1
|
Shafique A, Nadeem A, Aslam F, Manzoor H, Noman M, Wohler E, Witmer PD, Sobreira N, Naz S. Identification and analyses of exonic and copy number variants in spastic paraplegia. Sci Rep 2024; 14:14331. [PMID: 38906889 PMCID: PMC11192879 DOI: 10.1038/s41598-024-64922-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024] Open
Abstract
Hereditary spastic paraplegias are a diverse group of degenerative disorders that are clinically categorized as isolated; with involvement of lower limb spasticity, or symptomatic, where spastic paraplegia is complicated by further neurological features. We sought to identify the underlying genetic causes of these disorders in the participating patients. Three consanguineous families with multiple affected members were identified by visiting special schools in the Punjab Province. DNA was extracted from blood samples of the participants. Exome sequencing was performed for selected patients from the three families, and the data were filtered to identify rare homozygous variants. ExomeDepth was used for the delineation of the copy number variants. All patients had varying degrees of intellectual disabilities, poor speech development, spasticity, a wide-based gait or an inability to walk and hypertonia. In family RDHR07, a homozygous deletion involving multiple exons and introns of SPG11 (NC000015.9:g.44894055_449028del) was found and correlated with the phenotype of the patients who had spasticity and other complex movement disorders, but not those who exhibited ataxic or indeterminate symptoms as well. In families ANMD03 and RDFA06, a nonsense variant, c.985C > T;(p.Arg329Ter) in DDHD2 and a frameshift insertion‒deletion variant of AP4B1, c.965-967delACTinsC;p.(Tyr322SerfsTer14), were identified which were homozygous in the patients while the obligate carriers in the respective pedigrees were heterozygous. All variants were ultra-rare with none, or very few carriers identified in the public databases. The three loss of function variants are likely to cause nonsense-mediated decay of the respective transcripts. Our research adds to the genetic variability associated with the SPG11 and AP4B1 variants and emphasizes the genetic heterogeneity of hereditary spastic paraplegia.
Collapse
Affiliation(s)
- Anum Shafique
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Ayesha Nadeem
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Faiza Aslam
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Humera Manzoor
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Muhammad Noman
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
- Department of Biochemistry, Faisalabad Medical University, Faisalabad, Pakistan
| | - Elizabeth Wohler
- McKusick-Nathans Department of Genetic Medicine, Baylor Hopkins Center for Mendelian Genomics, Baltimore, MD, USA
| | - P Dane Witmer
- McKusick-Nathans Department of Genetic Medicine, Baylor Hopkins Center for Mendelian Genomics, Baltimore, MD, USA
| | - Nara Sobreira
- McKusick-Nathans Department of Genetic Medicine, Baylor Hopkins Center for Mendelian Genomics, Baltimore, MD, USA
| | - Sadaf Naz
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan.
| |
Collapse
|
2
|
Mademont‐Soler I, Esteba‐Castillo S, Jiménez‐Xifra A, Alemany B, Ribas‐Vidal N, Cutillas M, Coll M, Pinsach M, Pagans S, Alcalde M, Viñas‐Jornet M, Montero‐Vale M, de Castro‐Miró M, Rodríguez J, Armengol L, Queralt X, Obón M. Unexpected complexity in the molecular diagnosis of spastic paraplegia 11. Mol Genet Genomic Med 2024; 12:e2475. [PMID: 38938072 PMCID: PMC11211614 DOI: 10.1002/mgg3.2475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/04/2024] [Accepted: 05/21/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Spastic paraplegia 11 (SPG11) is the most prevalent form of autosomal recessive hereditary spastic paraplegia, resulting from biallelic pathogenic variants in the SPG11 gene (MIM *610844). METHODS The proband is a 36-year-old female referred for genetic evaluation due to cognitive dysfunction, gait impairment, and corpus callosum atrophy (brain MRI was normal at 25-years-old). Diagnostic approaches included CGH array, next-generation sequencing, and whole transcriptome sequencing. RESULTS CGH array revealed a 180 kb deletion located upstream of SPG11. Sequencing of SPG11 uncovered two rare single nucleotide variants: the novel variant c.3143C>T in exon 17 (in cis with the deletion), and the previously reported pathogenic variant c.6409C>T in exon 34 (in trans). Whole transcriptome sequencing revealed that the variant c.3143C>T caused exon 17 skipping. CONCLUSION We report a novel sequence variant in the SPG11 gene resulting in exon 17 skipping, which, along with a nonsense variant, causes Spastic Paraplegia 11 in our proband. In addition, a deletion upstream of SPG11 was identified in the patient, whose implication in the phenotype remains uncertain. Nonetheless, the deletion apparently affects cis-regulatory elements of the gene, suggesting a potential new pathogenic mechanism underlying the disease in a subset of undiagnosed patients. Our findings further support the hypothesis that the origin of thin corpus callosum in patients with SPG11 is of progressive nature.
Collapse
Affiliation(s)
- Irene Mademont‐Soler
- Àrea de Genètica Clínica i Consell Genètic, Laboratori Clínic Territorial GironaInstitut Català de la SalutGironaSpain
- Grup de Trastorns del NeurodesenvolupamentInstitut Investigació Biomèdica de GironaGironaSpain
| | - Susanna Esteba‐Castillo
- Grup de Trastorns del NeurodesenvolupamentInstitut Investigació Biomèdica de GironaGironaSpain
- Servei Especialitzat en Salut Mental i Discapacitat Intel·LectualInstitut d'Assistència SanitàriaGironaSpain
| | | | - Berta Alemany
- Servei de NeurologiaHospital Universitari de Girona Dr. Josep TruetaGironaSpain
| | - Núria Ribas‐Vidal
- Grup de Trastorns del NeurodesenvolupamentInstitut Investigació Biomèdica de GironaGironaSpain
- Servei Especialitzat en Salut Mental i Discapacitat Intel·LectualInstitut d'Assistència SanitàriaGironaSpain
| | - Maria Cutillas
- Àrea de Genètica Clínica i Consell Genètic, Laboratori Clínic Territorial GironaInstitut Català de la SalutGironaSpain
| | - Mònica Coll
- Unitat de Genòmica i Medicina Personalitzada, Laboratori Clínic Territorial GironaInstitut Català de la SalutGironaSpain
| | - Mel·lina Pinsach
- Unitat de Genòmica i Medicina Personalitzada, Laboratori Clínic Territorial GironaInstitut Català de la SalutGironaSpain
| | - Sara Pagans
- Grup de Genètica CardiovascularInstitut d'Investigació Biomèdica de Girona Dr. Josep TruetaGironaSpain
| | - Mireia Alcalde
- Grup de Genètica CardiovascularInstitut d'Investigació Biomèdica de Girona Dr. Josep TruetaGironaSpain
| | | | | | | | | | - Lluís Armengol
- Departament de Genètica MolecularqGenomicsBarcelonaSpain
| | - Xavier Queralt
- Àrea de Genètica Clínica i Consell Genètic, Laboratori Clínic Territorial GironaInstitut Català de la SalutGironaSpain
| | - María Obón
- Àrea de Genètica Clínica i Consell Genètic, Laboratori Clínic Territorial GironaInstitut Català de la SalutGironaSpain
- Grup de Trastorns del NeurodesenvolupamentInstitut Investigació Biomèdica de GironaGironaSpain
| |
Collapse
|
3
|
Ghasemi A, Sadr Z, Babanejad M, Rohani M, Alavi A. Copy Number Variations in Hereditary Spastic Paraplegia-Related Genes: Evaluation of an Iranian Hereditary Spastic Paraplegia Cohort and Literature Review. Mol Syndromol 2023; 14:477-484. [PMID: 38058755 PMCID: PMC10697729 DOI: 10.1159/000531507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/07/2023] [Indexed: 12/08/2023] Open
Abstract
