1
|
Ye Z, Wei W, Pfrender ME, Lynch M. Evolutionary Insights from a Large-Scale Survey of Population-Genomic Variation. Mol Biol Evol 2023; 40:msad233. [PMID: 37863047 PMCID: PMC10630549 DOI: 10.1093/molbev/msad233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/11/2023] [Accepted: 10/03/2023] [Indexed: 10/22/2023] Open
Abstract
The field of genomics has ushered in new methods for studying molecular-genetic variation in natural populations. However, most population-genomic studies still rely on small sample sizes (typically, <100 individuals) from single time points, leaving considerable uncertainties with respect to the behavior of relatively young (and rare) alleles and, owing to the large sampling variance of measures of variation, to the specific gene targets of unusually strong selection. Genomic sequences of ∼1,700 haplotypes distributed over a 10-year period from a natural population of the microcrustacean Daphnia pulex reveal evolutionary-genomic features at a refined scale, including previously hidden information on the behavior of rare alleles predicted by recent theory. Background selection, resulting from the recurrent introduction of deleterious alleles, appears to strongly influence the dynamics of neutral alleles, inducing indirect negative selection on rare variants and positive selection on common variants. Temporally fluctuating selection increases the persistence of nonsynonymous alleles with intermediate frequencies, while reducing standing levels of variation at linked silent sites. Combined with the results from an equally large metapopulation survey of the study species, classes of genes that are under strong positive selection can now be confidently identified in this key model organism. Most notable among rapidly evolving Daphnia genes are those associated with ribosomes, mitochondrial functions, sensory systems, and lifespan determination.
Collapse
Affiliation(s)
- Zhiqiang Ye
- Hubei Key Laboratory of Genetic Regulation & Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Wen Wei
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287, USA
| | - Michael E Pfrender
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
2
|
Ye Z, Wei W, Pfrender M, Lynch M. Evolutionary Insights from a Large-scale Survey of Population-genomic Variation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539276. [PMID: 37205430 PMCID: PMC10187179 DOI: 10.1101/2023.05.03.539276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Results from data on > 1000 haplotypes distributed over a nine-year period from a natural population of the microcrustacean Daphnia pulex reveal evolutionary-genomic features at a refined scale, including key population-genetic properties that are obscured in studies with smaller sample sizes. Background selection, resulting from the recurrent introduction of deleterious alleles, appears to strongly influence the dynamics of neutral alleles, inducing indirect negative selection on rare variants and positive selection on common variants. Fluctuating selection increases the persistence of nonsynonymous alleles with intermediate frequencies, while reducing standing levels of variation at linked silent sites. Combined with the results from an equally large metapopulation survey of the study species, regions of gene structure that are under strong purifying selection and classes of genes that are under strong positive selection in this key species can be confidently identified. Most notable among rapidly evolving Daphnia genes are those associated with ribosomes, mitochondrial functions, sensory systems, and lifespan determination.
Collapse
Affiliation(s)
- Zhiqiang Ye
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287
| | - Wen Wei
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287
| | - Michael Pfrender
- Department of Biological Sciences, Notre Dame University, Notre Dame, IN 46556
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287
| |
Collapse
|
3
|
Krishnan SK, Nataraj N, Meyyappan M, Pal U. Graphene-Based Field-Effect Transistors in Biosensing and Neural Interfacing Applications: Recent Advances and Prospects. Anal Chem 2023; 95:2590-2622. [PMID: 36693046 PMCID: PMC11386440 DOI: 10.1021/acs.analchem.2c03399] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Siva Kumar Krishnan
- CONACYT-Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apdo. Postal J-48, Puebla72570, Mexico
| | - Nandini Nataraj
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei106, Taiwan
| | - M Meyyappan
- Centre for Nanotechnology, Indian Institute of Technology, Guwahati781039, Assam, India
| | - Umapada Pal
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apdo. Postal J-48, Puebla72570, Mexico
| |
Collapse
|
4
|
Thomas NE, Hailer F, Bruford MW, Chadwick EA. Country-wide genetic monitoring over 21 years reveals lag in genetic recovery despite spatial connectivity in an expanding carnivore (Eurasian otter, Lutra lutra) population. Evol Appl 2022; 15:2125-2141. [PMID: 36540646 PMCID: PMC9753835 DOI: 10.1111/eva.13505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/05/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
Numerous terrestrial mammal species have experienced extensive population declines during past centuries, due largely to anthropogenic pressures. For some species, including the Eurasian otter (Lutra lutra), environmental and legal protection has more recently led to population growth and recolonization of parts of their historic ranges. While heralded as conservation success, only few such recoveries have been examined from a genetic perspective, i.e. whether genetic variability and connectivity have been restored. We here use large-scale and long-term genetic monitoring data from UK otters, whose population underwent a well-documented population decline between the 1950s and 1970s, to explore the dynamics of a population re-expansion over a 21-year period. We genotyped otters from across Wales and England at five time points between 1994 and 2014 using 15 microsatellite loci. We used this combination of long-term temporal and large-scale spatial sampling to evaluate 3 hypotheses relating to genetic recovery that (i) gene flow between subpopulations would increase over time, (ii) genetic diversity of previously isolated populations would increase and that (iii) genetic structuring would weaken over time. Although we found an increase in inter-regional gene flow and admixture levels among subpopulations, there was no significant temporal change in either heterozygosity or allelic richness. Genetic structuring among the main subpopulations hence remained strong and showed a clear historical continuity. These findings highlight an underappreciated aspect of population recovery of endangered species: that genetic recovery may often lag behind the processes of spatial and demographic recovery. In other words, the restoration of the physical connectivity of populations does not necessarily lead to genetic connectivity. Our findings emphasize the need for genetic data as an integral part of conservation monitoring, to enable the potential vulnerability of populations to be evaluated.
Collapse
Affiliation(s)
- Nia E. Thomas
- Organisms and Environment Research Division, School of BiosciencesCardiff UniversityCardiffWalesUK
| | - Frank Hailer
- Organisms and Environment Research Division, School of BiosciencesCardiff UniversityCardiffWalesUK
| | - Michael W. Bruford
- Organisms and Environment Research Division, School of BiosciencesCardiff UniversityCardiffWalesUK
| | - Elizabeth A. Chadwick
- Organisms and Environment Research Division, School of BiosciencesCardiff UniversityCardiffWalesUK
| |
Collapse
|
5
|
Alcala N, Rosenberg NA. Mathematical constraints on FST: multiallelic markers in arbitrarily many populations. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200414. [PMID: 35430885 PMCID: PMC9014193 DOI: 10.1098/rstb.2020.0414] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/23/2021] [Indexed: 11/12/2022] Open
Abstract
Interpretations of values of the FST measure of genetic differentiation rely on an understanding of its mathematical constraints. Previously, it has been shown that FST values computed from a biallelic locus in a set of multiple populations and FST values computed from a multiallelic locus in a pair of populations are mathematically constrained as a function of the frequency of the allele that is most frequent across populations. We generalize from these cases to report here the mathematical constraint on FST given the frequency M of the most frequent allele at a multiallelic locus in a set of multiple populations. Using coalescent simulations of an island model of migration with an infinitely-many-alleles mutation model, we argue that the joint distribution of FST and M helps in disentangling the separate influences of mutation and migration on FST. Finally, we show that our results explain a puzzling pattern of microsatellite differentiation: the lower FST in an interspecific comparison between humans and chimpanzees than in the comparison of chimpanzee populations. We discuss the implications of our results for the use of FST. This article is part of the theme issue 'Celebrating 50 years since Lewontin's apportionment of human diversity'.
