1
|
Wang H, Li Y, Li H, Yan X, Jiang Z, Feng L, Hu W, Fan Y, Lin S, Li G. T cell related osteoimmunology in fracture healing: Potential targets for augmenting bone regeneration. J Orthop Translat 2025; 51:82-93. [PMID: 39991456 PMCID: PMC11847249 DOI: 10.1016/j.jot.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/15/2024] [Accepted: 12/01/2024] [Indexed: 02/25/2025] Open
Abstract
UNLABELLED Last decade has witnessed increasing evidence which highlights the roles of immune cells in bone regeneration. Numerous immune cell types, including macrophages, T cells, and neutrophils are involved in fracture healing by orchestrating a series of events that modulate bone formation and remodeling. In this review, the role of T cell immunity in fracture healing has been summarized, and the modulatory effects of T cell immunity in inflammation, bone formation and remodeling have been highlighted. The review also summarizes the specific roles of different T cell subsets, including CD4+ T cells, CD8+ T cells, regulatory T cells, T helper 17 cells, and γδ T cells in modulating fracture healing. The current therapeutics targeting T cell immunity to enhance fracture healing have also been reviewed, aiming to provide insights from a translational standpoint. Overall, this work discusses recent advances and challenges in the interdisciplinary research field of T cell related osteoimmunology and its implications in fracture healing. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE Delayed unions or non-unions of bone fractures remain a challenge in clinical practice. Developing a deep understanding of the roles of immune cells, including T cells, in fracture healing will facilitate the advancement of novel therapeutics of fracture nonunion. This review summarizes the current understanding of different T cell subsets involved in various phases of fracture healing, providing insights for targeting T cells as an alternative strategy to enhance bone regeneration.
Collapse
Affiliation(s)
- Haixing Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yashi Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Haoxin Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xu Yan
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhaowei Jiang
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lu Feng
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China
| | - Wenhui Hu
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Yinuo Fan
- The Third Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Gang Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Gao YM, Pei Y, Zhao FF, Wang L. Osteoclasts in Osteosarcoma: Mechanisms, Interactions, and Therapeutic Prospects. Cancer Manag Res 2023; 15:1323-1337. [PMID: 38027241 PMCID: PMC10661907 DOI: 10.2147/cmar.s431213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
Osteosarcoma is an extremely malignant tumor, and its pathogenesis is complex and remains incompletely understood. Most cases of osteosarcoma are accompanied by symptoms of bone loss or result in pathological fractures due to weakened bones. Enhancing the survival rate of osteosarcoma patients has proven to be a long-standing challenge. Numerous studies mentioned in this paper, including in-vitro, in-vivo, and in-situ studies have consistently indicated a close association between the symptoms of bone loss associated with osteosarcoma and the presence of osteoclasts. As the sole cells capable of bone resorption, osteoclasts participate in a malignant cycle within the osteosarcoma microenvironment. These cells interact with osteoblasts and osteosarcoma cells, secreting various factors that further influence these cells, disrupting bone homeostasis, and shifting the balance toward bone resorption, thereby promoting the onset and progression of osteosarcoma. Moreover, the interaction between osteoclasts and various other cells types, such as tumor-associated macrophages, myeloid-derived suppressor cells, DCs cells, T cells, and tumor-associated fibroblasts in the osteosarcoma microenvironment plays a crucial role in disease progression. Consequently, understanding the role of osteoclasts in osteosarcoma has sparked significant interest. This review primarily examines the physiological characteristics and functional mechanisms of osteoclasts in osteosarcoma, and briefly discusses potential therapies targeting osteoclasts for osteosarcoma treatment. These studies provide fresh ideas and directions for future research on the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Yi-Ming Gao
- Department of Orthopedic Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Yan Pei
- Department of Orthopedic Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Fei-Fei Zhao
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Ling Wang
- Department of Orthopedic Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| |
Collapse
|
3
|
Physiological and histological studies of dental response of Luxate tooth with application of VEGF. Int J Health Sci (Qassim) 2022. [DOI: 10.53730/ijhs.v6ns2.6058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background During luxate injury many dental tissue will be involved including pulp, periodontal ligament ,mucosa, hard dental tissue and alveolar bone with affecting the nerve and dental blood supplement. Growth factors may involved in healing process after replantation of tooth in its socket and the Vascular endothelial factor (VEGF ) is a potent one that increase angiogenesis and accelerate repairing and healing of dental pulp and the supporting tissues. The study was designed to illustrate the effect of application of growth factor on healing process of luxate molar tooth of rat. Materials & Methods Twenty male Wistar rats with luxate lower right first molar teeth were included in this study. The control were injected with normal saline (0.5μl ) around the apex of mesial root .Experimental group injected with VEGF (0.5μl ). Histological assessment of physiological responses of (dental pulp, cementum, periodontal ligament (PDL) and alveolar bone in both control and experimental groups with Receptor activator of nuclear factor kappa-Β ligand (RANKL) expression evaluation were recorded during the healing period in the examined tissue.
Collapse
|
4
|
Sha AM, Garib BT, Azeez SH, Gul SS. Effects of curcumin gel on osteoclastogenic bone markers in experimental periodontitis and alveolar bone loss in wistar rats. J Dent Sci 2021; 16:905-914. [PMID: 34141104 PMCID: PMC8189873 DOI: 10.1016/j.jds.2020.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 09/28/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND/PURPOSE Curcumin has anti-inflammatory impacts and was suggested as an inflammatory disease therapy. This study aimed to investigate the implications of curcumin gel on experimental periodontitis (EPD) and alveolar bone loss in rats. MATERIALS AND METHODS In this study, twenty-four male Wistar rats were divided equally into four groups: negative control (with no EPD); positive control (EPD induced around lower centrals without treatment); control-treated group: EPD treated with chlorhexidine; and test EPD group treated with curcumin. After 30 days, the serum concentrations of RANKL and IL-1β were measured via ELISA. All animals were sacrificed, and mandibular central incisors with the periodontium were removed. The lingual probing depth and radiographical alveolar bone loss were measured, then samples processed for routine preparation of H&E stained sections and histologically assessed for counting inflammatory cells, osteoclasts, and PDL width. RESULTS A significant decrease in the inflammatory cells infiltration, probing depth, and osteoclast numbers with the improvement of PDL associated with a reduction in RANKL and IL-1β serum concentration were seen in both EPD treated groups. CONCLUSION Curcumin is as effective as chlorhexidine in treating experimental periodontitis in rats. It was demonstrated to stop bone destruction related to periodontitis by regulating the RANKL and IL-1β markers level in the blood.
