1
|
Jiang T, Gonzalez KM, Cordova LE, Lu J. Nanotechnology-enabled gene delivery for cancer and other genetic diseases. Expert Opin Drug Deliv 2023; 20:523-540. [PMID: 37017558 PMCID: PMC10164135 DOI: 10.1080/17425247.2023.2200246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 04/04/2023] [Indexed: 04/06/2023]
Abstract
INTRODUCTION Despite gene therapy is ideal for genetic abnormality-related diseases, the easy degradation, poor targeting, and inefficiency in entering targeted cells are plaguing the effective delivery of gene therapy. Viral and non-viral vectors have been used for delivering gene therapeutics in vivo by safeguarding nucleic acid agents to target cells and to reach the specific intracellular location. A variety of nanotechnology-enabled safe and efficient systems have been successfully developed to improve the targeting ability for effective therapeutic delivery of genetic drugs. AREAS COVERED In this review, we outline the multiple biological barriers associated with gene delivery process, and highlight recent advances to gene therapy strategy in vivo, including gene correction, gene silencing, gene activation and genome editing. We point out current developments and challenges exist of non-viral and viral vector systems in association with chemical and physical gene delivery technologies and their potential for the future. EXPERT OPINION This review focuses on the opportunities and challenges to various gene therapy strategy, with specific emphasis on overcoming the challenges through the development of biocompatibility and smart gene vectors for potential clinical application.
Collapse
Affiliation(s)
- Tong Jiang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Karina Marie Gonzalez
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Leyla Estrella Cordova
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
- NCI-designated University of Arizona Comprehensive Cancer Center, Tucson, Arizona, 85721, United States
- BIO5 Institute, The University of Arizona, Tucson, Arizona, 85721, United States
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, 85721, United States
| |
Collapse
|
2
|
Zhi Y, Xu C, Sui D, Du J, Xu F, Li Y. Effective Delivery of Hypertrophic miRNA Inhibitor by Cholesterol-Containing Nanocarriers for Preventing Pressure Overload Induced Cardiac Hypertrophy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900023. [PMID: 31179215 PMCID: PMC6548964 DOI: 10.1002/advs.201900023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/04/2019] [Indexed: 05/15/2023]
Abstract
Persistent cardiac hypertrophy causes heart failure and sudden death. Gene therapy is a promising intervention for this disease, but is limited by the lack of effective delivery systems. Herein, it is reported that CHO-PGEA (cholesterol (CHO)-terminated ethanolamine-aminated poly(glycidyl methacrylate)) can efficiently condense small RNAs into nanosystems for preventing cardiac hypertrophy. CHO-PGEA contains two features: 1) lipophilic cholesterol groups enhance transfection efficiency in cardiomyocytes, 2) abundant hydrophilic hydroxyl groups benefit biocompatibility. miR-182, which is known to downregulate forkhead box O3, is selected as an intervention target and can be blocked by synthetic small RNA inhibitor of miR-182 (miR-182-in). CHO-PGEA can efficiently deliver miR-182-in into hearts. In the mice with aortic coarctation, CHO-PEGA/miR-182-in significantly suppresses cardiac hypertrophy without organ injury. This work demonstrates that CHO-PGEA/miRNA nanosystems are very promising for RNA-based therapeutics to treat heart diseases.