Collapse
Affiliation(s)
- Nicolas Alcala
- Rare Cancers Genomics Team (RCG), Genetic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organization, Lyon 69008, France
| | - Noah A. Rosenberg
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA
| |
Collapse
|
6
|
Damm E, Ullrich KK, Amos WB, Odenthal-Hesse L. Evolution of the recombination regulator PRDM9 in minke whales. BMC Genomics 2022; 23:212. [PMID: 35296233 PMCID: PMC8925151 DOI: 10.1186/s12864-022-08305-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 01/11/2022] [Indexed: 11/16/2022] Open
Abstract
Background PRDM9 is a key regulator of meiotic recombination in most metazoans, responsible for reshuffling parental genomes. During meiosis, the PRDM9 protein recognizes and binds specific target motifs via its array of C2H2 zinc-fingers encoded by a rapidly evolving minisatellite. The gene coding for PRDM9 is the only speciation gene identified in vertebrates to date and shows high variation, particularly in the DNA-recognizing positions of the zinc-finger array, within and between species. Across all vertebrate genomes studied for PRDM9 evolution, only one genome lacks variability between repeat types – that of the North Pacific minke whale. This study aims to understand the evolution and diversity of Prdm9 in minke whales, which display the most unusual genome reference allele of Prdm9 so far discovered in mammals. Results Minke whales possess all the features characteristic of PRDM9-directed recombination, including complete KRAB, SSXRD and SET domains and a rapidly evolving array of C2H2-type-Zincfingers (ZnF) with evidence of rapid evolution, particularly at DNA-recognizing positions that evolve under positive diversifying selection. Seventeen novel PRDM9 variants were identified within the Antarctic minke whale species, plus a single distinct PRDM9 variant in Common minke whales – shared across North Atlantic and North Pacific minke whale subspecies boundaries. Conclusion The PRDM9 ZnF array evolves rapidly, in minke whales, with at least one DNA-recognizing position under positive selection. Extensive PRDM9 diversity is observed, particularly in the Antarctic in minke whales. Common minke whales shared a specific Prdm9 allele across subspecies boundaries, suggesting incomplete speciation by the mechanisms associated with PRDM9 hybrid sterility. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08305-1.
Collapse
Affiliation(s)
- Elena Damm
- Department Evolutionary Genetics, Research Group Meiotic Recombination and Genome Instability, Max Planck Institute for Evolutionary Biology, August-Thienemann Str. 2, D-24306, Plön, Germany
| | - Kristian K Ullrich
- Department Evolutionary Genetics, Research Group Meiotic Recombination and Genome Instability, Max Planck Institute for Evolutionary Biology, August-Thienemann Str. 2, D-24306, Plön, Germany
| | - William B Amos
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Linda Odenthal-Hesse
- Department Evolutionary Genetics, Research Group Meiotic Recombination and Genome Instability, Max Planck Institute for Evolutionary Biology, August-Thienemann Str. 2, D-24306, Plön, Germany.
| |
Collapse
|
7
|
Campos R, Borme J, Guerreiro JR, Machado G, Cerqueira MF, Petrovykh DY, Alpuim P. Attomolar Label-Free Detection of DNA Hybridization with Electrolyte-Gated Graphene Field-Effect Transistors. ACS Sens 2019; 4:286-293. [PMID: 30672282 DOI: 10.1021/acssensors.8b00344] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, we develop a field-effect transistor with a two-dimensional channel made of a single graphene layer to achieve label-free detection of DNA hybridization down to attomolar concentration, while being able to discriminate a single nucleotide polymorphism (SNP). The SNP-level target specificity is achieved by immobilization of probe DNA on the graphene surface through a pyrene-derivative heterobifunctional linker. Biorecognition events result in a positive gate voltage shift of the graphene charge neutrality point. The graphene transistor biosensor displays a sensitivity of 24 mV/dec with a detection limit of 25 aM: the lowest target DNA concentration for which the sensor can discriminate between a perfect-match target sequence and SNP-containing one.
Collapse
Affiliation(s)
- Rui Campos
- Department of Quantum and Energy Materials, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Jérôme Borme
- Department of Quantum and Energy Materials, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Joana Rafaela Guerreiro
- Department of Life Sciences, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - George Machado
- Department of Quantum and Energy Materials, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
- Center of Physics, University of Minho, 4710-057 Braga, Portugal
| | - Maria Fátima Cerqueira
- Department of Quantum and Energy Materials, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
- Center of Physics, University of Minho, 4710-057 Braga, Portugal
| | - Dmitri Y. Petrovykh
- Department of Life Sciences, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Pedro Alpuim
- Department of Quantum and Energy Materials, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
- Center of Physics, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
8
|
Criollo-Rayo AA, Bohórquez M, Prieto R, Howarth K, Culma C, Carracedo A, Tomlinson I, Echeverry de Polnaco MM, Carvajal Carmona LG. Native American gene continuity to the modern admixed population from the Colombian Andes: Implication for biomedical, population and forensic studies. Forensic Sci Int Genet 2018; 36:e1-e7. [PMID: 29909140 DOI: 10.1016/j.fsigen.2018.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/05/2018] [Accepted: 06/05/2018] [Indexed: 12/14/2022]
Abstract
Andean populations have variable degrees of Native American and European ancestry, representing an opportunity to study admixture dynamics in the populations from Latin America (also known as Hispanics). We characterized the genetic structure of two indigenous (Nasa and Pijao) and three admixed (Ibagué, Ortega and Planadas) groups from Tolima, in the Colombian Andes. DNA samples from 348 individuals were genotyped for six mitochondrial DNA (mtDNA), seven non-recombining Y-chromosome (NRY) region and 100 autosomal ancestry informative markers. Nasa and Pijao had a predominant Native American ancestry at the autosomal (92%), maternal (97%) and paternal (70%) level. The admixed groups had a predominant Native American mtDNA ancestry (90%), a substantial frequency of European NRY haplotypes (72%) and similar autosomal contributions from Europeans (51%) and Amerindians (45%). Pijao and nearby Ortega were indistinguishable at the mtDNA and autosomal level, suggesting a genetic continuity between them. Comparisons with multiple Native American populations throughout the Americas revealed that Pijao, had close similarities with Carib-speakers from distant parts of the continent, suggesting an ancient correlation between language and genes. In summary, our study aimed to understand Hispanic patterns of migration, settlement and admixture, supporting an extensive contribution of local Amerindian women to the gene pool of admixed groups and consistent with previous reports of European-male driven admixture in Colombia.
Collapse
Affiliation(s)
- Angel A Criollo-Rayo
- Grupo de Citogenética, Filogenia y Evolución de Poblaciones, Facultad de Ciencias y Facultad de Ciencias de la Salud, Universidad del Tolima, Ibagué, Colombia
| | - Mabel Bohórquez
- Grupo de Citogenética, Filogenia y Evolución de Poblaciones, Facultad de Ciencias y Facultad de Ciencias de la Salud, Universidad del Tolima, Ibagué, Colombia
| | - Rodrigo Prieto
- Grupo de Citogenética, Filogenia y Evolución de Poblaciones, Facultad de Ciencias y Facultad de Ciencias de la Salud, Universidad del Tolima, Ibagué, Colombia
| | - Kimberley Howarth
- Institute of Cancer and Genomics Sciences, University of Birmingham, UK
| | - Cesar Culma
- Comite Regional Indígena del Tolima, Ibagué, Tolima, Colombia
| | - Angel Carracedo
- Fundación Pública Galega de Medicina Xenómica (SERGAS)-CIBERER, Universidad de Santiago de Compostela, Santiago de Compostela, Spain; Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ian Tomlinson
- Institute of Cancer and Genomics Sciences, University of Birmingham, UK
| | - Maria M Echeverry de Polnaco
- Grupo de Citogenética, Filogenia y Evolución de Poblaciones, Facultad de Ciencias y Facultad de Ciencias de la Salud, Universidad del Tolima, Ibagué, Colombia
| | - Luis G Carvajal Carmona
- Grupo de Citogenética, Filogenia y Evolución de Poblaciones, Facultad de Ciencias y Facultad de Ciencias de la Salud, Universidad del Tolima, Ibagué, Colombia; Fundación de Genética y Genómica, Medellin, Colombia; Corporación Universitaria Remington, Medellin, Colombia; Genome Center and Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, GBSF, 451 Health Science Drive Davis, CA, 95616-8816, USA.
| |
Collapse
|
9
|
Hwang MT, Wang Z, Ping J, Ban DK, Shiah ZC, Antonschmidt L, Lee J, Liu Y, Karkisaval AG, Johnson ATC, Fan C, Glinsky G, Lal R. DNA Nanotweezers and Graphene Transistor Enable Label-Free Genotyping. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802440. [PMID: 29984525 PMCID: PMC6326894 DOI: 10.1002/adma.201802440] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/16/2018] [Indexed: 05/04/2023]
Abstract
Electronic DNA-biosensor with a single nucleotide resolution capability is highly desirable for personalized medicine. However, existing DNA-biosensors, especially single nucleotide polymorphism (SNP) detection systems, have poor sensitivity and specificity and lack real-time wireless data transmission. DNA-tweezers with graphene field effect transistor (FET) are used for SNP detection and data are transmitted wirelessly for analysis. Picomolar sensitivity of quantitative SNP detection is achieved by observing changes in Dirac point shift and resistance change. The use of DNA-tweezers probe with high-quality graphene FET significantly improves analytical characteristics of SNP detection by enhancing the sensitivity more than 1000-fold in comparison to previous work. The electrical signal resulting from resistance changes triggered by DNA strand-displacement and related changes in the DNA geometry is recorded and transmitted remotely to personal electronics. Practical implementation of this enabling technology will provide cheaper, faster, and portable point-of-care molecular health status monitoring and diagnostic devices.
