1
|
Hamidzadeh Moghadam S, Alebrahim MT, Mohebodini M, MacGregor DR. Genetic variation of Amaranthus retroflexus L. and Chenopodium album L. (Amaranthaceae) suggests multiple independent introductions into Iran. FRONTIERS IN PLANT SCIENCE 2023; 13:1024555. [PMID: 36684720 PMCID: PMC9847890 DOI: 10.3389/fpls.2022.1024555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Amaranthus retroflexus L. and Chenopodium album L. (Amaranthaceae) are weedy plants that cause severe ecological and economic damage. In this study, we collected DNA from three different countries and assessed genetic diversity using inter-simple sequence repeat (ISSR) markers. Our analysis shows both weed species have low genetic diversity within a population and high genetic diversity among populations, as well as a low value of gene flow among the populations. UPGMA clustering and principal coordinate analysis indicate four distinct groups for A. retroflexus L. and C. album L. exist. We detected significant isolation-by-distance for A. retroflexus L. and no significant correlation for C.album L. These conclusions are based data from 13 ISSR primers where the average percentage of polymorphism produced was 98.46% for A. retroflexus L. and 74.81% for C. album L.These data suggest that each population was independently introduced to the location from which it was sampled and these noxious weeds come armed with considerable genetic variability giving them the opportunity to manifest myriad traits that could be used to avoid management practices. Our results, albeit not definitive about this issue, do not support the native status of C. album L. in Iran.
Collapse
Affiliation(s)
| | | | - Mehdi Mohebodini
- Department of Horticultural Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Dana R. MacGregor
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, United Kingdom
| |
Collapse
|
2
|
Ramos SLF, Lopes MTG, Meneses C, Dequigiovanni G, de Macêdo JLV, Lopes R, Sebbenn AM, da Silva RF, de Jesus Pinto Fraxe T, Veasey EA. Natural Populations of Astrocaryum aculeatum Meyer in Amazonia: Genetic Diversity and Conservation. PLANTS (BASEL, SWITZERLAND) 2022; 11:2957. [PMID: 36365412 PMCID: PMC9655110 DOI: 10.3390/plants11212957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Astrocaryum aculeatum, a palm tree incipiently domesticated from upland ecosystems in the Brazilian Amazon, is especially adapted to anthropized areas. The pulp of the fruit, obtained by extractivism, is consumed fresh by the Amazonian population. The objective of the study is to evaluate the diversity and genetic structure of the natural populations of A. aculeatum, exploited by extractive farmers in Amazonas, Brazil, seeking to suggest conservation and management strategies for this species. A total of 218 plants were sampled in 15 populations in 14 municipalities in the state of Amazonas, evaluated by 12 microsatellite loci. A total of 101 alleles were observed. The means of the observed heterozygosities (HO = 0.6390) were higher than expected (HE = 0.557), with high levels of heterozygotes in the populations. The fixation index in the loci and populations was negative. The FST (0.07) and AMOVA showed moderate population structure. Bayesian analysis indicated the grouping k = 4 as the most adequate. There is a high genetic diversity in populations, with a moderate genetic structure due to possible historical events, which could be related to the process of subpopulation formation, possibly presenting three historical moments: before and after the beginning of deforestation and today. The conservation and management policies of this species must be carried out at a watershed level.
Collapse
Affiliation(s)
- Santiago Linorio Ferreyra Ramos
- Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Rua Nossa Senhora do Rosário, 3863, Bairro Tiradentes, Itacoatiara 69100-000, AM, Brazil
| | - Maria Teresa Gomes Lopes
- Faculdade de Ciências Agrárias, Universidade Federal do Amazonas, Avenida Rodrigo Otávio Ramos, 3.000, Bairro Coroado, Manaus 69077-000, AM, Brazil
| | - Carlos Meneses
- Programa de Pós-Graduação em Ciências Agrárias, Departamento de Biologia, Centro de Ciências Biológicas e da Saúde, Universidade Estadual da Paraíba, Rua Baraúnas, 351, Bairro Universitário, Campina Grande 58429-500, PB, Brazil
| | - Gabriel Dequigiovanni
- Centro Universitário de Cascavel, Avenida Tito Muffato, 2317, Bairro Santa Cruz, Cascavel 85806-080, PR, Brazil
| | | | - Ricardo Lopes
- Campo Experimental da Embrapa Amazônia Ocidental, Embrapa Amazônia Ocidental, Km 29, AM 010, CP. 319, Manaus 9010-970, AM, Brazil
| | - Alexandre Magno Sebbenn
- Seção de Melhoramento e Conservação Genética Florestal, Instituto Florestal de São Paulo, Rua do Horto, 931, Bairro Horto Florestal, São Paulo 01059-970, SP, Brazil
| | - Rogério Freire da Silva
- Programa de Pós-Graduação em Ciências Agrárias, Departamento de Biologia, Centro de Ciências Biológicas e da Saúde, Universidade Estadual da Paraíba, Rua Baraúnas, 351, Bairro Universitário, Campina Grande 58429-500, PB, Brazil
| | - Therezinha de Jesus Pinto Fraxe
- Faculdade de Ciências Agrárias, Universidade Federal do Amazonas, Avenida Rodrigo Otávio Ramos, 3.000, Bairro Coroado, Manaus 69077-000, AM, Brazil
| | - Elizabeth Ann Veasey
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, Bairro São Dimas, Piracicaba 13418-900, SP, Brazil
| |
Collapse
|
3
|
Chaves CJN, Leal BSS, Rossatto DR, Berger U, Palma-Silva C. Deforestation is the turning point for the spreading of a weedy epiphyte: an IBM approach. Sci Rep 2021; 11:20397. [PMID: 34650134 PMCID: PMC8516858 DOI: 10.1038/s41598-021-99798-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 09/27/2021] [Indexed: 11/08/2022] Open
Abstract
The rapid spread of many weeds into intensely disturbed landscapes is boosted by clonal growth and self-fertilization strategies, which conversely increases the genetic structure of populations. Here, we use empirical and modeling approaches to evaluate the spreading dynamics of Tillandsia recurvata (L.) L. populations, a common epiphytic weed with self-reproduction and clonal growth widespread in dry forests and deforested landscapes in the American continent. We introduce the TRec model, an individual-based approach to simulate the spreading of T. recurvata over time and across landscapes subjected to abrupt changes in tree density with the parameters adjusted according to the empirical genetic data based on microsatellites genotypes. Simulations with this model showed that the strong spatial genetic structure observed from empirical data in T. recurvata can be explained by a rapid increase in abundance and gene flow followed by stabilization after ca. 25 years. TRec model's results also indicate that deforestation is a turning point for the rapid increase in both individual abundance and gene flow among T. recurvata subpopulations occurring in formerly dense forests. Active reforestation can, in turn, reverse such a scenario, although with a milder intensity. The genetic-based study suggests that anthropogenic changes in landscapes may strongly affect the population dynamics of species with 'weedy' traits.
Collapse
Affiliation(s)
- Cleber Juliano Neves Chaves
- Programa de Pós-Graduação em Ecologia e Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, 13506-900, Brazil.