Introduction In human genetic disorders, copy number variations (CNVs) are considered a considerable underlying cause. CNVs are generally detected by array-based methods but can also be discovered by read-depth analysis of whole-exome sequencing (WES) data. We performed WES-based CNV identification in a cohort of 35 Iranian families with hereditary spastic paraplegia (HSP) patients. Methods Thirty-five patients whose routine single-nucleotide variants (SNVs) and insertion/deletion analyses from exome data were unrevealing underwent a pipeline of CNV analysis using the read-depth detection method. Subsequently, a comprehensive search about the existence of CNVs in all 84 known HSP-causing genes was carried out in all reported HSP cases, so far. Results and Discussion CNV analysis of exome data indicated that 1 patient harbored a heterozygous deletion in exon 17 of the SPAST gene. Multiplex ligation-dependent probe amplification analysis confirmed this deletion in the proband and his affected father. Literature review demonstrated that, to date, pathogenic CNVs have been identified in 30 out of 84 HSP-causing genes (∼36%). However, CNVs in only 17 of these genes were specifically associated with the HSP phenotype. Among them, CNVs were more common in L1CAM, PLP1, SPAST, SPG7, SPG11, and REEP1 genes. The identification of the CNV in 1 of our patients suggests that WES allows the detection of both SNVs and CNVs from a single method without additional costs and execution time. However, because of intrinsic issues of WES in the detection of large rearrangements, it may not yet be exploited to replace the CNV detection methods in standard clinical practice.
Collapse
Affiliation(s)
- Aida Ghasemi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Zahra Sadr
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mojgan Babanejad
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mohammad Rohani
- Department of Neurology, Iran University of Medical Sciences, Hazrat Rasool Hospital, Tehran, Iran
| | - Afagh Alavi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Mahungu AC, Steyn E, Floudiotis N, Wilson LA, Vandrovcova J, Reilly MM, Record CJ, Benatar M, Wu G, Raga S, Wilmshurst JM, Naidu K, Hanna M, Nel M, Heckmann JM. The mutational profile in a South African cohort with inherited neuropathies and spastic paraplegia. Front Neurol 2023; 14:1239725. [PMID: 37712079 PMCID: PMC10497947 DOI: 10.3389/fneur.2023.1239725] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/02/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction Limited diagnostics are available for inherited neuromuscular diseases (NMD) in South Africa and (excluding muscle disease) are mainly aimed at the most frequent genes underlying genetic neuropathy (GN) and spastic ataxias in Europeans. In this study, we used next-generation sequencing to screen 61 probands with GN, hereditary spastic paraplegia (HSP), and spastic ataxias for a genetic diagnosis. Methods After identifying four GN probands with PMP22 duplication and one spastic ataxia proband with SCA1, the remaining probands underwent whole exome (n = 26) or genome sequencing (n = 30). The curation of coding/splice region variants using gene panels was guided by allele frequencies from internal African-ancestry control genomes (n = 537) and the Clinical Genome Resource's Sequence Variant Interpretation guidelines. Results Of 32 GN probands, 50% had African-genetic ancestry, and 44% were solved: PMP22 (n = 4); MFN2 (n = 3); one each of MORC2, ATP1A1, ADPRHL2, GJB1, GAN, MPZ, and ATM. Of 29 HSP probands (six with predominant ataxia), 66% had African-genetic ancestry, and 48% were solved: SPG11 (n = 3); KIF1A (n = 2); and one each of SPAST, ATL1, SPG7, PCYT2, PSEN1, ATXN1, ALDH18A1, CYP7B1, and RFT1. Structural variants in SPAST, SPG11, SPG7, MFN2, MPZ, KIF5A, and GJB1 were excluded by computational prediction and manual visualisation. Discussion In this preliminary cohort screening panel of disease genes using WES/WGS data, we solved ~50% of cases, which is similar to diagnostic yields reported for global cohorts. However, the mutational profile among South Africans with GN and HSP differs substantially from that in the Global North.
Collapse
Affiliation(s)
- Amokelani C. Mahungu
- Neurology Research Group, Division of Neurology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Elizabeth Steyn
- Neurology Research Group, Division of Neurology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Niki Floudiotis
- Neurology Research Group, Division of Neurology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Lindsay A. Wilson
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jana Vandrovcova
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Mary M. Reilly
- Department of Neuromuscular Disease, Queen Square UCL Institute of Neurology and the National Hospital of Neurology and Neurosurgery, London, United Kingdom
| | - Christopher J. Record
- Department of Neuromuscular Disease, Queen Square UCL Institute of Neurology and the National Hospital of Neurology and Neurosurgery, London, United Kingdom
| | - Michael Benatar
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Gang Wu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Sharika Raga
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Division of Paediatric Neurology, Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Jo M. Wilmshurst
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Division of Paediatric Neurology, Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Kireshnee Naidu
- Neurology Research Group, Division of Neurology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Michael Hanna
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Melissa Nel
- Neurology Research Group, Division of Neurology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Jeannine M. Heckmann
- Neurology Research Group, Division of Neurology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
5
|
Pennings M, Meijer RPP, Gerrits M, Janssen J, Pfundt R, de Leeuw N, Gilissen C, Gardeitchik T, Schouten M, Voermans N, van de Warrenburg B, Kamsteeg EJ. Copy number variants from 4800 exomes contribute to ~7% of genetic diagnoses in movement disorders, muscle disorders and neuropathies. Eur J Hum Genet 2023; 31:654-662. [PMID: 36781956 PMCID: PMC10250492 DOI: 10.1038/s41431-023-01312-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/11/2023] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
Various groups of neurological disorders, including movement disorders and neuromuscular diseases, are clinically and genetically heterogeneous. Diagnostic panel-based exome sequencing is a routine test for these disorders. Despite the success rates of exome sequencing, it results in the detection of causative sequence variants in 'only' 25-30% of cases. Copy number variants (CNVs), i.e. deletion or duplications, explain 10-20% of individuals with multisystemic phenotypes, such as co-existing intellectual disability, but may also have a role in disorders affecting a single system (organ), like neurological disorders with normal intelligence. In this study, CNVs were extracted from clinical exome sequencing reports of 4800 probands primarily with a movement disorder, myopathy or neuropathy. In 88 (~2%) probands, phenotype-matching CNVs were detected, representing ~7% of genetically confirmed cases. CNVs varied from involvement of over 100 genes to single exons and explained X-linked, autosomal dominant, or - recessive disorders, the latter due to either a homozygous CNV or a compound heterozygous CNV with a sequence variant on the other allele. CNVs were detected affecting genes where deletions or duplications are established as a common mechanism, like PRKN (in Parkinson's disease), DMD (in Duchenne muscular dystrophy) and PMP22 (in neuropathies), but also genes in which no intragenic CNVs have been reported to date. Analysis of CNVs as part of panel-based exome sequencing for genetically heterogeneous neurological diseases provides an additional diagnostic yield of ~2% without extra laboratory costs. Therefore it is recommended to perform CNV analysis for movement disorders, muscle disease, neuropathies, or any other single-system disorder.