Collapse
Affiliation(s)
- Aram Mohammed Sha
- Department of Periodontics, College of Dentistry, University of Sulaimani, Sulaimani- Kurdistan Region, Iraq
| | - Balkees Taha Garib
- Department of Oral Diagnosis, College of Dentistry, University of Sulaimani, Sulaimani- Kurdistan Region, Iraq
| | - Shokhan Hamaali Azeez
- Department of Dental Nursing, Sulaimani Technical Institute, Sulaimani Polytechnic University, Sulaimani- Kurdistan Region, Iraq
| | - Sarhang Sarwat Gul
- Department of Periodontics, College of Dentistry, University of Sulaimani, Sulaimani- Kurdistan Region, Iraq
| |
Collapse
|
5
|
Gómez-Aleza C, Nguyen B, Yoldi G, Ciscar M, Barranco A, Hernández-Jiménez E, Maetens M, Salgado R, Zafeiroglou M, Pellegrini P, Venet D, Garaud S, Trinidad EM, Benítez S, Vuylsteke P, Polastro L, Wildiers H, Simon P, Lindeman G, Larsimont D, Van den Eynden G, Velghe C, Rothé F, Willard-Gallo K, Michiels S, Muñoz P, Walzer T, Planelles L, Penninger J, Azim HA, Loi S, Piccart M, Sotiriou C, González-Suárez E. Inhibition of RANK signaling in breast cancer induces an anti-tumor immune response orchestrated by CD8+ T cells. Nat Commun 2020; 11:6335. [PMID: 33303745 PMCID: PMC7728758 DOI: 10.1038/s41467-020-20138-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Most breast cancers exhibit low immune infiltration and are unresponsive to immunotherapy. We hypothesized that inhibition of the receptor activator of nuclear factor-κB (RANK) signaling pathway may enhance immune activation. Here we report that loss of RANK signaling in mouse tumor cells increases leukocytes, lymphocytes, and CD8+ T cells, and reduces macrophage and neutrophil infiltration. CD8+ T cells mediate the attenuated tumor phenotype observed upon RANK loss, whereas neutrophils, supported by RANK-expressing tumor cells, induce immunosuppression. RANKL inhibition increases the anti-tumor effect of immunotherapies in breast cancer through a tumor cell mediated effect. Comparably, pre-operative single-agent denosumab in premenopausal early-stage breast cancer patients from the Phase-II D-BEYOND clinical trial (NCT01864798) is well tolerated, inhibits RANK pathway and increases tumor infiltrating lymphocytes and CD8+ T cells. Higher RANK signaling activation in tumors and serum RANKL levels at baseline predict these immune-modulatory effects. No changes in tumor cell proliferation (primary endpoint) or other secondary endpoints are observed. Overall, our preclinical and clinical findings reveal that tumor cells exploit RANK pathway as a mechanism to evade immune surveillance and support the use of RANK pathway inhibitors to prime luminal breast cancer for immunotherapy. Receptor activator of nuclear factor-κB (RANK)/RANK-ligand (RANKL) signaling regulates the tumor-immune crosstalk. Here the authors show that systemic RANKL inhibition promotes CD8 + T cell infiltration in patients with early breast cancer and that loss of RANK signaling in tumor cells drives a T cell-dependent anti-tumor response in preclinical models.
Collapse
Affiliation(s)
- Clara Gómez-Aleza
- Oncobell, Bellvitge Biomedical Research Institute, IDIBELL, Barcelona, Spain
| | - Bastien Nguyen
- Breast Cancer Translational Research Laboratory J.-C. Heuson, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.,Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Guillermo Yoldi
- Oncobell, Bellvitge Biomedical Research Institute, IDIBELL, Barcelona, Spain
| | - Marina Ciscar
- Oncobell, Bellvitge Biomedical Research Institute, IDIBELL, Barcelona, Spain.,Molecular Oncology, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alexandra Barranco
- Oncobell, Bellvitge Biomedical Research Institute, IDIBELL, Barcelona, Spain.,Molecular Oncology, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Marion Maetens
- Breast Cancer Translational Research Laboratory J.-C. Heuson, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Roberto Salgado
- Breast Cancer Translational Research Laboratory J.-C. Heuson, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.,Department of Pathology, GZA-ZNA Ziekenhuizen, Antwerp, Belgium
| | - Maria Zafeiroglou
- Oncobell, Bellvitge Biomedical Research Institute, IDIBELL, Barcelona, Spain
| | - Pasquale Pellegrini
- Oncobell, Bellvitge Biomedical Research Institute, IDIBELL, Barcelona, Spain
| | - David Venet
- Breast Cancer Translational Research Laboratory J.-C. Heuson, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Soizic Garaud
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Eva M Trinidad
- Oncobell, Bellvitge Biomedical Research Institute, IDIBELL, Barcelona, Spain
| | - Sandra Benítez
- Oncobell, Bellvitge Biomedical Research Institute, IDIBELL, Barcelona, Spain
| | - Peter Vuylsteke
- Department of Medical Oncology, Université Catholique de Louvain, CHU UCL, Namur, site Sainte-Elisabeth, Namur, Belgium
| | - Laura Polastro
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Hans Wildiers
- Department of Oncology, KU Leuven-University of Leuven, Leuven, Belgium
| | - Philippe Simon
- Department of Obstetrics and Gynaecology, Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Geoffrey Lindeman
- Peter MacCallum Cancer Centre, The Walter and Eliza Hall Institute of Medical Research and The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Denis Larsimont
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Gert Van den Eynden
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Chloé Velghe
- Clinical Trial Supporting Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Françoise Rothé
- Breast Cancer Translational Research Laboratory J.-C. Heuson, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Karen Willard-Gallo
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Stefan Michiels
- Service de Biostatistique et D'Epidémiologie, Gustave Roussy, CESP, U1018, Université Paris-Sud, Faculté de Médcine, Université Paris-Saclay, Villejuif, France
| | - Purificación Muñoz
- Oncobell, Bellvitge Biomedical Research Institute, IDIBELL, Barcelona, Spain
| | - Thierry Walzer
- Centre International de Recherche en Infectiologie, CIRI, Inserm U1111, CNRS, Université Claude Bernard, Lyon, France
| | - Lourdes Planelles
- BiOncotech Therapeutics, Parc Cientific Universitat, Valencia, Spain
| | - Josef Penninger
- Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Hatem A Azim
- Division of Hematology/Oncology, Department of Medicine, American University of Beirut, Beirut, Lebanon
| | - Sherene Loi
- Peter MacCallum Cancer Centre, The Walter and Eliza Hall Institute of Medical Research and The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Martine Piccart
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Christos Sotiriou
- Breast Cancer Translational Research Laboratory J.-C. Heuson, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium. .,Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.
| | - Eva González-Suárez
- Oncobell, Bellvitge Biomedical Research Institute, IDIBELL, Barcelona, Spain. .,Molecular Oncology, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| |
Collapse
|
6
|
Jo S, Lee YY, Han J, Lee YL, Yoon S, Lee J, Oh Y, Han JS, Sung IH, Park YS, Kim TH. CCAAT/enhancer-binding protein beta (C/EBPβ) is an important mediator of 1,25 dihydroxyvitamin D3 (1,25D3)-induced receptor activator of nuclear factor kappa-B ligand (RANKL) expression in osteoblasts. BMB Rep 2020. [PMID: 30355436 PMCID: PMC6605518 DOI: 10.5483/bmbrep.2019.52.6.166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Receptor activator of nuclear factor kappa B ligand (RANKL) expression in osteoblasts is regulated by 1,25-dihydroxyvitamin D3 (1,25D3). CCAAT/enhancer-binding protein beta (C/EBPβ) has been proposed to function as a transcription factor and upregulate RANKL expression, but it is still uncertain how C/EBPβ is involved in 1,25D3-induced RANKL expression of osteoblasts. 1,25D3 stimulation increased the expression of RANKL and C/EPBβ genes in osteoblasts and enhanced phosphorylation and stability of these proteins. Moreover, induction of RANKL expression by 1,25D3 in osteoblasts was downregulated upon knockdown of C/EBPβ. In contrast, C/EBPβ overexpression directly upregulated RANKL promoter activity and exhibited a synergistic effect on 1,25D3-induced RANKL expression. In particular, 1,25D3 treatment of osteoblasts increased C/EBPβ protein binding to the RANKL promoter. In conclusion, C/EBPβ is required for induction of RANKL by 1,25D3. [BMB Reports 2019; 52(6): 391-396].