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, 13083-862, Brazil.
| | - Bárbara Simões Santos Leal
- Programa de Pós-Graduação em Ecologia e Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, 13506-900, Brazil
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, 13083-862, Brazil
| | - Davi Rodrigo Rossatto
- Departamento de Biologia, Universidade Estadual Paulista, Jaboticabal, 14884-900, Brazil
| | - Uta Berger
- Institute of Forest Growth and Computer Sciences, Technische Universität Dresden, 01737, Tharandt, Germany
| | - Clarisse Palma-Silva
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, 13083-862, Brazil
| |
Collapse
|
4
|
Pertoldi C, Ruiz‐Gonzalez A, Bahrndorff S, Renee Lauridsen N, Nisbeth Henriksen T, Eskildsen A, Høye TT. Strong isolation by distance among local populations of an endangered butterfly species ( Euphydryas aurinia). Ecol Evol 2021; 11:12790-12800. [PMID: 34594539 PMCID: PMC8462152 DOI: 10.1002/ece3.8027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 11/29/2022] Open
Abstract
The marsh fritillary (Euphydryas aurinia) is a critically endangered butterfly species in Denmark known to be particularly vulnerable to habitat fragmentation due to its poor dispersal capacity. We identified and genotyped 318 novel SNP loci across 273 individuals obtained from 10 small and fragmented populations in Denmark using a genotyping-by-sequencing (GBS) approach to investigate its population genetic structure. Our results showed clear genetic substructuring and highly significant population differentiation based on genetic divergence (F ST) among the 10 populations. The populations clustered in three overall clusters, and due to further substructuring among these, it was possible to clearly distinguish six clusters in total. We found highly significant deviations from Hardy-Weinberg equilibrium due to heterozygote deficiency within every population investigated, which indicates substructuring and/or inbreeding (due to mating among closely related individuals). The stringent filtering procedure that we have applied to our genotype quality could have overestimated the heterozygote deficiency and the degree of substructuring of our clusters but is allowing relative comparisons of the genetic parameters among clusters. Genetic divergence increased significantly with geographic distance, suggesting limited gene flow at spatial scales comparable to the dispersal distance of individual butterflies and strong isolation by distance. Altogether, our results clearly indicate that the marsh fritillary populations are genetically isolated. Further, our results highlight that the relevant spatial scale for conservation of rare, low mobile species may be smaller than previously anticipated.
Collapse
Affiliation(s)
- Cino Pertoldi
- Department of Chemistry and BioscienceAalborg UniversityAalborgDenmark
- Aalborg ZooAalborgDenmark
| | - Aritz Ruiz‐Gonzalez
- Department of Zoology and Animal Cell BiologyUniversity of the Basque Country UPV/EHUVitoria‐GasteizSpain
| | - Simon Bahrndorff
- Department of Chemistry and BioscienceAalborg UniversityAalborgDenmark
| | | | | | - Anne Eskildsen
- Department of Bioscience and Arctic Research CentreAarhus UniversityRøndeDenmark
| | - Toke Thomas Høye
- Department of Bioscience and Arctic Research CentreAarhus UniversityRøndeDenmark
| |
Collapse
|
5
|
Major EI, Höhn M, Avanzi C, Fady B, Heer K, Opgenoorth L, Piotti A, Popescu F, Postolache D, Vendramin GG, Csilléry K. Fine-scale spatial genetic structure across the species range reflects recent colonization of high elevation habitats in silver fir (Abies alba Mill.). Mol Ecol 2021; 30:5247-5265. [PMID: 34365696 PMCID: PMC9291806 DOI: 10.1111/mec.16107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 07/07/2021] [Accepted: 07/16/2021] [Indexed: 12/03/2022]
Abstract
Variation in genetic diversity across species ranges has long been recognized as highly informative for assessing populations’ resilience and adaptive potential. The spatial distribution of genetic diversity within populations, referred to as fine‐scale spatial genetic structure (FSGS), also carries information about recent demographic changes, yet it has rarely been connected to range scale processes. We studied eight silver fir (Abies alba Mill.) population pairs (sites), growing at high and low elevations, representative of the main genetic lineages of the species. A total of 1,368 adult trees and 540 seedlings were genotyped using 137 and 116 single nucleotide polymorphisms (SNPs), respectively. Sites revealed a clear east‐west isolation‐by‐distance pattern consistent with the post‐glacial colonization history of the species. Genetic differentiation among sites (FCT = 0.148) was an order of magnitude greater than between elevations within sites (FSC = 0.031), nevertheless high elevation populations consistently exhibited a stronger FSGS. Structural equation modelling revealed that elevation and, to a lesser extent, post‐glacial colonization history, but not climatic and habitat variables, were the best predictors of FSGS across populations. These results suggest that high elevation habitats have been colonized more recently across the species range. Additionally, paternity analysis revealed a high reproductive skew among adults and a stronger FSGS in seedlings than in adults, suggesting that FSGS may conserve the signature of demographic changes for several generations. Our results emphasize that spatial patterns of genetic diversity within populations provide information about demographic history complementary to non‐spatial statistics, and could be used for genetic diversity monitoring, especially in forest trees.
Collapse
Affiliation(s)
- Enikő I Major
- Department of Botany, Hungarian University of Agronomy and Life Sciences, Budapest, Hungary
| | - Mária Höhn
- Department of Botany, Hungarian University of Agronomy and Life Sciences, Budapest, Hungary
| | - Camilla Avanzi
- Institute of Biosciences and Bioresources, National Research Council of Italy (IBBR-CNR), Sesto Fiorentino (Firenze), Italy
| | - Bruno Fady
- Ecology of Mediterranean Forests (URFM), INRAE, UR629, Avignon, France
| | - Katrin Heer
- Conservation Biology, Philipps Universität Marburg, Marburg, Germany
| | - Lars Opgenoorth
- Plant Ecology and Geobotany, Philipps Universität Marburg, Marburg, Germany.,Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Andrea Piotti
- Institute of Biosciences and Bioresources, National Research Council of Italy (IBBR-CNR), Sesto Fiorentino (Firenze), Italy
| | - Flaviu Popescu
- National Institute for Research and Development in Forestry "Marin Drăcea", Ilfov County, Romania
| | - Dragos Postolache
- National Institute for Research and Development in Forestry "Marin Drăcea", Ilfov County, Romania
| | - Giovanni G Vendramin
- Institute of Biosciences and Bioresources, National Research Council of Italy (IBBR-CNR), Sesto Fiorentino (Firenze), Italy
| | - Katalin Csilléry
- Land Change Science, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| |
Collapse
|
6
|
Huang R, Zhang ZD, Wang Y, Wang YQ. Genetic variation and genetic structure within metapopulations of two closely related selfing and outcrossing Zingiber species (Zingiberaceae). AOB PLANTS 2021; 13:plaa065. [PMID: 33442464 PMCID: PMC7788390 DOI: 10.1093/aobpla/plaa065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 11/30/2020] [Indexed: 05/31/2023]
Abstract
Habitat fragmentation strongly affects the genetic diversity of plant populations, and this has always attracted much research interest. Although numerous studies have investigated the effects of habitat fragmentation on the genetic diversity of plant populations, fewer studies have compared species with contrasting breeding systems while accounting for phylogenetic distance. Here, we compare the levels of genetic diversity and differentiation within and among subpopulations in metapopulations (at fine-scale level) of two closely related Zingiber species, selfing Zingiber corallinum and outcrossing Zingiber nudicarpum. Comparisons of the genetic structure of species from unrelated taxa may be confounded by the effects of correlated ecological traits or/and phylogeny. Thus, we possibly reveal the differences in genetic diversity and spatial distribution of genetic variation within metapopulations that relate to mating systems. Compared to outcrossing Z. nudicarpum, the subpopulation genetic diversity in selfing Z. corallinum was significantly lower, but the metapopulation genetic diversity was not different. Most genetic variation resided among subpopulations in selfing Z. corallinum metapopulations, while a significant portion of variation resided either within or among subpopulations in outcrossing Z. nudicarpum, depending on whether the degree of subpopulation isolation surpasses the dispersal ability of pollen and seed. A stronger spatial genetic structure appeared within subpopulations of selfing Z. corallinum potentially due to restricted pollen flow and seed dispersal. In contrast, a weaker genetic structure was apparent in subpopulations of outcrossing Z. nudicarpum most likely caused by extensive pollen movement. Our study shows that high genetic variation can be maintained within metapopulations of selfing Zingiber species, due to increased genetic differentiation intensified primarily by the stochastic force of genetic drift among subpopulations. Therefore, maintenance of natural variability among subpopulations in fragmented areas is key to conserve the full range of genetic diversity of selfing Zingiber species. For outcrossing Zingiber species, maintenance of large populations is an important factor to enhance genetic diversity. Compared to outcrossing Z. nudicarpum, the subpopulation genetic diversity in selfing Z. corallinum was significantly lower, but the metapopulation genetic diversity did not differ. Most genetic variation resided among subpopulations in selfing Z. corallinum metapopulations, while a significant portion of variation resided either within or among subpopulations in outcrossing Z. nudicarpum, depending on whether the degree of subpopulation isolation surpasses the dispersal ability of pollen and seed. Our study shows that selfing Z. corallinum could maintain high genetic diversity through differentiation intensified primarily by the stochastic force of genetic drift among subpopulations at fine-scale level, but not local adaptation.
