1
|
Lu B, Lim JM, Yu B, Song S, Neeli P, Sobhani N, K P, Bonam SR, Kurapati R, Zheng J, Chai D. The next-generation DNA vaccine platforms and delivery systems: advances, challenges and prospects. Front Immunol 2024; 15:1332939. [PMID: 38361919 PMCID: PMC10867258 DOI: 10.3389/fimmu.2024.1332939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/17/2024] [Indexed: 02/17/2024] Open
Abstract
Vaccines have proven effective in the treatment and prevention of numerous diseases. However, traditional attenuated and inactivated vaccines suffer from certain drawbacks such as complex preparation, limited efficacy, potential risks and others. These limitations restrict their widespread use, especially in the face of an increasingly diverse range of diseases. With the ongoing advancements in genetic engineering vaccines, DNA vaccines have emerged as a highly promising approach in the treatment of both genetic diseases and acquired diseases. While several DNA vaccines have demonstrated substantial success in animal models of diseases, certain challenges need to be addressed before application in human subjects. The primary obstacle lies in the absence of an optimal delivery system, which significantly hampers the immunogenicity of DNA vaccines. We conduct a comprehensive analysis of the current status and limitations of DNA vaccines by focusing on both viral and non-viral DNA delivery systems, as they play crucial roles in the exploration of novel DNA vaccines. We provide an evaluation of their strengths and weaknesses based on our critical assessment. Additionally, the review summarizes the most recent advancements and breakthroughs in pre-clinical and clinical studies, highlighting the need for further clinical trials in this rapidly evolving field.
Collapse
Affiliation(s)
- Bowen Lu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jing Ming Lim
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Boyue Yu
- Department of Environmental Science, Policy, and Management, University of California at Berkeley, Berkeley, CA, United States
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Praveen Neeli
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Navid Sobhani
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Pavithra K
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, India
| | - Srinivasa Reddy Bonam
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Rajendra Kurapati
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, India
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
2
|
bin Umair M, Akusa FN, Kashif H, Seerat-e-Fatima, Butt F, Azhar M, Munir I, Ahmed M, Khalil W, Sharyar H, Rafique S, Shahid M, Afzal S. Viruses as tools in gene therapy, vaccine development, and cancer treatment. Arch Virol 2022; 167:1387-1404. [PMID: 35462594 PMCID: PMC9035288 DOI: 10.1007/s00705-022-05432-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/28/2022] [Indexed: 12/11/2022]
Abstract
Using viruses to our advantage has been a huge leap for humanity. Their ability to mediate horizontal gene transfer has made them useful tools for gene therapy, vaccine development, and cancer treatment. Adenoviruses, adeno-associated viruses, retroviruses, lentiviruses, alphaviruses, and herpesviruses are a few of the most common candidates for use as therapeutic agents or efficient gene delivery systems. Efforts are being made to improve and perfect viral-vector-based therapies to overcome potential or reported drawbacks. Some preclinical trials of viral vector vaccines have yielded positive results, indicating their potential as prophylactic or therapeutic vaccine candidates. Utilization of the oncolytic activity of viruses is the future of cancer therapy, as patients will then be free from the harmful effects of chemo- or radiotherapy. This review discusses in vitro and in vivo studies showing the brilliant therapeutic potential of viruses.