Collapse
Affiliation(s)
- Ying Zhi
- Beijing Anzhen HospitalCapital Medical UniversityThe Key Laboratory of Remodeling‐Related Cardiovascular DiseasesMinistry of EducationBeijing Institute of Heart Lung and Blood Vessel DiseasesBeijing100029China
| | - Chen Xu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology)Ministry of EducationBeijing Laboratory of Biomedical MaterialsBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Dandan Sui
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology)Ministry of EducationBeijing Laboratory of Biomedical MaterialsBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Jie Du
- Beijing Anzhen HospitalCapital Medical UniversityThe Key Laboratory of Remodeling‐Related Cardiovascular DiseasesMinistry of EducationBeijing Institute of Heart Lung and Blood Vessel DiseasesBeijing100029China
| | - Fu‐Jian Xu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology)Ministry of EducationBeijing Laboratory of Biomedical MaterialsBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Yulin Li
- Beijing Anzhen HospitalCapital Medical UniversityThe Key Laboratory of Remodeling‐Related Cardiovascular DiseasesMinistry of EducationBeijing Institute of Heart Lung and Blood Vessel DiseasesBeijing100029China
| |
Collapse
|
3
|
Lorenz K, Rosner MR, Brand T, Schmitt JP. Raf kinase inhibitor protein: lessons of a better way for β-adrenergic receptor activation in the heart. J Physiol 2017; 595:4073-4087. [PMID: 28444807 PMCID: PMC5471367 DOI: 10.1113/jp274064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 02/27/2017] [Indexed: 12/13/2022] Open
Abstract
Stimulation of β-adrenergic receptors (βARs) provides the most efficient physiological mechanism to enhance contraction and relaxation of the heart. Activation of βARs allows rapid enhancement of myocardial function in order to fuel the muscles for running and fighting in a fight-or-flight response. Likewise, βARs become activated during cardiovascular disease in an attempt to counteract the restrictions of cardiac output. However, long-term stimulation of βARs increases the likelihood of cardiac arrhythmias, adverse ventricular remodelling, decline of cardiac performance and premature death, thereby limiting the use of βAR agonists in the treatment of heart failure. Recently the endogenous Raf kinase inhibitor protein (RKIP) was found to activate βAR signalling of the heart without adverse effects. This review will summarize the current knowledge on RKIP-driven compared to receptor-mediated signalling in cardiomyocytes. Emphasis is given to the differential effects of RKIP on β1 - and β2 -ARs and their downstream targets, the regulation of myocyte calcium cycling and myofilament activity.
Collapse
Affiliation(s)
- Kristina Lorenz
- Comprehensive Heart Failure CenterUniversity of WürzburgVersbacher Straße 997078WürzburgGermany
- West German Heart and Vascular Center EssenUniversity Hospital EssenHufelandstraße 5545147EssenGermany
- Leibniz‐Institut für Analytische Wissenschaften – ISAS – e.V.Bunsen‐Kirchhoff‐Straße 1144139DortmundGermany
- Institute of Pharmacology and ToxicologyUniversity of WürzburgVersbacher Straße 997078WürzburgGermany
| | - Marsha Rich Rosner
- Ben May Department for Cancer ResearchUniversity of ChicagoChicagoIL 60637USA
| | - Theresa Brand
- Leibniz‐Institut für Analytische Wissenschaften – ISAS – e.V.Bunsen‐Kirchhoff‐Straße 1144139DortmundGermany
- Institute of Pharmacology and ToxicologyUniversity of WürzburgVersbacher Straße 997078WürzburgGermany
| | - Joachim P Schmitt
- Institute of Pharmacology and Clinical PharmacologyDüsseldorf University HospitalUniverstitätsstraße 140225DüsseldorfGermany
- Cardiovascular Research Institute Düsseldorf (CARID)Heinrich‐Heine‐UniversityUniverstitätsstraße 140225DüsseldorfGermany
| |
Collapse
|
4
|
Chen Y, Chen S, Yue Z, Zhang Y, Zhou C, Cao W, Chen X, Zhang L, Liu P. Receptor-interacting protein 140 overexpression impairs cardiac mitochondrial function and accelerates the transition to heart failure in chronically infarcted rats. Transl Res 2017; 180:91-102.e1. [PMID: 27639592 DOI: 10.1016/j.trsl.2016.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/23/2016] [Accepted: 08/23/2016] [Indexed: 10/21/2022]
Abstract
Heart failure (HF) is associated with myocardial energy metabolic abnormality. Receptor-interacting protein 140 (RIP140) is an important transcriptional cofactor for maintaining energy balance in high-oxygen consumption tissues. However, the role of RIP140 in the pathologic processes of HF remains to be elucidated. In this study, we investigated the role of RIP140 in mitochondrial and cardiac functions in rodent hearts under myocardial infarction (MI) stress. MI was created by a permanent ligation of left anterior descending coronary artery and exogenous expression of RIP140 by adenovirus (Ad) vector delivery. Four weeks after MI or Ad-RIP140 treatment, cardiac function was assessed by echocardiographic and hemodynamics analyses, and the mitochondrial function was determined by mitochondrial genes expression, biogenesis, and respiration rates. In Ad-RIP140 or MI group, a subset of metabolic genes changed, accompanied with slight reductions in mitochondrial biogenesis and respiration rates but no change in adenosine triphosphate (ATP) content. Cardiac malfunction was compensated. However, under MI stress, rats overexpressing RIP140 exhibited greater repressions in mitochondrial genes, state 3 respiration rates, respiration control ratio, and ATP content and had further deteriorated cardiac malfunction. In conclusion, RIP140 overexpression leads to comparable cardiac function as resulted from MI, but RIP140 aggravates metabolic repression, mitochondrial malfunction, and further accelerates the transition to HF in response to MI stress.
