/2023] [Accepted: 12/22/2023] [Indexed: 01/15/2024]
Abstract
Joubert syndrome (JBTS) is a systematic developmental disorder mainly characterized by a pathognomonic mid-hindbrain malformation. All known JBTS-associated genes encode proteins involved in the function of antenna-like cellular organelle, primary cilium, which plays essential roles in cellular signal transduction and development. Here, we identified four unreported variants in ARL13B in two patients with the classical features of JBTS. ARL13B is a member of the Ras GTPase family and functions in ciliogenesis and cilia-related signaling. The two missense variants in ARL13B harbored the substitutions of amino acids at evolutionarily conserved positions. Using model cell lines, we found that the accumulations of the missense variants in cilia were impaired and the variants showed attenuated functions in ciliogenesis or the trafficking of INPP5E. Overall, these findings expanded the ARL13B pathogenetic variant spectrum of JBTS.
Collapse
Affiliation(s)
- Zaisheng Lin
- International Peace Maternity and Child Health Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Shen
- National Human Genetic Resources Center, National Research Institute for Family Planning, Beijing, China
| | - Yan Li
- International Peace Maternity and Child Health Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Lu
- National Human Genetic Resources Center, National Research Institute for Family Planning, Beijing, China
| | - Ying Zhu
- International Peace Maternity and Child Health Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruida He
- International Peace Maternity and Child Health Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zongfu Cao
- National Human Genetic Resources Center, National Research Institute for Family Planning, Beijing, China
| | - Zhe Yin
- National Human Genetic Resources Center, National Research Institute for Family Planning, Beijing, China
| | - Huafang Gao
- National Human Genetic Resources Center, National Research Institute for Family Planning, Beijing, China
| | - Bin Guo
- International Peace Maternity and Child Health Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu Ma
- National Human Genetic Resources Center, National Research Institute for Family Planning, Beijing, China
| | - Muqing Cao
- International Peace Maternity and Child Health Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minna Luo
- National Human Genetic Resources Center, National Research Institute for Family Planning, Beijing, China
| |
Collapse
|
3
|
Li Y, Dai L, Xu H, Huang J, Zhang J, Mei Z, Zhang R. Clinical report and genetic analysis of rare premature infant nephronophthisis caused by biallelic TTC21B variants. Mol Genet Genomic Med 2024; 12:e2399. [PMID: 38439578 PMCID: PMC10912793 DOI: 10.1002/mgg3.2399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/24/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Nephronophthisis (NPHP) is a genetically heterogeneous disease that can lead to end-stage renal disease (ESRD) in children. The TTC21B variant is associated with NPHP12 and mainly characterized by cystic kidney disease, skeletal malformation, liver fibrosis, and retinopathy. Affected patients range from children to adults. Some patients experience ESRD in infancy or early childhood, but clinical reports on neonatal patients are rare. We report a case of NPHP12 in a premature infant and analyze its genetic etiology. METHODS Trio-whole exome sequencing analysis was performed on the patient and her parents; bioinformatics software was used to predict and analyze the hazards of the variants. Sanger sequencing was performed to verify variants. We calculated the free energy between mutant IFT139 and the IFT121-IFT122-IFT43 complex structure using molecular dynamics (MD). Finally, the clinical and genetic characteristics of patients with hotspot variant Cys518Arg were reviewed. RESULTS Genetic analysis revealed compound-heterozyous TTC21B variants in the patient, c.497delA (p.Lys166fs*36) and c.1552T>C (p.Cys518Arg). Her father and mother had heterozygous c.497delA (p.Lys166fs*36) and heterozygous c.1552T>C (p.Cys518Arg), respectively. Cys518Arg represents a hotspot variant, and the MD calculation results show that this can reduce the structural stability of the IFT121-IFT122-IFT139-IFT43 complex structure. A literature review showed that Cys518Arg might lead to the early occurrence of ESRD. CONCLUSIONS Compound-heterozygous TTC21B variants underlie the phenotype in this patient. Thus, Cys518Arg may be a hotspot variant in the Chinese population. Genetic testing should be recommended for NPHP in neonates and early infants.
Collapse
Affiliation(s)
- Yingying Li
- Department of NeonatologySuzhou Hospital of Anhui Medical University (Suzhou Municipal Hospital of Anhui Province)SuzhouAnhuiChina
| | - Liying Dai
- Department of NeonatologyAnhui Province Children's HospitalHefeiAnhuiChina
| | - Hong Xu
- Department of NeonatologySuzhou Hospital of Anhui Medical University (Suzhou Municipal Hospital of Anhui Province)SuzhouAnhuiChina
| | - Jin Huang
- Department of NeonatologySuzhou Hospital of Anhui Medical University (Suzhou Municipal Hospital of Anhui Province)SuzhouAnhuiChina
| | - Jinqiu Zhang
- Department of NeonatologySuzhou Hospital of Anhui Medical University (Suzhou Municipal Hospital of Anhui Province)SuzhouAnhuiChina
| | - Zhenzhu Mei
- Department of NeonatologySuzhou Hospital of Anhui Medical University (Suzhou Municipal Hospital of Anhui Province)SuzhouAnhuiChina
| | - Rui Zhang
- Department of NeonatologySuzhou Hospital of Anhui Medical University (Suzhou Municipal Hospital of Anhui Province)SuzhouAnhuiChina
| |
Collapse
|
4
|
Hammi Y, Ferjani M, Meddeb R, Kacem R, Sayari T, Mrad R, Gargah T. Phenotype Spectrum in Tunisian Population with NPHP1 Deletion. Indian J Nephrol 2023; 33:426-431. [PMID: 38174310 PMCID: PMC10752411 DOI: 10.4103/ijn.ijn_248_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 01/05/2024] Open
Abstract
Introduction Nephronophthisis (NPHP) is a tubulointerstitial kidney disorder with an autosomal recessive inheritance pattern. Its genetic heterogeneity contributes to phenotype variability. The most frequent etiology of juvenile nephronophthisis is a mutation in the nephronophthisis type 1 (NPHP1) gene. This study aimed to evaluate the genotype-phenotype correlation in NPHP1 gene mutation. Methods A multicenter retrospective study was performed over 20 years from 1998 to 2018 to describe the clinical, biological, and radiological features associated with the large deletion NPHP1 gene in 32 patients. Results The incidence of NPHP1 was 1.6/204041. Eighty-one percent of our patients were born out of consanguineous marriages. The mean age at diagnosis was 14 ± 7 years. The patients were divided into three groups: isolated nephronophthisis (72%), syndromic nephronophthisis (19%), and patients without recognizable syndrome (9%). Intrafamilial and geographical variability was observed in syndrome diagnoses and in age at the onset of CKD stage 5. Genotype frequency varied between 50% and 100% in genealogical data. Juvenile (47%), adolescent (37%), and adult (13%) clinical forms have been distinguished by the onset of CKD stage 5. The five-year survival rate of renal transplantation was 80%. Conclusion Given the broad clinical spectrum of NPHP1 associated with the large deletion of the NPHP1 gene, no genotype-phenotype correlation could be established.