Collapse
Affiliation(s)
- Rong Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Zong-Dian Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yu Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ying-Qiang Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
7
|
Ramos SLF, Dequigiovanni G, Lopes MTG, Aguiar AVD, Lopes R, Veasey EA, Macêdo JLVD, Alves-Pereira A, Fraxe TDJP, Wrege MS, Garcia JN. Genetic Structure in Populations of Euterpe precatoria Mart. in the Brazilian Amazon. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2020.603448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Euterpe precatoria is a palm tree belonging to the Arecaceae family, occurring in Western and Central Brazilian Amazonia. Its fruit, which is very appreciated in the Amazon region, produces pulp that is consumed in fresh form. Its production is carried out almost exclusively by extractive farmers. In order to establish adequate strategies to sustain this genetic resource, we need knowledge about the diversity and genetic structure in natural populations. This study aimed to evaluate the influence of geographic distance on genetic structure in the main extractive populations of E. precatoria in the Brazilian Amazon. Leaves from 377 plants were collected in 19 populations located in 16 municipalities in the State of Amazonas and three in the State of Rondônia. Twelve microsatellite loci were used to genotype the plants. The diversity and genetic structure among populations were estimated. The average number of alleles per locus was 5.97. The observed heterozygosity means (HO) were higher than expected (HE) at the population level (HO = 0.72, HE = 0.66) and fixation index (f = -0.100) was negative. The FST value (0.1820) and the AMOVA results (Φ = 0.1796) showed population structure. The populations were clustered into three groups (K = 3) in the Bayesian analysis. The Discriminant Analysis of Principal Components (DAPC) confirmed eight clusters, with the populations close to those identified by the Bayesian analysis. The geographic differentiation was confirmed by the groupings obtained in the Structure analysis and the DACP function. Information related to phenotypic, genetic and environmental characterization of populations is important to guide conservation and management strategies and the formulation of public species management policies in Amazonia.
Collapse
|
8
|
Villacañas de Castro C, Hoffmeister TS. Friend or foe? A parasitic wasp shifts the cost/benefit ratio in a nursery pollination system impacting plant fitness. Ecol Evol 2020; 10:4220-4232. [PMID: 32489591 PMCID: PMC7246216 DOI: 10.1002/ece3.6190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/16/2020] [Accepted: 02/17/2020] [Indexed: 11/26/2022] Open
Abstract
Nursery pollination systems are species interactions where pollinators also act as fruit/seed herbivores of the plant partner. While the plants depend on associated insects for pollination, the insects depend on the plants' reproductive structures for larval development. The outcome of these interactions is thus placed on a gradient between mutualism and antagonism. Less specialized interactions may fluctuate along this gradient with the ecological context, where natural enemies can play an important role. We studied whether a natural enemy may impact the level of seed consumption of a nursery pollinator and how this in turn may influence individual plant fitness. We used the plant Silene latifolia, its herbivore Hadena bicruris, and its ectoparasitoid Bracon variator as a model plant-herbivore-natural enemy system. We investigated seed output, germination, survival, and flower production as proxies for individual plant fitness. We show that B. variator decreases the level of seed consumption by H. bicruris larvae which in turn increased seed output in S. latifolia plants, suggesting that parasitism by B. variator may act as a regulator in the system. However, our results also show that plant survival and flower production decrease with higher seed densities, and therefore, an increase in seed output may be less beneficial for plant fitness than estimated from seed output alone. Our study should add another layer to the complex discussion of whether parasitoids contribute to plant fitness, as we show that taking simple proxies such as seed output is insufficient to determine the net effect of multitrophic interactions.
Collapse
Affiliation(s)
| | - Thomas S. Hoffmeister
- Population and Evolutionary Ecology GroupInstitute of EcologyFB 02University of BremenBremenGermany
| |
Collapse
|
9
|
Zhou J, Dudash MR, Zimmer EA, Fenster CB. Comparison of population genetic structures of the plant Silene stellata and its obligate pollinating seed predator moth Hadena ectypa. ANNALS OF BOTANY 2018; 122:593-603. [PMID: 29850821 PMCID: PMC6153480 DOI: 10.1093/aob/mcy091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 05/03/2018] [Indexed: 05/29/2023]
Abstract
BACKGROUND AND AIMS Population genetic structures and patterns of gene flow of interacting species provide important insights into the spatial scale of their interactions and the potential for local co-adaptation. We analysed the genetic structures of the plant Silene stellata and the nocturnal moth Hadena ectypa. Hadena ectypa acts as one of the important pollinators of S. stellata as well as being an obligate seed parasite on the plant. Although H. ectypa provides a substantial pollination service to S. stellata, this system is largely considered parasitic due to the severe seed predation by the Hadena larvae. Previous research on this system has found variable interaction outcomes across space, indicating the potential for a geographical selection mosaic. METHODS Using 11 microsatellite markers for S. stellata and nine markers for H. ectypa, we analysed the population genetic structure and the patterns and intensity of gene flow within and among three local populations in the Appalachians. KEY RESULTS We found no spatial genetic structure in the moth populations, while significant differentiation was detected among the local plant populations. Additionally, we observed that gene flow rates among H. ectypa populations were more uniform and that the mean gene flow rate in H. ectypa was twice as large as that in S. stellata. CONCLUSIONS Our results suggest that although the moths move frequently among populations, long-distance pollen carryover only happens occasionally. The difference in gene flow rates between S. stellata and H. ectypa could prevent strict local co-adaptation. Furthermore, higher gene flow rates in H. ectypa could also increase resistance of the local S. stellata populations to the parasitic effect of H. ectypa and therefore help to stabilize the Silene-Hadena interaction dynamics.
Collapse
Affiliation(s)
- Juannan Zhou
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Michele R Dudash
- Department of Natural Resource Management, South Dakota State University, Brookings, SD, USA
| | - Elizabeth A Zimmer
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC, USA
| | - Charles B Fenster
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| |
Collapse
|
10
|
Alvarado-Serrano DF, Van Etten ML, Chang SM, Baucom RS. The relative contribution of natural landscapes and human-mediated factors on the connectivity of a noxious invasive weed. Heredity (Edinb) 2018; 122:29-40. [PMID: 29967398 DOI: 10.1038/s41437-018-0106-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 01/20/2023] Open
Abstract
Examining how the landscape may influence gene flow is at the forefront of understanding population differentiation and adaptation. Such understanding is crucial in light of ongoing environmental changes and the elevated risk of ecosystems alteration. In particular, knowledge of how humans may influence population structure is imperative to allow for informed decisions in management and conservation as well as to gain a better understanding of anthropogenic impacts on the interplay between gene flow, genetic drift, and selection. Here, we use genome-wide molecular markers to characterize the population genetic structure and connectivity of Ipomoea purpurea (Convolvulaceae), a noxious invasive weed. We, likewise, assess the interaction between natural and human-driven influences on genetic differentiation among populations. Our analyses find that human population density is an important predictor of pairwise population differentiation, suggesting that the agricultural and/or horticultural trade may be involved in maintaining some level of connectivity across distant agricultural fields. Climatic variation appears as an additional predictor of genetic connectivity in this species. We discuss the implications of these results and highlight future research needed to disentangle the mechanistic processes underlying population connectivity of weeds.
