1
|
Mack KL, Talbott HE, Griffin MF, Parker JBL, Guardino NJ, Spielman AF, Davitt MF, Mascharak S, Downer M, Morgan A, Valencia C, Akras D, Berger MJ, Wan DC, Fraser HB, Longaker MT. Allele-specific expression reveals genetic drivers of tissue regeneration in mice. Cell Stem Cell 2023; 30:1368-1381.e6. [PMID: 37714154 PMCID: PMC10592051 DOI: 10.1016/j.stem.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 06/16/2023] [Accepted: 08/22/2023] [Indexed: 09/17/2023]
Abstract
In adult mammals, skin wounds typically heal by scarring rather than through regeneration. In contrast, "super-healer" Murphy Roths Large (MRL) mice have the unusual ability to regenerate ear punch wounds; however, the molecular basis for this regeneration remains elusive. Here, in hybrid crosses between MRL and non-regenerating mice, we used allele-specific gene expression to identify cis-regulatory variation associated with ear regeneration. Analyzing three major cell populations (immune, fibroblast, and endothelial), we found that genes with cis-regulatory differences specifically in fibroblasts were associated with wound-healing pathways and also co-localized with quantitative trait loci for ear wound-healing. Ectopic treatment with one of these proteins, complement factor H (CFH), accelerated wound repair and induced regeneration in typically fibrotic wounds. Through single-cell RNA sequencing (RNA-seq), we observed that CFH treatment dramatically reduced immune cell recruitment to wounds, suggesting a potential mechanism for CFH's effect. Overall, our results provide insights into the molecular drivers of regeneration with potential clinical implications.
Collapse
Affiliation(s)
- Katya L Mack
- Stanford University, Department of Biology, Stanford, CA, USA
| | - Heather E Talbott
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA; Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
| | - Michelle F Griffin
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA
| | - Jennifer B L Parker
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA; Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
| | - Nicholas J Guardino
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA
| | - Amanda F Spielman
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA
| | - Michael F Davitt
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA
| | - Shamik Mascharak
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA; Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
| | - Mauricio Downer
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA
| | - Annah Morgan
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA
| | - Caleb Valencia
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA
| | - Deena Akras
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA
| | - Mark J Berger
- Stanford University, Department of Computer Science, Stanford, CA 94305, USA
| | - Derrick C Wan
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA
| | - Hunter B Fraser
- Stanford University, Department of Biology, Stanford, CA, USA.
| | - Michael T Longaker
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA; Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA.
| |
Collapse
|
2
|
Larson DR, Kimber AJ, Meyer KJ, Anderson MG. Anterior chamber depth in mice is controlled by several quantitative trait loci. PLoS One 2023; 18:e0286897. [PMID: 37624784 PMCID: PMC10456175 DOI: 10.1371/journal.pone.0286897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Anterior chamber depth (ACD) is a quantitative trait associated with primary angle closure glaucoma (PACG). Although ACD is highly heritable, known genetic variations explain a small fraction of the phenotypic variability. The purpose of this study was to identify additional ACD-influencing loci using strains of mice. Cohorts of 86 N2 and 111 F2 mice were generated from crosses between recombinant inbred BXD24/TyJ and wild-derived CAST/EiJ mice. Using anterior chamber optical coherence tomography, mice were phenotyped at 10-12 weeks of age, genotyped based on 93 genome-wide SNPs, and subjected to quantitative trait locus (QTL) analysis. In an analysis of ACD among all mice, six loci passed the significance threshold of p = 0.05 and persisted after multiple regression analysis. These were on chromosomes 6, 7, 11, 12, 15 and 17 (named Acdq6, Acdq7, Acdq11, Acdq12, Acdq15, and Acdq17, respectively). Our findings demonstrate a quantitative multi-genic pattern of ACD inheritance in mice and identify six previously unrecognized ACD-influencing loci. We have taken a unique approach to studying the anterior chamber depth phenotype by using mice as genetic tool to examine this continuously distributed trait.