Collapse
Affiliation(s)
- Sungsin Jo
- Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Korea
| | - Yun Young Lee
- Department of Biomedical Sciences, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | | | - Young Lim Lee
- Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Korea
| | - Subin Yoon
- Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Korea; Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Jaehyun Lee
- Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Korea; Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Younseo Oh
- Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Korea; Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Joong-Soo Han
- Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Korea; Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Il-Hoon Sung
- Department of Orthopedic Surgery, Hanyang University Hospital, Seoul 04763, Korea
| | - Ye-Soo Park
- Department of Orthopedic Surgery, Hanyang University Hospital, Seoul 04763, Korea
| | - Tae-Hwan Kim
- Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Korea
| |
Collapse
|
7
|
Xiang J, Rauch DA, Huey DD, Panfil AR, Cheng X, Esser AK, Su X, Harding JC, Xu Y, Fox GC, Fontana F, Kobayashi T, Su J, Sundaramoorthi H, Wong WH, Jia Y, Rosol TJ, Veis DJ, Green PL, Niewiesk S, Ratner L, Weilbaecher KN. HTLV-1 viral oncogene HBZ drives bone destruction in adult T cell leukemia. JCI Insight 2019; 4:128713. [PMID: 31578308 DOI: 10.1172/jci.insight.128713] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 09/04/2019] [Indexed: 12/16/2022] Open
Abstract
Osteolytic bone lesions and hypercalcemia are common, serious complications in adult T cell leukemia/lymphoma (ATL), an aggressive T cell malignancy associated with human T cell leukemia virus type 1 (HTLV-1) infection. The HTLV-1 viral oncogene HBZ has been implicated in ATL tumorigenesis and bone loss. In this study, we evaluated the role of HBZ on ATL-associated bone destruction using HTLV-1 infection and disease progression mouse models. Humanized mice infected with HTLV-1 developed lymphoproliferative disease and continuous, progressive osteolytic bone lesions. HTLV-1 lacking HBZ displayed only modest delays to lymphoproliferative disease but significantly decreased disease-associated bone loss compared with HTLV-1-infected mice. Gene expression array of acute ATL patient samples demonstrated increased expression of RANKL, a critical regulator of osteoclasts. We found that HBZ regulated RANKL in a c-Fos-dependent manner. Treatment of HTLV-1-infected humanized mice with denosumab, a monoclonal antibody against human RANKL, alleviated bone loss. Using patient-derived xenografts from primary human ATL cells to induce lymphoproliferative disease, we also observed profound tumor-induced bone destruction and increased c-Fos and RANKL gene expression. Together, these data show the critical role of HBZ in driving ATL-associated bone loss through RANKL and identify denosumab as a potential treatment to prevent bone complications in ATL patients.
Collapse
Affiliation(s)
- Jingyu Xiang
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daniel A Rauch
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Devra D Huey
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Amanda R Panfil
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Xiaogang Cheng
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alison K Esser
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Xinming Su
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - John C Harding
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yalin Xu
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gregory C Fox
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Francesca Fontana
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Takayuki Kobayashi
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Junyi Su
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hemalatha Sundaramoorthi
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Wing Hing Wong
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yizhen Jia
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Thomas J Rosol
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA.,Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - Deborah J Veis
- Department of Medicine, Division of Bone and Mineral Diseases, St. Louis, Missouri, USA
| | - Patrick L Green
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Stefan Niewiesk
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Lee Ratner
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Katherine N Weilbaecher
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
8
|
Fernandes MT, Caroço LS, Pacheco-Leyva I, Dos Santos NR. NF-κB-dependent RANKL expression in a mouse model of immature T-cell leukemia. Biochem Biophys Res Commun 2019; 510:272-277. [PMID: 30711250 DOI: 10.1016/j.bbrc.2019.01.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/19/2019] [Indexed: 10/27/2022]
Abstract
Activation of the receptor activator of nuclear factor-κB (RANK) by its ligand (RANKL) is involved in both solid and hematological malignancies, including multiple myeloma, acute myeloid leukemia and B-cell leukemia. Although RANKL expression has been described in normal T cells, a potential role in T-cell leukemia remains undefined. Here, we used a model of immature T-cell leukemia/lymphoma, the TEL-JAK2 transgenic mice, to assess RANKL expression in leukemic cells and its regulatory mechanisms. We found that Rankl mRNA was significantly overexpressed in leukemic T cells when compared to wild-type thymocytes, their nonmalignant counterparts. Moreover, Rankl mRNA and RANKL surface expression in leukemic cells was induced by T-cell receptor (TCR) signaling activation, dependently on the NF-κB signaling pathway. These results indicate that TCR-activated leukemic T cells express high levels of RANKL and are potential inducers of RANK signaling in microenvironmental cells.
Collapse
Affiliation(s)
- Mónica T Fernandes
- Centre for Biomedical Research (CBMR), University of Algarve, 8005-139, Faro, Portugal; PhD Program in Biomedical Sciences, Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139, Faro, Portugal.
| | - Lara S Caroço
- Centre for Biomedical Research (CBMR), University of Algarve, 8005-139, Faro, Portugal.
| | - Ivette Pacheco-Leyva
- Centre for Biomedical Research (CBMR), University of Algarve, 8005-139, Faro, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal.
| | - Nuno R Dos Santos
- Centre for Biomedical Research (CBMR), University of Algarve, 8005-139, Faro, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal.
| |
Collapse
|
9
|
The RANK-RANKL axis: an opportunity for drug repurposing in cancer? Clin Transl Oncol 2019; 21:977-991. [PMID: 30656607 DOI: 10.1007/s12094-018-02023-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Abstract
Drug repurposing offers advantages over traditional drug development in terms of cost, speed and improved patient outcomes. The receptor activator of nuclear factor kappa B (RANK) ligand (RANKL) inhibitor denosumab is approved for the prevention of skeletal-related events in patients with advanced malignancies involving bone, including solid tumours and multiple myeloma. Following improved understanding of the role of RANK/RANKL in cancer biology, denosumab has already been repurposed as a treatment for giant cell tumour of bone. Here, we review the role of RANK/RANKL in tumourigenesis, including effects on tumour initiation, progression and metastasis and consider the impact of RANK/RANKL on tumour immunology and immune evasion. Finally, we look briefly at ongoing trials and future opportunities for therapeutic synergy when combining denosumab with anti-cancer agents such as immune checkpoint inhibitors.