Collapse
Affiliation(s)
- Yousra Hammi
- Department of Pediatric, Charles Nicolle Hospital, Tunis, Tunisia
- Department of Community Health Department A, Medecine Faculty of Tunis, University of Tunis El Manar, Tunisia
| | - Maryem Ferjani
- Department of Pediatric, Charles Nicolle Hospital, Tunis, Tunisia
- Department of Community Health Department A, Medecine Faculty of Tunis, University of Tunis El Manar, Tunisia
| | - Rym Meddeb
- Department of Community Health Department A, Medecine Faculty of Tunis, University of Tunis El Manar, Tunisia
- Department of Genetic, Charles Nicolle Hospital, Tunis, Tunisia
| | - Rania Kacem
- Department of Pediatric, CHI Frejus, Saint Raphaël, Tunisia
| | - Taha Sayari
- Department of Pediatric, Charles Nicolle Hospital, Tunis, Tunisia
- Department of Community Health Department A, Medecine Faculty of Tunis, University of Tunis El Manar, Tunisia
| | - Ridha Mrad
- Department of Community Health Department A, Medecine Faculty of Tunis, University of Tunis El Manar, Tunisia
- Department of Genetic, Charles Nicolle Hospital, Tunis, Tunisia
| | - Tahar Gargah
- Department of Pediatric, Charles Nicolle Hospital, Tunis, Tunisia
- Department of Community Health Department A, Medecine Faculty of Tunis, University of Tunis El Manar, Tunisia
| |
Collapse
|
5
|
Kozina AA, Kanaeva GK, Baryshnikova NV, Ilinskaya AY, Kim AA, Erofeeva AV, Pogodina NA, Gadzhiyeva JP, Surkova EI, Ilinsky VV. A case of Joubert syndrome caused by novel compound heterozygous variants in the TMEM67 gene. J Int Med Res 2023; 51:3000605231206294. [PMID: 37910852 PMCID: PMC10621312 DOI: 10.1177/03000605231206294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/21/2023] [Indexed: 11/03/2023] Open
Abstract
Joubert syndrome (JS) is a recessive disorder that is characterized by midbrain-hindbrain malformation and shows the "molar tooth sign" on magnetic resonance imaging. Mutations in 40 genes, including Abelson helper integration site 1 (AHI1), inositol polyphosphate-5-phosphatase (INPP5E), coiled-coil and c2 domain-containing protein 2A (CC2D2A), and ARL2-like protein 1 (ARL13B), can cause JS. Classic JS is a part of a group of diseases associated with JS, and its manifestations include various neurological signs such as skeletal abnormalities, ocular coloboma, renal disease, and hepatic fibrosis. Here, we present a proband with the molar tooth sign, ataxia, and developmental and psychomotor delays in a Dagestan family from Russia. Molecular genetic testing revealed two novel heterozygous variants, c.2924G>A (p.Arg975His) in exon 28 and c.1241C>G (p.Pro414Arg) in exon 12 of the transmembrane protein 67 (TMEM67) gene. These TMEM67 gene variants significantly affected the development of JS type 6. This case highlights the importance of whole exome sequencing for a proper clinical diagnosis of children with complex motor and psycho-language delays. This case also expands the clinical phenotype and genotype of TMEM67-associated diseases.
Collapse
Affiliation(s)
- Anastasiya Aleksandrovna Kozina
- Department of Medical Genomics Group, Institute of Biomedical Chemistry, Moscow, Russia
- Department of Science, Genotek Ltd., Moscow, Russia
| | | | - Natalia Vladimirovna Baryshnikova
- Department of General and Medical Genetics, Pirogov Russian National Research Medical University, Moscow, Russia
- Department of Science, Genotek Ltd., Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Fang L, Wang L, Yang L, Xu X, Pei S, Wu D. Novel variants identified in five Chinese families with Joubert Syndrome: a case report. BMC Med Genomics 2023; 16:221. [PMID: 37735380 PMCID: PMC10512497 DOI: 10.1186/s12920-023-01669-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 09/20/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Joubert syndrome (JS) is a group of rare ciliopathies, mainly characterized by cerebellar dysplasia representing the "molar tooth sign (MTS)" on neuroimaging, hypotonia, and developmental delay. Having a complicated genotype-phenotype correlation due to its rich genetic heterogeneity, JS is usually combined with other organic defects affecting the retina, kidney, and liver. This report aimed to present new cases and novel variants of JS. CASE PRESENTATION Five unrelated patients who were diagnosed with JS, with or without typical clinical characteristics, received integrated examinations, including whole-exome sequencing (WES) and Sanger sequencing. We identified nine pathogenic variants in the TCTN2, CPLANE1, INPP5E, NPHP1, and CC2D2A genes. CONCLUSION Four novel pathogenic mutations in the TCTN2, CPLANE1, and INPP5E genes were reported. The findings broadened the genotypic spectrum of JS and contributed to a better understanding of genotype-phenotype correlation.
Collapse
Affiliation(s)
- Liwei Fang
- Pediatric Neurorehabilitation Center, Pediatric Department, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China
| | - Lulu Wang
- Pediatric Neurorehabilitation Center, Pediatric Department, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China
| | - Li Yang
- Pediatric Neurorehabilitation Center, Pediatric Department, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China
| | - Xiaoyan Xu
- Pediatric Neurorehabilitation Center, Pediatric Department, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China
| | - Shanai Pei
- Pediatric Neurorehabilitation Center, Pediatric Department, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China
| | - De Wu
- Pediatric Neurorehabilitation Center, Pediatric Department, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China.
| |
Collapse
|
7
|
Reddy S, Simmers R, Shah A, Couser N. NPHP1-Related ciliopathies: A new case and major review of the ophthalmic manifestations of 147 reported cases. Clin Case Rep 2023; 11:e7818. [PMID: 37663822 PMCID: PMC10468586 DOI: 10.1002/ccr3.7818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 09/05/2023] Open
Abstract
Our case report and review contribute to the understanding of ocular manifestations in NPHP1 ciliopathies by reinforcing the relationship between pathogenic genetic variants and a wide array of ophthalmic abnormalities.