Collapse
Affiliation(s)
- Demelza R. Larson
- Department of Biology, College of Saint Benedict & Saint John’s University, Collegeville, Minnesota, United States of America
| | - Allysa J. Kimber
- Department of Biology, College of Saint Benedict & Saint John’s University, Collegeville, Minnesota, United States of America
| | - Kacie J. Meyer
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, Iowa, United States of America
| | - Michael G. Anderson
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, Iowa, United States of America
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa, United States of America
- Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, Iowa, United States of America
| |
Collapse
|
3
|
Mascharak S, desJardins-Park HE, Davitt MF, Guardino NJ, Gurtner GC, Wan DC, Longaker MT. Modulating Cellular Responses to Mechanical Forces to Promote Wound Regeneration. Adv Wound Care (New Rochelle) 2022; 11:479-495. [PMID: 34465219 PMCID: PMC9245727 DOI: 10.1089/wound.2021.0040] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Significance: Skin scarring poses a major biomedical burden for hundreds of millions of patients annually. However, this burden could be mitigated by therapies that promote wound regeneration, with full recovery of skin's normal adnexa, matrix ultrastructure, and mechanical strength. Recent Advances: The observation of wound regeneration in several mouse models suggests a retained capacity for postnatal mammalian skin to regenerate under the right conditions. Mechanical forces are a major contributor to skin fibrosis and a prime target for devices and therapeutics that could promote skin regeneration. Critical Issues: Wound-induced hair neogenesis, Acomys "spiny" mice, Murphy Roths Large mice, and mice treated with mechanotransduction inhibitors all show various degrees of wound regeneration. Comparison of regenerating wounds in these models against scarring wounds reveals differences in extracellular matrix interactions and in mechanosensitive activation of key signaling pathways, including Wnt, Sonic hedgehog, focal adhesion kinase, and Yes-associated protein. The advent of single-cell "omics" technologies has deepened this understanding and revealed that regeneration may recapitulate development in certain contexts, although it is unknown whether these mechanisms are relevant to healing in tight-skinned animals such as humans. Future Directions: While early findings in mice are promising, comparison across model systems is needed to resolve conflicting mechanisms and to identify conserved master regulators of skin regeneration. There also remains a dire need for studies on mechanomodulation of wounds in large, tight-skinned animals, such as red Duroc pigs, which better approximate human wound healing.
Collapse
Affiliation(s)
- Shamik Mascharak
- Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine; Stanford University School of Medicine, Stanford, California, USA
| | - Heather E. desJardins-Park
- Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine; Stanford University School of Medicine, Stanford, California, USA
| | - Michael F. Davitt
- Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
| | - Nicholas J. Guardino
- Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
| | - Geoffrey C. Gurtner
- Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
| | - Derrick C. Wan
- Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
| | - Michael T. Longaker
- Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine; Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
4
|
Bagnati M, Moreno-Moral A, Ko JH, Nicod J, Harmston N, Imprialou M, Game L, Gil J, Petretto E, Behmoaras J. Systems genetics identifies a macrophage cholesterol network associated with physiological wound healing. JCI Insight 2019; 4:e125736. [PMID: 30674726 PMCID: PMC6413785 DOI: 10.1172/jci.insight.125736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/18/2018] [Indexed: 01/18/2023] Open
Abstract
Among other cells, macrophages regulate the inflammatory and reparative phases during wound healing but genetic determinants and detailed molecular pathways that modulate these processes are not fully elucidated. Here, we took advantage of normal variation in wound healing in 1,378 genetically outbred mice, and carried out macrophage RNA-sequencing profiling of mice with extreme wound healing phenotypes (i.e., slow and fast healers, n = 146 in total). The resulting macrophage coexpression networks were genetically mapped and led to the identification of a unique module under strong trans-acting genetic control by the Runx2 locus. This macrophage-mediated healing network was specifically enriched for cholesterol and fatty acid biosynthetic processes. Pharmacological blockage of fatty acid synthesis with cerulenin resulted in delayed wound healing in vivo, and increased macrophage infiltration in the wounded skin, suggesting the persistence of an unresolved inflammation. We show how naturally occurring sequence variation controls transcriptional networks in macrophages, which in turn regulate specific metabolic pathways that could be targeted in wound healing.
Collapse
Affiliation(s)
- Marta Bagnati
- Centre for Inflammatory Disease, Imperial College London, Hammersmith Hospital, London, United Kingdom (UK)
| | | | - Jeong-Hun Ko
- Centre for Inflammatory Disease, Imperial College London, Hammersmith Hospital, London, United Kingdom (UK)
| | - Jérôme Nicod
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Martha Imprialou
- Centre for Inflammatory Disease, Imperial College London, Hammersmith Hospital, London, United Kingdom (UK)
| | - Laurence Game
- Genomics Laboratory, Medical Research Council (MRC) London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Jesus Gil
- Cell Proliferation Group, MRC London Institute of Medical Sciences (LMS), London, UK
| | - Enrico Petretto
- Duke-NUS Medical School, Singapore, Singapore
- MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Jacques Behmoaras
- Centre for Inflammatory Disease, Imperial College London, Hammersmith Hospital, London, United Kingdom (UK)
| |
Collapse
|
5
|