Collapse
Affiliation(s)
- Michael T Hwang
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Zejun Wang
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201800, China
| | - Jinglei Ping
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Deependra Kumar Ban
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Zi Chao Shiah
- Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Leif Antonschmidt
- NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Joon Lee
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Yushuang Liu
- School of Life Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, 010018, China
| | - Abhijith G Karkisaval
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Alan T Charlie Johnson
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Chunhai Fan
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201800, China
| | - Gennadi Glinsky
- Institute of Engineering in Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Ratnesh Lal
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| |
Collapse
|
10
|
Guzmán-Alberto JC, Martínez-Cortes G, Rangel-Villalobos H. Inference of maternal uniparental disomy of the entire chromosome 2 from a paternity test. Int J Legal Med 2018; 133:71-75. [PMID: 29511852 DOI: 10.1007/s00414-018-1811-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 02/22/2018] [Indexed: 11/26/2022]
Abstract
Atypical situations arise during the constant resolution of paternity cases, which constitute challenges requiring additional genetic systems and non-standard methods. We report a paternity case presenting three alleged father (AF)-child incompatibilities for the markers TPOX, D2S441, and the indel locus B02 (11/11 vs 8/8; 14/14 vs 10/10; 2/2 vs1/1, respectively). Considering the presence of mutations/null alleles, the residual paternity indexes (PI) obtained with 23 autosomal short tandem repeats (STRs) and 38 indels suggest that the AF is the father (PI = 1.94e+011). Although the presence of few incompatibilities also could imply paternity of the AF brother, this hypothesis was less probable (PI = 3.20e+9) (W = 98.4 vs 1.6%, respectively). The inclusion of 23 Y-STR loci confirmed the paternity relationship in this case (global PI = 6.08e+15). However, the two multistep STRs and one indel incompatibilities allow discarding the mutation possibility. On the other hand, the confirmation of the homozygous STR genotypes with two different human identification kits and the low probability to find three null alleles (3.10e-8) allow rejecting the null allele presence hypothesis. Conversely, the child's homozygous genotype for maternal alleles in four markers located in the p and q arms of the chromosome 2 (TPOX, D2S441, D2S1338, and B02) suggests that maternal uniparental isodisomy better explains the relationship despite the presence of three paternal incompatibilities. In brief, when multiple incompatibilities are observed in paternity testing, the chromosomal location of the excluding loci and the use of additional genetic systems can be crucial to get confident kinship conclusions.
Collapse
Affiliation(s)
| | - Gabriela Martínez-Cortes
- Instituto de Investigación en Genética Molecular, Centro Universitario de la Ciénega Universidad de Guadalajara (CUCiénega-UdeG), Av. Universidad #1115, Col. Paso Blanco, 47810, Ocotlán, Jalisco, Mexico
| | - Héctor Rangel-Villalobos
- Instituto de Investigación en Genética Molecular, Centro Universitario de la Ciénega Universidad de Guadalajara (CUCiénega-UdeG), Av. Universidad #1115, Col. Paso Blanco, 47810, Ocotlán, Jalisco, Mexico.
| |
Collapse
|
11
|
Lu G, Bernatchez L. CORRELATED TROPHIC SPECIALIZATION AND GENETIC DIVERGENCE IN SYMPATRIC LAKE WHITEFISH ECOTYPES (COREGONUS CLUPEAFORMIS): SUPPORT FOR THE ECOLOGICAL SPECIATION HYPOTHESIS. Evolution 2017; 53:1491-1505. [DOI: 10.1111/j.1558-5646.1999.tb05413.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/1998] [Accepted: 05/06/1999] [Indexed: 11/29/2022]
Affiliation(s)
- Guoqing Lu
- Département de biologie; GIROQ, Université Laval; Sainte-Foy Québec G1K 7P4 Canada
| | - Louis Bernatchez
- Département de biologie; GIROQ, Université Laval; Sainte-Foy Québec G1K 7P4 Canada
| |
Collapse
|
12
|
Turgeon J, Estoup A, Bernatchez L. SPECIES FLOCK IN THE NORTH AMERICAN GREAT LAKES: MOLECULAR ECOLOGY OF LAKE NIPIGON CISCOES (TELEOSTEI: COREGONIDAE: COREGONUS). Evolution 2017; 53:1857-1871. [PMID: 28565465 DOI: 10.1111/j.1558-5646.1999.tb04568.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/1998] [Accepted: 05/12/1999] [Indexed: 11/29/2022]
Abstract
Studies on north temperate fish species indicate that new habitat availability following the last ice sheet retreat has promoted ecological speciation in postglacial lakes. Extensive ecophenotypic polymorphisms observed among the North American Great Lakes ciscoes suggest that this fish group has radiated through trophic adaptation and reproductive isolation. This study aims at relating the ecomorphological and genetic polymorphisms expressed by the Lake Nipigon ciscoes to evaluate the likelihood of an intralacustrine divergence driven by the exploitation of alternative resources. Morphological variation and trophic and spatial niches are characterized and contrasted among 203 individuals. Genetic variation at six microsatellite loci is also analyzed to appraise the extent of genetic differentiation among these morphotypes. Ecomorphological data confirm the existence of four distinct morphotypes displaying various levels of trophic and depth niche overlap and specialization. However, ecological and morphological variations were not coupled as expected, suggesting that trophic morphology is not always predictive of ecology. Although extensive genetic variability was observed, little genetic differentiation was found among morphotypes, with only one morph being slightly but significantly differentiated. Contrasting patterns of morphological, ecological, and genetic polymorphisms did not support the hypothesis of ecological speciation: the most ecologically different forms were morphologically most similar, while the only genetically differentiated morph was the least ecologically specialized. The low levels of genetic differentiation and the congruence between θ and φ estimates altogether suggest a recent (most likely postglacial) process of divergence and/or high gene flow among morphs A, C, and D, whereas higher φ estimates for comparison involving morph B suggest that this morph may be derived from another colonizing lineage exchanging little genes with the other morphs. Patterns of ecophenotypic and genetic diversity are also compatible with a more complex evolutionary history involving hybridization and introgression.
Collapse
Affiliation(s)
- Julie Turgeon
- GIROQ, Département de biologie, Université Laval, Ste-Foy, Québec, Canada, G1K 7P4
| | - Arnaud Estoup
- Laboratoire de Génétique des Poissons, INRA, 78352, Jouy-en-Josas, France
| | - Louis Bernatchez
- GIROQ, Département de biologie, Université Laval, Ste-Foy, Québec, Canada, G1K 7P4
| |
Collapse
|
13
|
Hedrick PW. PERSPECTIVE: HIGHLY VARIABLE LOCI AND THEIR INTERPRETATION IN EVOLUTION AND CONSERVATION. Evolution 2017; 53:313-318. [PMID: 28565409 DOI: 10.1111/j.1558-5646.1999.tb03767.x] [Citation(s) in RCA: 595] [Impact Index Per Article: 74.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/1998] [Accepted: 11/18/1998] [Indexed: 11/27/2022]
Abstract
Although highly variable loci, such as microsatellite loci, are revolutionizing both evolutionary and conservation biology, data from these loci need to be carefully evaluated. First, because these loci often have very high within-population heterozygosity, the magnitude of differentiation measures may be quite small. For example, maximum GST values for populations with no common alleles at highly variable loci may be small and are at maximum less than the average within-population homozygosity. As a result, measures that are variation independent are recommended for highly variable loci. Second, bottlenecks or a reduction in population size can generate large genetic distances in a short time for these loci. In this case, the genetic distance may be corrected for low variation in a population and tests to detect bottlenecks are advised. Third, statistically significant differences may not reflect biologically meaningful differences both because the patterns of adaptive loci may not be correlated with highly variable loci and statistical power with these markers is so high. As an example of this latter effect, the statistical power to detect a one-generation bottleneck of different sizes for different numbers of highly variable loci is discussed. All of these concerns need to be incorporated in the utilization and interpretation of patterns of highly variable loci for both evolutionary and conservation biology.