Collapse
Affiliation(s)
- YanFang Chen
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China; Department of Pharmacy, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China; National and Local United Engineering Laboratory of Druggability and New Drug Evaluation, Guangzhou, People's Republic of China
| | - ShaoRui Chen
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China; National and Local United Engineering Laboratory of Druggability and New Drug Evaluation, Guangzhou, People's Republic of China
| | - ZhongBao Yue
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - YiQiang Zhang
- Division of Cardiology, and Institute of Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, Wash
| | - ChangHua Zhou
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - WeiWei Cao
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xi Chen
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - LuanKun Zhang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - PeiQing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China; National and Local United Engineering Laboratory of Druggability and New Drug Evaluation, Guangzhou, People's Republic of China.
| |
Collapse
|
5
|
Katz MG, Fargnoli AS, Kendle AP, Hajjar RJ, Bridges CR. Gene Therapy in Cardiac Surgery: Clinical Trials, Challenges, and Perspectives. Ann Thorac Surg 2016; 101:2407-16. [PMID: 26801060 PMCID: PMC4987708 DOI: 10.1016/j.athoracsur.2015.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/24/2015] [Accepted: 12/07/2015] [Indexed: 12/28/2022]
Abstract
The concept of gene therapy was introduced in the 1970s after the development of recombinant DNA technology. Despite the initial great expectations, this field experienced early setbacks. Recent years have seen a revival of clinical programs of gene therapy in different fields of medicine. There are many promising targets for genetic therapy as an adjunct to cardiac surgery. The first positive long-term results were published for adenoviral administration of vascular endothelial growth factor with coronary artery bypass grafting. In this review we analyze the past, present, and future of gene therapy in cardiac surgery. The articles discussed were collected through PubMed and from author experience. The clinical trials referenced were found through the Wiley clinical trial database (http://www.wiley.com/legacy/wileychi/genmed/clinical/) as well as the National Institutes of Health clinical trial database (Clinicaltrials.gov).
Collapse
Affiliation(s)
- Michael G Katz
- Sanger Heart and Vascular Institute, Charlotte, North Carolina; Mount Sinai School of Medicine, New York, New York
| | - Anthony S Fargnoli
- Sanger Heart and Vascular Institute, Charlotte, North Carolina; Mount Sinai School of Medicine, New York, New York
| | - Andrew P Kendle
- Sanger Heart and Vascular Institute, Charlotte, North Carolina
| | | | | |
Collapse
|
6
|
Type VI adenylyl cyclase negatively regulates GluN2B-mediated LTD and spatial reversal learning. Sci Rep 2016; 6:22529. [PMID: 26932446 PMCID: PMC4773765 DOI: 10.1038/srep22529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/15/2016] [Indexed: 01/05/2023] Open
Abstract
The calcium-sensitive type VI adenylyl cyclase (AC6) is a membrane-bound adenylyl cyclase (AC) that converts ATP to cAMP under stimulation. It is a calcium-inhibited AC and integrates negative inputs from Ca2+ and multiple other signals to regulate the intracellular cAMP level. In the present study, we demonstrate that AC6 functions upstream of CREB and negatively controls neuronal plasticity in the hippocampus. Genetic removal of AC6 leads to cyclase-independent and N-terminus of AC6 (AC6N)-dependent elevation of CREB expression, and enhances the expression of GluN2B-containing NMDA receptors in hippocampal neurons. Consequently, GluN2B-dependent calcium signaling and excitatory postsynaptic current, long-term depression, and spatial reversal learning are enhanced in the hippocampus of AC6−/− mice without altering the gross anatomy of the brain. Together, our results suggest that AC6 negatively regulates neuronal plasticity by modulating the levels of CREB and GluN2B in the hippocampus.