Morikawa S, Iribar H, Gutiérrez-Rivera A, Ezaki T, Izeta A. Pericytes in Cutaneous Wound Healing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1147:1-63. [DOI: 10.1007/978-3-030-16908-4_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Colavite PM, Vieira AE, Palanch Repeke CE, de Araujo Linhari RP, De Andrade RGCS, Borrego A, De Franco M, Trombone APF, Garlet GP. Alveolar bone healing in mice genetically selected in the maximum (AIRmax) or minimum (AIRmin) inflammatory reaction. Cytokine 2018; 114:47-60. [PMID: 30584949 DOI: 10.1016/j.cyto.2018.11.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/09/2018] [Accepted: 11/27/2018] [Indexed: 01/15/2023]
Abstract
The exact role of inflammatory immune response in bone healing process is still unclear, but the success of the alveolar bone healing process seems to be associated with a moderate and transitory inflammatory response, while insufficient or exacerbated responses seems to have a detrimental influence in the healing outcome. In this context, we performed a comparative analysis of mice strains genetically selected for maximum (AIRmax) or minimum (AIRmin) acute inflammatory response to address the influence of inflammation genes in alveolar bone healing outcome. Experimental groups comprised 8-week-old male or female AIRmax and AIRmin submitted to extraction of upper right incisor, and evaluated at 0, 3, 7, 14 and 21 days after upper incision extraction by micro-computed tomography (μCT), histomorphometry, birefringence, immunohistochemistry and molecular (PCRArray) analysis. Overall, the results demonstrate a similar successful bone healing outcome at the endpoint was evidenced in both AIRmin and AIRmax strains. The histormophometric analysis reveal a slight but significant decrease in blood clot and inflammatory cells density, as well a delay in the bone formation in AIRmax strain in the early times, associated with a decreased expression of BMP2, BMP4, BMP7, TGFb1, RUNX2, and ALP. The evaluation of inflammatory cells nature reveals increased GR1+ cells counts in AIRmax strain at 3d, associated with increased levels of neutrophil chemoattractants such as CXCL1 and CXCL2, and its receptor CXCR1, while F4/80+ cell prevails in AIRmin strain at 7d. Also, our results demonstrate a relative predominance of M2 macrophages in AIRmin strain, associated with an increased expression of ARG1, IL10, TGFb, while M1 macrophages prevail in AIRmax, which parallel with increased IL-1B, IL-6 and TNF expression. At late repair stage, AIRmax presents evidences of increased bone remodeling, characterized by increased density of blood vessels and osteoclasts in parallel with decreased bone matrix density, as well increased levels of MMPs, osteoclastogenic and osteocyte markers. In the view of contrasting inflammatory and healing phenotypes of AIRmin and AIRmax strains in other models, the unpredicted phenotype observed suggests the existence of specific QTLs (Quantitative trait loci) responsible for the regulation 'sterile' inflammation and bone healing events. Despite the similar endpoint healing, AIRmax strain delayed repair was associated with increased presence of neutrophils and M1 macrophages, supporting the association of M2 cells with faster bone healing. Further studies are required to clarify the elements responsible for the regulation of inflammatory events at bone healing sites, as well the determinants of bone healing outcome.
Collapse
Affiliation(s)
- Priscila Maria Colavite
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Andreia Espindola Vieira
- Histology and Embryology Laboratory, Institute of Biological and Health Sciences (ICBS), Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | | | | | | | - Andrea Borrego
- Laboratory of Immunogenetics, Butantan Institute, Secretary of Health, Government of the State of São Paulo, SP, Brazil
| | - Marcelo De Franco
- Diagnostic Section, Pasteur Institute, Secretary of Health, Government of the State of São Paulo, SP, Brazil
| | | | - Gustavo Pompermaier Garlet
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil.
| |
Collapse
|
7
|
Górnikiewicz B, Ronowicz A, Madanecki P, Sachadyn P. Genome-wide DNA methylation profiling of the regenerative MRL/MpJ mouse and two normal strains. Epigenomics 2017; 9:1105-1122. [DOI: 10.2217/epi-2017-0009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: We aimed to identify the pivotal differences in the DNA methylation profiles between the regeneration capable MRL/MpJ mouse and reference mouse strains. Materials & methods: Global DNA methylation profiling was performed in ear pinnae, bone marrow, spleen, liver and heart from uninjured adult females of the MRL/MpJ and C57BL/6J and BALB/c. Results & conclusion: A number of differentially methylated regions (DMRs) distinguishing between the MRL/MpJ mouse and both references were identified. In the ear pinnae, the DMRs were enriched in genes associated with development, inflammation and apoptosis, and in binding sites of transcriptional modulator Smad1. Several DMRs overlapped previously mapped quantitative trait loci of regenerative capability. The results suggest potential epigenetic determinants of regenerative phenomenon.
Collapse
Affiliation(s)
- Bartosz Górnikiewicz
- Department of Molecular Biotechnology & Microbiology, Gdańsk University of Technology, Gdańsk, Poland
| | - Anna Ronowicz
- Department of Biology & Pharmaceutical Botany of Medical University of Gdańsk, Gdańsk, Poland
| | - Piotr Madanecki
- Department of Biology & Pharmaceutical Botany of Medical University of Gdańsk, Gdańsk, Poland
| | - Paweł Sachadyn
- Department of Molecular Biotechnology & Microbiology, Gdańsk University of Technology, Gdańsk, Poland
| |
Collapse
|
8
|
Enhanced cartilage repair in 'healer' mice-New leads in the search for better clinical options for cartilage repair. Semin Cell Dev Biol 2016; 62:78-85. [PMID: 27130635 DOI: 10.1016/j.semcdb.2016.04.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/25/2016] [Indexed: 12/13/2022]
Abstract
Adult articular cartilage has a poor capacity to undergo intrinsic repair. Current strategies for the repair of large cartilage defects are generally unsatisfactory because the restored cartilage does not have the same resistance to biomechanical loading as authentic articular cartilage and degrades over time. Recently, an exciting new research direction, focused on intrinsic cartilage regeneration rather than fibrous repair by external means, has emerged. This review explores the new findings in this rapidly moving field as they relate to the clinical goal of restoration of structurally robust, stable and non-fibrous articular cartilage following injury.