Collapse
Affiliation(s)
- Maartje Pennings
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands
| | - Rowdy P P Meijer
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands
| | - Monique Gerrits
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Jannie Janssen
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands
| | - Nicole de Leeuw
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands
| | - Thatjana Gardeitchik
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands
| | - Meyke Schouten
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands
| | - Nicol Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical Center, Nijmegen, the Netherlands
| | - Bart van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical Center, Nijmegen, the Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands.
| |
Collapse
|
6
|
Doleckova K, Roth J, Stellmachova J, Gescheidt T, Sigut V, Houska P, Jech R, Zech M, Vyhnalek M, Vyhnalkova E, Seeman P, Meszarosova AU. SPG11: clinical and genetic features of seven Czech patients and literature review. Neurol Res 2022; 44:379-389. [DOI: 10.1080/01616412.2021.1975224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kristyna Doleckova
- Department of Neurology and Center of Clinical Neuroscience First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague
| | - Jan Roth
- Department of Neurology and Center of Clinical Neuroscience First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague
| | - Julia Stellmachova
- Department of Medical Genetics, University Hospital Olomouc, Olomouc, Czechia
| | - Tomas Gescheidt
- Department of Neurology, St. Anne´s University Hospital, Brno, Czechia
| | | | - Pavel Houska
- Department of Neurology, Strakonice Hospital, Strakonice, Czechia
| | - Robert Jech
- Department of Neurology and Center of Clinical Neuroscience First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Martin Vyhnalek
- Department of Neurology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague
| | - Emilie Vyhnalkova
- Department of Biology and Medical Genetics, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague
| | - Pavel Seeman
- Department of Paediatric Neurology, Neurogenetic Laboratory, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague
| | - Anna Uhrova Meszarosova
- Department of Paediatric Neurology, Neurogenetic Laboratory, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague
| |
Collapse
|
7
|
Erfanian Omidvar M, Torkamandi S, Rezaei S, Alipoor B, Omrani MD, Darvish H, Ghaedi H. Genotype-phenotype associations in hereditary spastic paraplegia: a systematic review and meta-analysis on 13,570 patients. J Neurol 2021; 268:2065-2082. [PMID: 31745725 DOI: 10.1007/s00415-019-09633-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 12/13/2022]
Abstract
AIMS The hereditary spastic paraplegias (HSPs) are a heterogeneous group of inherited neurodegenerative disorders. Although, several genotype-phenotype studies have carried out on HSPs, the association between genotypes and clinical phenotypes remain incomplete since most studies are small in size or restricted to a few genes. Accordingly, this study provides the systematic meta-analysis of genotype-phenotype associations in HSP. METHODS AND RESULTS We retrieved literature on genotype-phenotype associations in patients with HSP and mutated SPAST, REEP1, ATL1, SPG11, SPG15, SPG7, SPG35, SPG54, SPG5. In total, 147 studies with 13,570 HSP patients were included in our meta-analysis. The frequency of mutations in SPAST (25%) was higher than REEP1 (3%), as well as ATL1 (5%) in AD-HSP patients. As for AR-HSP patients, the rates of mutations in SPG11 (18%), SPG15 (7%) and SPG7 (13%) were higher than SPG5 (5%), as well as SPG35 (8%) and SPG54 (7%). The mean age of AD-HSP onset for ATL1 mutation-positive patients was earlier than patients with SPAST, REEP1 mutations. Also, the tendency toward younger age at AR-HSP onset for SPG35 was higher than other mutated genes. It is noteworthy that the mean age at HSP onset ranged from infancy to adulthood. As for the gender distribution, the male proportion in SPG7-HSP (90%) and REEP1-HSP (78%) was markedly high. The frequency of symptoms was varied among patients with different mutated genes. The rates of LL weakness, superficial sensory abnormalities, neuropathy, and deep sensory impairment were noticeably high in REEP1 mutations carriers. Also, in AR-HSP patients with SPG11 mutations, the presentation of symptoms including pes cavus, Neuropathy, and UL spasticity was higher. CONCLUSION Our comprehensive genotype-phenotype assessment of available data displays that the mean age at disease onset and particular sub-phenotypes are associated with specific mutated genes which might be beneficial for a diagnostic procedure and differentiation of the specific mutated genes phenotype among diverse forms of HSP.
Collapse
Affiliation(s)
- Maryam Erfanian Omidvar
- Department of Medical Laboratory Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Torkamandi
- Department of Medical Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Somaye Rezaei
- Department of Neurology, Imam Khomeini Hospital, Urmia University of Medical Sciences, Urmia, Iran
| | - Behnam Alipoor
- Department of Laboratory Sciences, Faculty of Parmedicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Velenjak St., Shahid Chamran Highway, Tehran, IR, Iran
| | - Hossein Darvish
- Department of Medical Genetics, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hamid Ghaedi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Velenjak St., Shahid Chamran Highway, Tehran, IR, Iran.
| |
Collapse
|
8
|
Du J. Hereditary spastic paraplegia type 11: Clinicogenetic lessons from 339 patients. J Clin Neurosci 2021; 85:67-71. [PMID: 33581793 DOI: 10.1016/j.jocn.2020.11.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/23/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022]
Abstract
Hereditary spastic paraplegia type 11 (SPG11) is the most common subtype of autosomal recessive hereditary spastic paraplegia (HSP), to date, there are more than 181 different KIAA1840 gene mutations detected, and yet the genetic landscape of SPG11 is far from complete. To find the clinical and genetic characteristics of SPG11, we performed a reanalysis of the clinical features and genotype-phenotype correlations in all reported studies exhibiting SPG11 mutations. A total of 339 patients were collected, their mean age at onset was 13.10 ± 3.65 years, with initial symptoms like gait disturbance (107/195, 54.87%) and mental retardation (47/195, 24.10%). Cognitive decline (228/270, 84.44%) was the most common complex manifestation stepped by dysarthria (134/195, 68.72%), neuropathy (112/177, 63.28%), amyatrophy, sphincter disturbance (60/130, 46.15%) and ataxia (90/194, 46.39%). The most common brain MRI abnormality is thinning of the corpus callosum (TCC) (173/190, 91.05%), followed by periventricular white matter changes (130/158, 82.28%), cerebral or cerebellar cortical atrophy (55/107, 51.40%). The mutational spectrum associated with KIAA1840 gene is wide, and frameshift mutations are the most common type followed by nonsense mutations. Our reanalysis demonstrated that SPG11 exhibited significant clinical and genetic heterogeneity, and no clear genotype-phenotype correlation was observed. There is no mutational hot spot in the KIAA1840 gene, which emphasizes the need to analyse the whole gene in clinical practice. In addition to conventional genetic testing methods, further mRNA analysis should be conducted on some cases to yield a definitive diagnosis.