Collapse
|
10
|
Techapatiphandee M, Tammachote N, Tammachote R, Wongkularb A, Yanatatsaneejit P. VDR and TNFSF11 polymorphisms are associated with osteoporosis in Thai patients. Biomed Rep 2018; 9:350-356. [PMID: 30233789 DOI: 10.3892/br.2018.1137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022] Open
Abstract
Determining molecular markers for osteoporosis may be valuable for improving the quality of life of affected elderly patients by aiding in early detection and disease management. In the present study, the association between single nucleotide polymorphisms (SNPs) of the vitamin D receptor (VDR) and tumour necrosis factor superfamily number 11 (TNFSF11) genes and the susceptibility of developing osteoporosis was investigated in a Thai female cohort. The study group consisted of 105 Thai postmenopausal patients diagnosed with osteoporosis and 132 healthy Thai postmenopausal female volunteers. DNA extracted from blood samples was used to genotype the VDR and TNFSF11 genes using polymerase chain reaction-restriction fragment length polymorphism and sequencing analysis. For VDR, the frequencies of the genotypes TT, CT and CC for the TaqI SNP (rs731236) were 87.88, 11.36 and 0.76%, respectively, in the control group, while in the osteoporosis cohort were 92.38, 5.71 and 1.91%, respectively. For the FokI SNP (rs2228570), the frequencies of the genotypes CC, CT and TT were 31.06, 55.30 and 13.64%, respectively, in the control group, and in the osteoporosis group were 29.52, 43.81 and 26.67%, respectively. For BsmI SNP (rs1544410), the frequencies of the genotypes GG, GA and AA were 78.03, 18.94 and 3.03%, respectively, in control group, and in the osteoporosis group were 80.95, 18.10 and 0.95%, respectively. The significant risk of osteoporosis associated with the FokI SNP was determined. The odds ratio (95% confidence interval) was 2.30 (1.14-4.69; P=0.01) among patients with osteoporosis with TT as the susceptibility genotype. For TNFSF11, the frequencies of the genotypes TT, CT and CC for the -290C>T SNP (rs9525641) in the control group were 36.36, 50.76 and 12.88%, respectively, while in the osteoporosis group were 31.43, 56.19 and 12.38%, respectively. For the -643C>T SNP (rs9533156), the frequencies of the genotypes TT, CT and CC in the control group were 35.61, 48.48 and 15.91%, respectively, while in the osteoporosis group were 32.38, 55.24 and 12.38%, respectively. For the -693G>C SNP (rs9533155), the frequencies of the genotypes CC, CG, and GG in the control group were 39.39, 46.97 and 13.64%, respectively, and in the osteoporosis group were 36.19, 53.33 and 10.48%, respectively. No significant associations of the TNFSF11 SNPs with osteoporosis were determined; however, it was notable that the GCT haplotype of TNFSF11 may be a protective haplotype for osteoporosis. Therefore, it was concluded that the SNP FokI of VDR may be a potential molecular biomarker for the development of osteoporosis in Thai females.
Collapse
Affiliation(s)
- Mananya Techapatiphandee
- Human Genetics Research Group, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nattapol Tammachote
- Department of Orthopaedics, Faculty of Medicine, Thammasat University Hospital, Khlong Nueng, Pathumthani 12120, Thailand
| | - Rachaneekorn Tammachote
- Human Genetics Research Group, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anna Wongkularb
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Pattamawadee Yanatatsaneejit
- Human Genetics Research Group, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
11
|
Zhang JL, Qiu XM, Zhang N, Tang W, Gober HJ, Li DJ, Wang L. Bu‑Shen‑Ning‑Xin decoction suppresses osteoclastogenesis by modulating RANKL/OPG imbalance in the CD4+ T lymphocytes of ovariectomized mice. Int J Mol Med 2018; 42:299-308. [PMID: 29717766 PMCID: PMC5979942 DOI: 10.3892/ijmm.2018.3645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 03/22/2018] [Indexed: 02/05/2023] Open
Abstract
Postmenopausal osteoporosis (PMO) has been recognized as an inflammatory condition. CD4+ T cells serve a key role in the interaction between bone metabolism and the immune system. Bu-Shen-Ning-Xin decoction (BSNXD), a traditional Chinese medicine, has been ultilized as a remedy for PMO. In the present study, the aim was to investigate the immune modulatory effects of BSNXD on CD4+ T cells, receptor activation of nuclear factor κB ligand (RANKL)/osteoprotegerin (OPG) imbalance, skeletal parameters and osteoclastogenesis. Ovariectomized (OVX) mice were treated with a series of concentrations of BSNXD and then autopsied. The bone phenotype was analyzed by micro computed tomography. CD4+ T cells were isolated and their percentage was measured using flow cytometry (FCM). RANKL and OPG expression by the CD4+ T cells at the transcriptional and translational levels were quantified by reverse transcription-quantitative polymerase chain reaction, ELISA and FCM. CD4+ T cells were cultured with blood serum derived from BSNXD-treated OVX mice (BSNXD-derived serum) and the apoptosis rate was quantified by FCM. CD4+ T cells were co-cultured with bone marrow-derived macrophages and exposed to BSNXD-derived serum to whether CD4+ T cells are involved in BSNXD-modulated osteoclastogenesis and the results were quantified via tartrate-resistant acid phosphatase staining. The results revealed that BSNXD ameliorated OVX-induced bone loss, prevented the expansion of CD4+ T cells and restored the RANKL/OPG imbalance in the CD4+ T cells of OVX mice. In vitro, BSNXD-derived serum promoted the apoptosis of CD4+ T cells. The co-culture system demonstrated that CD4+ T cells from OVX mice increase osteoclastogenesis, while this effect was suppressed by BSNXD administration. The findings of the study collectively suggest that BSNXD exerts an immunoprotective effect on the bone phenotype of OVX mice by ameliorating RANKL/OPG imbalance in CD4+ T cells and attenuating osteoclastogenesis.
Collapse
Affiliation(s)
- Jia-Li Zhang
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| | - Xue-Min Qiu
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| | - Na Zhang
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| | - Wei Tang
- Hepato‑Biliary‑Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, University of Tokyo, Tokyo 113‑8655, Japan
| | - Hans-Jürgen Gober
- Department of Pharmacy, Neuromed Campus, Johannes Kepler University, 4020 Linz, Austria
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| | - Ling Wang
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| |
Collapse
|
12
|
Zhao W, Zhang Y, Yang S, Hao Y, Wang Z, Duan X. Analysis of two transcript isoforms of vacuolar ATPase subunit H in mouse and zebrafish. Gene 2017; 638:66-75. [PMID: 28970149 DOI: 10.1016/j.gene.2017.09.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 11/16/2022]
Abstract
ATP6V1H encodes the subunit H of vacuolar ATPase (V-ATPase) and has been recently proved to regulate osteoclast function. The alternative splicing of ATP6V1H gene results in two isoforms, and it is not clear whether and how the two isoforms function differently. In this report, we used bioinformatics methods to compare the differences of two isoforms in different species. The distributions and amounts of two isoforms were analyzed in eleven kinds of mouse tissues and mouse osteoclasts using RT-PCR, Q-PCR, western blot and immunohistochemical staining methods, respectively. In order to observe the in vivo biological differences of two isoforms during development, the zebrafish mRNA of two wild type atp6v1h transcripts as well as their mutant forms were also injected into zebrafish embryos, respectively. Bioinformatic analysis revealed that two isoforms were quite different in many ways, especially in protein size, internal space, phosphorylation state and H-bond binding. The amounts of two transcripts and the ratio of long and short transcript varied a lot from tissue to tissue or cell to cell, and osteoclasts were the cells only expressing long isoform among the tissues or cells we detected. The in vivo selective expression of two subunit H splice variants showed their different effects on the craniofacial development of zebrafish. The short isoform reduced the size of zebrafish head and did not play a complete function compared with the long isoform. We propose that long isoform of subunit H is necessary for the normal craniofacial bone development and the lack of short transcript might be necessary for the normal osteoclastic function.