Collapse
Affiliation(s)
- Diego F Alvarado-Serrano
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University, 2020E Biological Science Building, Ann Arbor, MI, 48109-1085, USA.
| | - Megan L Van Etten
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University, 2020E Biological Science Building, Ann Arbor, MI, 48109-1085, USA
| | - Shu-Mei Chang
- Department of Plant Biology, University of Georgia, Rm 3613; 2502 Miller Plant Sciences, Athens, GA, 30602-7271, USA
| | - Regina S Baucom
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University, 2020E Biological Science Building, Ann Arbor, MI, 48109-1085, USA
| |
Collapse
|
11
|
Jiménez-Lobato V, Martínez-Borda E, Núñez-Farfán J, Valverde PL, Cruz LL, López-Velázquez A, Santos-Gally R, Arroyo J. Changes in floral biology and inbreeding depression in native and invaded regions of Datura stramonium. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20 Suppl 1:214-223. [PMID: 29106048 DOI: 10.1111/plb.12658] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
Plant populations invading new environments might compromise their fitness contribution to the next generation, because of the lack of native specialist pollinators and/or potential mates. Thus, changes in plant mating system and traits linked to it are expected in populations colonising new environments where selection would favour selfing and floral traits that maximise reproductive output. To test this, we studied native (Mexico) and non-native (Spain) populations of the obligate sexual reproducing annual weed Datura stramonium. Flower size, herkogamy, total number of seeds per plant, number of visits by and type of pollinators, and inbreeding depression were assessed in native and non-native populations. Finally, we measured phenotypic selection on corolla size and herkogamy in each population. Flower size and herkogamy showed wide and similar variation in both ranges. However, the largest average flower size was found in one non-native population whereas the highest average positive herkogamy was detected in one native population. On average, flowers in the native range received more visits by pollinators. Hawkmoths were the main visitors in the native populations while only bees were observed visiting flowers in Spain's populations. Only in the native range was inbreeding depression detected. Selection to reduce herkogamy was found only in one native population. Absence of both inbreeding depression and selection on floral traits suggest a change in mating system of D. stramonium in a new range where generalist pollinators may be promoting high reproductive success. Selection against deleterious alleles might explain the reduction of inbreeding depression, promoting the evolution of selfing.
Collapse
Affiliation(s)
- V Jiménez-Lobato
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - E Martínez-Borda
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - J Núñez-Farfán
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - P L Valverde
- Departamento de Biología, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| | - L L Cruz
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - A López-Velázquez
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - R Santos-Gally
- Departamento de Ecología Evolutiva, Instituto de Ecología, CONACyT, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - J Arroyo
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
12
|
Pérez-Barrales R, Abarca CA, Santos-Gally R, Schiestl FP, Arroyo J. The function of the floral corona in the pollination of a Mediterranean style dimorphic daffodil. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20 Suppl 1:118-127. [PMID: 29105981 DOI: 10.1111/plb.12657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
Narcissus papyraceus is a style dimorphic species with two floral forms, with anthers at similar height and stigmas above (long-styled L) and below (short-styled S) the anther level. The species is self-incompatible, but intra- and inter-morph compatible. Populations are either dimorphic (including both morphs) in the region of the Strait of Gibraltar, or L-monomorphic (with only L plants) in the inland of the Iberian Peninsula. This variation correlates with the most common floral visitors, being primarily long-tongued and short-tongued pollinators, respectively, a rare condition in Mediterranean plants. The maintenance of S-flowers relies on long-tongued insects, as only those deliver pollen to short-styled stigmas. Narcissus flowers present a long and narrow tube, at the bottom of which nectar accumulates, and a floral corona, which has been proposed as an important trait for the attraction of pollinators. Here we tested the importance of the corona on pollination of L and S flowers. We described UV reflectance patterns of the corona and tepals, and characterised VOCs in intact flowers and flowers with trimmed coronas. We also conducted a field experiment in the dimorphic and monomorphic region to estimate the importance of corona removal on seed production in stands with solitary plants and in groups to control for compatible pollen limitation. Reflectance was higher in the tepals than the corona, although both traits presented a reflectance peak around 450 nm wavelength. L- and S-flowers produced similar volatiles, regardless of the manipulation of the corona. Across dimorphic and monomorphic regions, S-flowers with the corona removed suffered a reduction in seed production of ca. 50%, while seed production remained similar in L flowers both with the corona intact and removed. Plants in solitary stands suffered a strong reduction in seed production, which was more pronounced in the monomorphic region. Our results suggest that the corona in Narcissus is more important for the pollination of S-flowers, which generally have lower seed production compared to L-flowers. Taken together, these results suggest that the floral corona indirectly plays an important role for maintenance of the polymorphism.
Collapse
Affiliation(s)
- R Pérez-Barrales
- School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - C A Abarca
- Unidad Lerma Departamento de Ecología Evolutiva, Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana, Mexico City, México
| | - R Santos-Gally
- CONACYT-Departamento de Ecología Evolutiva, Instituto de Ecología, UNAM, Mexico City, México
| | - F P Schiestl
- Institute of Systematic Botany, University of Zurich, Zurich, Switzerland
| | - J Arroyo
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
13
|
Antonova EV, Korchagina OS. Microsatellite loci variability in the ural population of Silene latifolia (caryophyllaceae). BIOL BULL+ 2017. [DOI: 10.1134/s1062359017050028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
14
|
Guirao-Rico S, Sánchez-Gracia A, Charlesworth D. Sequence diversity patterns suggesting balancing selection in partially sex-linked genes of the plant Silene latifolia are not generated by demographic history or gene flow. Mol Ecol 2017; 26:1357-1370. [PMID: 28035715 DOI: 10.1111/mec.13969] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/02/2016] [Accepted: 12/12/2016] [Indexed: 01/16/2023]
Abstract
DNA sequence diversity in genes in the partially sex-linked pseudoautosomal region (PAR) of the sex chromosomes of the plant Silene latifolia is higher than expected from within-species diversity of other genes. This could be the footprint of sexually antagonistic (SA) alleles that are maintained by balancing selection in a PAR gene (or genes) and affect polymorphism in linked genome regions. SA selection is predicted to occur during sex chromosome evolution, but it is important to test whether the unexpectedly high sequence polymorphism could be explained without it, purely by the combined effects of partial linkage with the sex-determining region and the population's demographic history, including possible introgression from Silene dioica. To test this, we applied approximate Bayesian computation-based model choice to autosomal sequence diversity data, to find the most plausible scenario for the recent history of S. latifolia and then to estimate the posterior density of the most relevant parameters. We then used these densities to simulate variation to be expected at PAR genes. We conclude that an excess of variants at high frequencies at PAR genes should arise in S. latifolia populations only for genes with strong associations with fully sex-linked genes, which requires closer linkage with the fully sex-linked region than that estimated for the PAR genes where apparent deviations from neutrality were observed. These results support the need to invoke selection to explain the S. latifolia PAR gene diversity, and encourage further work to test the possibility of balancing selection due to sexual antagonism.
Collapse
Affiliation(s)
- Sara Guirao-Rico
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JN, UK
| | - Alejandro Sánchez-Gracia
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
| | - Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JN, UK
| |
Collapse
|
15
|
Feurtey A, Gladieux P, Hood ME, Snirc A, Cornille A, Rosenthal L, Giraud T. Strong phylogeographic co-structure between the anther-smut fungus and its white campion host. THE NEW PHYTOLOGIST 2016; 212:668-679. [PMID: 27500396 DOI: 10.1111/nph.14125] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/18/2016] [Indexed: 06/06/2023]
Abstract
Although congruence between host and pathogen phylogenies has been extensively investigated, the congruence between host and pathogen genetic structures at the within-species level has received little attention. Using an unprecedented and comprehensive collection of associated plant-pathogen samples, we investigated the degree of congruence between the genetic structures across Europe of two evolutionary and ecological model organisms, the anther-smut pathogen Microbotryum lychnidis-dioicae and its host plant Silene latifolia. We demonstrated a significant and particularly strong level of host-pathogen co-structure, with three main genetic clusters displaying highly similar spatial ranges in Western Europe, Eastern Europe and Italy, respectively. Correcting for the geographical component of genetic variation, significant correlations were still found between the genetic distances of anther-smut and host populations. Inoculation experiments suggested plant local adaptation, at the cluster level, for resistance to pathogens. These findings indicate that the pathogen remained isolated in the same fragmented southern refugia as its host plant during the last glaciation, and that little long-distance dispersal has occurred since the recolonization of Europe for either the plant or the pathogen, despite their known ability to travel across continents. This, together with the inoculation results, suggests that coevolutionary and competitive processes may be drivers of host-pathogen co-structure.