Collapse
Affiliation(s)
- Shivania Reddy
- Virginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Russell Simmers
- Virginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Arth Shah
- Virginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Natario Couser
- Department of Human and Molecular GeneticsVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
- Department of OphthalmologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
- Department of PediatricsVirginia Commonwealth University School of Medicine, Children's Hospital of Richmond at VCURichmondVirginiaUSA
| |
Collapse
|
8
|
Zhu X, Gao Z, Wang Y, Huang W, Li Q, Jiao Z, Liu N, Kong X. Utility of trio-based prenatal exome sequencing incorporating splice-site and mitochondrial genome assessment in pregnancies with fetal ultrasound anomalies: prospective cohort study. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2022; 60:780-792. [PMID: 35726512 DOI: 10.1002/uog.24974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To evaluate the utility of trio-based prenatal exome sequencing (pES), incorporating splice-site and mitochondrial genome assessment, in the prenatal diagnosis of fetuses with ultrasound anomalies and normal copy-number variant sequencing (CNV-seq) results. METHODS This was a prospective study of 90 ongoing pregnancies with ultrasound anomalies that underwent trio-based pES after receiving normal CNV-seq results, from September 2020 to November 2021, in a single center in China. By using pES with a panel encompassing exome coding and splicing regions as well as mitochondrial genome for fetuses and parents, we identified the underlying genetic causes of fetal anomalies, incidental fetal findings and parental carrier status. Information on pregnancy outcome and the impact of pES findings on parental decision-making was collected. RESULTS Of the 90 pregnancies included, 28 (31.1%) received a diagnostic result that could explain the fetal ultrasound anomalies. The highest diagnostic yield was noted for brain abnormalities (3/6 (50.0%)), followed by hydrops (4/9 (44.4%)) and skeletal abnormalities (13/34 (38.2%)). Collectively, 34 variants of 20 genes were detected in the 28 diagnosed cases, with 55.9% (19/34) occurring de novo. Variants of uncertain significance (VUS) associated with fetal phenotypes were detected in six (6.7%) fetuses. Interestingly, fetal (n = 4) and parental (n = 3) incidental findings (IFs) were detected in seven (7.8%) cases. These included two fetuses carrying a de-novo likely pathogenic (LP) variant of the CIC and FBXO11 genes, respectively, associated with neurodevelopmental disorders, and one fetus with a LP variant in a mitochondrial gene. The remaining fetus presented with unilateral renal dysplasia and was incidentally found to carry a pathogenic PKD1 gene variant resulting in adult-onset polycystic kidney, which was later confirmed to be inherited from the mother. In addition, parental heterozygous variants associated with autosomal recessive diseases were detected in three families, including one with additional fetal diagnostic findings. Diagnostic results or fetal IFs contributed to parental decision-making about termination of the pregnancy in 26 families (26/72 (36.1%)), while negative pES results or identification of VUS encouraged 40 families (40/72 (55.6%)) to continue their pregnancy, which ended in a live birth in all cases. CONCLUSION Trio-based pES can provide additional genetic information for pregnancies with fetal ultrasound anomalies without a CNV-seq diagnosis. The incidental findings and parental carrier status reported by trio-based pES with splice-site and mitochondrial genome analysis extend its clinical application, but careful genetic counseling is warranted. © 2022 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- X Zhu
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Z Gao
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Y Wang
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - W Huang
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Q Li
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Z Jiao
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - N Liu
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - X Kong
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Zhang J, Wang L, Chen W, Duan J, Meng Y, Yang H, Guo Q. Whole exome sequencing facilitated the diagnosis in four Chinese pediatric cases of Joubert syndrome related disorders. Am J Transl Res 2022; 14:5088-5097. [PMID: 35958498 PMCID: PMC9360900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Joubert syndrome is a spectrum of rare genetic disorders, mainly characterized by a distinctive cerebellar and brain stem malformation called the "molar tooth sign" (MTS), hypotonia, and intellectual disability/developmental delay. METHODS In this study, 4 pediatric cases with developmental delay and oculomotor abnormities were recruited, and submitted to a clinical evaluation and magnetic resonance imaging (MRI) examination. Afterwards, genetic detection with whole exome sequencing (WES) was conducted on the 4 patients. RESULTS Imaging results demonstrated cerebellar dysplasia in all probands, yet the MTS findings varied in severity. WES detected diagnostic variations in all four probands, which were distributed in four genes, namely CC2D2A, NPHP1, AHI1, and C5orf42. Two variants were novelly identified, which were the CC2D2A: c.2444delC (p.P815fs*2) and the AIH1: exon (15-17) del. In silico analysis supported the pathogenicity of the variations in this study. CONCLUSIONS Our findings expanded the mutation spectrum of Joubert syndrome related disorders, and provided solid evidence to the affected families for further genetic counseling and pregnancy guidance.
Collapse
Affiliation(s)
- Jing Zhang
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Hebei Medical University (Key Laboratory of Maternal and Fetal Medicine of Hebei Province)Shijiazhuang, Hebei, China
| | - Lihui Wang
- Neurology Department, Children’s Hospital of Hebei Province, Hebei Medical UniversityShijiazhuang, Hebei, China
| | - Wenqi Chen
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Hebei Medical University (Key Laboratory of Maternal and Fetal Medicine of Hebei Province)Shijiazhuang, Hebei, China
| | - Jun Duan
- Radiology Department, Shijiazhuang Obstetrics and Gynecology Hospital, Hebei Medical UniversityShijiazhuang, Hebei, China
| | - Yanxin Meng
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Hebei Medical University (Key Laboratory of Maternal and Fetal Medicine of Hebei Province)Shijiazhuang, Hebei, China
| | - Huafang Yang
- Neurology Department, Children’s Hospital of Hebei Province, Hebei Medical UniversityShijiazhuang, Hebei, China
| | - Qing Guo
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Hebei Medical University (Key Laboratory of Maternal and Fetal Medicine of Hebei Province)Shijiazhuang, Hebei, China
| |
Collapse
|
10
|
Ren ZL, Zhang HB, Li L, Yang ZL, Jiang L. Characterization of two novel knock-in mouse models of syndromic retinal ciliopathy carrying hypomorphic Sdccag8 mutations. Zool Res 2022; 43:442-456. [PMID: 35503560 PMCID: PMC9113982 DOI: 10.24272/j.issn.2095-8137.2021.387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/21/2022] [Indexed: 11/07/2022] Open
Abstract
Mutations in serologically defined colon cancer autoantigen protein 8 ( SDCCAG8) were first identified in retinal ciliopathy families a decade ago with unknown function. To investigate the pathogenesis of SDCCAG8-associated retinal ciliopathies in vivo, we employed CRISPR/Cas9-mediated homology-directed recombination (HDR) to generate two knock-in mouse models, Sdccag8Y236X/Y236X and Sdccag8E451GfsX467/E451GfsX467 , which carry truncating mutations of the mouse Sdccag8, corresponding to mutations that cause Bardet-Biedl syndrome (BBS) and Senior-Løken syndrome (SLS) (c.696T>G p.Y232X and c.1339-1340insG p.E447GfsX463) in humans, respectively. The two mutant Sdccag8 knock-in mice faithfully recapitulated human SDCCAG8-associated BBS phenotypes such as rod-cone dystrophy, cystic renal disorder, polydactyly, infertility, and growth retardation, with varied age of onset and severity depending on the hypomorphic strength of the Sdccag8 mutations. To the best of our knowledge, these knock-in mouse lines are the first BBS mouse models to present with the polydactyly phenotype. Major phototransduction protein mislocalization was also observed outside the outer segment after initiation of photoreceptor degeneration. Impaired cilia were observed in the mutant photoreceptors, renal epithelial cells, and mouse embryonic fibroblasts derived from the knock-in mouse embryos, suggesting that SDCCAG8 plays an essential role in ciliogenesis, and cilium defects are a primary driving force of SDCCAG8-associated retinal ciliopathies.
Collapse
Affiliation(s)
- Zhi-Lin Ren
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Hou-Bin Zhang
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, Sichuan 610072, China
| | - Lin Li
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, Sichuan 610072, China
| | - Zheng-Lin Yang
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, Sichuan 610072, China. E-mail:
| | - Li Jiang
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, Sichuan 610072, China . E-mail:
| |
Collapse
|
11
|
Sakakibara N, Nozu K, Yamamura T, Horinouchi T, Nagano C, Ye MJ, Ishiko S, Aoto Y, Rossanti R, Hamada R, Okamoto N, Shima Y, Nakanishi K, Matsuo M, Iijima K, Morisada N. Comprehensive genetic analysis using next-generation sequencing for the diagnosis of nephronophthisis-related ciliopathies in the Japanese population. J Hum Genet 2022; 67:427-440. [PMID: 35140360 DOI: 10.1038/s10038-022-01020-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 11/09/2022]
Abstract
Nephronophthisis is an autosomal-recessive kidney disease that is caused by abnormalities in primary cilia. Nephronophthisis-related ciliopathies (NPHP-RCs) are a common cause of end-stage kidney disease (ESKD) in children and adolescents. NPHP-RCs are often accompanied by extrarenal manifestations, including intellectual disability, retinitis pigmentosa, or polydactyly. Although more than 100 causative genes have been identified, its diagnosis is difficult because the clinical features of each mutation often overlap. From September 2010 to August 2021, we performed genetic analysis, including next-generation sequencing (NGS), in 574 probands with kidney dysfunction and retrospectively studied cases genetically diagnosed with NPHP-RCs. RESULTS: We detected mutations related to NPHP-RCs in 93 patients from 83 families. Members of 60 families were diagnosed using NGS, and the mutations and the corresponding number of families are as follows: NPHP1 (24), NPHP3 (10), OFD1 (7), WDR35 (5), SDCCAG8 (4), BBS10 (3), TMEM67 (3), WDR19 (3), BBS1 (2), BBS2 (2), IFT122 (2), IFT140 (2), IQCB1 (2), MKKS (2), SCLT1 (2), TTC21B (2), ALMS1 (1), ANKS6 (1), BBS4 (1), BBS12 (1), CC2D2A (1), DYNC2H1 (1), IFT172 (1), and MAPKBP1 (1). A total of 39 cases (41.9%) progressed to ESKD at the time of genetic analysis, whereas 58 cases (62.3%) showed extrarenal manifestations, the most common being developmental delay, intellectual disability, and autism spectrum disorder in 44 patients. Comprehensive genetic analysis using NGS is useful for diagnosing patients with NPHP-RCs.