Collapse
Affiliation(s)
- Wanmin Zhao
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Yanli Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Shaoqing Yang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Ying Hao
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Zhe Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Xiaohong Duan
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| |
Collapse
|
13
|
Al-Mufti SMT, Saliem SS, Abdulbaqi HR. The association between receptor activator of nuclear factor kappa-β ligand and clinical attachment level among waterpipe smoker. J Indian Soc Periodontol 2017; 21:376-379. [PMID: 29491583 PMCID: PMC5827504 DOI: 10.4103/jisp.jisp_124_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/19/2017] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Higher levels of receptor activator of nuclear factor kappa-β ligand, i.e., RANKL, were reported among periodontitis patients compared with their healthy peers. This study aimed to measure the salivary level of RANKL among waterpipe smokers and to find the possible correlation between salivary level of RANKL and clinical periodontal parameters. MATERIALS AND METHODS This study is a cross-sectional study involving 89 (49 waterpipe smokers and 40 nonsmokers) participants. The whole unstimulated saliva samples were collected for quantitative determination of RNAKL using a human RANKL enzyme-linked immunosorbent assay kit. Plaque index, gingival index, bleeding on probing, periodontal pocket depth (PPD), and clinical attachment level (CAL) were recorded for each participant. Mann-Whitney U-test was used to detect any difference between groups at P < 0.05. Spearman correlation coefficient test was used to test the association between variables. Linear regression was used to investigate the cause-and-effect relationship between the associated variables. RESULTS In a comparison, RANKL, PPD, and CAL showed statistical differences (P < 0.05) between waterpipe smokers and nonsmokers. RANKL was found to be positively associated with CAL, and approximately 62.8% of CAL in this study sample could be explained by RANKL. The regression equation was CAL = 1.744 + 0.004 (RANKL). CONCLUSIONS The salivary level of RANKL was positively related to CAL in this study sample.
Collapse
Affiliation(s)
| | - Saif Sehaam Saliem
- Department of Periodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Hayder Raad Abdulbaqi
- Department of Periodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
14
|
Wang Y, van Assen AH, Reis CR, Setroikromo R, van Merkerk R, Boersma YL, Cool RH, Quax WJ. Novel RANKL DE-loop mutants antagonize RANK-mediated osteoclastogenesis. FEBS J 2017. [PMID: 28627025 DOI: 10.1111/febs.14142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yizhou Wang
- Department of Chemical and Pharmaceutical Biology; Groningen Research Institute of Pharmacy; University of Groningen; The Netherlands
| | - Aart H.G. van Assen
- Department of Chemical and Pharmaceutical Biology; Groningen Research Institute of Pharmacy; University of Groningen; The Netherlands
| | - Carlos R. Reis
- Department of Chemical and Pharmaceutical Biology; Groningen Research Institute of Pharmacy; University of Groningen; The Netherlands
| | - Rita Setroikromo
- Department of Chemical and Pharmaceutical Biology; Groningen Research Institute of Pharmacy; University of Groningen; The Netherlands
| | - Ronald van Merkerk
- Department of Chemical and Pharmaceutical Biology; Groningen Research Institute of Pharmacy; University of Groningen; The Netherlands
| | - Ykelien L. Boersma
- Department of Chemical and Pharmaceutical Biology; Groningen Research Institute of Pharmacy; University of Groningen; The Netherlands
| | - Robbert H. Cool
- Department of Chemical and Pharmaceutical Biology; Groningen Research Institute of Pharmacy; University of Groningen; The Netherlands
| | - Wim J. Quax
- Department of Chemical and Pharmaceutical Biology; Groningen Research Institute of Pharmacy; University of Groningen; The Netherlands
| |
Collapse
|
15
|
Heckt T, Keller J, Peters S, Streichert T, Chalaris A, Rose-John S, Mell B, Joe B, Amling M, Schinke T. Parathyroid hormone induces expression and proteolytic processing of Rankl in primary murine osteoblasts. Bone 2016; 92:85-93. [PMID: 27554428 DOI: 10.1016/j.bone.2016.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 01/06/2023]
Abstract
Rankl, the major pro-osteoclastogenic cytokine, is synthesized as a transmembrane protein that can be cleaved by specific endopeptidases to release a soluble form (sRankl). We have previously reported that interleukin-33 (IL-33) induces expression of Tnfsf11, the Rankl-encoding gene, in primary osteoblasts, but we failed to detect sRankl in the medium. Since we also found that PTH treatment caused sRankl release in a similar experimental setting, we directly compared the influence of the two molecules. Here we show that treatment of primary murine osteoblasts with PTH causes sRankl release into the medium, whereas IL-33 only induces Tnfsf11 expression. This difference was not explainable by alternative splicing or by PTH-specific induction of endopeptidases previously shown to facilitate Rankl processing. Since sRankl release after PTH administration was blocked in the presence a broad-spectrum matrix metalloprotease inhibitor, we applied genome-wide expression analyses to identify transcriptional targets of PTH in osteoblasts. We thereby confirmed some of the effects of PTH established in other systems, but additionally identified few PTH-induced genes encoding metalloproteases. By comparing expression of these genes following administration of IL-33, PTH and various other Tnfsf11-inducing molecules, we observed that PTH was the only molecule simultaneously inducing sRankl release and Adamts1 expression. The functional relevance of the putative influence of PTH on Rankl processing was further confirmed in vivo, as we found that daily injection of PTH into wildtype mice did not only increase bone formation, but also osteoclastogenesis and sRankl concentrations in the serum. Taken together, our findings demonstrate that transcriptional effects on Tnfsf11 expression do not generally trigger sRankl release and that PTH has a unique activity to promote the proteolytic processing of Rankl.