Collapse
Affiliation(s)
- Philip W Hedrick
- Department of Biology, Arizona State University, Tempe, Arizona, 85287-1501
| |
Collapse
|
14
|
Ehler E, Vanek D. Forensic genetic analyses in isolated populations with examples of central European Valachs and Roma. J Forensic Leg Med 2017; 48:46-52. [PMID: 28454050 DOI: 10.1016/j.jflm.2017.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/22/2017] [Accepted: 04/09/2017] [Indexed: 01/27/2023]
Abstract
Isolated populations present a constant threat to the correctness of forensic genetic casework. In this review article we present several examples of how analyzing samples from isolated populations can bias the results of the forensic statistics and analyses. We select our examples from isolated populations from central and southeastern Europe, namely the Valachs and the European Roma. We also provide the reader with general strategies and principles to improve the laboratory practice (best practice) and reporting of samples from supposedly isolated populations. These include reporting the precise population data used for computing the forensic statistics, using the appropriate θ correction factor for calculating allele frequencies, typing ancestry informative markers in samples of unknown or uncertain ethnicity and establishing ethnic-specific forensic databases.
Collapse
Affiliation(s)
- Edvard Ehler
- Department of Biology and Environmental Studies, Charles University in Prague, Faculty of Education, Magdaleny Rettigove 4, Prague, 116 39, Czech Republic; Institute of Anthropology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614, Poznan, Poland.
| | - Daniel Vanek
- Forensic DNA Service, Janovskeho 18, Prague 7, 170 00, Czech Republic; Charles University in Prague, 2nd Faculty of Medicine, V Uvalu 84, Prague, 150 06, Czech Republic; Nemocnice Na Bulovce, Institute of Legal Medicine, Budinova 2, Prague, 180 81, Czech Republic.
| |
Collapse
|
15
|
Highly specific SNP detection using 2D graphene electronics and DNA strand displacement. Proc Natl Acad Sci U S A 2016; 113:7088-93. [PMID: 27298347 DOI: 10.1073/pnas.1603753113] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Single-nucleotide polymorphisms (SNPs) in a gene sequence are markers for a variety of human diseases. Detection of SNPs with high specificity and sensitivity is essential for effective practical implementation of personalized medicine. Current DNA sequencing, including SNP detection, primarily uses enzyme-based methods or fluorophore-labeled assays that are time-consuming, need laboratory-scale settings, and are expensive. Previously reported electrical charge-based SNP detectors have insufficient specificity and accuracy, limiting their effectiveness. Here, we demonstrate the use of a DNA strand displacement-based probe on a graphene field effect transistor (FET) for high-specificity, single-nucleotide mismatch detection. The single mismatch was detected by measuring strand displacement-induced resistance (and hence current) change and Dirac point shift in a graphene FET. SNP detection in large double-helix DNA strands (e.g., 47 nt) minimize false-positive results. Our electrical sensor-based SNP detection technology, without labeling and without apparent cross-hybridization artifacts, would allow fast, sensitive, and portable SNP detection with single-nucleotide resolution. The technology will have a wide range of applications in digital and implantable biosensors and high-throughput DNA genotyping, with transformative implications for personalized medicine.
Collapse
|
16
|
Zeng X, Chakraborty R, King JL, LaRue B, Moura-Neto RS, Budowle B. Selection of highly informative SNP markers for population affiliation of major US populations. Int J Legal Med 2015; 130:341-52. [DOI: 10.1007/s00414-015-1297-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/23/2015] [Indexed: 01/17/2023]
|
17
|
Ding Y, Zhang J, Lu Y, Lin E, Lou L, Tong Z. Development of EST-SSR markers and analysis of genetic diversity in natural populations of endemic and endangered plant Phoebe chekiangensis. BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2015.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Wang J. Does GST underestimate genetic differentiation from marker data? Mol Ecol 2015; 24:3546-58. [PMID: 25891752 DOI: 10.1111/mec.13204] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 04/10/2015] [Accepted: 04/13/2015] [Indexed: 01/13/2023]
Abstract
The widely applied genetic differentiation statistics F(ST) and G(ST) have recently been criticized for underestimating differentiation when applied to highly polymorphic markers such as microsatellites. New statistics claimed to be unaffected by marker polymorphisms have been proposed and advocated to replace the traditional F(ST) and G(ST). This study shows that G(ST) gives accurate estimates and underestimates of differentiation when demographic factors are more and less important than mutations, respectively. In the former case, all markers, regardless of diversity (H(S)), have the same G(ST) value in expectation and thus give replicated estimates of differentiation. In the latter case, markers of higher H(S) have lower G(ST) values, resulting in a negative, roughly linear correlation between G(ST) and H(S) across loci. I propose that the correlation coefficient between G(ST) and H(S) across loci, r(GH), can be used to distinguish the two cases and to detect mutational effects on G(ST). A highly negative and significant r(GH), when coupled with highly variable G(ST) values among loci, would reveal that marker G(ST) values are affected substantially by mutations and marker diversity, underestimate population differentiation, and are not comparable among studies, species and markers. Simulated and empirical data sets are used to check the power and statistical behaviour, and to demonstrate the usefulness of the correlation analysis.
Collapse
Affiliation(s)
- J Wang
- Institute of Zoology, Zoological Society of London, London, NW1 4RY, UK
| |
Collapse
|
19
|
Genetic diversity and population structure of the endangered alpine quillwort Isoetes hypsophila (Isoetaceae) revealed by SSR analysis. BIOCHEM SYST ECOL 2013. [DOI: 10.1016/j.bse.2012.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Morris S, Gel ES, Smith JV, Paulauskis JD, Boom DVD, Oeth P, Penny R. Two algorithms for biospecimen comparison and differentiation using SNP genotypes. Pharmacogenomics 2013; 14:379-90. [PMID: 23438885 DOI: 10.2217/pgs.13.21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIMS Biobanks are frequently required to verify specimen relationships. We present two algorithms to compare SNP genotype patterns that provide an objective, high-throughput tool for verification. METHODS The first algorithm allows for comparison of all holdings within a biobank, and is well suited to construct sample relationships de novo for comparison with assumed relationships. The second algorithm is tailored to oncology, and allows one to confirm that paired DNAs from malignant and normal tissues are from the same individual in the presence of copy number variations. To evaluate both algorithms, we used an internal training data set (n = 1504) and an external validation data set (n = 1457). RESULTS In comparison with the results from manual review and a priori knowledge of patient relationships, we identified no errors in interpreting sample relationships within our validation data set. CONCLUSION We provide an efficient and objective method of automated data analysis that is currently lacking for establishing and verifying specimen relationships in biobanks.
Collapse
Affiliation(s)
- Scott Morris
- International Genomics Consortium, Suite 300, 445 North 5th Street, Phoenix, AZ 85004, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
SummaryFST, a measurement of the genetic differentiation among subpopulations, is a fundamental parameter in population genetics, with many valuable applications in molecular biology, evolutionary biology, conservation and forensics. One of its close relatives, GST, has been widely used to measure differentiation from highly polymorphic markers such as microsatellites. However, because of the high mutation rate of such markers, GST may underestimate the genomic differentiation due to demographic causes such as migration rate and subpopulation size. A new statistic proposed recently, Jost's D, was claimed to have better properties than GST and was advocated to replace GST as a measure of differentiation. This paper shows that D is not a proper measure of differentiation because it fails to meet some fundamental requirements as a differentiation statistic, and is hardly estimable without bias in practice. D is highly dependent on the gene diversity of a marker and on the unknown parameter of the number of subpopulations, is highly sensitive to how alleles and loci are defined and how data are analysed, does not increase monotonically with either divergence time or drift, and does not always have a maximal value of 1. The maximal D value can be zero or close to zero, depending on the number of alleles at a locus relative to the number of subpopulations. I suggest continuing the use of GST, with caution in its interpretation when highly polymorphic markers are used, before a better estimator of FST that explicitly accounts for mutations is developed.