Collapse
Affiliation(s)
- Nana Sakakibara
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomohiko Yamamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoko Horinouchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - China Nagano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ming Juan Ye
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinya Ishiko
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuya Aoto
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Rini Rossanti
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Riku Hamada
- Department of Nephrology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Yuko Shima
- Department of Pediatrics, Wakayama Medical University, Wakayama, Japan
| | - Koichi Nakanishi
- Department of Child Health and Welfare (Pediatrics), Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Masafumi Matsuo
- KNC Department of Nucleic Acid Drug Discovery, Faculty of Rehabilitation, Kobe Gakuin University, Kobe, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan.,Hospital Director, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan
| | - Naoya Morisada
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan. .,Department of Clinical Genetics, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan.
| |
Collapse
|
12
|
Tran KT, Le VS, Dao LTM, Nguyen HK, Mai AK, Nguyen HT, Ngo MD, Tran QA, Nguyen LT. Novel findings from family-based exome sequencing for children with biliary atresia. Sci Rep 2021; 11:21815. [PMID: 34750413 PMCID: PMC8575792 DOI: 10.1038/s41598-021-01148-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Biliary atresia (BA) is a progressive inflammation and fibrosis of the biliary tree characterized by the obstruction of bile flow, which results in liver failure, scarring and cirrhosis. This study aimed to explore the elusive aetiology of BA by conducting whole exome sequencing for 41 children with BA and their parents (35 trios, including 1 family with 2 BA-diagnosed children and 5 child-mother cases). We exclusively identified and validated a total of 28 variants (17 X-linked, 6 de novo and 5 homozygous) in 25 candidate genes from our BA cohort. These variants were among the 10% most deleterious and had a low minor allele frequency against the employed databases: Kinh Vietnamese (KHV), GnomAD and 1000 Genome Project. Interestingly, AMER1, INVS and OCRL variants were found in unrelated probands and were first reported in a BA cohort. Liver specimens and blood samples showed identical variants, suggesting that somatic variants were unlikely to occur during morphogenesis. Consistent with earlier attempts, this study implicated genetic heterogeneity and non-Mendelian inheritance of BA.
Collapse
Affiliation(s)
- Kien Trung Tran
- Vinmec Research Institute of Stem Cell and Gene Technology, 458 Minh Khai, Hai Ba Trung District, Hanoi, Vietnam.
| | - Vinh Sy Le
- Vinmec Research Institute of Stem Cell and Gene Technology, 458 Minh Khai, Hai Ba Trung District, Hanoi, Vietnam
- University of Engineering and Technology, Vietnam National University Hanoi, 144 Xuan Thuy, Cau Giay District, Hanoi, Vietnam
| | - Lan Thi Mai Dao
- Vinmec Research Institute of Stem Cell and Gene Technology, 458 Minh Khai, Hai Ba Trung District, Hanoi, Vietnam
| | - Huyen Khanh Nguyen
- Bioequivalence Center, National Institute of Drug Quality Control, 11/157 Bang B, Hoang Mai District, Hanoi, Vietnam
| | - Anh Kieu Mai
- Vinmec International Hospital, 458 Minh Khai, Hai Ba Trung District, Hanoi, Vietnam
| | - Ha Thi Nguyen
- Vinmec International Hospital, 458 Minh Khai, Hai Ba Trung District, Hanoi, Vietnam
| | - Minh Duy Ngo
- Vinmec International Hospital, 458 Minh Khai, Hai Ba Trung District, Hanoi, Vietnam
| | - Quynh Anh Tran
- Vietnam National Children's Hospital, 18/879 La Thanh, Dong Da District, Hanoi, Vietnam
| | - Liem Thanh Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, 458 Minh Khai, Hai Ba Trung District, Hanoi, Vietnam
| |
Collapse
|
13
|
Wang X, Xiao H, Yao Y, Xu K, Liu X, Su B, Zhang H, Guan N, Zhong X, Zhang Y, Ding J, Wang F. Spectrum of Mutations in Pediatric Non-glomerular Chronic Kidney Disease Stages 2-5. Front Genet 2021; 12:697085. [PMID: 34295353 PMCID: PMC8290170 DOI: 10.3389/fgene.2021.697085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Renal hypodysplasia and cystic kidney diseases, the common non-glomerular causes of pediatric chronic kidney disease (CKD), are usually diagnosed by their clinical and imaging characteristics. The high degree of phenotypic heterogeneity, in both conditions, makes the correct final diagnosis dependent on genetic testing. It is not clear, however, whether the frequencies of damaged alleles vary among different ethnicities in children with non-glomerular CKD, and this will influence the strategy used for genetic testing. In this study, 69 unrelated children (40 boys, 29 girls) of predominantly Han Chinese ethnicity with stage 2-5 non-glomerular CKD caused by suspected renal hypodysplasia or cystic kidney diseases were enrolled and assessed by molecular analysis using proband-only targeted exome sequencing and array-comparative genomic hybridization. Targeted exome sequencing discovered genetic etiologies in 33 patients (47.8%) covering 10 distinct genetic disorders. The clinical diagnoses in 13/48 patients (27.1%) with suspected renal hypodysplasia were confirmed, and two patients were reclassified carrying mutations in nephronophthisis (NPHP) genes. The clinical diagnoses in 16/20 patients (80%) with suspected cystic kidney diseases were confirmed, and one patient was reclassified as carrying a deletion in the hepatocyte nuclear factor-1-beta gene (HNF1B). The diagnosis of one patient with unknown non-glomerular disease was elucidated. No copy number variations were identified in the 20 patients with negative targeted exome sequencing results. NPHP genes were the most common disease-causing genes in the patients with disease onsets above 6 years of age (14/45, 31.1%). The children with stage 2 and 3 CKD at onset were found to carry causative mutations in paired box gene 2 (PAX2) and HNF1B gene (11/24, 45.8%), whereas those with stage 4 and 5 CKD mostly carried causative mutations in NPHP genes (19/45, 42.2%). The causative genes were not suspected by the kidney imaging patterns at disease onset. Thus, our data show that in Chinese children with non-glomerular renal dysfunction caused by renal hypodysplasia and cystic kidney diseases, the common causative genes vary with age and CKD stage at disease onset. These findings have the potential to improve management and genetic counseling of these diseases in clinical practice.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Huijie Xiao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yong Yao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ke Xu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiaoyu Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Baige Su
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hongwen Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Na Guan
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xuhui Zhong
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yanqin Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jie Ding
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Fang Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
14
|