Collapse
|
7
|
Abstract
Heart failure is a global problem with an estimated prevalence of 38 million patients worldwide, a number that is increasing with the ageing of the population. It is the most common diagnosis in patients aged 65 years or older admitted to hospital and in high-income nations. Despite some progress, the prognosis of heart failure is worse than that of most cancers. Because of the seriousness of the condition, a declaration of war on five fronts has been proposed for heart failure. Efforts are underway to treat heart failure by enhancing myofilament sensitivity to Ca(2+); transfer of the gene for SERCA2a, the protein that pumps calcium into the sarcoplasmic reticulum of the cardiomyocyte, seems promising in a phase 2 trial. Several other abnormal calcium-handling proteins in the failing heart are candidates for gene therapy; many short, non-coding RNAs--ie, microRNAs (miRNAs)--block gene expression and protein translation. These molecules are crucial to calcium cycling and ventricular hypertrophy. The actions of miRNAs can be blocked by a new class of drugs, antagomirs, some of which have been shown to improve cardiac function in animal models of heart failure; cell therapy, with autologous bone marrow derived mononuclear cells, or autogenous mesenchymal cells, which can be administered as cryopreserved off the shelf products, seem to be promising in both preclinical and early clinical heart failure trials; and long-term ventricular assistance devices are now used increasingly as a destination therapy in patients with advanced heart failure. In selected patients, left ventricular assistance can lead to myocardial recovery and explantation of the device. The approaches to the treatment of heart failure described, when used alone or in combination, could become important weapons in the war against heart failure.
Collapse
Affiliation(s)
- Eugene Braunwald
- TIMI Study Group, Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Fargnoli AS, Katz MG, Williams RD, Margulies KB, Bridges CR. A needleless liquid jet injection delivery method for cardiac gene therapy: a comparative evaluation versus standard routes of delivery reveals enhanced therapeutic retention and cardiac specific gene expression. J Cardiovasc Transl Res 2014; 7:756-67. [PMID: 25315468 PMCID: PMC4261917 DOI: 10.1007/s12265-014-9593-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 09/30/2014] [Indexed: 01/16/2023]
Abstract
This study evaluates needleless liquid jet method and compares it with three common experimental methods: (1) intramuscular injection (IM), (2) left ventricular intracavitary infusion (LVIC), and (3) LV intracavitary infusion with aortic and pulmonary occlusion (LVIC-OCCL). Two protocols were executed. First (n = 24 rats), retention of dye was evaluated 10 min after delivery in an acute model. The acute study revealed the following: significantly higher dye retention (expressed as % myocardial cross-section area) in the left ventricle in both the liquid jet [52 ± 4] % and LVIC-OCCL [58 ± 3] % groups p < 0.05 compared with IM [31 ± 8] % and LVIC [35 ± 4] %. In the second (n = 16 rats), each animal received adeno-associated virus encoding green fluorescent protein (AAV.EGFP) at a single dose with terminal 6-week endpoint. In the second phase with AAV.EGFP at 6 weeks post-delivery, a similar trend was found with liquid jet [54 ± 5] % and LVIC-OCCL [60 ± 8] % featuring more LV expression as compared with IM [30 ± 9] % and LVIC [23 ± 9] %. The IM and LVIC-OCCL cross sections revealed myocardial fibrosis. With more detailed development in future model studies, needleless liquid jet delivery offers a promising strategy to improve direct myocardial delivery.