Collapse
Affiliation(s)
- Juan Du
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
9
|
Schnappauf O, Zhou Q, Moura NS, Ombrello AK, Michael DG, Deuitch N, Barron K, Stone DL, Hoffmann P, Hershfield M, Applegate C, Bjornsson HT, Beck DB, Witmer PD, Sobreira N, Wohler E, Chiorini JA, Center TAG, Dalgard CL, Center NIS, Kastner DL, Aksentijevich I. Deficiency of Adenosine Deaminase 2 (DADA2): Hidden Variants, Reduced Penetrance, and Unusual Inheritance. J Clin Immunol 2020; 40:917-926. [PMID: 32638197 PMCID: PMC7416912 DOI: 10.1007/s10875-020-00817-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/29/2020] [Indexed: 11/26/2022]
Abstract
PURPOSE Deficiency of adenosine deaminase 2 (DADA2) is an autosomal recessive disorder that manifests with fever, early-onset vasculitis, strokes, and hematologic dysfunction. This study aimed to identify disease-causing variants by conventional Sanger and whole exome sequencing in two families suspected to have DADA2 and non-confirmatory genotypes. ADA2 enzymatic assay confirmed the clinical diagnosis of DADA2. Molecular diagnosis was important to accurately identify other family members at risk. METHODS We used a variety of sequencing technologies, ADA2 enzymatic testing, and molecular methods including qRT-PCR and MLPA. RESULTS Exome sequencing identified heterozygosity for the known pathogenic variant ADA2: c.1358A>G, p.Tyr453Cys in a 14-year-old female with a history of ischemic strokes, livedo, and vasculitis. No second pathogenic variant could be identified. ADA2 enzymatic testing in combination with quantitative RT-PCR suggested a loss-of-function allele. Subsequent genome sequencing identified a canonical splice site variant, c.-47+2T>C, within the 5'UTR of ADA2. Two of her unaffected siblings were found to carry the same two pathogenic variants. A homozygous 800-bp duplication comprising exon 7 of ADA2 was identified in a 5-year-old female with features consistent with Diamond-Blackfan anemia (DBA). The duplication was missed by Sanger sequencing of ADA2, chromosomal microarray, and exome sequencing but was detected by MLPA in combination with long-read PCR sequencing. The exon 7 duplication was also identified in her non-symptomatic father and younger sister. CONCLUSIONS ADA2 pathogenic variants may not be detected by conventional sequencing and genetic testing and may require the incorporation of additional diagnostic methods. A definitive molecular diagnosis is crucial for all family members to make informed treatment decisions.
Collapse
Affiliation(s)
- Oskar Schnappauf
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute (NHGRI), Bethesda, MD, USA.
| | - Qing Zhou
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute (NHGRI), Bethesda, MD, USA
| | - Natalia Sampaio Moura
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute (NHGRI), Bethesda, MD, USA
| | - Amanda K Ombrello
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute (NHGRI), Bethesda, MD, USA
| | - Drew G Michael
- Department of Laboratory Medicine, Center for Genetic Medicine Research, Children's National, Washington, DC, USA
| | - Natalie Deuitch
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute (NHGRI), Bethesda, MD, USA
| | - Karyl Barron
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Deborah L Stone
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute (NHGRI), Bethesda, MD, USA
| | - Patrycja Hoffmann
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute (NHGRI), Bethesda, MD, USA
| | - Michael Hershfield
- Department of Medicine and Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Carolyn Applegate
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hans T Bjornsson
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Landspitali University Hospital, Reykjavik, Iceland
| | - David B Beck
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute (NHGRI), Bethesda, MD, USA
| | - P Dane Witmer
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nara Sobreira
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth Wohler
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John A Chiorini
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research (NIDCR), Bethesda, MD, USA
| | | | - Clifton L Dalgard
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Nih Intramural Sequencing Center
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute (NHGRI), Bethesda, MD, USA
| | - Daniel L Kastner
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute (NHGRI), Bethesda, MD, USA
| | - Ivona Aksentijevich
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute (NHGRI), Bethesda, MD, USA
| |
Collapse
|
10
|
Meszarosova AU, Seeman P, Jencik J, Drabova J, Cibochova R, Stellmachova J, Safka Brozkova D. Two types of recessive hereditary spastic paraplegia in Roma patients in compound heterozygous state; no ethnically prevalent variant found. Neurosci Lett 2020; 721:134800. [PMID: 32007496 DOI: 10.1016/j.neulet.2020.134800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 01/09/2020] [Accepted: 01/29/2020] [Indexed: 10/25/2022]
Abstract
Hereditary spastic paraplegia (HSP or SPG) is a group of rare upper motor neuron diseases. As some ethnically-specific, disease-causing homozygous variants were described in the Czech Roma population, we hypotesised that some prevalent HSP-causing variant could exist in this population. Eight Czech Roma patients were found in a large group of Czech patients with suspected HSP and were tested using gene panel massively parallel sequencing (MPS). Two of the eight were diagnosed with SPG11 and SPG77, respectively. The SPG77 patient manifests a pure HSP phenotype, which is unusual for this SPG type. Both patients are compound heterozygotes for two different variants in the SPG11 (c.1603-1G>A and del ex. 16-18) and FARS2 (c.1082C>T and del ex.1-2) genes respectively; the three variants are novel. In order to find a potential ethnically-specific, disease-causing variant for HSP, we tested the heterozygote frequency of these variants among 130 anonymised DNA samples of Czech Roma individuals without clinical signs of HSP (HPS-negative). A novel deletion of ex.16-18 in the SPG11 gene was found in a heterozygous state in one individual in the HSP-negative group. Haplotype analysis showed that this individual and the patient with SPG11 shared the same haplotype. This supports the assumption that the identified SPG11 deletion could be a founder mutation in the Czech Roma population. In some Roma patients the disease may also be caused by two different biallelic pathogenic mutations.