Collapse
|
22
|
Abstract
F(ST) is frequently used as a summary of genetic differentiation among groups. It has been suggested that F(ST) depends on the allele frequencies at a locus, as it exhibits a variety of peculiar properties related to genetic diversity: higher values for biallelic single-nucleotide polymorphisms (SNPs) than for multiallelic microsatellites, low values among high-diversity populations viewed as substantially distinct, and low values for populations that differ primarily in their profiles of rare alleles. A full mathematical understanding of the dependence of F(ST) on allele frequencies, however, has been elusive. Here, we examine the relationship between F(ST) and the frequency of the most frequent allele, demonstrating that the range of values that F(ST) can take is restricted considerably by the allele-frequency distribution. For a two-population model, we derive strict bounds on F(ST) as a function of the frequency M of the allele with highest mean frequency between the pair of populations. Using these bounds, we show that for a value of M chosen uniformly between 0 and 1 at a multiallelic locus whose number of alleles is left unspecified, the mean maximum F(ST) is ∼0.3585. Further, F(ST) is restricted to values much less than 1 when M is low or high, and the contribution to the maximum F(ST) made by the most frequent allele is on average ∼0.4485. Using bounds on homozygosity that we have previously derived as functions of M, we describe strict bounds on F(ST) in terms of the homozygosity of the total population, finding that the mean maximum F(ST) given this homozygosity is 1 - ln 2 ≈ 0.3069. Our results provide a conceptual basis for understanding the dependence of F(ST) on allele frequencies and genetic diversity and for interpreting the roles of these quantities in computations of F(ST) from population-genetic data. Further, our analysis suggests that many unusual observations of F(ST), including the relatively low F(ST) values in high-diversity human populations from Africa and the relatively low estimates of F(ST) for microsatellites compared to SNPs, can be understood not as biological phenomena associated with different groups of populations or classes of markers but rather as consequences of the intrinsic mathematical dependence of F(ST) on the properties of allele-frequency distributions.
Collapse
|
23
|
Yamazaki Y, Yokoyama R, Nagai T, Goto A. Formation of a fluvial non-parasitic population of Lethenteron camtschaticum as the first step in petromyzontid speciation. JOURNAL OF FISH BIOLOGY 2011; 79:2043-2059. [PMID: 22141904 DOI: 10.1111/j.1095-8649.2011.03150.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
To elucidate the petromyzontid speciation process, the genetic independence of the fluvial non-parasitic populations within the anadromous parasitic Lethenteron camtschaticum was estimated by using polymorphic microsatellite loci. Abundant gene flow was revealed in multitemporal scales between potentially sympatric populations, suggesting ongoing gene flow resulting from imperfect size-assortative mating between them and plastic determination of life histories. On the contrary, landlocked fluvial non-parasitic populations in the upper region of dams were genetically divergent from anadromous parasitic populations. The temporal heterogeneity of gene flow, i.e. contemporary little gene flow but significant gene flow over the long-term between the landlocked fluvial non-parasitic and anadromous parasitic populations was elucidated. In addition, the divergence time of isolation of the landlocked populations from the ancestral anadromous parasitic population was estimated to have occurred 17.9-428.2 years ago, which includes the construction times of an initial dam c. 90 years ago. These instances indicate that the landlocked populations should have very recently been established, and subsequent accumulation of divergence and development of reproductive isolation are predicted. The present landlocked fluvial non-parasitic populations should be analogous to the founder populations in terms of petromyzontid speciation. The data also strongly support the hypothesis of multitemporal and multispatial speciation in the petromyzontid stem-satellite species complex.
Collapse
Affiliation(s)
- Y Yamazaki
- Graduate School of Science and Engineering for Research, University of Toyama, Toyama 930-8555, Japan.
| | | | | | | |
Collapse
|
24
|
Ryman N, Leimar O. G(ST) is still a useful measure of genetic differentiation - a comment on Jost's D. Mol Ecol 2009; 18:2084-7; discussion 2088-91. [PMID: 19389168 DOI: 10.1111/j.1365-294x.2009.04187.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Nils Ryman
- Division of Population Genetics, Department of Zoology, Stockholm University, Stockholm, Sweden.
| | | |
Collapse
|
25
|
Budowle B, Ge J, Aranda XG, Planz JV, Eisenberg AJ, Chakraborty R. Texas population substructure and its impact on estimating the rarity of Y STR haplotypes from DNA evidence*. J Forensic Sci 2009; 54:1016-21. [PMID: 19627418 DOI: 10.1111/j.1556-4029.2009.01105.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Three sampled populations of unrelated males--African American, Caucasian, and Hispanic, all from Texas-were typed for 16 Y short tandem repeat (STR) markers using the AmpFlSTR Yfiler kit. These samples also were typed previously for the 13 core CODIS autosomal STR loci. Most of the 16 marker haplotypes (2478 out of 2551 distinct haplotypes) were observed only once in the data sets. Haplotype diversities were 99.88%, 99.89%, and 99.87% for the African American, Caucasian, and Hispanic sample populations, respectively. F(ST) values were very small when a haplotype comprised 10-16 markers. This suggests that inclusion of substructure correction is not required. However, haplotypes consisting of fewer loci may require the inclusion of F(ST) corrections. The testing of independence of autosomal and Y STRs supports the proposition that the frequencies of autosomal and Y STR profiles can be combined using the product rule.
Collapse
Affiliation(s)
- Bruce Budowle
- Department of Forensic and Investigative Genetics, Institute of Investigative Genetics, University of North Texas Health Science Center at Ft Worth, TX 76107, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Brown trout (Salmo trutta) invasiveness: plasticity in life-history is more important than genetic variability. Biol Invasions 2009. [DOI: 10.1007/s10530-009-9450-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Stefánsson MO, Sigurdsson T, Pampoulie C, Daníelsdóttir AK, Thorgilsson B, Ragnarsdóttir A, Gíslason D, Coughlan J, Cross TF, Bernatchez L. Pleistocene genetic legacy suggests incipient species of Sebastes mentella in the Irminger Sea. Heredity (Edinb) 2009; 102:514-24. [PMID: 19259118 DOI: 10.1038/hdy.2009.10] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
To investigate a possible speciation event within the redfish (Sebastes mentella) complex in the Irminger Sea, we examined genetics, traditional morphology, geometric morphometrics and meristics of individuals sampled throughout the Sea. Tissue samples from 1901 fish were collected in 1995 and 1996 and from 1999 to 2002, and the fish were genotyped at nine microsatellite loci, two of which were developed for this study. Individual-based genetic analyses showed that two different gene pools exist in the Irminger Sea. Although these groups overlap extensively geographically, they segregate according to depth: those above and below 550 m. This signal of genotype distinction with depth was evident in both the earlier and later sampling. Historical imprints in the genetic data indicated that the redfish in the Irminger Sea are likely to represent a case of an incipient speciation event that began in allopatry during the Pleistocene glaciations followed by secondary contact. Although hybridization was observed between groups, an analysis of traditional and geometric morphometrics and of meristic variables suggested that restricted gene flow between the currently parapatric deep- and shallow-mesopelagic incipient species may be maintained by ecological isolation mechanisms.
Collapse
|
28
|
BREDE EDWARDG, ADIS JOACHIM, SCHNEIDER PAULA. Genetic diversity, population structure and gene flow in native populations of a proposed biocontrol agent (Cornops aquaticum). Biol J Linn Soc Lond 2008. [DOI: 10.1111/j.1095-8312.2008.00993.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Affiliation(s)
- Nils Ryman
- Department of Zoology, Stockholm University, S-106 91 Stockholm, Sweden.