Collapse
Affiliation(s)
- Timo Heckt
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Johannes Keller
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Stephanie Peters
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Thomas Streichert
- Department of Clinical Chemistry, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany; Department of Clinical Chemistry, University Hospital Cologne, Cologne 50937, Germany
| | - Athena Chalaris
- Biochemical Institute, Christian-Albrechts-University Kiel, Kiel 24098, Germany
| | - Stefan Rose-John
- Biochemical Institute, Christian-Albrechts-University Kiel, Kiel 24098, Germany
| | - Blair Mell
- Program in Physiological Genomics, Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614-2598, United States; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614-2598, United States
| | - Bina Joe
- Program in Physiological Genomics, Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614-2598, United States; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614-2598, United States
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany.
| |
Collapse
|
16
|
Dela Cruz A, Grynpas MD, Mitchell J. Elevated Gα11 expression in osteoblast lineage cells promotes osteoclastogenesis and leads to enhanced trabecular bone accrual in response to pamidronate. Am J Physiol Endocrinol Metab 2016; 310:E811-20. [PMID: 27006198 DOI: 10.1152/ajpendo.00049.2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/15/2016] [Indexed: 11/22/2022]
Abstract
Osteoblastic cells indirectly induce osteoclastogenesis in the bone microenvironment by expressing paracrine factors such as RANKL and M-CSF, leading to increased bone resorption. These cytokines can be regulated by a variety of intracellular pathways, which include G protein-coupled receptor signaling. To explore how enhanced signaling of the Gαq/11 pathway in osteoblast lineage cells may mediate osteoclast formation, we cocultured wild-type (WT) preosteoclasts with BMSCs derived from either WT or transgenic mice with osteoblast-specific overexpression of Gα11 (G11-Tg). G11-Tg cocultures had elevated osteoclast numbers with greater resorptive capacity and increased expression of Rankl, Rankl:Opg (osteoprotegerin), and M-csf compared with cocultures with WT BMSCs. As well, cocultures with G11-Tg BMSCs required a higher concentration of OPG to inhibit osteoclast formation and less angiotensin II to increase osteoclast size. These indicate that G11-Tg osteoblasts drive the increased osteoclast formation and osteopenia seen in G11-Tg mice. Pamidronate treatment of G11-Tg mice restored the trabecular bone loss phenotype, as bone mineral density, bone volume, trabecular number, separation, and expressions of osteoblastic and osteoclastic genes were comparable with WT parameters. These changes were characterized by enhanced accumulation of calcified cartilage in trabecular bone, demonstrating that resorption of the cartilaginous intermediate by osteoclasts is more affected by bisphosphonate treatment in G11-Tg mice. In conclusion, overexpression of Gα11 in osteoblastic cells promotes osteoclastogenesis by upregulation of Rankl and M-csf and bone loss by increased osteoclast resorption of the trabecular bone and cartilaginous matrix.
Collapse
Affiliation(s)
- Ariana Dela Cruz
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario Canada
| | - Marc D Grynpas
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; and Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Jane Mitchell
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario Canada;
| |
Collapse
|
17
|
González-Suárez E, Sanz-Moreno A. RANK as a therapeutic target in cancer. FEBS J 2016; 283:2018-33. [PMID: 26749530 DOI: 10.1111/febs.13645] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/10/2015] [Accepted: 01/06/2016] [Indexed: 01/27/2023]
Abstract
The RANK signaling pathway has emerged as a new target in breast cancer as receptor activator of nuclear factor κB ligand (RANKL) and its receptor RANK mediate the pro-tumorigenic role of progesterone in the mammary gland. Thousands of cancer patients worldwide are already taking RANKL inhibitors for the management of bone metastasis, given the relevance of this pathway in osteoclastogenesis and bone resorption. RANK signaling also has multiple divergent effects in immunity and inflammation, both in the generation of active immune responses and in the induction of tolerance: it is required for lymph node organogenesis, thymic medullary epithelial development and self-tolerance, and regulates activation of several immune cells and inflammatory processes. The RANK pathway interferes with mammary epithelial differentiation and mediates the major proliferative response of mammary epithelium to progesterone and progesterone-driven expansion of mammary stem cells; it also controls hair follicle and epidermal stem cell homeostasis, pointing to RANK as a key regulator of epithelial stemness. Here we revisit the main functions of RANK signaling in bone remodeling, immune cells and epithelial differentiation. We also discuss the mechanistic evidence that supports its pleiotropic effects on cancer: from bone metastasis to immune and cancer-cell-dependent effects.
Collapse
Affiliation(s)
- Eva González-Suárez
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, IDIBELL, Barcelona, Spain
| | - Adrián Sanz-Moreno
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, IDIBELL, Barcelona, Spain
| |
Collapse
|
18
|
Sutton KMC, Hu T, Wu Z, Siklodi B, Vervelde L, Kaiser P. The functions of the avian receptor activator of NF-κB ligand (RANKL) and its receptors, RANK and osteoprotegerin, are evolutionarily conserved. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 51:170-184. [PMID: 25796577 DOI: 10.1016/j.dci.2015.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 06/04/2023]
Abstract
A new member of the chicken TNF superfamily has recently been identified, namely receptor activator of NF-κB ligand (RANKL), as have its signalling receptor, RANK, and its decoy receptor, osteoprotegerin (OPG). In mammals, RANKL and RANK are transmembrane proteins expressed on the surface of Th1 cells and dendritic cells (DC) respectively, whereas OPG is expressed as a soluble protein from osteoblasts and DC. Recombinant soluble chicken RANKL (chRANKL) forms homotrimers whereas chicken OPG (chOPG) forms homodimers, characteristic of these molecules in mammals. ChRANKL, chRANK and chOPG are expressed at the mRNA level in most tissues and organs. ChRANKL is transcriptionally regulated by Ca(2+) mobilisation and enhances the mRNA expression levels of pro-inflammatory cytokines in bone marrow-derived DC (BMDC); this is inhibited by both chOPG-Fc and soluble chRANK-Fc. However, chRANKL does not enhance the expression of cell surface markers in either BMDC or BM-derived macrophages (BMM). Furthermore, chRANKL enhances the survival of APC similar to its mammalian orthologue.
Collapse
Affiliation(s)
- Kate M C Sutton
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Tuanjun Hu
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Zhiguang Wu
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Botond Siklodi
- CEVA-Phylaxia Veterinary Biologicals Co. Ltd., Szallas u. 5, Budapest H-1107, Hungary
| | - Lonneke Vervelde
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK.
| | - Pete Kaiser
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| |
Collapse
|
19
|
Li S, Li T, Chen Y, Nie Y, Li C, Liu L, Li Q, Qiu L. Granulocyte Colony-Stimulating Factor Induces Osteoblast Inhibition by B Lymphocytes and Osteoclast Activation by T Lymphocytes during Hematopoietic Stem/Progenitor Cell Mobilization. Biol Blood Marrow Transplant 2015; 21:1384-91. [PMID: 25985917 DOI: 10.1016/j.bbmt.2015.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 05/04/2015] [Indexed: 12/18/2022]
Abstract
In the bone marrow (BM), hematopoietic stem and progenitor cells (HSPCs) reside in specialized niches near osteoblast cells at the endosteum. HSPCs that egress to peripheral blood are widely used for transplant, and mobilization is most commonly performed with recombinant human granulocyte colony-stimulating factor (G-CSF). However, the cellular targets of G-CSF that initiate the mobilization cascade and bone remodeling are not completely understood. Here, we examined whether T and B lymphocytes modulate the bone niche and influence HSPC mobilization. We used T and B defective mice to show that G-CSF-induced mobilization of HSPCs correlated with B lymphocytes but poorly with T lymphocytes. In addition, we found that defective B lymphocytes prevent G-CSF-mediated osteoblast disruption, and further study showed BM osteoblasts were reduced coincident with mobilization, induced by elevated expression of dickkopf1 of BM B lymphocytes. BM T cells were also involved in G-CSF-induced osteoclast activation by regulating the Receptor Activator of Nuclear Factor-κ B Ligand/Osteoprotegerin (RANKL/OPG) axis. These data provide evidence that BM B and T lymphocytes play a role in G-CSF-induced HSPC mobilization by regulating bone remodeling.