Collapse
Affiliation(s)
- Musab bin Umair
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Fujimura Nao Akusa
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Hadia Kashif
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Seerat-e-Fatima
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Fatima Butt
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Marium Azhar
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Iqra Munir
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Muhammad Ahmed
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Wajeeha Khalil
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Hafiz Sharyar
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Shazia Rafique
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Muhammad Shahid
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Samia Afzal
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan
| |
Collapse
|
3
|
Watanabe M, Kopruszinski CM, Moutal A, Ikegami D, Khanna R, Chen Y, Ross S, Mackenzie K, Stratton J, Dodick DW, Navratilova E, Porreca F. Dysregulation of serum prolactin links the hypothalamus with female nociceptors to promote migraine. Brain 2022; 145:2894-2909. [PMID: 35325034 PMCID: PMC9890468 DOI: 10.1093/brain/awac104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 02/17/2022] [Accepted: 03/13/2022] [Indexed: 02/04/2023] Open
Abstract
Migraine headache results from activation of meningeal nociceptors, however, the hypothalamus is activated many hours before the emergence of pain. How hypothalamic neural mechanisms may influence trigeminal nociceptor function remains unknown. Stress is a common migraine trigger that engages hypothalamic dynorphin/kappa opioid receptor (KOR) signalling and increases circulating prolactin. Prolactin acts at both long and short prolactin receptor isoforms that are expressed in trigeminal afferents. Following downregulation of the prolactin receptor long isoform, prolactin signalling at the prolactin receptor short isoform sensitizes nociceptors selectively in females. We hypothesized that stress may activate the kappa opioid receptor on tuberoinfundibular dopaminergic neurons to increase circulating prolactin leading to female-selective sensitization of trigeminal nociceptors through dysregulation of prolactin receptor isoforms. A mouse two-hit hyperalgesic priming model of migraine was used. Repeated restraint stress promoted vulnerability (i.e. first-hit priming) to a subsequent subthreshold (i.e. second-hit) stimulus from inhalational umbellulone, a TRPA1 agonist. Periorbital cutaneous allodynia served as a surrogate of migraine-like pain. Female and male KORCre; R26lsl-Sun1-GFP mice showed a high percentage of KORCre labelled neurons co-localized in tyrosine hydroxylase-positive cells in the hypothalamic arcuate nucleus. Restraint stress increased circulating prolactin to a greater degree in females. Stress-primed, but not control, mice of both sexes developed periorbital allodynia following inhalational umbellulone. Gi-DREADD activation (i.e. inhibition through Gi-coupled signalling) in KORCre neurons in the arcuate nucleus also increased circulating prolactin and repeated chemogenetic manipulation of these neurons primed mice of both sexes to umbellulone. Clustered regularly interspaced short palindromic repeats-Cas9 deletion of the arcuate nucleus KOR prevented restraint stress-induced prolactin release in female mice and priming from repeated stress episodes in both sexes. Inhibition of circulating prolactin occurred with systemic cabergoline, a dopamine D2 receptor agonist, blocked priming selectively in females. Repeated restraint stress downregulated the prolactin receptor long isoform in the trigeminal ganglia of female mice. Deletion of prolactin receptor in trigeminal ganglia by nasal clustered regularly interspaced short palindromic repeats-Cas9 targeting both prolactin receptor isoforms prevented stress-induced priming in female mice. Stress-induced activation of hypothalamic KOR increases circulating prolactin resulting in trigeminal downregulation of prolactin receptor long and pain responses to a normally innocuous TRPA1 stimulus. These are the first data that provide a mechanistic link between stress-induced hypothalamic activation and the trigeminal nociceptor effectors that produce trigeminal sensitization and migraine-like pain. This sexually dimorphic mechanism may help to explain female prevalence of migraine. KOR antagonists, currently in phase II clinical trials, may be useful as migraine preventives in both sexes, while dopamine agonists and prolactin/ prolactin receptor antibodies may improve therapy for migraine, and other stress-related neurological disorders, in females.