Collapse
|
9
|
Leung TH, Snyder ER, Liu Y, Wang J, Kim SK. A cellular, molecular, and pharmacological basis for appendage regeneration in mice. Genes Dev 2016; 29:2097-107. [PMID: 26494786 PMCID: PMC4617975 DOI: 10.1101/gad.267724.115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Regenerative medicine aims to restore normal tissue architecture and function. However, the basis of tissue regeneration in mammalian solid organs remains undefined. Remarkably, mice lacking p21 fully regenerate injured ears without discernable scarring. Here we show that, in wild-type mice following tissue injury, stromal-derived factor-1 (Sdf1) is up-regulated in the wound epidermis and recruits Cxcr4-expressing leukocytes to the injury site. In p21-deficient mice, Sdf1 up-regulation and the subsequent recruitment of Cxcr4-expressing leukocytes are significantly diminished, thereby permitting scarless appendage regeneration. Lineage tracing demonstrates that this regeneration derives from fate-restricted progenitor cells. Pharmacological or genetic disruption of Sdf1-Cxcr4 signaling enhances tissue repair, including full reconstitution of tissue architecture and all cell types. Our findings identify signaling and cellular mechanisms underlying appendage regeneration in mice and suggest new therapeutic approaches for regenerative medicine.
Collapse
Affiliation(s)
- Thomas H Leung
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA; Department of Dermatology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Emily R Snyder
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Yinghua Liu
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Jing Wang
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, USA; Department of Medicine, Oncology Division, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
10
|
Massett MP, Avila JJ, Kim SK. Exercise Capacity and Response to Training Quantitative Trait Loci in a NZW X 129S1 Intercross and Combined Cross Analysis of Inbred Mouse Strains. PLoS One 2015; 10:e0145741. [PMID: 26710100 PMCID: PMC4692404 DOI: 10.1371/journal.pone.0145741] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 12/08/2015] [Indexed: 02/06/2023] Open
Abstract
Genetic factors determining exercise capacity and the magnitude of the response to exercise training are poorly understood. The aim of this study was to identify quantitative trait loci (QTL) associated with exercise training in mice. Based on marked differences in training responses in inbred NZW (-0.65 ± 1.73 min) and 129S1 (6.18 ± 3.81 min) mice, a reciprocal intercross breeding scheme was used to generate 285 F2 mice. All F2 mice completed an exercise performance test before and after a 4-week treadmill running program, resulting in an increase in exercise capacity of 1.54 ± 3.69 min (range = -10 to +12 min). Genome-wide linkage scans were performed for pre-training, post-training, and change in run time. For pre-training exercise time, suggestive QTL were identified on Chromosomes 5 (57.4 cM, 2.5 LOD) and 6 (47.8 cM, 2.9 LOD). A significant QTL for post-training exercise capacity was identified on Chromosome 5 (43.4 cM, 4.1 LOD) and a suggestive QTL on Chromosomes 1 (55.7 cM, 2.3 LOD) and 8 (66.1 cM, 2.2 LOD). A suggestive QTL for the change in run time was identified on Chromosome 6 (37.8 cM, 2.7 LOD). To identify shared QTL, this data set was combined with data from a previous F2 cross between B6 and FVB strains. In the combined cross analysis, significant novel QTL for pre-training exercise time and change in exercise time were identified on Chromosome 12 (54.0 cM, 3.6 LOD) and Chromosome 6 (28.0 cM, 3.7 LOD), respectively. Collectively, these data suggest that combined cross analysis can be used to identify novel QTL and narrow the confidence interval of QTL for exercise capacity and responses to training. Furthermore, these data support the use of larger and more diverse mapping populations to identify the genetic basis for exercise capacity and responses to training.
Collapse
Affiliation(s)
- Michael P. Massett
- Department of Health and Kinesiology, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| | - Joshua J. Avila
- Department of Health and Kinesiology, Texas A&M University, College Station, Texas, United States of America
| | - Seung Kyum Kim
- Department of Health and Kinesiology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
11
|
Koehn DR, Meyer KJ, Anderson MG. Genetic Evidence for Differential Regulation of Corneal Epithelial and Stromal Thickness. Invest Ophthalmol Vis Sci 2015; 56:5599-607. [PMID: 26305532 DOI: 10.1167/iovs.15-17179] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Central corneal thickness (CCT) is a quantitative trait associated with keratoconus and primary open-angle glaucoma. Although CCT is highly heritable, known genetic variations explain only a fraction of the phenotypic variability. The purpose of this study was to identify additional CCT-influencing loci using inbred strains of mice. METHODS Cohorts of 82 backcrossed (N2) and 99 intercrossed (F2) mice were generated from crosses between recombinant inbred BXD24/TyJ and wild-derived CAST/EiJ mice. Using anterior chamber optical coherence tomography, mice were phenotyped at 10 to 12 weeks of age, genotyped based on 96 genome-wide single nucleotide polymorphisms (SNPs), and subjected to quantitative trait locus (QTL) analysis. RESULTS In an analysis of total CCT among all mice, two loci passed the significance threshold of P = 0.05. These were on Chr 3 and Chr 11 (Cctq4 and Cctq5, respectively). A third locus of interest was identified in a two-dimensional pairwise analysis; this locus on Chr 14 (Cctq6) exhibited a significant additive effect with Cctq5. Independent analyses of the dataset for epithelial and stromal thickness revealed that Cctq4 is specific to the epithelial layer and that Cctq5 and Cctq6 are specific to the stromal layer. CONCLUSIONS Our findings demonstrate a quantitative multigenic pattern of CCT inheritance in mice and identify three previously unrecognized CCT-influencing loci: Cctq4, Cctq5, and Cctq6. This is the first demonstration that distinct layers of the cornea are under differential genetic control and highlights the need to refine the design of future genome-wide association studies of CCT.