Collapse
Affiliation(s)
- Alice Feurtey
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, 91400, France
| | - Pierre Gladieux
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, 91400, France
- UMR BGPI, INRA, Montpellier, 34398, France
| | - Michael E Hood
- Department of Biology, Amherst College, Amherst, MA, 01002, USA
| | - Alodie Snirc
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, 91400, France
| | - Amandine Cornille
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, 91400, France
| | - Lisa Rosenthal
- Department of Biology, Amherst College, Amherst, MA, 01002, USA
| | - Tatiana Giraud
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, 91400, France.
| |
Collapse
|
16
|
Karimullina E, Antonova EV, Pozolotina VN. Genetic variation in natural Melandrium album populations exposed to chronic ionizing radiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:21565-21576. [PMID: 27515527 DOI: 10.1007/s11356-016-7355-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/01/2016] [Indexed: 06/06/2023]
Abstract
The effect of radiation pollution on genetic variation in natural populations of Melandrium album was investigated at the head part of the East-Ural Radioactive Trace (EURT) and background areas. The highest genetic differentiation estimated using F ST was revealed between compared pairs of the background and impact samples in populations of M. album. The highest rate of polymorphism was observed at the closest to nuclear accident, Impact-1 site. The unique alleles (Mdh-3104, Pgi-2106, Lap 105, Mdh-296, and Dia 94) were discovered at the EURT. Individuals from chronically low-level irradiated sites were genetically closer than to plants from background sites using Nadhdh locus. The increase of the frequency of unique homozygous and heterozygous genotypes was identified in populations of M. album growing under chronic radiation exposure conditions. The largest contribution to the group of unique heterozygous genotypes at the EURT was made by three loci - Lap, Pgi-2, and Nadhdh; the main role in interpopulation differentiation of samples was made by the alleles Sod-2115, Skdh 100, and Nadhdh 100. Our results provide evidence for the correlation between the increase of genetic variation other than the «genetic erosion» and chronic radiation exposure factor in natural plant populations.
Collapse
Affiliation(s)
- Elina Karimullina
- Laboratory of Population Radiobiology, Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences, 8 Marta St., 202, Ekaterinburg, Russian Federation, 620144.
| | - Elena V Antonova
- Laboratory of Population Radiobiology, Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences, 8 Marta St., 202, Ekaterinburg, Russian Federation, 620144
| | - Vera N Pozolotina
- Laboratory of Population Radiobiology, Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences, 8 Marta St., 202, Ekaterinburg, Russian Federation, 620144
| |
Collapse
|
17
|
Relative strength of fine-scale spatial genetic structure in paternally vs biparentally inherited DNA in a dioecious plant depends on both sex proportions and pollen-to-seed dispersal ratio. Heredity (Edinb) 2016; 117:449-459. [PMID: 27577692 DOI: 10.1038/hdy.2016.65] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 07/04/2016] [Accepted: 07/06/2016] [Indexed: 11/08/2022] Open
Abstract
In plants, the spatial genetic structure (SGS) is shaped mainly by gene dispersal and effective population density. Among additional factors, the mode of DNA inheritance and dioecy influence SGS. However, their joint impact on SGS remains unclear, especially in the case of paternally inherited DNA. Using theoretical approximations and computer simulations, here we showed that the relative intensity of SGS measured in paternally and biparentally inherited DNA in a dioecious plant population depends on both the proportion of males and the pollen-to-seed dispersal ratio. As long as males do not prevail in a population, SGS is more intense in paternally than biparentally inherited DNA. When males prevail, the intensity of SGS in paternally vs biparentally inherited DNA depends on the compound effect of sex proportions and the pollen-to-seed dispersal ratio. To empirically validate our predictions, we used the case of Taxus baccata, a dioecious European tree. First, we showed that mitochondrial DNA (mtDNA) in T. baccata is predominantly (98%) paternally inherited. Subsequently, using nuclear DNA (nuDNA) and mitochondrial microsatellite data, we compared the fine-scale SGS intensity at both marker types in two natural populations. The population with equal sex proportions showed stronger SGS in mtDNA than in nuDNA. On the other hand, we found lower SGS intensity in mtDNA than in nuDNA in the population with 67% males. Thus, the empirical results provided good support for the theoretical predictions, suggesting that knowledge about SGS in paternally vs biparentally inherited DNA may provide insight into effective sex proportions within dioecious populations.
Collapse
|
18
|
Van Tussenbroek BI, Valdivia‐Carrillo T, Rodríguez‐Virgen IT, Sanabria‐Alcaraz SNM, Jiménez‐Durán K, Van Dijk KJ, Marquez‐Guzmán GJ. Coping with potential bi-parental inbreeding: limited pollen and seed dispersal and large genets in the dioecious marine angiosperm Thalassia testudinum. Ecol Evol 2016; 6:5542-5556. [PMID: 27942375 PMCID: PMC5127610 DOI: 10.1002/ece3.2309] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/31/2016] [Accepted: 06/23/2016] [Indexed: 12/02/2022] Open
Abstract
The high prevalence of dioecy in marine angiosperms or seagrasses (>50% of all species) is thought to enforce cross-fertilization. However, seagrasses are clonal plants, and they may still be subject to sibling-mating or bi-parental inbreeding if the genetic neighborhood is smaller than the size of the genets. We tested this by determining the genetic neighborhoods of the dioecious seagrass Thalassia testudinum at two sites (Back-Reef and Mid-Lagoon) in Puerto Morelos Reef Lagoon, Mexico, by measuring dispersal of pollen and seeds in situ, and by fine-scale spatial autocorrelation analysis with eight polymorphic microsatellite DNA markers. Prevalence of inbreeding was verified by estimating pairwise kinship coefficients; and by analysing the genotypes of seedlings grown from seeds in mesocosms. Average dispersal of pollen was 0.3-1.6 m (max. 4.8 m) and of seeds was 0.3-0.4 m (max. 1.8 m), resulting in a neighborhood area of 7.4 m2 (range 3.4-11.4 m2) at Back-Reef and 1.9 (range 1.87-1.92 m2) at Mid-Lagoon. Neighborhood area (Na) derived from spatial autocorrelation was 0.1-20.5 m2 at Back-Reef and 0.1-16.9 m2 at Mid-Lagoon. Maximal extensions of the genets, in 19 × 30 m plots, were 19.2 m (median 7.5 m) and 10.8 m (median 4.8 m) at Back-Reef and Mid-Lagoon. There was no indication of deficit or excess of heterozygotes nor were coefficients of inbreeding (FIS) significant. The seedlings did not show statistically significant deficit of heterozygotes (except for 1 locus at Back-Reef). Contrary to our expectations, we did not find evidence of bi-parental inbreeding in this dioecious seagrass with large genets but small genetic neighborhoods. Proposed mechanisms to avoid bi-parental inbreeding are possible selection against homozygotes during fecundation or ovule development. Additionally, the genets grew highly dispersed (aggregation index Ac was 0.09 and 0.10 for Back-Reef and Mid-Lagoon, respectively); such highly dispersed guerrilla-like clonal growth form likely increases the probability of crossing between different potentially unrelated genets.