Collapse
Affiliation(s)
| | | | - Aubin Moutal
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Daigo Ikegami
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Rajesh Khanna
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Yanxia Chen
- Present address: The Solomon H. Snyder Department of Neuroscience, Department of Neurosurgery, Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Sarah Ross
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kimberly Mackenzie
- Teva Pharmaceutical Industries, Ltd., Biologics Discovery, Redwood City, CA 94063, USA
| | - Jennifer Stratton
- Teva Pharmaceutical Industries, Ltd., Biologics Discovery, Redwood City, CA 94063, USA
| | - David W Dodick
- Department of Neurology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Edita Navratilova
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Frank Porreca
- Correspondence to: Frank Porreca, PhD Department of Pharmacology University of Arizona College of Medicine Tucson AZ 85724, USA E-mail:
| |
Collapse
|
4
|
Intranasal Administration for Pain: Oxytocin and Other Polypeptides. Pharmaceutics 2021; 13:pharmaceutics13071088. [PMID: 34371778 PMCID: PMC8309171 DOI: 10.3390/pharmaceutics13071088] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
Pain, particularly chronic pain, remains one of the most debilitating and difficult-to-treat conditions in medicine. Chronic pain is difficult to treat, in part because it is associated with plastic changes in the peripheral and central nervous systems. Polypeptides are linear organic polymers that are highly selective molecules for neurotransmitter and other nervous system receptors sites, including those associated with pain and analgesia, and so have tremendous potential in pain therapeutics. However, delivery of polypeptides to the nervous system is largely limited due to rapid degradation within the peripheral circulation as well as the blood–brain barrier. One strategy that has been shown to be successful in nervous system deposition of polypeptides is intranasal (IN) delivery. In this narrative review, we discuss the delivery of polypeptides to the peripheral and central nervous systems following IN administration. We briefly discuss the mechanism of delivery via the nasal–cerebral pathway. We review recent studies that demonstrate that polypeptides such as oxytocin, delivered IN, not only reach key pain-modulating regions in the nervous system but, in doing so, evoke significant analgesic effects. IN administration of polypeptides has tremendous potential to provide a non-invasive, rapid and effective method of delivery to the nervous system for chronic pain treatment and management.
Collapse
|
5
|
Liu Q, He H, Mai L, Yang S, Fan W, Huang F. Peripherally Acting Opioids in Orofacial Pain. Front Neurosci 2021; 15:665445. [PMID: 34017236 PMCID: PMC8129166 DOI: 10.3389/fnins.2021.665445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
The activation of opioid receptors by exogenous or endogenous opioids can produce significant analgesic effects in peripheral tissues. Numerous researchers have demonstrated the expression of peripheral opioid receptors (PORs) and endogenous opioid peptides (EOPs) in the orofacial region. Growing evidence has shown the involvement of PORs and immune cell-derived EOPs in the modulation of orofacial pain. In this review, we discuss the role of PORs and EOPs in orofacial pain and the possible cellular mechanisms involved. Furthermore, the potential development of therapeutic strategies for orofacial pain is also summarized.
Collapse
Affiliation(s)
- Qing Liu
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lijia Mai
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Shengyan Yang
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wenguo Fan
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Fang Huang
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
6
|
Zhang Z, Yu J, Wang P, Lin L, Liu R, Zeng R, Ma H, Zhao Y. iTRAQ-based proteomic profiling reveals protein alterations after traumatic brain injury and supports thyroxine as a potential treatment. Mol Brain 2021; 14:25. [PMID: 33504361 PMCID: PMC7839205 DOI: 10.1186/s13041-021-00739-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/16/2021] [Indexed: 12/25/2022] Open
Abstract
Traumatic brain injury (TBI) is a primary cause of disability and death across the world. Previously, RNA analysis was widely used to study the pathophysiological mechanisms underlying TBI; however, the relatively low correlation between the transcriptome and proteome revealed that RNA transcription abundance does not reliably predict protein abundance, which led to the emergence of proteomic research. In this study, an iTRAQ proteomics approach was applied to detect protein alterations after TBI on a large scale. A total of 3937 proteins were identified, and 146 proteins were significantly changed after TBI. Moreover, 23 upregulated proteins were verified by parallel reaction monitoring (PRM), and fold changes in 16 proteins were consistent with iTRAQ outcomes. Transthyretin (Ttr) upregulation has been demonstrated at the transcriptional level, and this study further confirmed this at the protein level. After treatment with thyroxine (T4), which is transported by Ttr, the effects of T4 on neuronal histopathology and behavioral performance were determined in vivo (TBI + T4 group). Brain edema was alleviated, and the integrity of the blood brain barrier (BBB) improved. Escape latency in the Morris water maze (MWM) declined significantly compared with the group without T4 treatment. Modified neurological severity scores (mNSS) of the TBI + T4 group decreased from day 1 to day 7 post-TBI compared with the TBI + saline group. These results indicate that T4 treatment has potential to alleviate pathologic and behavioral abnormalities post-TBI. Protein alterations after T4 treatment were also detected by iTRAQ proteomics. Upregulation of proteins like Lgals3, Gfap and Apoe after TBI were reversed by T4 treatment. GO enrichment showed T4 mainly affected intermediate filament organization, cholesterol transportation and axonal regeneration. In summary, iTRAQ proteomics provides information about the impact of TBI on protein alterations and yields insight into underlying mechanisms and pathways involved in TBI and T4 treatment. Finally, Ttr and other proteins identified by iTRAQ may become potential novel treatment targets post-TBI.