Collapse
Affiliation(s)
- A S Fargnoli
- Sanger Heart & Vascular Institute, Thoracic and Cardiac Surgery, Cannon Research Center, Carolinas Healthcare System, 1542 Garden Terrace, Charlotte, NC, 28203, USA
| | | | | | | | | |
Collapse
|
9
|
Abstract
INTRODUCTION Cardiovascular gene therapy is the third most popular application for gene therapy, representing 8.4% of all gene therapy trials as reported in 2012 estimates. Gene therapy in cardiovascular disease is aiming to treat heart failure from ischemic and non-ischemic causes, peripheral artery disease, venous ulcer, pulmonary hypertension, atherosclerosis and monogenic diseases, such as Fabry disease. AREAS COVERED In this review, we will focus on elucidating current molecular targets for the treatment of ventricular dysfunction following myocardial infarction (MI). In particular, we will focus on the treatment of i) the clinical consequences of it, such as heart failure and residual myocardial ischemia and ii) etiological causes of MI (coronary vessels atherosclerosis, bypass venous graft disease, in-stent restenosis). EXPERT OPINION We summarise the scheme of the review and the molecular targets either already at the gene therapy clinical trial phase or in the pipeline. These targets will be discussed below. Following this, we will focus on what we believe are the 4 prerequisites of success of any gene target therapy: safety, expression, specificity and efficacy (SESE).
Collapse
Affiliation(s)
- Maria C Scimia
- Temple University, Translational Medicine/Pharmacology , 3500 N. Broad Street, Philadelphia, 19140 , USA
| | | | | |
Collapse
|
10
|
Weber C, Neacsu I, Krautz B, Schlegel P, Sauer S, Raake P, Ritterhoff J, Jungmann A, Remppis AB, Stangassinger M, Koch WJ, Katus HA, Müller OJ, Most P, Pleger ST. Therapeutic safety of high myocardial expression levels of the molecular inotrope S100A1 in a preclinical heart failure model. Gene Ther 2013; 21:131-8. [PMID: 24305416 DOI: 10.1038/gt.2013.63] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/29/2013] [Accepted: 09/30/2013] [Indexed: 12/11/2022]
Abstract
Low levels of the molecular inotrope S100A1 are sufficient to rescue post-ischemic heart failure (HF). As a prerequisite to clinical application and to determine the safety of myocardial S100A1 DNA-based therapy, we investigated the effects of high myocardial S100A1 expression levels on the cardiac contractile function and occurrence of arrhythmia in a preclinical large animal HF model. At 2 weeks after myocardial infarction domestic pigs presented significant left ventricular (LV) contractile dysfunction. Retrograde application of AAV6-S100A1 (1.5 × 10(13) tvp) via the anterior cardiac vein (ACV) resulted in high-level myocardial S100A1 protein peak expression of up to 95-fold above control. At 14 weeks, pigs with high-level myocardial S100A1 protein overexpression did not show abnormalities in the electrocardiogram. Electrophysiological right ventricular stimulation ruled out an increased susceptibility to monomorphic ventricular arrhythmia. High-level S100A1 protein overexpression in the LV myocardium resulted in a significant increase in LV ejection fraction (LVEF), albeit to a lesser extent than previously reported with low S100A1 protein overexpression. Cardiac remodeling was, however, equally reversed. High myocardial S100A1 protein overexpression neither increases the occurrence of cardiac arrhythmia nor causes detrimental effects on myocardial contractile function in vivo. In contrast, this study demonstrates a broad therapeutic range of S100A1 gene therapy in post-ischemic HF using a preclinical large animal model.