Collapse
Affiliation(s)
- Anna Uhrova Meszarosova
- DNA Laboratory, Department of Paediatric Neurology, 2nd Faculty of Medicine Charles University and University Hospital Motol, Prague, Czech Republic.
| | - Pavel Seeman
- DNA Laboratory, Department of Paediatric Neurology, 2nd Faculty of Medicine Charles University and University Hospital Motol, Prague, Czech Republic
| | - Jan Jencik
- DNA Laboratory, Department of Paediatric Neurology, 2nd Faculty of Medicine Charles University and University Hospital Motol, Prague, Czech Republic
| | - Jana Drabova
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine Charles University and University Hospital Motol, Prague, Czech Republic
| | - Renata Cibochova
- Department of Paediatric Neurology, 2nd Faculty of Medicine Charles University and University Hospital Motol, Prague, Czech Republic
| | - Julia Stellmachova
- Department of Medical Genetics, Palacky University Hospital, Olomouc, Czech Republic
| | - Dana Safka Brozkova
- DNA Laboratory, Department of Paediatric Neurology, 2nd Faculty of Medicine Charles University and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
11
|
Bodea GO, McKelvey EGZ, Faulkner GJ. Retrotransposon-induced mosaicism in the neural genome. Open Biol 2019; 8:rsob.180074. [PMID: 30021882 PMCID: PMC6070720 DOI: 10.1098/rsob.180074] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/21/2018] [Indexed: 12/18/2022] Open
Abstract
Over the past decade, major discoveries in retrotransposon biology have depicted the neural genome as a dynamic structure during life. In particular, the retrotransposon LINE-1 (L1) has been shown to be transcribed and mobilized in the brain. Retrotransposition in the developing brain, as well as during adult neurogenesis, provides a milieu in which neural diversity can arise. Dysregulation of retrotransposon activity may also contribute to neurological disease. Here, we review recent reports of retrotransposon activity in the brain, and discuss the temporal nature of retrotransposition and its regulation in neural cells in response to stimuli. We also put forward hypotheses regarding the significance of retrotransposons for brain development and neurological function, and consider the potential implications of this phenomenon for neuropsychiatric and neurodegenerative conditions.
Collapse
Affiliation(s)
- Gabriela O Bodea
- Mater Research Institute-University of Queensland, TRI Building, Brisbane, Queensland 4102, Australia .,Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Eleanor G Z McKelvey
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Geoffrey J Faulkner
- Mater Research Institute-University of Queensland, TRI Building, Brisbane, Queensland 4102, Australia .,Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
12
|
Faber I, Martinez ARM, Martins CR, Maia ML, Souza JP, Lourenço CM, Marques W, Montecchiani C, Orlacchio A, Pedroso JL, Barsottini OGP, Ramos CD, Lopes-Cendes Í, Friedman JH, Amorim BJ, França MC. SPG11-related parkinsonism: Clinical profile, molecular imaging and l-dopa response. Mov Disord 2018; 33:1650-1656. [PMID: 30306626 DOI: 10.1002/mds.27491] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/10/2018] [Accepted: 07/19/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Molecular imaging has proven to be a powerful tool to elucidate degenerated paths in a wide variety of neurological diseases and has not been systematically studied in hereditary spastic paraplegias. OBJECTIVES To investigate dopaminergic degeneration in a cohort of 22 patients with hereditary spastic paraplegia attributed to SPG11 mutations and evaluate treatment response to l-dopa. METHODS Patients and controls underwent single-photon emission computed tomography imaging utilizing 99m Tc-TRODAT-1 tracer. A single-blind trial with 600 mg of l-dopa was performed comparing UPDRS scores. RESULTS Reduced dopamine transporter density was universal among patients. Nigral degeneration was symmetrical and correlated with disease duration and motor and cognitive handicap. No statistically significant benefit could be demonstrated with l-dopa intake during the trial. CONCLUSION Disruption of presynaptic dopaminergic pathways is a widespread phenomenon in patients with SPG11 mutations, even in the absence of parkinsonism. Unresponsiveness to treatment could be related to postsynaptic damage that needs to be further investigated.
Collapse
Affiliation(s)
- Ingrid Faber
- Department of Neurology, University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | - Maidane Luise Maia
- Division of Nuclear Medicine, Department of Radiology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Juliana Pasquotto Souza
- Division of Nuclear Medicine, Department of Radiology, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Wilson Marques
- Department of Neurology, University of São Paulo (USP-RP), Ribeirão Preto, Brazil
| | - Celeste Montecchiani
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy
| | - Antonio Orlacchio
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy.,Dipartimento di Scienze Chirurgiche e Biomediche, Università di Perugia, Perugia, Italy
| | - Jose Luiz Pedroso
- Department of Neurology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Celso Darío Ramos
- Division of Nuclear Medicine, Department of Radiology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Íscia Lopes-Cendes
- Department of Medical Genetics, University of Campinas (UNICAMP), Campinas, Brazil
| | - Joseph H Friedman
- Department of Neurology, Butler Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Bárbara Juarez Amorim
- Division of Nuclear Medicine, Department of Radiology, University of Campinas (UNICAMP), Campinas, Brazil
| | | |
Collapse
|
13
|
Krestel H, Meier JC. RNA Editing and Retrotransposons in Neurology. Front Mol Neurosci 2018; 11:163. [PMID: 29875629 PMCID: PMC5974252 DOI: 10.3389/fnmol.2018.00163] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/30/2018] [Indexed: 12/28/2022] Open
Abstract
Compared to sites in protein-coding sequences many more targets undergoing adenosine to inosine (A-to-I) RNA editing were discovered in non-coding regions of human cerebral transcripts, particularly in genetic transposable elements called retrotransposons. We review here the interaction mechanisms of RNA editing and retrotransposons and their impact on normal function and human neurological diseases. Exemplarily, A-to-I editing of retrotransposons embedded in protein-coding mRNAs can contribute to protein abundance and function via circular RNA formation, alternative splicing, and exonization or silencing of retrotransposons. Interactions leading to disease are not very well understood. We describe human diseases with involvement of the central nervous system including inborn errors of metabolism, neurodevelopmental disorders, neuroinflammatory and neurodegenerative and paroxysmal diseases, in which retrotransposons (Alu and/or L1 elements) appear to be causally involved in genetic rearrangements. Sole binding of single-stranded retrotransposon transcripts by RNA editing enzymes rather than enzymatic deamination may have a homeostatic effect on retrotransposon turnover. We also review evidence in support of the emerging pathophysiological function of A-to-I editing of retrotransposons in inflammation and its implication for different neurological diseases including amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer's and Parkinson's disease, and epilepsy.
Collapse
Affiliation(s)
- Heinz Krestel
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland.,Department for BioMedical Research, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Jochen C Meier
- Division Cell Physiology, Zoological Institute, Technical University Braunschweig, Braunschweig, Germany
| |
Collapse
|
14
|
Larsen PA, Hunnicutt KE, Larsen RJ, Yoder AD, Saunders AM. Warning SINEs: Alu elements, evolution of the human brain, and the spectrum of neurological disease. Chromosome Res 2018; 26:93-111. [PMID: 29460123 PMCID: PMC5857278 DOI: 10.1007/s10577-018-9573-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/14/2018] [Accepted: 01/15/2018] [Indexed: 12/28/2022]
Abstract
Alu elements are a highly successful family of primate-specific retrotransposons that have fundamentally shaped primate evolution, including the evolution of our own species. Alus play critical roles in the formation of neurological networks and the epigenetic regulation of biochemical processes throughout the central nervous system (CNS), and thus are hypothesized to have contributed to the origin of human cognition. Despite the benefits that Alus provide, deleterious Alu activity is associated with a number of neurological and neurodegenerative disorders. In particular, neurological networks are potentially vulnerable to the epigenetic dysregulation of Alu elements operating across the suite of nuclear-encoded mitochondrial genes that are critical for both mitochondrial and CNS function. Here, we highlight the beneficial neurological aspects of Alu elements as well as their potential to cause disease by disrupting key cellular processes across the CNS. We identify at least 37 neurological and neurodegenerative disorders wherein deleterious Alu activity has been implicated as a contributing factor for the manifestation of disease, and for many of these disorders, this activity is operating on genes that are essential for proper mitochondrial function. We conclude that the epigenetic dysregulation of Alu elements can ultimately disrupt mitochondrial homeostasis within the CNS. This mechanism is a plausible source for the incipient neuronal stress that is consistently observed across a spectrum of sporadic neurological and neurodegenerative disorders.