Collapse
Affiliation(s)
- Demelza R Koehn
- Department of Molecular Physiology and Biophysics University of Iowa, Iowa City, Iowa, United States
| | - Kacie J Meyer
- Department of Molecular Physiology and Biophysics University of Iowa, Iowa City, Iowa, United States
| | - Michael G Anderson
- Department of Molecular Physiology and Biophysics University of Iowa, Iowa City, Iowa, United States 2Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States 3Center for the Prevention and Treatment of Visual Lo
| |
Collapse
|
12
|
Heber-Katz E. From Immunity and Vaccines to Mammalian Regeneration. J Infect Dis 2015; 212 Suppl 1:S52-8. [PMID: 26116734 DOI: 10.1093/infdis/jiu637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Our current understanding of major histocompatibility complex (MHC)-mediated antigen presentation in self and nonself immune recognition was derived from immunological studies of autoimmunity and virus-host interactions, respectively. The trimolecular complex of the MHC molecule, antigen, and T-cell receptor accounts for the phenomena of immunodominance and MHC degeneracy in both types of responses and constrains vaccine development. Out of such considerations, we developed a simple peptide vaccine construct that obviates immunodominance, resulting in a broadly protective T-cell response in the absence of antibody. In the course of autoimmunity studies, we identified the MRL mouse strain as a mammalian model of amphibian-like regeneration. A significant level of DNA damage in the cells from this mouse pointed to the role of the cell cycle checkpoint gene CDKN1a, or p21(cip1/waf1). The MRL mouse has highly reduced levels of this molecule, and a genetic knockout of this single gene in otherwise nonregenerating strains led to an MRL-type regenerative response, indicating that the ability to regenerate has not been lost during evolution.
Collapse
|
13
|
Nikolskiy I, Conrad DF, Chun S, Fay JC, Cheverud JM, Lawson HA. Using whole-genome sequences of the LG/J and SM/J inbred mouse strains to prioritize quantitative trait genes and nucleotides. BMC Genomics 2015; 16:415. [PMID: 26016481 PMCID: PMC4445795 DOI: 10.1186/s12864-015-1592-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/28/2015] [Indexed: 12/04/2022] Open
Abstract
Background The laboratory mouse is the most commonly used model for studying variation in complex traits relevant to human disease. Here we present the whole-genome sequences of two inbred strains, LG/J and SM/J, which are frequently used to study variation in complex traits as diverse as aging, bone-growth, adiposity, maternal behavior, and methamphetamine sensitivity. Results We identified small nucleotide variants (SNVs) and structural variants (SVs) in the LG/J and SM/J strains relative to the reference genome and discovered novel variants in these two strains by comparing their sequences to other mouse genomes. We find that 39% of the LG/J and SM/J genomes are identical-by-descent (IBD). We characterized amino-acid changing mutations using three algorithms: LRT, PolyPhen-2 and SIFT. We also identified polymorphisms between LG/J and SM/J that fall in regulatory regions and highly informative transcription factor binding sites (TFBS). We intersected these functional predictions with quantitative trait loci (QTL) mapped in advanced intercrosses of these two strains. We find that QTL are both over-represented in non-IBD regions and highly enriched for variants predicted to have a functional impact. Variants in QTL associated with metabolic (231 QTL identified in an F16 generation) and developmental (41 QTL identified in an F34 generation) traits were interrogated and we highlight candidate quantitative trait genes (QTG) and nucleotides (QTN) in a QTL on chr13 associated with variation in basal glucose levels and in a QTL on chr6 associated with variation in tibia length. Conclusions We show how integrating genomic sequence with QTL reduces the QTL search space and helps researchers prioritize candidate genes and nucleotides for experimental follow-up. Additionally, given the LG/J and SM/J phylogenetic context among inbred strains, these data contribute important information to the genomic landscape of the laboratory mouse. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1592-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Igor Nikolskiy
- Department of Genetics, Washington University School of Medicine, Campus Box 8108, 660 S Euclid Ave, St Louis, MO, 63110, USA.
| | - Donald F Conrad
- Department of Genetics, Washington University School of Medicine, Campus Box 8108, 660 S Euclid Ave, St Louis, MO, 63110, USA.