Collapse
Affiliation(s)
- Zhongxiang Zhang
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
- Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
| | - Jiangtao Yu
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
- Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
| | - Pengcheng Wang
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
- Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
| | - Lian Lin
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
- Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
| | - Ruining Liu
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
- Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
| | - Rong Zeng
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
- Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
| | - Haoli Ma
- Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
| | - Yan Zhao
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
- Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
| |
Collapse
|
7
|
Irvine KA, Sahbaie P, Ferguson AR, Clark JD. Loss of diffuse noxious inhibitory control after traumatic brain injury in rats: A chronic issue. Exp Neurol 2020; 333:113428. [PMID: 32745472 PMCID: PMC11793995 DOI: 10.1016/j.expneurol.2020.113428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 02/07/2023]
Abstract
Chronic pain is one of the most challenging and debilitating symptoms to manage after traumatic brain injury (TBI), yet the underlying mechanisms remain elusive. The disruption of normal endogenous pain control mechanisms has been linked to several forms of chronic pain and may play a role in pain after TBI. We hypothesized therefore that dysfunctional descending noradrenergic and serotonergic pain control circuits may contribute to the loss of diffuse noxious inhibitory control (DNIC), a critical endogenous pain control mechanism, weeks to months after TBI. For these studies, the rat lateral fluid percussion model of mild TBI was used along with a DNIC paradigm involving a capsaicin-conditioning stimulus. We observed sustained failure of the DNIC response up to 180-days post injury. We confirmed, that descending α2 adrenoceptor-mediated noradrenergic signaling was critical for endogenous pain inhibition in uninjured rats. However, augmenting descending noradrenergic signaling using reboxetine, a selective noradrenaline reuptake inhibitor, failed to restore DNIC after TBI. Furthermore, blocking serotonin-mediated descending signaling using selective spinal serotonergic fiber depletion with 5, 7-dihydroxytryptamine was also unsuccessful at restoring endogenous pain modulation after TBI. Unexpectedly, increasing descending serotonergic signaling using the selective serotonin reuptake inhibitor escitalopram and the serotonin-norepinephrine reuptake inhibitor duloxetine restored the DNIC response in TBI rats at both 49- and 180- days post injury. Consistent with these observations, spinal serotonergic fiber depletion with 5, 7-dihydroxytryptamine eliminated the effects of escitalopram. Intact α2 adrenoceptor signaling, however, was not required for the serotonin-mediated restoration of DNIC after TBI. These results suggest that TBI causes maladaptation of descending nociceptive signaling mechanisms and changes in the function of both adrenergic and serotonergic circuits. Such changes could predispose those with TBI to chronic pain.