Zamani M, Seifi T, Sedighzadeh S, Negahdari S, Zeighami J, Sedaghat A, Yadegari T, Saberi A, Hamid M, Shariati G, Galehdari H. Whole-Exome Sequencing Application for Genetic Diagnosis of Kidney Diseases: A Study from Southwest of Iran. KIDNEY360 2021; 2:873-877. [PMID: 35373060 PMCID: PMC8791347 DOI: 10.34067/kid.0006902020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/10/2021] [Indexed: 02/04/2023]
Affiliation(s)
- Mina Zamani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran,Whole Exome Sequencing Division, Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz, Iran
| | - Tahereh Seifi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran,Whole Exome Sequencing Division, Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz, Iran
| | - Sahar Sedighzadeh
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran,Whole Exome Sequencing Division, Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz, Iran
| | - Samira Negahdari
- Whole Exome Sequencing Division, Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz, Iran
| | - Jawaher Zeighami
- Whole Exome Sequencing Division, Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz, Iran
| | - Alireza Sedaghat
- Whole Exome Sequencing Division, Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz, Iran,Health Research Institute, Diabetes Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Tahereh Yadegari
- Whole Exome Sequencing Division, Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz, Iran
| | - Alihossein Saberi
- Whole Exome Sequencing Division, Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz, Iran,Department of Medical Genetics, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Hamid
- Whole Exome Sequencing Division, Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz, Iran,Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Gholamreza Shariati
- Whole Exome Sequencing Division, Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz, Iran,Department of Medical Genetics, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamid Galehdari
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
15
|
Clinical and pathological features and varied mutational spectra of pathogenic genes in 55 Chinese patients with nephronophthisis. Clin Chim Acta 2020; 506:136-144. [PMID: 32173348 DOI: 10.1016/j.cca.2020.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/03/2020] [Accepted: 03/08/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Nephronophthisis (NPHP) is the most common genetic cause of end-stage renal disease (ESRD) in children. This study was performed to explore the pathogenic gene mutations and clinical and pathological features of Chinese patients with NPHP. METHODS Patients for whom causative mutations were not identified in our previous study, as well as those recruited later, were subjected to whole-exome next-generation sequencing (NGS) or the exome of 63 primary cilia disease genes. RESULTS We recruited 55 patients (27 boys and 28 girls) from 48 families, mainly from South China. We subjected 35 patients to NGS. Disease-causing mutations were revealed in seven more families (nine patients) by NGS. In total, disease-causing mutations were identified in 25 patients from 19 families, accounting for 39.6% (19/48) of all families, and novel mutation rate was 77.8% (35/45). NPHP1 and NPHP3 mutations were identified in 14.6% (7/48) and 12.5% (6/48) of all families, respectively. The patient with CEP83 mutations presented with prominent glomerular cysts and glomeruli dysplasia without extrarenal involvement. CONCLUSION A high novel mutation rate was identified, and disease-causing mutations of NPHP3 prevailed in this group of Chinese NPHP patients. This is the second report of a patient with CEP83 mutations.
Collapse
|
16
|
George A, Cogliati T, Brooks BP. Genetics of syndromic ocular coloboma: CHARGE and COACH syndromes. Exp Eye Res 2020; 193:107940. [PMID: 32032630 DOI: 10.1016/j.exer.2020.107940] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023]
Abstract
Optic fissure closure defects result in uveal coloboma, a potentially blinding condition affecting between 0.5 and 2.6 per 10,000 births that may cause up to 10% of childhood blindness. Uveal coloboma is on a phenotypic continuum with microphthalmia (small eye) and anophthalmia (primordial/no ocular tissue), the so-called MAC spectrum. This review gives a brief overview of the developmental biology behind coloboma and its clinical presentation/spectrum. Special attention will be given to two prominent, syndromic forms of coloboma, namely, CHARGE (Coloboma, Heart defect, Atresia choanae, Retarded growth and development, Genital hypoplasia, and Ear anomalies/deafness) and COACH (Cerebellar vermis hypoplasia, Oligophrenia, Ataxia, Coloboma, and Hepatic fibrosis) syndromes. Approaches employed to identify genes involved in optic fissure closure in animal models and recent advances in live imaging of zebrafish eye development are also discussed.
Collapse
Affiliation(s)
- Aman George
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health. Bethesda, Maryland, 20892, USA
| | - Tiziana Cogliati
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health. Bethesda, Maryland, 20892, USA
| | - Brian P Brooks
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health. Bethesda, Maryland, 20892, USA.
| |
Collapse
|
17
|
Bui TPH, Nguyen NT, Ngo VD, Nguyen HN, Ly TTH, Do HD, Huynh MT. Novel compound heterozygous TMEM67 variants in a Vietnamese family with Joubert syndrome: a case report. BMC MEDICAL GENETICS 2020; 21:18. [PMID: 32000717 PMCID: PMC6993522 DOI: 10.1186/s12881-020-0962-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/24/2020] [Indexed: 11/10/2022]
Abstract
Background Joubert syndrome is a genetically heterogeneous autosomal recessive ciliopathy characterized by the combination of hypoplasia/aplasia of the cerebellar vermis, thickened and elongated superior cerebellar peduncles and a deep interpeduncular fossa, known as “molar tooth sign” associated with hypotonia, respiratory control disturbances and abnormal eye movements. To date, pathogenic variants in over 35 genes are known to cause autosomal recessive Joubert Syndrome, while one gene is associated with X-linked recessive inheritance. Case presentation We describe here a non-consanguineous Vietnamese family with Joubert syndrome, a fetus and 10-year-old developmentally delayed boy. Ultrasonography showed ventriculomegaly at 26 + 6 weeks of gestation in the fetus. The 10-year-old-boy was diagnosed with cerebral palsy of unknown origin. Clinical physical examination at the age of 10, he showed clinical features of Joubert syndrome including typical facial dysmorphism, ataxia, severe psychomotor delay, oculomotor apraxia and molar tooth sign on brain MRI. Whole exome sequencing analysis identified a novel compound heterozygous c.725A > G p.Asn242Ser and c.313-3 T > G p.Lys105Valfs*16 TMEM67 variant in the proband and the affected fetus. These two variants were inherited from each parent and confirmed by Sanger sequencing. The variant c.725A > G p.Asn242Ser was previously documented in patients with JS, the novel splice-site c.313-3 T > G p.Lys105Valfs*16 TMEM67 variant produced an aberrant transcript with the loss of four nucleotides of exon 03. Conclusion This study confirms the diagnosis of Joubert syndrome in a Vietnamese family and expands the mutational spectrum of TMEM67 sequence variations. We also highlight the importance of molecular approaches to unravel underlying mechanisms of human genetic disorders. Early precise diagnosis could help provide further accurate genetic counseling for recurrence-risk assessment, future diagnostic option, management as well as treatment guidance for rare disorders.