| | - Sung Chun
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Justin C Fay
- Department of Genetics, Washington University School of Medicine, Campus Box 8108, 660 S Euclid Ave, St Louis, MO, 63110, USA.
| | | | - Heather A Lawson
- Department of Genetics, Washington University School of Medicine, Campus Box 8108, 660 S Euclid Ave, St Louis, MO, 63110, USA.
| |
Collapse
|
14
|
Canhamero T, Garcia LV, De Franco M. Acute Inflammation Loci Are Involved in Wound Healing in the Mouse Ear Punch Model. Adv Wound Care (New Rochelle) 2014; 3:582-591. [PMID: 25207201 PMCID: PMC4152789 DOI: 10.1089/wound.2013.0494] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 11/18/2013] [Indexed: 11/12/2022] Open
Abstract
Significance: Molecular biology techniques are being used to aid in determining the mechanisms responsible for tissue repair without scar formation. Wound healing is genetically determined, but there have been few studies that examine the genes responsible for tissue regeneration in mammals. Research using genetic mapping is extremely important for understanding the molecular mechanisms involved in the different phases of tissue regeneration. This process is complex, but an early inflammatory phase appears to influence lesion closure, and the present study demonstrates that acute inflammation loci influence tissue regeneration in mice in a positive manner. Recent Advances: Mapping studies of quantitative trait loci (QTL) have been undertaken in recent years to examine candidate genes that participate in the regeneration phenotype. Our laboratory has identified inflammation modifier QTL for wound healing. Mouse lines selected for the maximum (AIRmax) or minimum (AIRmin) acute inflammatory reactivity (AIR) have been used to study not only the tissue repair but also the impact of the genetic control of inflammation on susceptibility to autoimmune, neoplasic, and infectious diseases. Murphy Roths Large and AIRmax mice are exclusive in their complete epimorphic regeneration, although middle-aged inbred mice may also be capable of healing. Critical Issues: Inflammatory reactions have traditionally been described in the literature as negative factors in the process of skin injury closure. Inflammation is exacerbated due to the early release of mediators or the intense release of factors that cause cell proliferation after injury. The initial release of these factors as well as the clean-up of the lesion microenvironment are both crucial for following events. In addition, the activation and repression of some genes related to the regeneration phenotype may modulate lesion closure, demonstrating the significance of genetic studies to better understand the mechanisms involved in the initiation of wound repair processes. Future Directions: The pleiotropic effects of the QTL are important in the identification of the genes responsible for tissue repair processes, especially when combined with global gene expression research. Microarray analysis complements the biological information obtained in QTL mapping, making this tool essential for gene identification. This approach will allow the investigation of future targets for therapeutic wound healing treatments.
Collapse
Affiliation(s)
- Tatiane Canhamero
- Laboratory of Immunogenetics, Butantan Institute, Secretary of Health, Government of the State of São Paulo, São Paulo, Brazil
| | - Ludmila Valino Garcia
- Laboratory of Immunogenetics, Butantan Institute, Secretary of Health, Government of the State of São Paulo, São Paulo, Brazil
| | - Marcelo De Franco
- Laboratory of Immunogenetics, Butantan Institute, Secretary of Health, Government of the State of São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Morales K, Rowehl L, Smith J, Cole R, Liu F, Beyer B, Herron BJ. Mapping Novel Subcutaneous Angiogenesis Quantitative Trait Loci in [B6×MRL]F2 Mice. Adv Wound Care (New Rochelle) 2014; 3:563-572. [PMID: 25207199 DOI: 10.1089/wound.2013.0501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 12/30/2013] [Indexed: 12/14/2022] Open
Abstract
Objective: MRL/MpJ mice are known for enhanced healing, but mechanistic details or how specific aspects of wounding (e.g., angiogenesis) contribute to healing are unknown. While previous studies investigated the systemic effects of immunity in MRL/MpJ healing, few have focused on tissue-intrinsic effects. Approach:Ex vivo skin biopsies from MRL/MpJ and C57BL/6J mice were cultured in ex vivo conditions that favor endothelial cell growth to compare their angiogenic potential. We localized enhanced angiogenesis quantitative trait loci (QTL) in an F2 intercross. We then performed an expression analysis in cultured skin biopsies from MRL/MpJ and C57BL/6J mice to determine the pathways that are associated with the capacity for differential growth. Results: MRL/MpJ biopsies have a two- to threefold greater growth potential than C57BL/6J mice, supporting the hypothesis that angiogenesis may contribute to enhanced healing in MRL/MpJ skin. We mapped two QTLs that are unique from previously mapped MRL/MpJ wound healing QTLs and detected interactions between wound healing QTLs and loci in this cross. Additionally, we found that pathways previously implicated in MRL/MpJ healing are also enriched in skin biopsies. Innovation: We have developed a novel approach to determine how specific aspects of tissue development contribute to wound healing that will ultimately lead to the discovery of unidentified genes that contribute to enhanced healing. Conclusion: We have shown that, consistent with previous studies following wound closure in MRL/MpJ mice, vessel growth during healing is also influenced by genetic background. Our ongoing work will identify the genetic factors that should be useful biomarkers or as therapeutic targets for enhanced wound healing.