Collapse
Affiliation(s)
- Brigitta Ine Van Tussenbroek
- Instituto de Ciencias del Mar y LimnologíaUnidad Académica Sistemas Arrecifales‐Puerto MorelosUniversidad Nacional Autónoma de MéxicoProlongación Niños Héroes S/NPuerto MorelosQuintana RooMéxico
| | - Tania Valdivia‐Carrillo
- Instituto de Ciencias del Mar y LimnologíaUnidad Académica Sistemas Arrecifales‐Puerto MorelosUniversidad Nacional Autónoma de MéxicoProlongación Niños Héroes S/NPuerto MorelosQuintana RooMéxico
| | - Irene Teresa Rodríguez‐Virgen
- Instituto de Ciencias del Mar y LimnologíaUnidad Académica Sistemas Arrecifales‐Puerto MorelosUniversidad Nacional Autónoma de MéxicoProlongación Niños Héroes S/NPuerto MorelosQuintana RooMéxico
- Present address: Department of Life and Health SciencesUniversity of North Texas at DallasDallasTexas
| | - Sylvia Nashieli Marisela Sanabria‐Alcaraz
- Instituto de Ciencias del Mar y LimnologíaUnidad Académica Sistemas Arrecifales‐Puerto MorelosUniversidad Nacional Autónoma de MéxicoProlongación Niños Héroes S/NPuerto MorelosQuintana RooMéxico
| | - Karina Jiménez‐Durán
- Instituto de Ciencias del Mar y LimnologíaUnidad Académica Sistemas Arrecifales‐Puerto MorelosUniversidad Nacional Autónoma de MéxicoProlongación Niños Héroes S/NPuerto MorelosQuintana RooMéxico
- Facultad de CienciasLaboratorio de Desarrollo de PlantasCiudad UniversitariaUniversidad Nacional Autónoma de MéxicoCoyoacanDistrito FederalMéxico
| | - Kor Jent Van Dijk
- Instituto de Ciencias del Mar y LimnologíaUnidad Académica Sistemas Arrecifales‐Puerto MorelosUniversidad Nacional Autónoma de MéxicoProlongación Niños Héroes S/NPuerto MorelosQuintana RooMéxico
- Present address: School of Biological ScienceUniversity of AdelaideAdelaideSouth Australia5005Australia
| | - Guadalupe Judith Marquez‐Guzmán
- Facultad de CienciasLaboratorio de Desarrollo de PlantasCiudad UniversitariaUniversidad Nacional Autónoma de MéxicoCoyoacanDistrito FederalMéxico
| |
Collapse
|
19
|
Furstenau TN, Cartwright RA. The effect of the dispersal kernel on isolation-by-distance in a continuous population. PeerJ 2016; 4:e1848. [PMID: 27069794 PMCID: PMC4824897 DOI: 10.7717/peerj.1848] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 03/04/2016] [Indexed: 11/29/2022] Open
Abstract
Under models of isolation-by-distance, population structure is determined by the probability of identity-by-descent between pairs of genes according to the geographic distance between them. Well established analytical results indicate that the relationship between geographical and genetic distance depends mostly on the neighborhood size of the population which represents a standardized measure of gene flow. To test this prediction, we model local dispersal of haploid individuals on a two-dimensional landscape using seven dispersal kernels: Rayleigh, exponential, half-normal, triangular, gamma, Lomax and Pareto. When neighborhood size is held constant, the distributions produce similar patterns of isolation-by-distance, confirming predictions. Considering this, we propose that the triangular distribution is the appropriate null distribution for isolation-by-distance studies. Under the triangular distribution, dispersal is uniform over the neighborhood area which suggests that the common description of neighborhood size as a measure of an effective, local panmictic population is valid for popular families of dispersal distributions. We further show how to draw random variables from the triangular distribution efficiently and argue that it should be utilized in other studies in which computational efficiency is important.
Collapse
Affiliation(s)
- Tara N Furstenau
- School of Life Sciences and the Biodesign Institute, Arizona State University , Tempe, AZ , United States of America
| | - Reed A Cartwright
- School of Life Sciences and the Biodesign Institute, Arizona State University , Tempe, AZ , United States of America
| |
Collapse
|
20
|
Individual spatial aggregation correlates with between-population variation in fine-scale genetic structure of Silene ciliata (Caryophyllaceae). Heredity (Edinb) 2015; 116:417-23. [PMID: 26604191 DOI: 10.1038/hdy.2015.102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 09/29/2015] [Accepted: 10/13/2015] [Indexed: 11/08/2022] Open
Abstract
Fine-scale genetic structure (FSGS) can vary among populations within species depending on multiple demographic and environmental factors. Theoretical models predict that FSGS should decrease in high-density populations and increase in populations where individuals are spatially aggregated. However, few empirical studies have compared FSGS between populations with different degrees of individual spatial aggregation and microhabitat heterogeneity. In this work, we studied the relationship between spatial and genetic structure in five populations of alpine specialist Silene ciliata Poiret (Caryophyllaceae). We mapped all individuals in each population and genotyped 96 of them using 10 microsatellite markers. We found significant FSGS consistent with an isolation-by-distance process in three of the five populations. The intensity of FSGS was positively associated with individual spatial aggregation. However, no association was found between FSGS and global population density or microhabitat heterogeneity. Overall, our results support theoretical studies indicating that stronger spatial aggregation tends to increase the magnitude of FSGS. They also highlight the relevance of characterizing local plant distribution and microhabitat to better understand the mechanisms that generate intraspecific variation in FSGS across landscapes.
Collapse
|
21
|
Genetic structure of a montane perennial plant: the influence of landscape and flowering phenology. CONSERV GENET 2015. [DOI: 10.1007/s10592-015-0751-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Nistelberger HM, Coates DJ, Llorens TM, Yates CJ, Byrne M. A cryptic genetic boundary in remnant populations of a long-lived, bird-pollinated shrubBanksia sphaerocarpavar.caesia(Proteaceae). Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12521] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Heidi M. Nistelberger
- Science and Conservation Division; Department of Parks and Wildlife; Bentley Delivery Centre; Locked Bag 104 Perth WA 6983 Australia
| | - David J. Coates
- Science and Conservation Division; Department of Parks and Wildlife; Bentley Delivery Centre; Locked Bag 104 Perth WA 6983 Australia
| | - Tanya M. Llorens
- Science and Conservation Division; Department of Parks and Wildlife; Bentley Delivery Centre; Locked Bag 104 Perth WA 6983 Australia
| | - Colin J. Yates
- Science and Conservation Division; Department of Parks and Wildlife; Bentley Delivery Centre; Locked Bag 104 Perth WA 6983 Australia
| | - Margaret Byrne
- Science and Conservation Division; Department of Parks and Wildlife; Bentley Delivery Centre; Locked Bag 104 Perth WA 6983 Australia
| |
Collapse
|
23
|
Determinants of genetic structure in a nonequilibrium metapopulation of the plant Silene latifolia. PLoS One 2014; 9:e104575. [PMID: 25198341 PMCID: PMC4157773 DOI: 10.1371/journal.pone.0104575] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 07/15/2014] [Indexed: 11/19/2022] Open
Abstract
Population genetic differentiation will be influenced by the demographic history of populations, opportunities for migration among neighboring demes and founder effects associated with repeated extinction and recolonization. In natural populations, these factors are expected to interact with each other and their magnitudes will vary depending on the spatial distribution and age structure of local demes. Although each of these effects has been individually identified as important in structuring genetic variance, their relative magnitude is seldom estimated in nature. We conducted a population genetic analysis in a metapopulation of the angiosperm, Silene latifolia, from which we had more than 20 years of data on the spatial distribution, demographic history, and extinction and colonization of demes. We used hierarchical Bayesian methods to disentangle which features of the populations contributed to among population variation in allele frequencies, including the magnitude and direction of their effects. We show that population age, long-term size and degree of connectivity all combine to affect the distribution of genetic variance; small, recently-founded, isolated populations contributed most to increase FST in the metapopulation. However, the effects of population size and population age are best understood as being modulated through the effects of connectivity to other extant populations, i.e. FST diminishes as populations age, but at a rate that depends how isolated the population is. These spatial and temporal correlates of population structure give insight into how migration, founder effect and within-deme genetic drift have combined to enhance and restrict genetic divergence in a natural metapopulation.