Collapse
Affiliation(s)
- Karen-Amanda Irvine
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA 94305, USA; Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave (E4-220), Palo Alto, CA 94304, USA.
| | - Peyman Sahbaie
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA 94305, USA; Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave (E4-220), Palo Alto, CA 94304, USA
| | - Adam R Ferguson
- University of California San Francisco, Brain and Spinal Injury Center, Department Neurosurgery, 1001 Potrero Ave, San Francisco, CA 94110, USA
| | - J David Clark
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA 94305, USA; Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave (E4-220), Palo Alto, CA 94304, USA
| |
Collapse
|
8
|
Abstract
This paper is the fortieth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2017 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
9
|
Chen YX, Wei CX, Lyu YQ, Chen HZ, Jiang G, Gao XL. Biomimetic drug-delivery systems for the management of brain diseases. Biomater Sci 2019; 8:1073-1088. [PMID: 31728485 DOI: 10.1039/c9bm01395d] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acting as a double-edged sword, the blood-brain barrier (BBB) is essential for maintaining brain homeostasis by restricting the entry of small molecules and most macromolecules from blood. However, it also largely limits the brain delivery of most drugs. Even if a drug can penetrate the BBB, its accumulation in the intracerebral pathological regions is relatively low. Thus, an optimal drug-delivery system (DDS) for the management of brain diseases needs to display BBB permeability, lesion-targeting capability, and acceptable safety. Biomimetic DDSs, developed by directly utilizing or mimicking the biological structures and processes, provide promising approaches for overcoming the barriers to brain drug delivery. The present review summarizes the biological properties and biomedical applications of the biomimetic DDSs including the cell membrane-based DDS, lipoprotein-based DDS, exosome-based DDS, virus-based DDS, protein template-based DDS and peptide template-based DDS for the management of brain diseases.
Collapse
Affiliation(s)
- Yao-Xing Chen
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| | - Chen-Xuan Wei
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| | - Ying-Qi Lyu
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| | - Hong-Zhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China. and Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201210, China
| | - Gan Jiang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| | - Xiao-Ling Gao
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| |
Collapse
|
10
|
Abstract
Gene therapy is emerging as a viable option for clinical therapy of monogenic disorders and other genetically defined diseases, with approved gene therapies available in Europe and newly approved gene therapies in the United States. In the past 10 years, gene therapy has moved from a distant possibility, even in the minds of much of the scientific community, to being widely realized as a valuable therapeutic tool with wide-ranging potential. The U.S. Food and Drug Administration has recently approved Luxturna (Spark Therapeutics Inc, Philadelphia, PA, USA), a recombinant adeno-associated virus (rAAV) 2 gene therapy for one type of Leber congenital amaurosis 2 ( 1 , 2 ). The European Medicines Agency (EMA) has approved 3 recombinant viral vector products: Glybera (UniQure, Amsterdam, The Netherlands), an rAAV vector for lipoprotein lipase deficiency; Strimvelis (Glaxo Smith-Kline, Brentford, United Kingdom), an ex vivo gammaretrovirus-based therapy for patients with adenosine deaminase-deficient severe combined immune deficiency (ADA-SCID); and Kymriah (Novartis, Basel, Switzerland), an ex vivo lentivirus-based therapy to engineer autologous chimeric antigen-receptor T (CAR-T) cells targeting CD19-positive cells in acute lymphoblastic leukemia. These examples will be followed by the clinical approval of other gene therapy products as this field matures. In this review we provide an overview of the state of gene therapy by discussing where the field stands with respect to the different gene therapy vector platforms and the types of therapies that are available.-Gruntman, A. M., Flotte, T. R. The rapidly evolving state of gene therapy.