Collapse
Affiliation(s)
- Krista Morales
- Wadsworth Center, NYS Department of Health, Albany, New York
| | - Leahana Rowehl
- Forensic Biology, State University of New York at Albany, Albany, New York
| | - Jason Smith
- Wadsworth Center, NYS Department of Health, Albany, New York
| | - Rich Cole
- Wadsworth Center, NYS Department of Health, Albany, New York
- School of Public Health, State University of New York at Albany, Albany, New York
| | - Fang Liu
- School of Public Health, State University of New York at Albany, Albany, New York
| | - Barb Beyer
- Wadsworth Center, NYS Department of Health, Albany, New York
| | - Bruce J. Herron
- Wadsworth Center, NYS Department of Health, Albany, New York
- School of Public Health, State University of New York at Albany, Albany, New York
| |
Collapse
|
16
|
Gourevitch D, Kossenkov AV, Zhang Y, Clark L, Chang C, Showe LC, Heber-Katz E. Inflammation and Its Correlates in Regenerative Wound Healing: An Alternate Perspective. Adv Wound Care (New Rochelle) 2014; 3:592-603. [PMID: 25207202 DOI: 10.1089/wound.2014.0528] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 03/07/2014] [Indexed: 12/21/2022] Open
Abstract
Objective: The wound healing response may be viewed as partially overlapping sets of two physiological processes, regeneration and wound repair with the former overrepresented in some lower species such as newts and the latter more typical of mammals. A robust and quantitative model of regenerative healing has been described in Murphy Roths Large (MRL) mice in which through-and-through ear hole wounds in the ear pinna leads to scarless healing and replacement of all tissue through blastema formation and including cartilage. Since these mice are naturally autoimmune and display many aspects of an enhanced inflammatory response, we chose to examine the inflammatory status during regenerative ear hole closure and observed that inflammation has a clear positive effect on regenerative healing. Approach: The inflammatory gene expression patterns (Illumina microarrays) of early healing ear tissue from regenerative MRL and nonregenerative C57BL/6 (B6) strains are presented along with a survey of innate inflammatory cells found in this tissue type pre and postinjury. The role of inflammation on healing is tested using a COX-2 inhibitor. Innovation and Conclusion: We conclude that (1) enhanced inflammation is consistent with, and probably necessary, for a full regenerative response and (2) the inflammatory gene expression and cell distribution patterns suggest a novel mast cell population with markers found in both immature and mature mast cells that may be a key component of regeneration.
Collapse
Affiliation(s)
| | | | - Yong Zhang
- The Wistar Institute, Philadelphia, Pennsylvania
| | - Lise Clark
- The Wistar Institute, Philadelphia, Pennsylvania
| | - Celia Chang
- The Wistar Institute, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
17
|
Cheverud JM, Lawson HA, Bouckaert K, Kossenkov AV, Showe LC, Cort L, Blankenhorn EP, Bedelbaeva K, Gourevitch D, Zhang Y, Heber-Katz E. Fine-mapping quantitative trait loci affecting murine external ear tissue regeneration in the LG/J by SM/J advanced intercross line. Heredity (Edinb) 2014; 112:508-18. [PMID: 24569637 PMCID: PMC3998788 DOI: 10.1038/hdy.2013.133] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 11/11/2013] [Accepted: 11/13/2013] [Indexed: 11/08/2022] Open
Abstract
External ear hole closure in LG/J mice represents a model of regenerative response. It is accompanied by the formation of a blastema-like structure and the re-growth of multiple tissues, including cartilage. The ability to regenerate tissue is heritable. An F34 advanced intercross line of mice (Wustl:LG,SM-G34) was generated to identify genomic loci involved in ear hole closure over a 30-day healing period. We mapped 19 quantitative trait loci (QTL) for ear hole closure. Individual gene effects are relatively small (0.08 mm), and most loci have co-dominant effects with phenotypically intermediate heterozygotes. QTL support regions were limited to a median size of 2 Mb containing a median of 19 genes. Positional candidate genes were evaluated using differential transcript expression between LG/J and SM/J healing tissue, function analysis and bioinformatic analysis of single-nucleotide polymorphisms in and around positional candidate genes of interest. Analysis of the set of 34 positional candidate genes and those displaying expression differences revealed over-representation of genes involved in cell cycle regulation/DNA damage, cell migration and adhesion, developmentally related genes and metabolism. This indicates that the healing phenotype in LG/J mice involves multiple physiological mechanisms.