Collapse
Affiliation(s)
- Sidan Li
- Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics, Ministry of Education; Key Laboratory of Major Diseases in Children, Ministry of Education; Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China; State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, Tianjin, China
| | - Tianshou Li
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Yongbing Chen
- Department of Hepatobiliary Surgery, General Hospital of Beijing Military Area Command, Beijing, China
| | - Yinchao Nie
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Changhong Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, Tianjin, China
| | - Lanting Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, Tianjin, China
| | - Qiaochuan Li
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China.
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, Tianjin, China
| |
Collapse
|
20
|
Demoulin SA, Somja J, Duray A, Guénin S, Roncarati P, Delvenne PO, Herfs MF, Hubert PM. Cervical (pre)neoplastic microenvironment promotes the emergence of tolerogenic dendritic cells via RANKL secretion. Oncoimmunology 2015; 4:e1008334. [PMID: 26155412 PMCID: PMC4485731 DOI: 10.1080/2162402x.2015.1008334] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 12/16/2014] [Accepted: 01/08/2015] [Indexed: 12/20/2022] Open
Abstract
The progression of genital human papillomavirus (HPV) infections into preneoplastic lesions suggests that infected/malignant cells are not adequately recognized by the immune system. In this study, we demonstrated that cervical/vulvar cancer cells secrete factor(s) that affect both the maturation and function of dendritic cells (DC) leading to a tolerogenic profile. Indeed, DC cocultured with cancer cell lines display both a partially mature phenotype after lipopolysaccharide (LPS) maturation and an altered secretory profile (IL-10high and IL-12p70low). In addition, tumor-converted DC acquire the ability to alter T-cell proliferation and to induce FoxP3+ suppressive T cells from naive CD4+ T cells. Among the immunosuppressive factors implicated in DC alterations in genital (pre)neoplastic microenvironment, we identified receptor activator of nuclear factor kappa-B ligand (RANKL), a TNF family member, as a potential candidate. For the first time, we showed that RANKL expression strongly increases during cervical progression. We also confirmed that RANKL is directly secreted by cancer cells and this expression is not related to HPV viral oncoprotein induction. Interestingly, the addition of osteoprotegerin (OPG) in coculture experiments reduces significantly the inhibition of DC maturation, the release of a tolerogenic cytokine profile (IL-12low IL-10high) and the induction of regulatory T (Treg) cells. Our findings suggest that the use of inhibitory molecules directed against RANKL in cervical/vulvar (pre)neoplastic lesions might prevent alterations of DC functionality and represent an attractive strategy to overcome immune tolerance in such cancers.
Collapse
Key Words
- LC, Langerhans cells; LPS, lipopolysaccharide
- APC, antigen presenting cells; DC, dendritic cells
- GILZ, glucocorticoid-induced leucine zipper; HPV, human papillomavirus
- HSIL, high grade intraepithelial lesions
- IHC, immunohistochemistry
- ILT3, Immunoglobulin-like transcript 3
- KN, normal keratinocytes
- LSIL, low grade intraepithelial lesion
- MFI, mean fluorescence intensity
- OPG, osteoprotegerin
- PBMC, peripheral blood mononuclear cells; pDC, plasmacytoid dendritic cells
- RANKL
- RANKL, Receptor activator of nuclear factor kappa-B ligand
- SCC, squamous cell carcinoma
- SIL, squamous intraepithelial neoplasia
- Treg cells
- Treg cells, regulatory T cells
- VIN, vulvar intraepithelial neoplasia
- cervical cancers
- dendritic cells
- tolerogenicity
Collapse
Affiliation(s)
- Stéphanie A Demoulin
- Laboratory of Experimental Pathology; GIGA-Cancer; University of Liège ; Liège, Belgium
| | - Joan Somja
- Department of Pathology; University Hospital of Liège ; Liège, Belgium
| | - Anaëlle Duray
- Laboratory of Experimental Pathology; GIGA-Cancer; University of Liège ; Liège, Belgium
| | - Samuel Guénin
- Laboratory of Experimental Pathology; GIGA-Cancer; University of Liège ; Liège, Belgium
| | - Patrick Roncarati
- Laboratory of Experimental Pathology; GIGA-Cancer; University of Liège ; Liège, Belgium
| | | | - Michael F Herfs
- Laboratory of Experimental Pathology; GIGA-Cancer; University of Liège ; Liège, Belgium
| | - Pascale M Hubert
- Laboratory of Experimental Pathology; GIGA-Cancer; University of Liège ; Liège, Belgium
| |
Collapse
|
21
|
Bindarit, an inhibitor of monocyte chemotactic protein synthesis, protects against bone loss induced by chikungunya virus infection. J Virol 2014; 89:581-93. [PMID: 25339772 DOI: 10.1128/jvi.02034-14] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED The recent global resurgence of arthritogenic alphaviruses, in particular chikungunya virus (CHIKV), highlights an urgent need for the development of therapeutic intervention strategies. While there has been significant progress in defining the pathophysiology of alphaviral disease, relatively little is known about the mechanisms involved in CHIKV-induced arthritis or potential therapeutic options to treat the severe arthritic symptoms associated with infection. Here, we used microcomputed tomographic (μCT) and histomorphometric analyses to provide previously undescribed evidence of reduced bone volume in the proximal tibial epiphysis of CHIKV-infected mice compared to the results for mock controls. This was associated with a significant increase in the receptor activator of nuclear factor-κB ligand/osteoprotegerin (RANKL/OPG) ratio in infected murine joints and in the serum of CHIKV patients. The expression levels of the monocyte chemoattractant proteins (MCPs), including MCP-1/CCL2, MCP-2/CCL8, and MCP-3/CCL7, were also highly elevated in joints of CHIKV-infected mice, accompanied by increased cellularity within the bone marrow in tibial epiphysis and ankle joints. Both this effect and CHIKV-induced bone loss were significantly reduced by treatment with the MCP inhibitor bindarit. Collectively, these findings demonstrate a unique role for MCPs in promoting CHIKV-induced osteoclastogenesis and bone loss during disease and suggest that inhibition of MCPs with bindarit may be an effective therapy for patients affected with alphavirus-induced bone loss. IMPORTANCE Arthritogenic alphaviruses, including chikungunya virus (CHIKV) and Ross River virus (RRV), cause worldwide outbreaks of polyarthritis, which can persist in patients for months following infection. Previous studies have shown that host proinflammatory soluble factors are associated with CHIKV disease severity. Furthermore, it is established that chemokine (C-C motif) ligand 2 (CCL2/MCP-1) is important in cellular recruitment and inducing bone-resorbing osteoclast (OC) formation. Here, we show that CHIKV replicates in bone and triggers bone loss by increasing the RANKL/OPG ratio. CHIKV infection results in MCP-induced cellular infiltration in the inflamed joints, and bone loss can be ameliorated by treatment with an MCP-inhibiting drug, bindarit. Taken together, our data reveal a previously undescribed role for MCPs in CHIKV-induced bone loss: one of recruiting monocytes/OC precursors to joint sites and thereby favoring a pro-osteoclastic microenvironment. This suggests that bindarit may be an effective treatment for alphavirus-induced bone loss and arthritis in humans.