| | | |
Collapse
|
30
|
PAMPOULIE CHRISTOPHE, STEFÁNSSON MAGNÚSÖRN, JÖRUNDSDÓTTIR THÓRADÖGG, DANILOWICZ BRETS, DANÍELSDÓTTIR ANNAKRISTÍN. Recolonization history and large-scale dispersal in the open sea: the case study of the North Atlantic cod, Gadus morhua L. Biol J Linn Soc Lond 2008. [DOI: 10.1111/j.1095-8312.2008.00995.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Gladieux P, Zhang XG, Afoufa-Bastien D, Valdebenito Sanhueza RM, Sbaghi M, Le Cam B. On the origin and spread of the Scab disease of apple: out of central Asia. PLoS One 2008; 3:e1455. [PMID: 18197265 PMCID: PMC2186383 DOI: 10.1371/journal.pone.0001455] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 12/20/2007] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Venturia inaequalis is an ascomycete fungus responsible for apple scab, a disease that has invaded almost all apple growing regions worldwide, with the corresponding adverse effects on apple production. Monitoring and predicting the effectiveness of intervention strategies require knowledge of the origin, introduction pathways, and population biology of pathogen populations. Analysis of the variation of genetic markers using the inferential framework of population genetics offers the potential to retrieve this information. METHODOLOGY/PRINCIPAL FINDINGS Here, we present a population genetic analysis of microsatellite variation in 1,273 strains of V. inaequalis representing 28 orchard samples from seven regions in five continents. Analysis of molecular variance revealed that most of the variation (88%) was distributed within localities, which is consistent with extensive historical migrations of the fungus among and within regions. Despite this shallow population structure, clustering analyses partitioned the data set into separate groups corresponding roughly to geography, indicating that each region hosts a distinct population of the fungus. Comparison of the levels of variability among populations, along with coalescent analyses of migration models and estimates of genetic distances, was consistent with a scenario in which the fungus emerged in Central Asia, where apple was domesticated, before its introduction into Europe and, more recently, into other continents with the expansion of apple growing. Across the novel range, levels of variability pointed to multiple introductions and all populations displayed signatures of significant post-introduction increases in population size. Most populations exhibited high genotypic diversity and random association of alleles across loci, indicating recombination both in native and introduced areas. CONCLUSIONS/SIGNIFICANCE Venturia inaequalis is a model of invasive phytopathogenic fungus that has now reached the ultimate stage of the invasion process with a broad geographic distribution and well-established populations displaying high genetic variability, regular sexual reproduction, and demographic expansion.
Collapse
Affiliation(s)
| | - Xiu-Guo Zhang
- Department of Plant Pathology, Shandong Agricultural University, Taian, China
| | | | | | - Mohamed Sbaghi
- Centre Régional de la Recherche Agronomique de Kenitra, INRA, Kenitra, Morocco
| | | |
Collapse
|
32
|
Palkovacs EP, Dion KB, Post DM, Caccone A. Independent evolutionary origins of landlocked alewife populations and rapid parallel evolution of phenotypic traits. Mol Ecol 2007; 17:582-97. [PMID: 18179439 DOI: 10.1111/j.1365-294x.2007.03593.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alewife, Alosa pseudoharengus, populations occur in two discrete life-history variants, an anadromous form and a landlocked (freshwater resident) form. Landlocked populations display a consistent pattern of life-history divergence from anadromous populations, including earlier age at maturity, smaller adult body size, and reduced fecundity. In Connecticut (USA), dams constructed on coastal streams separate anadromous spawning runs from lake-resident landlocked populations. Here, we used sequence data from the mtDNA control region and allele frequency data from five microsatellite loci to ask whether coastal Connecticut landlocked alewife populations are independently evolved from anadromous populations or whether they share a common freshwater ancestor. We then used microsatellite data to estimate the timing of the divergence between anadromous and landlocked populations. Finally, we examined anadromous and landlocked populations for divergence in foraging morphology and used divergence time estimates to calculate the rate of evolution for foraging traits. Our results indicate that landlocked populations have evolved multiple times independently. Tests of population divergence and estimates of gene flow show that landlocked populations are genetically isolated, whereas anadromous populations exchange genes. These results support a 'phylogenetic raceme' model of landlocked alewife divergence, with anadromous populations forming an ancestral core from which landlocked populations independently diverged. Divergence time estimates suggest that landlocked populations diverged from a common anadromous ancestor no longer than 5000 years ago and perhaps as recently as 300 years ago, depending on the microsatellite mutation rate assumed. Examination of foraging traits reveals landlocked populations to have significantly narrower gapes and smaller gill raker spacings than anadromous populations, suggesting that they are adapted to foraging on smaller prey items. Estimates of evolutionary rates (in haldanes) indicate rapid evolution of foraging traits, possibly in response to changes in available resources.
Collapse
Affiliation(s)
- Eric P Palkovacs
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06520-8106, USA.
| | | | | | | |
Collapse
|
33
|
Affiliation(s)
- Philip W. Hedrick
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287–4501 E‐mail:
| |
Collapse
|
34
|
Belle EMS, Barbujani G. Worldwide analysis of multiple microsatellites: Language diversity has a detectable influence on DNA diversity. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2007; 133:1137-46. [PMID: 17506490 DOI: 10.1002/ajpa.20622] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Previous studies of the correlations between the languages spoken by human populations and the genes carried by the members of those populations have been limited by the small amount of genetic markers available and by approximations in the treatment of linguistic data. In this study we analyzed a large collection of polymorphic microsatellite loci (377), distributed on all autosomes, and used Ruhlen's linguistic classification, to investigate the relative roles of geography and language in shaping the distribution of human DNA diversity at a worldwide scale. For this purpose, we performed three different kinds of analysis: (i) we partitioned genetic variances at three hierarchical levels of population subdivision according to language group by means of a molecular analysis of variance (AMOVA); (ii) we quantified by a series of Mantel's tests the correlation between measures of genetic and linguistic differentiation; and (iii) we tested whether linguistic differences are increased across known zones of increased genetic change between populations. Genetic differences appear to more closely reflect geographic than linguistic differentiation. However, our analyses show that language differences also have a detectable effect on DNA diversity at the genomic level, above and beyond the effects of geographic distance.
Collapse
Affiliation(s)
- Elise M S Belle
- Dipartimento di Biologia ed Evoluzione, Università di Ferrara, Via Borsari, 46, 44100 Ferrara, Italy
| | | |
Collapse
|
35
|
Larsson LC, Laikre L, Palm S, André C, Carvalho GR, Ryman N. Concordance of allozyme and microsatellite differentiation in a marine fish, but evidence of selection at a microsatellite locus. Mol Ecol 2006; 16:1135-47. [PMID: 17391402 DOI: 10.1111/j.1365-294x.2006.03217.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previous studies have reported higher levels of divergence for microsatellites than for allozymes in several species, suggested to reflect stabilizing selection on the allozymes. We compared the differentiation patterns of 11 allozyme and nine microsatellite loci using 679 spawning Atlantic herring (Clupea harengus) collected in the Baltic and North Seas to test for differential natural selection on these markers. Observed distributions of F statistics for the two types of markers are conspicuously dissimilar, but we show that these differences can largely be explained by sampling phenomena caused by different allele frequency distributions and degrees of variability. The results show consistently low levels of differentiation for both marker types, with the exception of one outlier microsatellite locus with a notably high F(ST). The aberrant pattern at this locus is primarily due to two alleles occurring at markedly high frequencies in the Baltic, suggesting selection at this locus, or a closely linked one. When excluding this locus, the two marker types show similar, weak differentiation patterns with F(ST) values between the Baltic and the North Seas of 0.001 and 0.002 for allozymes and microsatellites, respectively. This small heterogeneity, and weak isolation by distance, is easier to distinguish statistically with microsatellites than with allozymes that have fewer alleles and skewed frequency distributions. The allozymes, however, also detect surprisingly low levels of divergence. Our results support suggestions that previously described differences between marker types are primarily caused by a small number of outlier loci.
Collapse
Affiliation(s)
- Lena C Larsson
- Division of Population Genetics, Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
36
|
Hammer MF, Chamberlain VF, Kearney VF, Stover D, Zhang G, Karafet T, Walsh B, Redd AJ. Population structure of Y chromosome SNP haplogroups in the United States and forensic implications for constructing Y chromosome STR databases. Forensic Sci Int 2006; 164:45-55. [DOI: 10.1016/j.forsciint.2005.11.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 11/08/2005] [Accepted: 11/08/2005] [Indexed: 10/25/2022]
|
37
|
Selkoe KA, Toonen RJ. Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 2006; 9:615-29. [PMID: 16643306 DOI: 10.1111/j.1461-0248.2006.00889.x] [Citation(s) in RCA: 773] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent improvements in genetic analysis and genotyping methods have resulted in a rapid expansion of the power of molecular markers to address ecological questions. Microsatellites have emerged as the most popular and versatile marker type for ecological applications. The rise of commercial services that can isolate microsatellites for new study species and genotype samples at reasonable prices presents ecologists with the unprecedented ability to employ genetic approaches without heavy investment in specialized equipment. Nevertheless, the lack of accessible, synthesized information on the practicalities and pitfalls of using genetic tools impedes ecologists' ability to make informed decisions on using molecular approaches and creates the risk that some will use microsatellites without understanding the steps needed to evaluate the quality of a genetic data set. The first goal of this synthesis is to provide an overview of the strengths and limitations of microsatellite markers and the risks, cost and time requirements of isolating and using microsatellites with the aid of commercial services. The second goal is to encourage the use and consistent reporting of thorough marker screening to ensure high quality data. To that end, we present a multistep screening process to evaluate candidate loci for inclusion in a genetic study that is broadly targeted to both novice and experienced geneticists alike.