Collapse
|
24
|
Zhang D, Xia T, Yan M, Dai X, Xu J, Li S, Yin T. Genetic introgression and species boundary of two geographically overlapping pine species revealed by molecular markers. PLoS One 2014; 9:e101106. [PMID: 24977711 PMCID: PMC4076219 DOI: 10.1371/journal.pone.0101106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/02/2014] [Indexed: 12/04/2022] Open
Abstract
Gene introgression and hybrid barriers have long been a major focus of studies of geographically overlapping species. Two pine species, Pinus massoniana and P. hwangshanensis, are frequently observed growing adjacent to each other, where they overlap in a narrow hybrid zone. As a consequence, these species constitute an ideal system for studying genetic introgression and reproductive barriers between naturally hybridizing, adjacently distributed species. In this study, we sampled 270 pine trees along an elevation gradient in Anhui Province, China and analyzed these samples using EST-SSR markers. The molecular data revealed that direct gene flow between the two species was fairly low, and that the majority of gene introgression was intermediated by backcrossing. On the basis of empirical observation, the on-site distribution of pines was divided into a P. massoniana zone, a hybrid zone, and a P. hwangshanensis zone. STRUCTURE analysis revealed the existence of a distinct species boundary between the two pine species. The genetic boundary of the hybrid zone, on the other hand, was indistinct owing to intensive backcrossing with parental species. Compared with P. massoniana, P. hwangshanensis was found to backcross with the hybrids more intensively, consistent with the observation that morphological and anatomical characteristics of trees in the contact zone were biased towards P. hwangshanensis. The introgression ability of amplified alleles varied across species, with some being completely blocked from interspecific introgression. Our study has provided a living example to help explain the persistence of adjacently distributed species coexisting with their interfertile hybrids.
Collapse
Affiliation(s)
- Defang Zhang
- The Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing, China
| | - Tao Xia
- The Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing, China
| | - Maomao Yan
- The Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing, China
| | - Xiaogang Dai
- The Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing, China
| | - Jin Xu
- The Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing, China
| | - Shuxian Li
- The Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing, China
| | - Tongming Yin
- The Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing, China
- * E-mail:
| |
Collapse
|
25
|
Berecha G, Aerts R, Vandepitte K, Van Glabeke S, Muys B, Roldán-Ruiz I, Honnay O. Effects of forest management on mating patterns, pollen flow and intergenerational transfer of genetic diversity in wild Arabica coffee (Coffea arabica L.) from Afromontane rainforests. Biol J Linn Soc Lond 2014. [DOI: 10.1111/bij.12274] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gezahegn Berecha
- Plant Conservation and Population Biology; University of Leuven; Kasteelpark Arenberg 31-2435 BE-3001 Leuven Belgium
- Department of Horticulture and Plant Science; Jimma University; PO Box 307 Jimma Ethiopia
| | - Raf Aerts
- Division Forest, Nature and Landscape; University of Leuven; Celestijnenlaan 200E-2411 BE-3001 Leuven Belgium
| | - Katrien Vandepitte
- Plant Conservation and Population Biology; University of Leuven; Kasteelpark Arenberg 31-2435 BE-3001 Leuven Belgium
| | - Sabine Van Glabeke
- Plant Sciences Unit - Growth and Development; Institute for Agricultural and Fisheries Research; Caritasstraat 21 9090 Melle Belgium
| | - Bart Muys
- Division Forest, Nature and Landscape; University of Leuven; Celestijnenlaan 200E-2411 BE-3001 Leuven Belgium
| | - Isabel Roldán-Ruiz
- Plant Sciences Unit - Growth and Development; Institute for Agricultural and Fisheries Research; Caritasstraat 21 9090 Melle Belgium
| | - Olivier Honnay
- Plant Conservation and Population Biology; University of Leuven; Kasteelpark Arenberg 31-2435 BE-3001 Leuven Belgium
| |
Collapse
|
26
|
Nybom H, Weising K, Rotter B. DNA fingerprinting in botany: past, present, future. INVESTIGATIVE GENETICS 2014; 5:1. [PMID: 24386986 PMCID: PMC3880010 DOI: 10.1186/2041-2223-5-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 12/02/2013] [Indexed: 12/20/2022]
Abstract
Almost three decades ago Alec Jeffreys published his seminal Nature papers on the use of minisatellite probes for DNA fingerprinting of humans (Jeffreys and colleagues Nature 1985, 314:67-73 and Nature 1985, 316:76-79). The new technology was soon adopted for many other organisms including plants, and when Hilde Nybom, Kurt Weising and Alec Jeffreys first met at the very First International Conference on DNA Fingerprinting in Berne, Switzerland, in 1990, everybody was enthusiastic about the novel method that allowed us for the first time to discriminate between humans, animals, plants and fungi on the individual level using DNA markers. A newsletter coined "Fingerprint News" was launched, T-shirts were sold, and the proceedings of the Berne conference filled a first book on "DNA fingerprinting: approaches and applications". Four more conferences were about to follow, one on each continent, and Alec Jeffreys of course was invited to all of them. Since these early days, methodologies have undergone a rapid evolution and diversification. A multitude of techniques have been developed, optimized, and eventually abandoned when novel and more efficient and/or more reliable methods appeared. Despite some overlap between the lifetimes of the different technologies, three phases can be defined that coincide with major technological advances. Whereas the first phase of DNA fingerprinting ("the past") was dominated by restriction fragment analysis in conjunction with Southern blot hybridization, the advent of the PCR in the late 1980s gave way to the development of PCR-based single- or multi-locus profiling techniques in the second phase. Given that many routine applications of plant DNA fingerprinting still rely on PCR-based markers, we here refer to these methods as "DNA fingerprinting in the present", and include numerous examples in the present review. The beginning of the third phase actually dates back to 2005, when several novel, highly parallel DNA sequencing strategies were developed that increased the throughput over current Sanger sequencing technology 1000-fold and more. High-speed DNA sequencing was soon also exploited for DNA fingerprinting in plants, either in terms of facilitated marker development, or directly in the sense of "genotyping-by-sequencing". Whereas these novel approaches are applied at an ever increasing rate also in non-model species, they are still far from routine, and we therefore treat them here as "DNA fingerprinting in the future".
Collapse
Affiliation(s)
- Hilde Nybom
- Department of Plant Breeding–Balsgård, Swedish University for Agricultural Sciences, Fjälkestadsvägen 459, Kristianstad 29194, Sweden
| | - Kurt Weising
- Plant Molecular Systematics, Institute of Biology, University of Kassel, Kassel 34109, Germany
| | - Björn Rotter
- GenXPro GmbH, Altenhöferallee 3, Frankfurt 60438, Germany
| |
Collapse
|
27
|
García-Fernández A, Segarra-Moragues JG, Widmer A, Escudero A, Iriondo JM. Unravelling genetics at the top: mountain islands or isolated belts? ANNALS OF BOTANY 2012; 110:1221-32. [PMID: 23002271 PMCID: PMC3478054 DOI: 10.1093/aob/mcs195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 07/13/2012] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS In mountain plant populations, local adaptation has been described as one of the main responses to climate warming, allowing plants to persist under stressful conditions. This is especially the case for marginal populations at their lowest elevation, as they are highly vulnerable. Adequate levels of genetic diversity are required for selection to take place, while high levels of altitudinal gene flow are seen as a major limiting factor potentially precluding local adaptation processes. Thus, a compromise between genetic diversity and gene flow seems necessary to guarantee persistence under oncoming conditions. It is therefore critical to determine if gene flow occurs preferentially between mountains at similar altitudinal belts, promoting local adaptation at the lowest populations, or conversely along altitude within each mountain. METHODS Microsatellite markers were used to unravel genetic diversity and population structure, inbreeding and gene flow of populations at two nearby altitudinal gradients of Silene ciliata, a Mediterranean high-mountain cushion plant. KEY RESULTS Genetic diversity and inbreeding coefficients were similar in all populations. Substantial gene flow was found both along altitudinal gradients and horizontally within each elevation belt, although greater values were obtained along altitudinal gradients. Gene flow may be responsible for the homogeneous levels of genetic diversity found among populations. Bayesian cluster analyses also suggested that shifts along altitudinal gradients are the most plausible scenario. CONCLUSIONS Past population shifts associated with glaciations and interglacial periods in temperate mountains may partially explain current distributions of genetic diversity and population structure. In spite of the predominance of gene flow along the altitudinal gradients, local genetic differentiation of one of the lower populations together with the detection of one outlier locus might support the existence of different selection forces at low altitudes.