Collapse
Affiliation(s)
- Thi Phuong Hoa Bui
- Medical Genetics Department, Vinmec Times City International Hospital-Times City, HaNoi, Vietnam
| | - Ngoc Tu Nguyen
- Fetal Medicine Department, Vinmec Times City International Hospital-Times City, HaNoi, Vietnam
| | - Van Doan Ngo
- Diagnostic Imaging Department, Vinmec Times City International Hospital-Times City, HaNoi, Vietnam
| | - Hoai-Nghia Nguyen
- Center for Molecular Medicine, University of Medicine and Pharmacy, Ho Chi Minh city, Vietnam
| | - Thi Thanh Ha Ly
- Medical Genetics Department, Vinmec Times City International Hospital-Times City, HaNoi, Vietnam
| | - Huy Duong Do
- Medical Genetics Department, Vinmec Times City International Hospital-Times City, HaNoi, Vietnam
| | - Minh-Tuan Huynh
- Medical Genetics Department, Vinmec Times City International Hospital-Times City, HaNoi, Vietnam.
| |
Collapse
|
18
|
Tang C, Zhou D, Tan R, Zhong X, Xiao X, Qin D, Liu Y, Hu J, Liu Y. Auxiliary genetic analysis in a Chinese adolescent NPH family by single nucleotide polymorphism screening. Mol Med Rep 2020; 21:1115-1124. [PMID: 31922211 PMCID: PMC7003018 DOI: 10.3892/mmr.2020.10917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 11/18/2019] [Indexed: 11/25/2022] Open
Abstract
Hereditary nephropathy is a progressive fatal renal disease caused by genetic changes. In this study, genetic screening was used to reveal mutations in a family in Southern China, in which there are two patients with confirmed hereditary nephropathy, who are alive at the time of publication. Imaging tests, including color Doppler ultrasonography and magnetic resonance imaging (MRI), as well as pathological examinations, including hematoxylin-eosin staining, electron microscopy and immunohistochemistry were performed. Target sequencing of nephrosis 2 (NPHS2), wilms tumor 1 (WT1), phospholipase C ε 1 (PLCE1), actinin α 4 (ACTN4), angiotensin I converting enzyme (ACE), uromodulin (UMOD) and nephrocystin 1 (NPHP1) was also carried out. This study indicated that heterozygous genetic variants of NPHS2, WT1, ACTN4, PLCE1 and UMOD found in the patients were gene polymorphisms. A renal biopsy showed sclerosing glomerulonephritis, dilated tubules and lymphocyte/monocyte infiltration in the interstitium of the index patients. Genetic analysis showed vertical transmission of the disease-causing mutations, including a homozygous deletion in NPHP1 and a nonsense mutation in ACE found via PCR-based single nucleotide polymorphism screening. Further network analysis identified direct and indirect co-location genes between NPHP1 and ACE. To conclude, familial adolescent nephronophthisis was diagnosed in two index patients in this study. It is recommended that comprehensive gene mutation screening is used in the diagnosis of complex hereditary diseases.
Collapse
Affiliation(s)
- Chunrong Tang
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Daoyuan Zhou
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Rongshao Tan
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xiaoshi Zhong
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xiao Xiao
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Danping Qin
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Yun Liu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Jianguang Hu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Yan Liu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
19
|
|
20
|
Barny I, Perrault I, Michel C, Soussan M, Goudin N, Rio M, Thomas S, Attié-Bitach T, Hamel C, Dollfus H, Kaplan J, Rozet JM, Gerard X. Basal exon skipping and nonsense-associated altered splicing allows bypassing complete CEP290 loss-of-function in individuals with unusually mild retinal disease. Hum Mol Genet 2019; 27:2689-2702. [PMID: 29771326 DOI: 10.1093/hmg/ddy179] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/02/2018] [Accepted: 05/06/2018] [Indexed: 12/18/2022] Open
Abstract
CEP290 mutations cause a spectrum of ciliopathies from Leber congenital amaurosis type 10 (LCA10) to embryo-lethal Meckel syndrome (MKS). Using panel-based molecular diagnosis testing for inherited retinal diseases, we identified two individuals with some preserved vision despite biallelism for presumably truncating CEP290 mutations. The first one carried a homozygous 1 base pair deletion in Exon 17, introducing a premature termination codon (PTC) in Exon 18 (c.1666del; p.Ile556Phefs*17). mRNA analysis revealed a basal exon skipping (BES) of Exon 18, providing mutant cells with the ability to escape protein truncation, while disrupting the reading frame in controls. The second individual harbored compound heterozygous nonsense mutations in Exon 8 (c.508A>T, p.Lys170*) and Exon 32 (c.4090G>T, p.Glu1364*), respectively. Some CEP290 lacking Exon 8 were detected in mutant fibroblasts but not in controls whereas some skipping of Exon 32 occurred in both lines, but with higher amplitude in the mutant. Considering that the deletion of either exon maintains the reading frame in either line, skipping in mutant cells likely involves nonsense-associated altered splicing alone (Exon 8), or with BES (Exon 32). Skipping of PTC-containing exons in mutant cells allowed production of CEP290 isoforms with preserved ability to assemble into a high molecular weight complex and to interact efficiently with proteins important for cilia formation and intraflagellar trafficking. In contrast, studying LCA10 and MKS fibroblasts we show moderate to severe cilia alterations, providing support for a correlation between disease severity and the ability of cells to express shortened, yet functional, CEP290 isoforms.
Collapse
Affiliation(s)
- Iris Barny
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetics Diseases
| | - Isabelle Perrault
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetics Diseases
| | - Christel Michel
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetics Diseases
| | - Mickael Soussan
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetics Diseases
| | - Nicolas Goudin
- Cell Imaging Core Facility of the Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Imagine and Paris Descartes University, Paris, France
| | - Marlène Rio
- Department of Genetics, IHU Necker-Enfants Malades, University Paris Descartes, Paris, France
| | - Sophie Thomas
- Laboratory of Embryology and Genetics of Human Malformation, INSERM UMR1163, Institute of Genetics Diseases, Imagine and Paris Descartes University, Paris, France
| | - Tania Attié-Bitach
- Laboratory of Embryology and Genetics of Human Malformation, INSERM UMR1163, Institute of Genetics Diseases, Imagine and Paris Descartes University, Paris, France
| | - Christian Hamel
- Centre de Référence des Affections Sensorielles Génétiques, Institut des Neurosciences de Montpellier, CHU-Saint Eloi Montpellier, Montpellier, France
| | - Hélène Dollfus
- Centre de Référence pour les Affections Génétiques Ophtalmologiques CARGO, CHRU Strasbourg, INSERM 1112, Université de Strasbourg, Strasbourg, France
| | - Josseline Kaplan
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetics Diseases
| | - Jean-Michel Rozet
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetics Diseases
| | - Xavier Gerard
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetics Diseases
| |
Collapse
|
21
|
Jian S, Wei QJ, Liu YT, Wang W, Zhou Y, Quan MY, He YY, Song HM, Wei M. [Clinical features and TTC21B genotype of a child with nephronophthisis type 12]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019. [PMID: 31208513 DOI: 10.7499/j.issn.1008-8830.2019.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nephronophthisis (NPHP) is a group of autosomal recessive tubulointerstitial cystic kidney disorders. This article reports a case of NPHP type 12 caused by TTC21B mutations. The girl had an insidious onset, with moderate proteinuria, renal dysfunction, stage 2 hypertension, situs inversus, and short phalanges when she visited the hospital for the first time at the age of 3 years and 6 months. The renal lesions progressed to end-stage renal disease (ESRD) before she was 4 years old. Urine protein electrophoresis showed glomerular proteinuria. There were significant increases in urinary β2-microglobulin and α1-microglobulin. Gene detection revealed two compound heterozygous mutations, c.1552T>C (p.C518R) and c.752T>G (p.M251R), in the TTC21B gene, which came from her father and mother respectively. The c.752T>G mutation was a novel mutation. It is concluded that besides typical tubular changes of NPHP, marked glomerular damage is also observed in patients with TTC21B gene mutations.