Collapse
Affiliation(s)
- Peter A Larsen
- Department of Biology, Duke University, Durham, NC, 27708, USA.
- Duke Lemur Center, Duke University, Durham, NC, 27708, USA.
- Department of Biology, Duke University, 130 Science Drive, Box 90338, Durham, NC, 27708, USA.
| | | | - Roxanne J Larsen
- Duke University School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC, 27708, USA
- Duke Lemur Center, Duke University, Durham, NC, 27708, USA
| | - Ann M Saunders
- Zinfandel Pharmaceuticals Inc, Chapel Hill, NC, 27709, USA
| |
Collapse
|
15
|
Baskin B, Kalia LV, Banwell BL, Ray PN, Yoon G. Complex genomic rearrangement in SPG11 due to a DNA replication-based mechanism. Mov Disord 2017; 32:1792-1794. [PMID: 29082553 DOI: 10.1002/mds.27188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/10/2017] [Indexed: 01/15/2023] Open
Affiliation(s)
- Berivan Baskin
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.,Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lorraine V Kalia
- Morton and Gloria Shulman Movement Disorders Clinic and Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, Toronto, Ontario, Canada.,Department of Medicine, Division of Neurology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Brenda L Banwell
- The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Peter N Ray
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Grace Yoon
- Department of Pediatrics, Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Department of Pediatrics, Division of Neurology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Kim S, Cho CS, Han K, Lee J. Structural Variation of Alu Element and Human Disease. Genomics Inform 2016; 14:70-77. [PMID: 27729835 PMCID: PMC5056899 DOI: 10.5808/gi.2016.14.3.70] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 01/04/2023] Open
Abstract
Transposable elements are one of major sources to cause genomic instability through various mechanisms including de novo insertion, insertion-mediated genomic deletion, and recombination-associated genomic deletion. Among them is Alu element which is the most abundant element, composing ~10% of the human genome. The element emerged in the primate genome 65 million years ago and has since propagated successfully in the human and non-human primate genomes. Alu element is a non-autonomous retrotransposon and therefore retrotransposed using L1-enzyme machinery. The 'master gene' model has been generally accepted to explain Alu element amplification in primate genomes. According to the model, different subfamilies of Alu elements are created by mutations on the master gene and most Alu elements are amplified from the hyperactive master genes. Alu element is frequently involved in genomic rearrangements in the human genome due to its abundance and sequence identity between them. The genomic rearrangements caused by Alu elements could lead to genetic disorders such as hereditary disease, blood disorder, and neurological disorder. In fact, Alu elements are associated with approximately 0.1% of human genetic disorders. The first part of this review discusses mechanisms of Alu amplification and diversity among different Alu subfamilies. The second part discusses the particular role of Alu elements in generating genomic rearrangements as well as human genetic disorders.
Collapse
Affiliation(s)
- Songmi Kim
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Korea.; BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Chun-Sung Cho
- Department of Neurosurgery, Dankook University College of Medicine, Cheonan 31116, Korea
| | - Kyudong Han
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Korea.; BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Jungnam Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
17
|
Kara E, Tucci A, Manzoni C, Lynch DS, Elpidorou M, Bettencourt C, Chelban V, Manole A, Hamed SA, Haridy NA, Federoff M, Preza E, Hughes D, Pittman A, Jaunmuktane Z, Brandner S, Xiromerisiou G, Wiethoff S, Schottlaender L, Proukakis C, Morris H, Warner T, Bhatia KP, Korlipara LVP, Singleton AB, Hardy J, Wood NW, Lewis PA, Houlden H. Genetic and phenotypic characterization of complex hereditary spastic paraplegia. Brain 2016; 139:1904-1918. [PMID: 27217339 PMCID: PMC4939695 DOI: 10.1093/brain/aww111] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 03/30/2016] [Accepted: 03/30/2016] [Indexed: 12/12/2022] Open
Abstract
The hereditary spastic paraplegias are a heterogeneous group of degenerative disorders that are clinically classified as either pure with predominant lower limb spasticity, or complex where spastic paraplegia is complicated with additional neurological features, and are inherited in autosomal dominant, autosomal recessive or X-linked patterns. Genetic defects have been identified in over 40 different genes, with more than 70 loci in total. Complex recessive spastic paraplegias have in the past been frequently associated with mutations in SPG11 (spatacsin), ZFYVE26/SPG15, SPG7 (paraplegin) and a handful of other rare genes, but many cases remain genetically undefined. The overlap with other neurodegenerative disorders has been implied in a small number of reports, but not in larger disease series. This deficiency has been largely due to the lack of suitable high throughput techniques to investigate the genetic basis of disease, but the recent availability of next generation sequencing can facilitate the identification of disease-causing mutations even in extremely heterogeneous disorders. We investigated a series of 97 index cases with complex spastic paraplegia referred to a tertiary referral neurology centre in London for diagnosis or management. The mean age of onset was 16 years (range 3 to 39). The SPG11 gene was first analysed, revealing homozygous or compound heterozygous mutations in 30/97 (30.9%) of probands, the largest SPG11 series reported to date, and by far the most common cause of complex spastic paraplegia in the UK, with severe and progressive clinical features and other neurological manifestations, linked with magnetic resonance imaging defects. Given the high frequency of SPG11 mutations, we studied the autophagic response to starvation in eight affected SPG11 cases and control fibroblast cell lines, but in our restricted study we did not observe correlations between disease status and autophagic or lysosomal markers. In the remaining cases, next generation sequencing was carried out revealing variants in a number of other known complex spastic paraplegia genes, including five in SPG7 (5/97), four in FA2H (also known as SPG35) (4/97) and two in ZFYVE26/SPG15 Variants were identified in genes usually associated with pure spastic paraplegia and also in the Parkinson's disease-associated gene ATP13A2, neuronal ceroid lipofuscinosis gene TPP1 and the hereditary motor and sensory neuropathy DNMT1 gene, highlighting the genetic heterogeneity of spastic paraplegia. No plausible genetic cause was identified in 51% of probands, likely indicating the existence of as yet unidentified genes.