Collapse
Affiliation(s)
- Kimberly A Selkoe
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106, USA.
| | | |
Collapse
|
38
|
Marignac VLM, Bianchi NO. Prevalence of dopamine and 5HT2C receptor polymorphisms in Amerindians and in an urban population from Argentina. Am J Hum Biol 2006; 18:822-8. [PMID: 17039480 DOI: 10.1002/ajhb.20565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We report on the frequency of DRD2A1, DRD3A1, DRD4/2R-10R, and 5HT2CA1 variants in the population of the city of La Plata (Argentina) and in Amerindians from Argentina, Paraguay, and Chile. In the Amerindian sample, the prevalence of DRD2A1 and DRD4/4R variants were, respectively, significantly lower and significantly higher than frequencies reported in other Native Americans. Comparison of average allele and genotype frequencies between La Plata and Amerindians showed significant differences for 5HT2CA1 and DRD4. As La Plata is a population with predominant European and Amerindian components, we used mtDNA and Y-specific markers to subdivide the La Plata sample into two strata: Amerindian La Plata and non-Amerindian La Plata. Significant variations between the two strata were detected for DRD2A1, DRD3A1, and DRD4/4R allele frequencies, and for the homozygous DRD4/4R/4R genotype. Several controversial reports suggest a possible association between a variant of DRD and/or 5HT2C receptor genes and the clinical expression of several psychiatric disorders. We suggest that ethnic variations in the prevalence of the allelic forms of these genes may be a confounding factor to be taken into consideration in studies of association between dopaminergic and serotonergic receptor genotypes and neuropsychiatric and mood disorders.
Collapse
Affiliation(s)
- Verónica L Martínez Marignac
- Department of Chemistry and Physical Sciences, University of Toronto at Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | | |
Collapse
|
39
|
Almeida FC, Maroja LS, Moreira MA, Seuánez HN, Cerqueira R. Population structure and genetic variability of mainland and insular populations of the Neotropical water rat, Nectomys squamipes (Rodentia, Sigmodontinae). Genet Mol Biol 2005. [DOI: 10.1590/s1415-47572005000500008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Francisca C. Almeida
- Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Câncer, Brazil
| | | | | | - Héctor N. Seuánez
- Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Câncer, Brazil
| | | |
Collapse
|
40
|
Raeymaekers JAM, Maes GE, Audenaert E, Volckaert FAM. Detecting Holocene divergence in the anadromous-freshwater three-spined stickleback (Gasterosteus aculeatus) system. Mol Ecol 2005; 14:1001-14. [PMID: 15773932 DOI: 10.1111/j.1365-294x.2005.02456.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The anadromous-freshwater three-spined stickleback (Gasterosteus aculeatus) system allows for inferring the role of adaptation in speciation with a high level of accuracy because the freshwater ecotype has evolved multiple times from a uniform anadromous ancestor. A cause for concern is that independent evolution among drainages is not guaranteed in areas with a poorly resolved glacial history. This is the case for the west European great rivers, whose downstream valleys flanked the southern limit of the late Pleistocene ice sheet. We tested for independent and postglacial colonization of these valleys hypothesizing that the relationships among anadromous and freshwater sticklebacks correspond to a raceme structure. We compared the reduction in plate number accompanying this colonization to the genetic differentiation using 13 allozyme and five microsatellite loci in 350 individuals. Overall microsatellite differentiation (F(ST) = 0.147) was twice as large as allozyme differentiation (F(ST) = 0.066). Although habitat-specific gene flow may mask the ancestral relationships among both ecotypes, levels of microsatellite differentiation supported the hypothesis of raceme-like divergence, reflecting independent colonizations rather than the presence of two distinct evolutionary clades. Under an infinite alleles model and in the absence of gene flow, the observed freshwater divergence might be reached after 440 (microsatellites) to 4500 (allozymes) generations. Hence, the anadromous-freshwater stickleback system most likely diverged postglacially. We conclude that the reduction in plate number in two freshwater basins probably occurred independently, and that its considerable variation among populations is not in agreement with the time since divergence.
Collapse
Affiliation(s)
- J A M Raeymaekers
- Katholieke Universiteit Leuven, Laboratory of Aquatic Ecology, Ch. de Bériotstraat 32, B-3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
41
|
Olsen JL, Stam WT, Coyer JA, Reusch TBH, Billingham M, Boström C, Calvert E, Christie H, Granger S, la Lumière R, Milchakova N, Oudot-Le Secq MP, Procaccini G, Sanjabi B, Serrao E, Veldsink J, Widdicombe S, Wyllie-Echeverria S. North Atlantic phylogeography and large-scale population differentiation of the seagrass Zostera marina L. Mol Ecol 2005; 13:1923-41. [PMID: 15189214 DOI: 10.1111/j.1365-294x.2004.02205.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
As the most widespread seagrass in temperate waters of the Northern Hemisphere, Zostera marina provides a unique opportunity to investigate the extent to which the historical legacy of the last glacial maximum (LGM18 000-10 000 years bp) is detectable in modern population genetic structure. We used sequences from the nuclear rDNA-internal transcribed spacer (ITS) and chloroplast matK-intron, and nine microsatellite loci to survey 49 populations (> 2000 individuals) from throughout the species' range. Minimal sequence variation between Pacific and Atlantic populations combined with biogeographical groupings derived from the microsatellite data, suggest that the trans-Arctic connection is currently open. The east Pacific and west Atlantic are more connected than either is to the east Atlantic. Allelic richness was almost two-fold higher in the Pacific. Populations from putative Atlantic refugia now represent the southern edges of the distribution and are not genetically diverse. Unexpectedly, the highest allelic diversity was observed in the North Sea-Wadden Sea-southwest Baltic region. Except for the Mediterranean and Black Seas, significant isolation-by-distance was found from ~150 to 5000 km. A transition from weak to strong isolation-by-distance occurred at ~150 km among northern European populations suggesting this scale as the natural limit for dispersal within the metapopulation. Links between historical and contemporary processes are discussed in terms of the projected effects of climate change on coastal marine plants. The identification of a high genetic diversity hotspot in Northern Europe provides a basis for restoration decisions.
Collapse
Affiliation(s)
- Jeanine L Olsen
- Department of Marine Biology, Centre for Ecological and Evolutionary Studies, University of Groningen, PO Box 14, 9750 AA Haren, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Wilder JA, Kingan SB, Mobasher Z, Pilkington MM, Hammer MF. Global patterns of human mitochondrial DNA and Y-chromosome structure are not influenced by higher migration rates of females versus males. Nat Genet 2004; 36:1122-5. [PMID: 15378061 DOI: 10.1038/ng1428] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Accepted: 08/17/2004] [Indexed: 11/09/2022]
Abstract
Global-scale patterns of human population structure may be influenced by the rate of migration among populations that is nearly eight times higher for females than for males. This difference is attributed mainly to the widespread practice of patrilocality, in which women move into their mates' residences after marriage. Here we directly test this hypothesis by comparing global patterns of DNA sequence variation on the Y chromosome and mitochondrial DNA (mtDNA) in the same panel of 389 individuals from ten populations (four from Africa and two each from Europe, Asia and Oceania). We introduce a new strategy to assay Y-chromosome variation that identifies a high density of single-nucleotide polymorphisms, allows complete sequencing of all individuals rather than relying on predetermined markers and provides direct sequence comparisons with mtDNA. We found the overall proportion of between-group variation (Phi(ST)) to be 0.334 for the Y chromosome and 0.382 for mtDNA. Genetic differentiation between populations was similar for the Y chromosome and mtDNA at all geographic scales that we tested. Although patrilocality may be important at the local scale, patterns of genetic structure on the continental and global scales are not shaped by the higher rate of migration among females than among males.