Collapse
|
22
|
Cytokine-mediated bone destruction in rheumatoid arthritis. J Immunol Res 2014; 2014:263625. [PMID: 25295284 PMCID: PMC4176903 DOI: 10.1155/2014/263625] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/27/2014] [Indexed: 12/29/2022] Open
Abstract
Bone homeostasis, which involves formation and resorption, is an important process for maintaining adequate bone mass in humans. Rheumatoid arthritis (RA) is an autoimmune disease characterized by inflammation and bone loss, leading to joint destruction and deformity, and is a representative disease of disrupted bone homeostasis. The bone loss and joint destruction are mediated by immunological insults by proinflammatory cytokines and various immune cells. The connection between bone and immunity has been intensely studied and comprises the emerging field of osteoimmunology. Osteoimmunology is an interdisciplinary science investigating the interplay between the skeletal and the immune systems. The main contributors in osteoimmunology are the bone effector cells, such as osteoclasts or osteoblasts, and the immune cells, particularly lymphocytes and monocytes. Physiologically, osteoclasts originate from immune cells, and immune cells regulate osteoblasts and vice versa. Pathological conditions such as RA might affect these interactions, thereby altering bone homeostasis, resulting in the unfavorable outcome of bone destruction. In this review, we describe the osteoclastogenic roles of the proinflammatory cytokines and immune cells that are important in the pathophysiology of RA.
Collapse
|
23
|
Kłossowicz M, Marek-Bukowiec K, Arbulo-Echevarria MM, Ścirka B, Majkowski M, Sikorski AF, Aguado E, Miazek A. Identification of functional, short-lived isoform of linker for activation of T cells (LAT). Genes Immun 2014; 15:449-56. [PMID: 25008862 DOI: 10.1038/gene.2014.35] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 05/04/2014] [Accepted: 05/23/2014] [Indexed: 12/13/2022]
Abstract
Linker for activation of T cells (LAT) is a transmembrane adaptor protein playing a key role in the development, activation and maintenance of peripheral homeostasis of T cells. In this study we identified a functional isoform of LAT. It originates from an intron 6 retention event generating an in-frame splice variant of LAT mRNA denoted as LATi6. Comparison of LATi6 expression in peripheral blood leukocytes of human and several other mammalian species revealed that it varied from being virtually absent in the mouse to being predominant in the cow. Analysis of LAT isoform frequency expressed from minigene splicing reporters carrying loss- or gain-of-function point mutations within intronic polyguanine sequences showed that these elements are critical for controlling the intron 6 removal. The protein product of LATi6 isoform (LATi6) ectopically expressed in LAT-deficient JCam 2.5 cell line localized correctly to subcellular compartments and supported T-cell receptor signaling but differed from the canonical LAT protein by displaying a shorter half-life and mediating an increased interleukin-2 secretion upon prolonged CD3/CD28 crosslinking. Altogether, our data suggest that the appearance of LATi6 isoform is an evolutionary innovation that may contribute to a more efficient proofreading control of effector T-cell response.
Collapse
Affiliation(s)
- M Kłossowicz
- Laboratory of Tumor Immunology, Department of Tumor Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - K Marek-Bukowiec
- Laboratory of Tumor Immunology, Department of Tumor Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - M M Arbulo-Echevarria
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Core Research Facility for Health Sciences, University of Cadiz and Puerto Real University Hospital Research Unit, School of Medicine, Department of Biomedicine, Biotechnology and Public Health (Immunology), Cadiz, Spain
| | - B Ścirka
- Laboratory of Tumor Immunology, Department of Tumor Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - M Majkowski
- Laboratory of Cytobiochemistry, Biotechnology Faculty, University of Wrocław, Wroclaw, Poland
| | - A F Sikorski
- Laboratory of Cytobiochemistry, Biotechnology Faculty, University of Wrocław, Wroclaw, Poland
| | - E Aguado
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Core Research Facility for Health Sciences, University of Cadiz and Puerto Real University Hospital Research Unit, School of Medicine, Department of Biomedicine, Biotechnology and Public Health (Immunology), Cadiz, Spain
| | - A Miazek
- 1] Laboratory of Tumor Immunology, Department of Tumor Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland [2] Department of Biochemistry, Pharmacology and Toxicology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| |
Collapse
|
24
|
RANKL expression in periodontal disease: where does RANKL come from? BIOMED RESEARCH INTERNATIONAL 2014; 2014:731039. [PMID: 24719884 PMCID: PMC3955606 DOI: 10.1155/2014/731039] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/22/2014] [Indexed: 11/18/2022]
Abstract
Periodontitis is an inflammatory disease characterized by periodontal pocket formation and alveolar bone resorption. Periodontal bone resorption is induced by osteoclasts and receptor activator of nuclear factor-κB ligand (RANKL) which is an essential and central regulator of osteoclast development and osteoclast function. Therefore, RANKL plays a critical role in periodontal bone resorption. In this review, we have summarized the sources of RANKL in periodontal disease and explored which factors may regulate RANKL expression in this disease.
Collapse
|
25
|
Sims NA. New insights into osteocyte and osteoblast biology: support of osteoclast formation, PTH action and the role of Wnt16 (ASBMR 2013). ACTA ACUST UNITED AC 2013. [DOI: 10.1038/bonekey.2013.201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Mori G, D'Amelio P, Faccio R, Brunetti G. The Interplay between the bone and the immune system. Clin Dev Immunol 2013; 2013:720504. [PMID: 23935650 PMCID: PMC3725924 DOI: 10.1155/2013/720504] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 06/07/2013] [Indexed: 12/27/2022]
Abstract
In the last two decades, numerous scientists have highlighted the interactions between bone and immune cells as well as their overlapping regulatory mechanisms. For example, osteoclasts, the bone-resorbing cells, are derived from the same myeloid precursor cells that give rise to macrophages and myeloid dendritic cells. On the other hand, osteoblasts, the bone-forming cells, regulate hematopoietic stem cell niches from which all blood and immune cells are derived. Furthermore, many of the soluble mediators of immune cells, including cytokines and growth factors, regulate the activities of osteoblasts and osteoclasts. This increased recognition of the complex interactions between the immune system and bone led to the development of the interdisciplinary osteoimmunology field. Research in this field has great potential to provide a better understanding of the pathogenesis of several diseases affecting both the bone and immune systems, thus providing the molecular basis for novel therapeutic strategies. In these review, we reported the latest findings about the reciprocal regulation of bone and immune cells.
Collapse
Affiliation(s)
- Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy
| | - Patrizia D'Amelio
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Roberta Faccio
- Department of Orthopedics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Giacomina Brunetti
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Piazza Giulio Cesare, 11, 70124 Bari, Italy
| |
Collapse
|