Collapse
Affiliation(s)
- Shan Jian
- Department of Pediatrics, Peking Union Medical College Hospital, Beijing 100730, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Jian S, Wei QJ, Liu YT, Wang W, Zhou Y, Quan MY, He YY, Song HM, Wei M. [Clinical features and TTC21B genotype of a child with nephronophthisis type 12]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21:580-584. [PMID: 31208513 PMCID: PMC7389582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/08/2019] [Indexed: 08/01/2024]
Abstract
Nephronophthisis (NPHP) is a group of autosomal recessive tubulointerstitial cystic kidney disorders. This article reports a case of NPHP type 12 caused by TTC21B mutations. The girl had an insidious onset, with moderate proteinuria, renal dysfunction, stage 2 hypertension, situs inversus, and short phalanges when she visited the hospital for the first time at the age of 3 years and 6 months. The renal lesions progressed to end-stage renal disease (ESRD) before she was 4 years old. Urine protein electrophoresis showed glomerular proteinuria. There were significant increases in urinary β2-microglobulin and α1-microglobulin. Gene detection revealed two compound heterozygous mutations, c.1552T>C (p.C518R) and c.752T>G (p.M251R), in the TTC21B gene, which came from her father and mother respectively. The c.752T>G mutation was a novel mutation. It is concluded that besides typical tubular changes of NPHP, marked glomerular damage is also observed in patients with TTC21B gene mutations.
Collapse
Affiliation(s)
- Shan Jian
- Department of Pediatrics, Peking Union Medical College Hospital, Beijing 100730, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Rasmussen M, Sunde L, Nielsen ML, Ramsing M, Petersen A, Hjortshøj TD, Olsen TE, Tabor A, Hertz JM, Johnsen I, Sperling L, Petersen OB, Jensen UB, Møller FG, Petersen MB, Lildballe DL. Targeted gene sequencing and whole-exome sequencing in autopsied fetuses with prenatally diagnosed kidney anomalies. Clin Genet 2018; 93:860-869. [PMID: 29194579 DOI: 10.1111/cge.13185] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 01/16/2023]
Abstract
Identification of fetal kidney anomalies invites questions about underlying causes and recurrence risk in future pregnancies. We therefore investigated the diagnostic yield of next-generation sequencing in fetuses with bilateral kidney anomalies and the correlation between disrupted genes and fetal phenotypes. Fetuses with bilateral kidney anomalies were screened using an in-house-designed kidney-gene panel. In families where candidate variants were not identified, whole-exome sequencing was performed. Genes uncovered by this analysis were added to our kidney panel. We identified likely deleterious variants in 11 of 56 (20%) families. The kidney-gene analysis revealed likely deleterious variants in known kidney developmental genes in 6 fetuses and TMEM67 variants in 2 unrelated fetuses. Kidney histology was similar in the latter 2 fetuses-presenting a distinct prenatal form of nephronophthisis. Exome sequencing identified ROBO1 variants in one family and a GREB1L variant in another family. GREB1L and ROBO1 were added to our kidney-gene panel and additional variants were identified. Next-generation sequencing substantially contributes to identifying causes of fetal kidney anomalies. Genetic causes may be supported by histological examination of the kidneys. This is the first time that SLIT-ROBO signaling is implicated in human bilateral kidney agenesis.
Collapse
Affiliation(s)
- M Rasmussen
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - L Sunde
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - M L Nielsen
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - M Ramsing
- Department of Pathology, Randers Regional Hospital, Randers, Denmark
| | - A Petersen
- Department of Pathology, Aalborg University Hospital, Aalborg, Denmark
| | - T D Hjortshøj
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
| | - T E Olsen
- Department of Pathology, Rigshospitalet, Copenhagen, Denmark
| | - A Tabor
- Department of Obstetrics, Center of Fetal Medicine, Rigshospitalet, Copenhagen, Denmark
| | - J M Hertz
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - I Johnsen
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - L Sperling
- Department of Gynecology and Obstetrics, Odense University Hospital, Odense, Denmark
| | - O B Petersen
- Department of Gynecology and Obstetrics, Aarhus University Hospital, Aarhus, Denmark
| | - U B Jensen
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - F G Møller
- Department of Pediatrics, Herning Regional Hospital, Herning, Denmark
| | - M B Petersen
- Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - D L Lildballe
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
24
|
Renkema KY, Giles RH, Lilien MR, Beales PL, Roepman R, Oud MM, Arts HH, Knoers NVAM. The KOUNCIL Consortium: From Genetic Defects to Therapeutic Development for Nephronophthisis. Front Pediatr 2018; 6:131. [PMID: 29868523 PMCID: PMC5949343 DOI: 10.3389/fped.2018.00131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/18/2018] [Indexed: 01/12/2023] Open
Abstract
Nephronophthisis (NPH) is the most common monogenic cause of renal failure in children. Treatment options are limited to dialysis and transplantation. Therapeutics to significantly delay or prevent end-stage renal disease (ESRD) in children are currently not available. In the Dutch-Anglo KOUNCIL (Kidney-Oriented UNderstanding of correcting CILiopathies) consortium, several groups and specialties united to perform scientific groundwork with the aim to develop genetic and therapeutic personalized care for NPH patients. At the start of this consortium, a genetic diagnosis for NPH was available for only 30-40% of patients, which improved to 50-60% during the course of the 4-year KOUNCIL project. Other major accomplishments of the consortium were (1) the establishment of a Dutch renal ciliopathy patient database with genotype and phenotype data; (2) composition of a proteomics-based integrated network of protein modules disrupted in NPH; (3) the development of non-invasive, urine-based assays that allow functional assessment of genomic variants in NPH and of therapeutic efficiency of drugs; and (4) chemical screening toward the identification of compounds that delay or prevent disease progression in NPH, which resulted in four potential medical interventions for NPH. In conclusion, the KOUNCIL consortium effectively channeled complementary approaches to broaden our understanding of NPH pathogenesis, resulted in 54 publications, improvement of genome diagnostics for NPH patients, awareness in the nephrology and clinical genetics communities for NPH, and new avenues for patient management.
Collapse
Affiliation(s)
- Kirsten Y Renkema
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Rachel H Giles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marc R Lilien
- Department of Pediatric Nephrology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Philip L Beales
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Ronald Roepman
- Department of Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Machteld M Oud
- Department of Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Heleen H Arts
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Nine V A M Knoers
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
25
|
Rafiullah R, Long AB, Ivanova AA, Ali H, Berkel S, Mustafa G, Paramasivam N, Schlesner M, Wiemann S, Wade RC, Bolthauser E, Blum M, Kahn RA, Caspary T, Rappold GA. A novel homozygous ARL13B variant in patients with Joubert syndrome impairs its guanine nucleotide-exchange factor activity. Eur J Hum Genet 2017; 25:1324-1334. [PMID: 29255182 PMCID: PMC5865152 DOI: 10.1038/s41431-017-0031-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 10/02/2017] [Accepted: 10/10/2017] [Indexed: 11/09/2022] Open
Abstract
ARL13B encodes for the ADP-ribosylation factor-like 13B GTPase, which is required for normal cilia structure and Sonic hedgehog (Shh) signaling. Disruptions in cilia structure or function lead to a class of human disorders called ciliopathies. Joubert syndrome is characterized by a wide spectrum of symptoms, including a variable degree of intellectual disability, ataxia, and ocular abnormalities. Here we report a novel homozygous missense variant c.[223G>A] (p.(Gly75Arg) in the ARL13B gene, which was identified by whole-exome sequencing of a trio from a consanguineous family with multiple-affected individuals suffering from intellectual disability, ataxia, ocular defects, and epilepsy. The same variant was also identified in a second family. We saw a striking difference in the severity of ataxia between affected male and female individuals in both families. Both ARL13B and ARL13B-c.[223G>A] (p.(Gly75Arg) expression rescued the cilia length and Shh defects displayed by Arl13b hennin (null) cells, indicating that the variant did not disrupt either ARL13B function. In contrast, ARL13B-c.[223G>A] (p.(Gly75Arg) displayed a marked loss of ARL3 guanine nucleotide-exchange factor activity, with retention of its GTPase activities, highlighting the correlation between its loss of function as an ARL3 guanine nucleotide-exchange factor and Joubert syndrome.