Collapse
Affiliation(s)
- C Weber
- 1] Center for Molecular and Translational Cardiology, Heidelberg University Hospital, Heidelberg, Germany [2] Department of Internal Medicine III, Division of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - I Neacsu
- 1] Center for Molecular and Translational Cardiology, Heidelberg University Hospital, Heidelberg, Germany [2] Department of Internal Medicine III, Division of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - B Krautz
- 1] Center for Molecular and Translational Cardiology, Heidelberg University Hospital, Heidelberg, Germany [2] Department of Internal Medicine III, Division of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - P Schlegel
- Department of Internal Medicine III, Division of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - S Sauer
- Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
| | - P Raake
- Department of Internal Medicine III, Division of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - J Ritterhoff
- 1] Center for Molecular and Translational Cardiology, Heidelberg University Hospital, Heidelberg, Germany [2] Department of Internal Medicine III, Division of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - A Jungmann
- Department of Internal Medicine III, Division of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - A B Remppis
- Department of Internal Medicine III, Division of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - M Stangassinger
- Institute for Animal Physiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - W J Koch
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - H A Katus
- 1] Department of Internal Medicine III, Division of Cardiology, University of Heidelberg, Heidelberg, Germany [2] Deutsches Zentrum für Herz-/Kreislaufforschung, University Hospital Heidelberg, Heidelberg, Germany
| | - O J Müller
- Department of Internal Medicine III, Division of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - P Most
- 1] Center for Molecular and Translational Cardiology, Heidelberg University Hospital, Heidelberg, Germany [2] Department of Internal Medicine III, Division of Cardiology, University of Heidelberg, Heidelberg, Germany [3] Deutsches Zentrum für Herz-/Kreislaufforschung, University Hospital Heidelberg, Heidelberg, Germany [4] Laboratory for Cardiac Stem Cell and Gene Therapy, Temple University School of Medicine, Philadelphia, PA, USA
| | - S T Pleger
- 1] Center for Molecular and Translational Cardiology, Heidelberg University Hospital, Heidelberg, Germany [2] Department of Internal Medicine III, Division of Cardiology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
11
|
Asokan A, Samulski RJ. An emerging adeno-associated viral vector pipeline for cardiac gene therapy. Hum Gene Ther 2013; 24:906-13. [PMID: 24164238 PMCID: PMC3815036 DOI: 10.1089/hum.2013.2515] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The naturally occurring adeno-associated virus (AAV) isolates display diverse tissue tropisms in different hosts. Robust cardiac transduction in particular has been reported for certain AAV strains. Successful applications of these AAV strains in preclinical and clinical settings with a focus on treating cardiovascular disease continue to be reported. At the same time, these studies have highlighted challenges such as cross-species variability in AAV tropism, transduction efficiency, and immunity. Continued progress in our understanding of AAV capsid structure and biology has provided the rationale for designing improved vectors that can possibly address these concerns. The current report provides an overview of cardiotropic AAV, existing gaps in our knowledge, and newly engineered AAV strains that are viable candidates for the cardiac gene therapy clinic.
Collapse
Affiliation(s)
- Aravind Asokan
- Gene Therapy Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27516
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27516
| | - R. Jude Samulski
- Gene Therapy Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27516
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27516
| |
Collapse
|
12
|
Pleger ST, Brinks H, Ritterhoff J, Raake P, Koch WJ, Katus HA, Most P. Heart failure gene therapy: the path to clinical practice. Circ Res 2013; 113:792-809. [PMID: 23989720 PMCID: PMC11848682 DOI: 10.1161/circresaha.113.300269] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 06/26/2013] [Indexed: 01/08/2023]
Abstract
Gene therapy, aimed at the correction of key pathologies being out of reach for conventional drugs, bears the potential to alter the treatment of cardiovascular diseases radically and thereby of heart failure. Heart failure gene therapy refers to a therapeutic system of targeted drug delivery to the heart that uses formulations of DNA and RNA, whose products determine the therapeutic classification through their biological actions. Among resident cardiac cells, cardiomyocytes have been the therapeutic target of numerous attempts to regenerate systolic and diastolic performance, to reverse remodeling and restore electric stability and metabolism. Although the concept to intervene directly within the genetic and molecular foundation of cardiac cells is simple and elegant, the path to clinical reality has been arduous because of the challenge on delivery technologies and vectors, expression regulation, and complex mechanisms of action of therapeutic gene products. Nonetheless, since the first demonstration of in vivo gene transfer into myocardium, there have been a series of advancements that have driven the evolution of heart failure gene therapy from an experimental tool to the threshold of becoming a viable clinical option. The objective of this review is to discuss the current state of the art in the field and point out inevitable innovations on which the future evolution of heart failure gene therapy into an effective and safe clinical treatment relies.