Collapse
Affiliation(s)
- Eleanna Kara
- 1 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK 2 Alzheimer's Disease Research Centre, Department of Neurology, Harvard Medical School and Massachusetts General Hospital, 114 16th Street, Charlestown, MA 02129, USA
| | - Arianna Tucci
- 1 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK 3 Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano, Italy
| | - Claudia Manzoni
- 1 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK 4 School of Pharmacy, University of Reading, Reading RG6 6AP, UK
| | - David S Lynch
- 1 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Marilena Elpidorou
- 1 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Conceicao Bettencourt
- 1 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Viorica Chelban
- 1 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Andreea Manole
- 1 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Sherifa A Hamed
- 5 Department of Neurology and Psychiatry, Assiut University Hospital, Faculty of Medicine, Assiut, Egypt
| | - Nourelhoda A Haridy
- 1 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK 5 Department of Neurology and Psychiatry, Assiut University Hospital, Faculty of Medicine, Assiut, Egypt
| | - Monica Federoff
- 6 Laboratory of Neurogenetics, NIH/NIA, Bethesda, MD 20892, USA
| | - Elisavet Preza
- 1 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Deborah Hughes
- 1 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Alan Pittman
- 1 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Zane Jaunmuktane
- 7 Division of Neuropathology and Department of Neurodegenerative Disease, The National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Sebastian Brandner
- 7 Division of Neuropathology and Department of Neurodegenerative Disease, The National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Georgia Xiromerisiou
- 1 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK 8 Department of Neurology, Papageorgiou Hospital, Thessaloniki, Greece
| | - Sarah Wiethoff
- 1 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Lucia Schottlaender
- 1 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Christos Proukakis
- 9 Department of Clinical Neuroscience, Royal Free Campus, UCL Institute of Neurology, London, UK
| | - Huw Morris
- 1 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK 9 Department of Clinical Neuroscience, Royal Free Campus, UCL Institute of Neurology, London, UK
| | - Tom Warner
- 1 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK 10 Reta Lila Weston Institute of Neurological Studies and Queen Square Brain Bank for Neurological Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Kailash P Bhatia
- 11 Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - L V Prasad Korlipara
- 11 Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | | | - John Hardy
- 1 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Nicholas W Wood
- 1 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK 12 Neurogenetics Laboratory, The National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Patrick A Lewis
- 1 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK 4 School of Pharmacy, University of Reading, Reading RG6 6AP, UK
| | - Henry Houlden
- 1 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK 2 Alzheimer's Disease Research Centre, Department of Neurology, Harvard Medical School and Massachusetts General Hospital, 114 16th Street, Charlestown, MA 02129, USA
| |
Collapse
|
18
|
Fraidakis MJ, Brunetti M, Blackstone C, Filippi M, Chiò A. Novel Compound Heterozygous Spatacsin Mutations in a Greek Kindred with Hereditary Spastic Paraplegia SPG11 and Dementia. NEURODEGENER DIS 2016; 16:373-81. [PMID: 27318863 DOI: 10.1159/000444715] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/16/2016] [Indexed: 11/19/2022] Open
Abstract
SPG11 belongs to the autosomal recessive hereditary spastic paraplegias (HSP) and presents during childhood or puberty with a complex clinical phenotype encompassing learning difficulties, ataxia, peripheral neuropathy, amyotrophy, and mental retardation. We hereby present the case of a 30-year-old female patient with complex autosomal recessive HSP with thinning of the corpus callosum (TCC) and dementia that was compound heterozygous with two novel mutations in the SPG11 gene. Sequence analysis of the SPG11 gene revealed two novel mutations in a compound heterozygous state in the index patient (c.2431C>T/p.Gln811Ter and c.6755_6756insT/p.Glu2252Aspfs*88). MRI showed abnormal TCC, white matter (WM) hyperintensities periventricularly, and the 'ears of the lynx' sign. Diffusion tensor imaging showed a mild-to-moderate decrease in fractional anisotropy and an increase in mean diffusivity in WM compared to age-matched controls, while magnetic resonance spectroscopy showed abnormal findings in affected WM with a decrease in N-acetyl-aspartate in WM regions of interest. This is the first SPG11 kindred from the Greek population to be reported in the medical literature.
Collapse
Affiliation(s)
- Matthew J Fraidakis
- NEURORARE Centre for Rare and Genetic Neurological and Neuromuscular Diseases and Neurogenetics, Athens, Greece
| | | | | | | | | |
Collapse
|
19
|
Günther S, Elert-Dobkowska E, Soehn AS, Hinreiner S, Yoon G, Heller R, Hellenbroich Y, Hübner CA, Ray PN, Hehr U, Bauer P, Sulek A, Beetz C. High Frequency of Pathogenic Rearrangements in SPG11 and Extensive Contribution of Mutational Hotspots and Founder Alleles. Hum Mutat 2016; 37:703-9. [PMID: 27071356 DOI: 10.1002/humu.23000] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/11/2016] [Accepted: 03/29/2016] [Indexed: 12/27/2022]
Abstract
Biallelic loss-of-function mutations in SPG11 cause a wide spectrum of recessively inherited, neurodegenerative disorders including hereditary spastic paraplegia (HSP), amyotrophic lateral sclerosis, and Charcot-Marie-Tooth disease. By comprehensive screening of three large cohorts of HSP index patients, we identified 83 alleles with "small" mutations and 13 alleles that carry large genomic rearrangements. Including relevant data from previous studies, we estimate that copy number variants (CNVs) account for ∼19% of pathogenic SPG11 alleles. The breakpoints for all novel and some previously reported CNVs were determined by long-range PCR and sequencing. This revealed several Alu-associated recombination hotspots. We also found evidence for additional mutational mechanisms, including for a two-step event in which an Alu retrotransposition preceded the actual rearrangement. Apparently independent samples with identical breakpoints were analyzed by microsatellite PCRs. The resulting haplotypes suggested the existence of two rearrangement founder alleles. Our findings widen the spectra of mutations and mutational mechanisms in SPG11, underscore the pivotal role played by Alus, and are of high diagnostic relevance for a wide spectrum of clinical phenotypes including the most frequent form of recessive HSP.
Collapse
Affiliation(s)
- Sven Günther
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | | | - Anne S Soehn
- Institute of Medical Genetics and Applied Genomics, University Hospital of Tuebingen, Tuebingen, Germany
| | - Sophie Hinreiner
- Center for Human Genetics, and Department of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Grace Yoon
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Canada
| | - Raoul Heller
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany
| | | | | | - Peter N Ray
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ute Hehr
- Center for Human Genetics, and Department of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Peter Bauer
- Institute of Medical Genetics and Applied Genomics, University Hospital of Tuebingen, Tuebingen, Germany
| | - Anna Sulek
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Christian Beetz
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| |
Collapse
|
20
|
Castro-Fernández C, Arias M, Blanco-Arias P, Santomé-Collazo L, Amigo J, Carracedo Á, Sobrido MJ. Targeted NGS meets expert clinical characterization: Efficient diagnosis of spastic paraplegia type 11. Appl Transl Genom 2015; 5:33-6. [PMID: 26937357 PMCID: PMC4745395 DOI: 10.1016/j.atg.2015.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 05/30/2015] [Indexed: 12/12/2022]
Abstract
Next generation sequencing (NGS) is transforming the diagnostic approach for neurological disorders, since it allows simultaneous analysis of hundreds of genes, even based on just a broad, syndromic patient categorization. However, such an approach bears a high risk of incidental and uncertain genetic findings. We report a patient with spastic paraplegia whose comprehensive neurological and imaging examination raised a high clinical suspicion of SPG11. Thus, although our NGS pipeline for this group of disorders includes gene panel and exome sequencing, in this sample only the spatacsin gene region was captured and subsequently searched for mutations. Two probably pathogenic variants were quickly and clearly identified, confirming the diagnosis of SPG11. This case illustrates how combination of expert clinical characterization with highly oriented NGS protocols leads to a fast, cost-efficient diagnosis, minimizing the risk of findings with unclear significance.