Collapse
Affiliation(s)
- Jason A Wilder
- Division of Biotechnology, Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | |
Collapse
|
44
|
Kashyap VK, Chattopadhyay P, Dutta R, Vasulu TS. Genetic structure and affinity among eight ethnic populations of Eastern India: based on 22 polymorphic DNA loci. Am J Hum Biol 2004; 16:311-27. [PMID: 15101056 DOI: 10.1002/ajhb.20026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The nature and extent of genetic variation at 22 polymorphic DNA loci, belonging to three distinct classes, especially, 12 STR loci (D3S1358, vWA, FGA, D5S818, D13S317, D7S820, D8S1179, D21S11, D18S51, HPRTB, F13B, LPL), four VNTR loci (D1S7, D4S139, D5S110, D17S79), and six coding loci (HLDQA1, LDLR, GYPA, HBGG, D7S8, GC) were investigated among eight population groups of West Bengal and Manipur regions of India. Of these, two groups from West Bengal belong to Caucasoid and six (one in WB and five in Manipur) belong to Mongoloid stock. Both STR and the expressed loci show wide diversity among the eight populations. For example, Manipur Muslims show differences in allele frequency when compared to four other regional populations. Similarly, Garo, one of the Mongoloid populations of West Bengal, differ in allele frequency from their counterparts in the Manipur region. Departure from Hardy-Weinberg expectations was observed at certain loci in a few populations (e.g., D21S1137 in Kayastha and Brahmin, HUM F13B in Meitei). Heterozygosity values were higher for Caucasoid than Mongoloid groups. The overall gene differentiation (GST) for STR loci is higher (5.3%) than for those at the expressed region (4.6%). The clustering pattern of the eight populations differs with respect to different classes of genetic markers used. The dendrograms based on six coding loci (HLDQA1, LDLR, GYPA, HBGG, D7S8, GC) differs from those based on STR and VNTR markers. Caucasoid and Mongoloid groups form different clusters and Manipur Muslims are distinct from others. The clustering pattern corresponded with the spatial and ethnic affiliations of the populations. Using different classes of DNA loci at the coding and noncoding region will help to better understand the influence of population structure variables on the genetic structure of populations.
Collapse
Affiliation(s)
- V K Kashyap
- DNA Typing Unit, Central Forensic Science Laboratory, Calcutta, W. Bengal, India.
| | | | | | | |
Collapse
|
45
|
Abstract
In the 1960s, when population geneticists first began to collect data on the amount of genetic variation in natural populations, balancing selection was invoked as a possible explanation for how such high levels of molecular variation are maintained. However, the predictions of the neutral theory of molecular evolution have since become the standard by which cases of balancing selection may be inferred. Here we review the evidence for balancing selection acting on the major histocompatibility complex (MHC) of vertebrates, a genetic system that defies many of the predictions of neutrality. We apply many widely used tests of neutrality to MHC data as a benchmark for assessing the power of these tests. These tests can be categorized as detecting selection in the current generation, over the history of populations, or over the histories of species. We find that selection is not detectable in MHC datasets in every generation, population, or every evolutionary lineage. This suggests either that selection on the MHC is heterogeneous or that many of the current neutrality tests lack sufficient power to detect the selection consistently. Additionally, we identify a potential inference problem associated with several tests of neutrality. We demonstrate that the signals of selection may be generated in a relatively short period of microevolutionary time, yet these signals may take exceptionally long periods of time to be erased in the absence of selection. This is especially true for the neutrality test based on the ratio of nonsynonymous to synonymous substitutions. Inference of the nature of the selection events that create such signals should be approached with caution. However, a combination of tests on different time scales may overcome such problems.
Collapse
Affiliation(s)
- Daniel Garrigan
- Department of Biology, Arizona State University, Tempe, Arizona 85287-1501, USA.
| | | |
Collapse
|
46
|
|
47
|
Bamshad MJ, Wooding S, Watkins WS, Ostler CT, Batzer MA, Jorde LB. Human population genetic structure and inference of group membership. Am J Hum Genet 2003; 72:578-89. [PMID: 12557124 PMCID: PMC1180234 DOI: 10.1086/368061] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2002] [Accepted: 12/04/2002] [Indexed: 12/19/2022] Open
Abstract
A major goal of biomedical research is to develop the capability to provide highly personalized health care. To do so, it is necessary to understand the distribution of interindividual genetic variation at loci underlying physical characteristics, disease susceptibility, and response to treatment. Variation at these loci commonly exhibits geographic structuring and may contribute to phenotypic differences between groups. Thus, in some situations, it may be important to consider these groups separately. Membership in these groups is commonly inferred by use of a proxy such as place-of-origin or ethnic affiliation. These inferences are frequently weakened, however, by use of surrogates, such as skin color, for these proxies, the distribution of which bears little resemblance to the distribution of neutral genetic variation. Consequently, it has become increasingly controversial whether proxies are sufficient and accurate representations of groups inferred from neutral genetic variation. This raises three questions: how many data are required to identify population structure at a meaningful level of resolution, to what level can population structure be resolved, and do some proxies represent population structure accurately? We assayed 100 Alu insertion polymorphisms in a heterogeneous collection of approximately 565 individuals, approximately 200 of whom were also typed for 60 microsatellites. Stripped of identifying information, correct assignment to the continent of origin (Africa, Asia, or Europe) with a mean accuracy of at least 90% required a minimum of 60 Alu markers or microsatellites and reached 99%-100% when >/=100 loci were used. Less accurate assignment (87%) to the appropriate genetic cluster was possible for a historically admixed sample from southern India. These results set a minimum for the number of markers that must be tested to make strong inferences about detecting population structure among Old World populations under ideal experimental conditions. We note that, whereas some proxies correspond crudely, if at all, to population structure, the heuristic value of others is much higher. This suggests that a more flexible framework is needed for making inferences about population structure and the utility of proxies.
Collapse
Affiliation(s)
- Michael J Bamshad
- Department of Pediatrics, University of Utah, Salt Lake City, Utah 84112, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Leopoldino AM, Pena SDJ. The mutational spectrum of human autosomal tetranucleotide microsatellites. Hum Mutat 2003; 21:71-9. [PMID: 12497633 DOI: 10.1002/humu.10153] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We studied by multiplex amplification and single-run electrophoretic analysis 10 microsatellite loci, composed of nine tetranucleotide-repeats (D1S1612, D3S2387, D4S2431, D5S2501, D10S1237, D15S657, D16S2622, D18S1270, and IFNAR-ALU) and one trinucleotide repeat (D2S1353). After elimination of proven null allele events involving D1S1612 and D5S2501 and of all data of D3S2387, in which we suspected but could not prove the occurrence of null alleles, we were left with nine loci, encompassing 24,224 meioses and 23 mutations. Twenty-two of the mutations (96%) were single-step events. Moreover, 18 of the mutations were paternal, four were maternal, and one was indeterminate. There was no significant difference between the number of additions and deletions in the mutants. Our findings are compatible with a simple model in which tetranucleotide microsatellites mutate primarily in paternal germinative cells by DNA slippage, such that the vast majority of mutations are equiprobable additions or deletions of a single-repeat unit. By combining the data from our tetranucleotide loci with literature information of highly and lowly mutable microsatellites, we observed a very highly significant correlation between mutation rate and the geometric mean of the length of the longest perfect repeat region (LRPR), compatible with a power or exponential relationship. The variation of the length of the LRPR explained as much as 80% of the variance of the mutation rate of autosomal tetranucleotide microsatellites.
Collapse
Affiliation(s)
- Andréia M Leopoldino
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | |
Collapse
|
49
|
Garrigan D, Hedrick PW. PERSPECTIVE: DETECTING ADAPTIVE MOLECULAR POLYMORPHISM: LESSONS FROM THE MHC. Evolution 2003. [DOI: 10.1554/02-732] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky LA, Feldman MW. Genetic structure of human populations. Science 2002; 298:2381-5. [PMID: 12493913 DOI: 10.1126/science.1078311] [Citation(s) in RCA: 1664] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We studied human population structure using genotypes at 377 autosomal microsatellite loci in 1056 individuals from 52 populations. Within-population differences among individuals account for 93 to 95% of genetic variation; differences among major groups constitute only 3 to 5%. Nevertheless, without using prior information about the origins of individuals, we identified six main genetic clusters, five of which correspond to major geographic regions, and subclusters that often correspond to individual populations. General agreement of genetic and predefined populations suggests that self-reported ancestry can facilitate assessments of epidemiological risks but does not obviate the need to use genetic information in genetic association studies.
Collapse
Affiliation(s)
- Noah A Rosenberg
- Molecular and Computational Biology, 1042 West 36th Place DRB 289, University of Southern California, Los Angeles, CA 90089, USA.
| | | | | | | | | | | | | |
Collapse
|