Collapse
Affiliation(s)
- Sven T. Pleger
- Center for Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany
| | - Henriette Brinks
- Department of Cardiac and Vascular Surgery, University Hospital Bern, 3010 Bern, Switzerland
| | - Julia Ritterhoff
- Center for Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany
| | - Philip Raake
- Center for Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany
| | - Walter J. Koch
- Center for Translational Medicine, Department of Pharmacology, Temple University, Philadelphia, PA 19122, USA
| | - Hugo A. Katus
- Center for Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany
| | - Patrick Most
- Center for Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany
- Center for Translational Medicine, Department of Medicine, Jefferson Medical College, Philadelphia, PA 19107, USA
| |
Collapse
|
13
|
Zouein FA, Booz GW. AAV-mediated gene therapy for heart failure: enhancing contractility and calcium handling. F1000PRIME REPORTS 2013; 5:27. [PMID: 23967378 PMCID: PMC3732072 DOI: 10.12703/p5-27] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Heart failure is a progressive, debilitating disease that is characterized by inadequate contractility of the heart. With an aging population, the incidence and economic burden of managing heart failure are anticipated to increase substantially. Drugs for heart failure only slow its progression and offer no cure. However, results of recent clinical trials using recombinant adeno-associated virus (AAV) gene delivery offer the promise, for the first time, that heart failure can be reversed. The strategy is to improve contractility of cardiac muscle cells by enhancing their ability to store calcium through increased expression of the sarco(endo)plasmic reticulum Ca(2+)-ATPase pump (SERCA2a). Preclinical trials have also identified other proteins involved in calcium cycling in cardiac muscle that are promising targets for gene therapy in heart failure, including the following: protein phosphatase 1, adenylyl cyclase 6, G-protein-coupled receptor kinase 2, phospholamban, SUMO1, and S100A1. These preclinical and clinical trials represent a "quiet revolution" that may end up being one of the most significant and remarkable breakthroughs in modern medical practice. Of course, a number of uncertainties remain, including the long-term utility and wisdom of improving the contractile performance of "sick" muscle cells. In this regard, gene therapy may turn out to be a way of buying additional time for actual cardiac regeneration to occur using cardiac stem cells or induced pluripotent stem cells.
Collapse
Affiliation(s)
- Fouad A. Zouein
- Department of Pharmacology and Toxicology, School of Medicine and The Jackson Center for Heart ResearchJackson, MississippiUSA
- The Cardiovascular-Renal Research Center, The University of Mississippi Medical CenterJackson, MississippiUSA
| | - George W. Booz
- Department of Pharmacology and Toxicology, School of Medicine and The Jackson Center for Heart ResearchJackson, MississippiUSA
- The Cardiovascular-Renal Research Center, The University of Mississippi Medical CenterJackson, MississippiUSA
| |
Collapse
|
14
|
Current World Literature. Curr Opin Cardiol 2013; 28:369-79. [DOI: 10.1097/hco.0b013e328360f5be] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Timofeyev V, Myers RE, Kim HJ, Woltz RL, Sirish P, Heiserman JP, Li N, Singapuri A, Tang T, Yarov-Yarovoy V, Yamoah EN, Hammond HK, Chiamvimonvat N. Adenylyl cyclase subtype-specific compartmentalization: differential regulation of L-type Ca2+ current in ventricular myocytes. Circ Res 2013; 112:1567-76. [PMID: 23609114 DOI: 10.1161/circresaha.112.300370] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
RATIONALE Adenylyl cyclase (AC) represents one of the principal molecules in the β-adrenergic receptor signaling pathway, responsible for the conversion of ATP to the second messenger, cAMP. AC types 5 (ACV) and 6 (ACVI) are the 2 main isoforms in the heart. Although highly homologous in sequence, these 2 proteins play different roles during the development of heart failure. Caveolin-3 is a scaffolding protein, integrating many intracellular signaling molecules in specialized areas called caveolae. In cardiomyocytes, caveolin is located predominantly along invaginations of the cell membrane known as t-tubules. OBJECTIVE We take advantage of ACV and ACVI knockout mouse models to test the hypothesis that there is distinct compartmentalization of these isoforms in ventricular myocytes. METHODS AND RESULTS We demonstrate that ACV and ACVI isoforms exhibit distinct subcellular localization. The ACVI isoform is localized in the plasma membrane outside the t-tubular region and is responsible for β1-adrenergic receptor signaling-mediated enhancement of the L-type Ca(2+) current (ICa,L) in ventricular myocytes. In contrast, the ACV isoform is localized mainly in the t-tubular region where its influence on ICa,L is restricted by phosphodiesterase. We further demonstrate that the interaction between caveolin-3 with ACV and phosphodiesterase is responsible for the compartmentalization of ACV signaling. CONCLUSIONS Our results provide new insights into the compartmentalization of the 2 AC isoforms in the regulation of ICa,L in ventricular myocytes. Because caveolae are found in most mammalian cells, the mechanism of β- adrenergic receptor and AC compartmentalization may also be important for β-adrenergic receptor signaling in other cell types.