Collapse
Affiliation(s)
- Rafiullah Rafiullah
- Department of Human Molecular Genetics, Heidelberg University, 69120, Heidelberg, Germany
| | - Alyssa B Long
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Anna A Ivanova
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Hazrat Ali
- Department of Psychiatry, Bolan Medical College, 87600, Quetta, Pakistan
| | - Simone Berkel
- Department of Human Molecular Genetics, Heidelberg University, 69120, Heidelberg, Germany
| | - Ghulam Mustafa
- Molecular and Cellular Modeling (MCM) Group, Heidelberg Institute for Theoretical Studies (HITS), 69118, Heidelberg, Germany
- Center for Molecular Biology, DKFZ-ZMBH Alliance, Heidelberg University, 69120, Heidelberg, Germany
| | - Nagarajan Paramasivam
- Computational Oncology Group, Theoretical Bioinformatics Division (B080), German Cancer Research Centre (DKFZ), 69120, Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, 69120, Heidelberg, Germany
| | - Matthias Schlesner
- Computational Oncology Group, Theoretical Bioinformatics Division (B080), German Cancer Research Centre (DKFZ), 69120, Heidelberg, Germany
| | - Stefan Wiemann
- Genomic and Proteomics Core Facility, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Rebecca C Wade
- Molecular and Cellular Modeling (MCM) Group, Heidelberg Institute for Theoretical Studies (HITS), 69118, Heidelberg, Germany
- Center for Molecular Biology, DKFZ-ZMBH Alliance, Heidelberg University, 69120, Heidelberg, Germany
| | - Eugen Bolthauser
- Division of Pediatric Neurology, University Children's Hospital, 8032, Zurich, Switzerland
| | - Martin Blum
- Institute of Zoology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Richard A Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Gudrun A Rappold
- Department of Human Molecular Genetics, Heidelberg University, 69120, Heidelberg, Germany.
- Interdisciplinary Centre for Neurosciences (IZN), University of Heidelberg, 69120, Heidelberg, Germany.
| |
Collapse
|
26
|
Nestor JG, Groopman EE, Gharavi AG. Towards precision nephrology: the opportunities and challenges of genomic medicine. J Nephrol 2017; 31:47-60. [PMID: 29043570 DOI: 10.1007/s40620-017-0448-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/10/2017] [Indexed: 12/28/2022]
Abstract
The expansion of genomic medicine is furthering our understanding of many human diseases. This is well illustrated in the field of nephrology, through the characterization, discovery, and growing insight into various renal diseases through use of Next Generation Sequencing (NGS) technologies. This review will provide an overview of the diagnostic opportunities of using genetic testing in the clinical setting by describing notable discoveries regarding inherited forms of renal disease that have advanced the field and by highlighting some of the potential benefits of establishing a molecular diagnosis in a clinical practice. In addition, it will discuss some of the challenges associated with the expansion of genetic testing into the clinical setting, including clinical variant interpretation and return of genetic results.
Collapse
Affiliation(s)
- Jordan G Nestor
- Division of Nephrology, Department of Medicine, College of Physicians and Surgeons, Columbia University, 1150 St. Nicholas Ave, Room 413, New York, NY, 10032, USA
| | - Emily E Groopman
- Division of Nephrology, Department of Medicine, College of Physicians and Surgeons, Columbia University, 1150 St. Nicholas Ave, Room 413, New York, NY, 10032, USA
| | - Ali G Gharavi
- Division of Nephrology, Department of Medicine, College of Physicians and Surgeons, Columbia University, 1150 St. Nicholas Ave, Room 413, New York, NY, 10032, USA.
| |
Collapse
|
27
|
Han J, Rim JH, Hwang IS, Kim J, Shin S, Lee ST, Choi JR. Diagnostic application of clinical exome sequencing in Leber congenital amaurosis. Mol Vis 2017; 23:649-659. [PMID: 28966547 PMCID: PMC5610811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 09/18/2017] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Leber congenital amaurosis (LCA) is a hereditary retinal dystrophy with wide genetic heterogeneity. Next-generation sequencing (NGS) targeting multiple genes can be a good option for the diagnosis of LCA, and we tested a clinical exome panel in patients with LCA. METHODS A total of nine unrelated Korean patients with LCA were sequenced using the Illumina TruSight One panel, which targets 4,813 clinically associated genes, followed by confirmation using Sanger sequencing. Patients' clinical information and familial study results were obtained and used for comprehensive interpretation. RESULTS In all nine patients, we identified pathogenic variations in LCA-associated genes: NMNAT1 (n=3), GUCY2D (n=2), RPGRIP1 (n=2), CRX (n=1), and CEP290 or SPATA7. Six patients had one or two mutations in accordance with inheritance patterns, all consistent with clinical phenotypes. Two patients had only one pathogenic mutation in recessive genes (NMNAT1 and RPGRIP1), and the clinical features were specific to disorders associated with those genes. Six patients were solved for genetic causes, and it remains unclear for three patients with the clinical exome panel. With subsequent targeted panel sequencing with 113 genes associated with infantile nystagmus syndrome, a likely pathogenic allele in CEP290 was detected in one patient. Interestingly, one pathogenic variant (p.Arg237Cys) in NMNAT1 was present in three patients, and it had a high allele frequency (0.24%) in the general Korean population, suggesting that NMNAT1 could be a major gene responsible for LCA in Koreans. CONCLUSIONS We confirmed that a commercial clinical exome panel can be effectively used in the diagnosis of LCA. Careful interpretation and clinical correlation could promote the successful implementation of clinical exome panels in routine diagnoses of retinal dystrophies, including LCA.
Collapse
Affiliation(s)
- Jinu Han
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - John Hoon Rim
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - In Sik Hwang
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jieun Kim
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Saeam Shin
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Rak Choi
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
28
|
Abdullah U, Farooq M, Fatima A, Tauseef W, Sarwar Y, Nuri M, Tommerup N, Baig SM. Homozygous mutation in the NPHP3 gene causing foetal nephronophthisis. Nephrology (Carlton) 2017; 22:818-820. [PMID: 28921755 DOI: 10.1111/nep.13097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/15/2017] [Accepted: 06/21/2017] [Indexed: 01/14/2023]
Abstract
We present a case of a foetal sonographic finding of hyper-echogenic kidneys, which led to a strategic series of genetic tests and identified a homozygous mutation (c.424C > T, p. R142*) in the NPHP3 gene. Our study provides a rare presentation of NPHP3-related ciliopathy and adds to the mutation spectrum of the gene, being the first one from Pakistani population. With a thorough literature review, it also advocates for molecular assessment of ciliopathies to improve risk estimate for future pregnancies, and identify predisposed asymptomatic carriers.
Collapse
Affiliation(s)
- Uzma Abdullah
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), PIEAS, Faisalabad, Pakistan
| | - Muhammad Farooq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan.,Wilhelm Johannsen Centre for Functional Genome Research, University of Copenhagen, Denmark
| | - Ambrin Fatima
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), PIEAS, Faisalabad, Pakistan
| | | | - Yasra Sarwar
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), PIEAS, Faisalabad, Pakistan
| | | | - Niels Tommerup
- Wilhelm Johannsen Centre for Functional Genome Research, University of Copenhagen, Denmark
| | - Shahid M Baig
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), PIEAS, Faisalabad, Pakistan
| |
Collapse
|