Collapse
Affiliation(s)
- Alisha M Gruntman
- Horae Gene Therapy Center, Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, USA
| | - Terence R Flotte
- Horae Gene Therapy Center, Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
11
|
Strides Toward Better Understanding of Post-Traumatic Headache Pathophysiology Using Animal Models. Curr Pain Headache Rep 2018; 22:67. [PMID: 30073545 DOI: 10.1007/s11916-018-0720-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW In recent years, the awareness of the detrimental impact of concussion and mild traumatic brain injuries (mTBI) is becoming more apparent. Concussive head trauma results in a constellation of cognitive and somatic symptoms of which post-traumatic headache is the most common. Our understanding of post-traumatic headache is limited by the paucity of well validated, characterized, and clinically relevant animal models with strong predictive validity. In this review, we aim to summarize and discuss current animal models of concussion/mTBI and related data that start to shed light on the pathophysiology of post-traumatic headache. RECENT FINDINGS Each of the models will be discussed in terms of their face, construct, and predictive validity as well as overall translational relevance to concussion, mTBI, and post-traumatic headache. Significant contributions to the pathophysiology of PTH garnered from these models are discussed as well as potential contributors to the development of chronic post-traumatic headache. Although post-traumatic headache is one of the most common symptoms following mild head trauma, there remains a disconnect between the study of mild traumatic brain injury and headache in the pre-clinical literature. A greater understanding of the relationship between these phenomena is currently needed to provide more insight into the increasing frequency of this debilitating condition in both military and civilian populations.
Collapse
|
12
|
Wang HJ, Gu HX, Eijkelkamp N, Heijnen CJ, Kavelaars A. Low GRK2 Underlies Hyperalgesic Priming by Glial Cell-Derived Neurotrophic Factor. Front Pharmacol 2018; 9:592. [PMID: 29922165 PMCID: PMC5996251 DOI: 10.3389/fphar.2018.00592] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/17/2018] [Indexed: 11/13/2022] Open
Abstract
Background: We recently identified the balance between the level of G protein coupled receptor kinase 2 (GRK2) and Epac1 in nociceptors as a key factor in the transition from acute to chronic pain that occurs in mice 'primed' by an inflammatory stimulus. Here, we examined the contribution of GRK2 and Epac-signaling to growth factor-induced hyperalgesic priming. Methods: Mice were primed by intraplantar injection with glial cell-derived neurotrophic factor (GDNF). Mechanical allodynia in response to PGE2 was followed over time in primed and non-primed animals. GRK2 protein levels in dorsal root ganglion (DRG) neurons were quantified by immunohistochemistry. The effect of herpes simplex virus (HSV)-GRK2 amplicons to restore GRK2 levels or of an Epac inhibitor on PGE2 allodynia in primed mice was examined. Results: Glial cell-derived neurotrophic factor-induced hyperalgesia disappeared within 12 days. The hyperalgesic response to a subsequent intraplantar injection of PGE2 was prolonged from <24 h in control mice to more than 72 h in GDNF-primed mice. In male and female primed mice, PGE2 hyperalgesia was inhibited by oral administration of the Epac inhibitor ESI-09, while the drug had no effect in control mice. Mice primed with GDNF had reduced levels of GRK2 in IB4(+) small DRG neurons, but normal GRK2 levels in IB4(-) DRG neurons. Intraplantar administration of HSV-GRK2 amplicons to increase GRK2 protein levels prevented the prolongation of PGE2-induced hyperalgesia in GDNF-primed mice. Conclusion: Low GRK2 in nociceptors is critical to develop a primed state in response to GDNF and leads to engagement of Epac signaling and transition to chronic PGE2-induced hyperalgesia. Increasing GRK2 protein or inhibiting Epac signaling may represent new avenues for preventing transition to a chronic pain state.
Collapse
Affiliation(s)
- Hui-Jing Wang
- Laboratory of Neuropsychopharmacology, College of Fundamental Medicine, Shanghai University of Medicine & Health Science, Shanghai, China.,Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, Netherlands
| | - Han-Xin Gu
- Laboratory of Neuropsychopharmacology, College of Fundamental Medicine, Shanghai University of Medicine & Health Science, Shanghai, China
| | - Niels Eijkelkamp
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, Netherlands
| | - Cobi J Heijnen
- Division of Internal Medicine, Laboratory of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Annemieke Kavelaars
- Division of Internal Medicine, Laboratory of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|