Collapse
Affiliation(s)
- Valeriy Timofeyev
- Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Luan H, Chen X, Zhong S, Yuan X, Meng N, Zhang J, Fu J, Xu R, Lee C, Song S, Jiang H, Xu X. Serum metabolomics reveals lipid metabolism variation between coronary artery disease and congestive heart failure: a pilot study. Biomarkers 2013; 18:314-21. [PMID: 23581255 DOI: 10.3109/1354750x.2013.781222] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The aim of this pilot study is to find discriminating signals from the patient's congestive heart failure (HF) caused by coronary artery disease (CAD) through a non-target metabolomics method and test their usefulness in progress of human HF diseases. Multivariate data analysis was used to identify the discriminating signals. Interestingly, 12 metabolites contributing to the complete separation of HF from matched CAD were identified. Metabolic pathways including free fatty acids, sphingolipids and amino acid derivatives were found to be disturbed in HF patients compared with CAD patients. Lipid molecules associated with energy metabolism and signaling pathways may play key roles in the development of failing heart.
Collapse
Affiliation(s)
- Hemi Luan
- BGI-Shenzhen, Shenzhen 518083, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Katz MG, Fargnoli AS, Bridges CR. Myocardial gene transfer: routes and devices for regulation of transgene expression by modulation of cellular permeability. Hum Gene Ther 2013; 24:375-92. [PMID: 23427834 DOI: 10.1089/hum.2012.241] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Heart diseases are major causes of morbidity and mortality in Western society. Gene therapy approaches are becoming promising therapeutic modalities to improve underlying molecular processes affecting failing cardiomyocytes. Numerous cardiac clinical gene therapy trials have yet to demonstrate strong positive results and advantages over current pharmacotherapy. The success of gene therapy depends largely on the creation of a reliable and efficient delivery method. The establishment of such a system is determined by its ability to overcome the existing biological barriers, including cellular uptake and intracellular trafficking as well as modulation of cellular permeability. In this article, we describe a variety of physical and mechanical methods, based on the transient disruption of the cell membrane, which are applied in nonviral gene transfer. In addition, we focus on the use of different physiological techniques and devices and pharmacological agents to enhance endothelial permeability. Development of these methods will undoubtedly help solve major problems facing gene therapy.
Collapse
Affiliation(s)
- Michael G Katz
- Thoracic and Cardiovascular Surgery, Sanger Heart & Vascular Institute, Carolinas Healthcare System, Charlotte, NC 28203, USA
| | | | | |
Collapse
|
18
|
Sovari AA, Dudley SC. Gene and cell therapies for the failing heart to prevent sudden arrhythmic death. Minerva Cardioangiol 2012; 60:363-373. [PMID: 22858914 PMCID: PMC3655203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Current therapies for treatment and prevention of sudden cardiac death have certain limitations, and a search for new therapeutic approaches is desirable to reduce the burden of sudden arrhythmic death. Gene therapy and stem cell therapy have been investigated as new, valuable tools in treating cardiac diseases such as arrhythmias. In this review, the basics of each modality, important related experimental and clinical studies, and potential advantages and limitations of these treatments will be discussed. The future success of gene and cell therapy to become practical clinical tools greatly depends on our understanding of the mechanisms of ventricular arrhythmia and the mechanisms of action of gene and cell therapy.
Collapse
Affiliation(s)
- A A Sovari
- University of Illinois at Chicago, Chicago, IL, USA
| | | |
Collapse
|