Collapse
Affiliation(s)
- Cristina Castro-Fernández
- Instituto de Investigación Sanitaria de Santiago-IDIS, Spain; Grupo de Medicina Xenómica, CIBERER, Universidade de Santiago de Compostela, Spain
| | - Manuel Arias
- Instituto de Investigación Sanitaria de Santiago-IDIS, Spain; Servicio de Neurología, Complejo Hospitalario de Santiago de Compostela, Spain
| | - Patricia Blanco-Arias
- Instituto de Investigación Sanitaria de Santiago-IDIS, Spain; Grupo de Medicina Xenómica, CIBERER, Universidade de Santiago de Compostela, Spain; Fundación Pública Galega de Medicina Xenómica, Spain
| | - Luis Santomé-Collazo
- Instituto de Investigación Sanitaria de Santiago-IDIS, Spain; Fundación Pública Galega de Medicina Xenómica, Spain
| | - Jorge Amigo
- Instituto de Investigación Sanitaria de Santiago-IDIS, Spain; Grupo de Medicina Xenómica, CIBERER, Universidade de Santiago de Compostela, Spain; Fundación Pública Galega de Medicina Xenómica, Spain
| | - Ángel Carracedo
- Instituto de Investigación Sanitaria de Santiago-IDIS, Spain; Grupo de Medicina Xenómica, CIBERER, Universidade de Santiago de Compostela, Spain; Fundación Pública Galega de Medicina Xenómica, Spain; Center of Excellence in Genomic Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maria-Jesús Sobrido
- Instituto de Investigación Sanitaria de Santiago-IDIS, Spain; Grupo de Medicina Xenómica, CIBERER, Universidade de Santiago de Compostela, Spain; Fundación Pública Galega de Medicina Xenómica, Spain
| |
Collapse
|
21
|
Lo Giudice T, Lombardi F, Santorelli FM, Kawarai T, Orlacchio A. Hereditary spastic paraplegia: clinical-genetic characteristics and evolving molecular mechanisms. Exp Neurol 2014; 261:518-39. [PMID: 24954637 DOI: 10.1016/j.expneurol.2014.06.011] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 06/07/2014] [Accepted: 06/12/2014] [Indexed: 12/12/2022]
Abstract
Hereditary spastic paraplegia (HSP) is a group of clinically and genetically heterogeneous neurological disorders characterized by pathophysiologic hallmark of length-dependent distal axonal degeneration of the corticospinal tracts. The prominent features of this pathological condition are progressive spasticity and weakness of the lower limbs. To date, 72 spastic gait disease-loci and 55 spastic paraplegia genes (SPGs) have been identified. All modes of inheritance (autosomal dominant, autosomal recessive, and X-linked) have been described. Recently, a late onset spastic gait disorder with maternal trait of inheritance has been reported, as well as mutations in genes not yet classified as spastic gait disease. Several cellular processes are involved in its pathogenesis, such as membrane and axonal transport, endoplasmic reticulum membrane modeling and shaping, mitochondrial function, DNA repair, autophagy, and abnormalities in lipid metabolism and myelination processes. Moreover, recent evidences have been found about the impairment of endosome membrane trafficking in vesicle formation and about the involvement of oxidative stress and mtDNA polymorphisms in the onset of the disease. Interactome networks have been postulated by bioinformatics and biological analyses of spastic paraplegia genes, which would contribute to the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Temistocle Lo Giudice
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC) - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy; Dipartimento di Medicina dei Sistemi, Università di Roma "Tor Vergata", Rome, Italy
| | - Federica Lombardi
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC) - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy
| | - Filippo Maria Santorelli
- Unità Operativa Complessa di Medicina Molecolare, Neurogenetica e Malattie Neurodegenerative, IRCCS Stella Maris, Pisa, Italy
| | - Toshitaka Kawarai
- Department of Clinical Neuroscience, Institute of Health Biosciences, Graduate School of Medicine, University of Tokushima, Tokushima, Japan
| | - Antonio Orlacchio
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC) - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy; Dipartimento di Medicina dei Sistemi, Università di Roma "Tor Vergata", Rome, Italy.
| |
Collapse
|
22
|
Teixeira-Silva A, Silva RM, Carneiro J, Amorim A, Azevedo L. The role of recombination in the origin and evolution of Alu subfamilies. PLoS One 2013; 8:e64884. [PMID: 23750218 PMCID: PMC3672193 DOI: 10.1371/journal.pone.0064884] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/19/2013] [Indexed: 01/25/2023] Open
Abstract
Alus are the most abundant and successful short interspersed nuclear elements found in primate genomes. In humans, they represent about 10% of the genome, although few are retrotransposition-competent and are clustered into subfamilies according to the source gene from which they evolved. Recombination between them can lead to genomic rearrangements of clinical and evolutionary significance. In this study, we have addressed the role of recombination in the origin of chimeric Alu source genes by the analysis of all known consensus sequences of human Alus. From the allelic diversity of Alu consensus sequences, validated in extant elements resulting from whole genome searches, distinct events of recombination were detected in the origin of particular subfamilies of AluS and AluY source genes. These results demonstrate that at least two subfamilies are likely to have emerged from ectopic Alu-Alu recombination, which stimulates further research regarding the potential of chimeric active Alus to punctuate the genome.
Collapse
Affiliation(s)
- Ana Teixeira-Silva
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- FCUP-Faculty of Sciences, University of Porto, Porto, Portugal
| | - Raquel M. Silva
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - João Carneiro
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- FCUP-Faculty of Sciences, University of Porto, Porto, Portugal
| | - António Amorim
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- FCUP-Faculty of Sciences, University of Porto, Porto, Portugal
| | - Luísa Azevedo
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
23
|
Dridi S. Alu mobile elements: from junk DNA to genomic gems. SCIENTIFICA 2012; 2012:545328. [PMID: 24278713 PMCID: PMC3820591 DOI: 10.6064/2012/545328] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 11/06/2012] [Indexed: 06/02/2023]
Abstract
Alus, the short interspersed repeated sequences (SINEs), are retrotransposons that litter the human genomes and have long been considered junk DNA. However, recent findings that these mobile elements are transcribed, both as distinct RNA polymerase III transcripts and as a part of RNA polymerase II transcripts, suggest biological functions and refute the notion that Alus are biologically unimportant. Indeed, Alu RNAs have been shown to control mRNA processing at several levels, to have complex regulatory functions such as transcriptional repression and modulating alternative splicing and to cause a host of human genetic diseases. Alu RNAs embedded in Pol II transcripts can promote evolution and proteome diversity, which further indicates that these mobile retroelements are in fact genomic gems rather than genomic junks.
Collapse
Affiliation(s)
- Sami Dridi
- Nutrition Research Institute, The University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC 28081, USA
| |
Collapse
|