Collapse
Affiliation(s)
- Alfredo García-Fernández
- Universidad Rey Juan Carlos, Departamento de Biología y Geología, Calle Tulipan s.n., 28933, Móstoles, Spain.
| | | | | | | | | |
Collapse
|
28
|
Diniz-Filho JAF, Bini LM. Thirty-five years of spatial autocorrelation analysis in population genetics: an essay in honour of Robert Sokal (1926-2012). Biol J Linn Soc Lond 2012. [DOI: 10.1111/j.1095-8312.2012.01987.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Luis Mauricio Bini
- Departamento de Ecologia, Instituto de Ciências Biológicas; Universidade Federal de Goiás; CP 131 Campus II 74001-970; Goiânia; GO; Brazil
| |
Collapse
|
29
|
Angeloni F, Wagemaker N, Vergeer P, Ouborg J. Genomic toolboxes for conservation biologists. Evol Appl 2011; 5:130-43. [PMID: 25568036 PMCID: PMC3353346 DOI: 10.1111/j.1752-4571.2011.00217.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 10/18/2011] [Indexed: 12/01/2022] Open
Abstract
Conservation genetics is expanding its research horizon with a genomic approach, by incorporating the modern techniques of next-generation sequencing (NGS). Application of NGS overcomes many limitations of conservation genetics. First, NGS allows for genome-wide screening of markers, which may lead to a more representative estimation of genetic variation within and between populations. Second, NGS allows for distinction between neutral and non-neutral markers. By screening populations on thousands of single nucleotide polymorphism markers, signals of selection can be found for some markers. Variation in these markers will give insight into functional rather than neutral genetic variation. Third, NGS facilitates the study of gene expression. Conservation genomics will increase our insight in how the environment and genes interact to affect phenotype and fitness. In addition, the NGS approach opens a way to study processes such as inbreeding depression and local adaptation mechanistically. Conservation genetics programs are directed to a fundamental understanding of the processes involved in conservation genetics and should preferably be started in species for which large databases on ecology, demography and genetics are available. Here, we describe and illustrate the connection between the application of NGS technologies and the research questions in conservation. The perspectives of conservation genomics programs are also discussed.
Collapse
Affiliation(s)
- Francesco Angeloni
- Institute for Water and Wetland Research (IWWR), Department of Molecular Ecology, Radboud University Nijmegen AJ Nijmegen, The Netherlands
| | - Niels Wagemaker
- Institute for Water and Wetland Research (IWWR), Department of Molecular Ecology, Radboud University Nijmegen AJ Nijmegen, The Netherlands
| | - Philippine Vergeer
- Institute for Water and Wetland Research (IWWR), Department of Molecular Ecology, Radboud University Nijmegen AJ Nijmegen, The Netherlands
| | - Joop Ouborg
- Institute for Water and Wetland Research (IWWR), Department of Molecular Ecology, Radboud University Nijmegen AJ Nijmegen, The Netherlands
| |
Collapse
|
30
|
Freeland JR, Biss P, Silvertown J. Contrasting patterns of pollen and seed flow influence the spatial genetic structure of sweet vernal grass (Anthoxanthum odoratum) populations. ACTA ACUST UNITED AC 2011; 103:28-35. [PMID: 22003195 DOI: 10.1093/jhered/esr111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The spatial genetic structure of plant populations is determined by a combination of gene flow, genetic drift, and natural selection. Gene flow in most plants can result from either seed or pollen dispersal, but detailed investigations of pollen and seed flow among populations that have diverged following local adaptation are lacking. In this study, we compared pollen and seed flow among 10 populations of sweet vernal grass (Anthoxanthum odoratum) on the Park Grass Experiment. Overall, estimates of genetic differentiation that were based on chloroplast DNA (cpDNA) and, which therefore resulted primarily from seed flow, were lower (average F(ST) = 0.058) than previously published estimates that were based on nuclear DNA (average F(ST) = 0.095). Unlike nuclear DNA, cpDNA showed no pattern of isolation by adaptation; cpDNA differentiation was, however, inversely correlated with the number of additions (nutrients and lime) that each plot had received. We suggest that natural selection is restricting pollen flow among plots, whereas nutrient additions are increasing seed flow and genetic diversity by facilitating the successful germination and growth of immigrant seeds. This study highlights the importance of considering all potential gene flow mechanisms when investigating determinants of spatial genetic structure, and cautions against the widespread assumption that pollen flow is more important than seed flow for population connectivity in wind-pollinated species.
Collapse
Affiliation(s)
- Joanna R Freeland
- Department of Biology, Trent University, Peterborough, Ontario, Canada.
| | | | | |
Collapse
|
31
|
MAGALHAES ISABELS, GLEISER GABRIELA, LABOUCHE ANNEMARIE, BERNASCONI GIORGINA. Comparative population genetic structure in a plant-pollinator/seed predator system. Mol Ecol 2011; 20:4618-30. [DOI: 10.1111/j.1365-294x.2011.05296.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Vanden-Broeck A, Gruwez R, Cox K, Adriaenssens S, Michalczyk IM, Verheyen K. Genetic structure and seed-mediated dispersal rates of an endangered shrub in a fragmented landscape: a case study for Juniperus communis in northwestern Europe. BMC Genet 2011; 12:73. [PMID: 21859457 PMCID: PMC3176195 DOI: 10.1186/1471-2156-12-73] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 08/22/2011] [Indexed: 11/10/2022] Open
Abstract
Background Population extinction risk in a fragmented landscape is related to the differential ability of the species to spread its genes across the landscape. The impact of landscape fragmentation on plant population dynamics will therefore vary across different spatial scales. We quantified successful seed-mediated dispersal of the dioecious shrub Juniperus communis in a fragmented landscape across northwestern Europe by using amplified fragment length polymorphism (AFLP) markers. Furthermore we investigated the genetic diversity and structure on two spatial scales: across northwestern Europe and across Flanders (northern Belgium). We also studied whether seed viability and populations size were correlated with genetic diversity. Results Unexpectedly, estimated seed-mediated dispersal rates were quite high and ranged between 3% and 14%. No population differentiation and no spatial genetic structure were detected on the local, Flemish scale. A significant low to moderate genetic differentiation between populations was detected at the regional, northwest European scale (PhiPT = 0.10). In general, geographically nearby populations were also genetically related. High levels of within-population genetic diversity were detected but no correlation was found between any genetic diversity parameter and population size or seed viability. Conclusions In northwestern Europe, landscape fragmentation has lead to a weak isolation-by-distance pattern but not to genetic impoverishment of common juniper. Substantial rates of successful migration by seed-mediated gene flow indicate a high dispersal ability which could enable Juniperus communis to naturally colonize suitable habitats. However, it is not clear whether the observed levels of migration will suffice to counterbalance the effects of genetic drift in small populations on the long run.
Collapse
Affiliation(s)
- An Vanden-Broeck
- Research Institute for Nature and Forest, Geraardsbergen, Belgium.
| | | | | | | | | | | |
Collapse
|
33
|
Austerlitz F, Gleiser G, Teixeira S, Bernasconi G. The effects of inbreeding, genetic dissimilarity and phenotype on male reproductive success in a dioecious plant. Proc Biol Sci 2011; 279:91-100. [PMID: 21561968 DOI: 10.1098/rspb.2011.0652] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pollen fate can strongly affect the genetic structure of populations with restricted gene flow and significant inbreeding risk. We established an experimental population of inbred and outbred Silene latifolia plants to evaluate the effects of (i) inbreeding depression, (ii) phenotypic variation and (iii) relatedness between mates on male fitness under natural pollination. Paternity analysis revealed that outbred males sired significantly more offspring than inbred males. Independently of the effects of inbreeding, male fitness depended on several male traits, including a sexually dimorphic (flower number) and a gametophytic trait (in vitro pollen germination rate). In addition, full-sib matings were less frequent than randomly expected. Thus, inbreeding, phenotype and genetic dissimilarity simultaneously affect male fitness in this animal-pollinated plant. While inbreeding depression might threaten population persistence, the deficiency of effective matings between sibs and the higher fitness of outbred males will reduce its occurrence and counter genetic erosion.
Collapse
Affiliation(s)
- Frédéric Austerlitz
- Laboratoire Ecologie, Systématique et Evolution, UMR CNRS 8079, Université, Paris-Sud, 91405 Orsay Cedex, France
| | | | | | | |
Collapse
|