Collapse
Affiliation(s)
- J M Cheverud
- Department of Anatomy and Neurobiology,
Washington University School of Medicine, St Louis,
MO, USA
| | - H A Lawson
- Department of Anatomy and Neurobiology,
Washington University School of Medicine, St Louis,
MO, USA
| | - K Bouckaert
- Department of Anatomy and Neurobiology,
Washington University School of Medicine, St Louis,
MO, USA
| | - A V Kossenkov
- Molecular and Cellular Oncogenesis, The
Wistar Institute, Philadelphia, PA, USA
| | - L C Showe
- Molecular and Cellular Oncogenesis, The
Wistar Institute, Philadelphia, PA, USA
| | - L Cort
- Department of Microbiology and Immunology,
Drexel University College of Medicine, Philadelphia,
PA, USA
| | - E P Blankenhorn
- Department of Microbiology and Immunology,
Drexel University College of Medicine, Philadelphia,
PA, USA
| | - K Bedelbaeva
- Molecular and Cellular Oncogenesis, The
Wistar Institute, Philadelphia, PA, USA
| | - D Gourevitch
- Molecular and Cellular Oncogenesis, The
Wistar Institute, Philadelphia, PA, USA
| | - Y Zhang
- Molecular and Cellular Oncogenesis, The
Wistar Institute, Philadelphia, PA, USA
| | - E Heber-Katz
- Molecular and Cellular Oncogenesis, The
Wistar Institute, Philadelphia, PA, USA
| |
Collapse
|
18
|
Cheng CH, Leferovich J, Zhang XM, Bedelbaeva K, Gourevitch D, Hatcher CJ, Basson CT, Heber-Katz E, Marx KA. Keratin gene expression profiles after digit amputation in C57BL/6 vs. regenerative MRL mice imply an early regenerative keratinocyte activated-like state. Physiol Genomics 2013; 45:409-21. [PMID: 23512742 DOI: 10.1152/physiolgenomics.00142.2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mouse strains C57BL/6 (B6) and MRL were studied by whole mouse genome chip microarray analyses of RNA isolated from amputation sites at different times pre- and postamputation at the midsecond phalange of the middle digit. Many keratin genes were highly differentially expressed. All keratin genes were placed into three temporal response classes determined by injury/preinjury ratios. One class, containing only Krt6 and Krt16, were uniquely expressed relative to the other two classes and exhibited different temporal responses in MRL vs. B6. Immunohistochemical staining for Krt6 and Krt16 in tissue sections, including normal digit, flank skin, and small intestine, and from normal and injured ear pinna tissue exhibited staining differences in B6 (low) and MRL (high) that were consistent with the microarray results. Krt10 staining showed no injury-induced differences, consistent with microarray expression. We analyzed Krt6 and Krt16 gene association networks and observed in uninjured tissue several genes with higher expression levels in MRL, but not B6, that were associated with the keratinocyte activated state: Krt6, Krt16, S100a8, S100a9, and Il1b; these data suggest that keratinocytes in the MRL strain, but not in B6, are in an activated state prior to wounding. These expression levels decreased in MRL at all times postwounding but rose in the B6, peaking at day 3. Other keratins significantly expressed in the normal basal keratinocyte state showed no significant strain differences. These data suggest that normal MRL skin is in a keratinocyte activated state, which may provide it with superior responses to wounding.
Collapse
Affiliation(s)
- Chia-Ho Cheng
- Center for Intelligent Biomaterials, Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Rai MF, Hashimoto S, Johnson EE, Janiszak KL, Fitzgerald J, Heber-Katz E, Cheverud JM, Sandell LJ. Heritability of articular cartilage regeneration and its association with ear wound healing in mice. ARTHRITIS AND RHEUMATISM 2012; 64:2300-10. [PMID: 22275233 PMCID: PMC3360138 DOI: 10.1002/art.34396] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Emerging evidence suggests that genetic components contribute significantly to cartilage degeneration in osteoarthritis pathophysiology, but little information is available on the genetics of cartilage regeneration. Therefore, this study was undertaken to investigate cartilage regeneration in genetic murine models using common inbred strains and a set of recombinant inbred (RI) lines generated from LG/J (healer of ear wounds) and SM/J (nonhealer) inbred mouse strains. METHODS An acute full-thickness cartilage injury was introduced in the trochlear groove of 8-week-old mice (n=265) through microsurgery. Mouse knee joints were sagittally sectioned and stained with toluidine blue to evaluate regeneration. For the ear wound phenotype, a bilateral 2-mm through-and-through puncture was created in 6-week-old mice (n=229), and healing outcomes were measured after 30 days. Broad-sense heritability and genetic correlations were calculated for both phenotypes. RESULTS Time-course analysis of the RI mouse lines showed no significant regeneration until 16 weeks after surgery; at that time, the strains could be segregated into 3 categories: good, intermediate, and poor healers. Analysis of heritability (H2) showed that both cartilage regeneration (H2=26%; P=0.006) and ear wound closure (H2=53%; P<0.00001) were significantly heritable. The genetic correlations between the two healing phenotypes for common inbred mouse strains (r=0.92) and RI mouse lines (r=0.86) were found to be extremely high. CONCLUSION Our findings indicate that articular cartilage regeneration in mice is heritable, the differences between the mouse lines are due to genetic differences, and a strong genetic correlation between the two phenotypes exists, indicating that they plausibly share a common genetic basis. We therefore surmise that LG/J by SM/J intercross mice can be used to dissect the genetic basis of variation in cartilage regeneration.
Collapse
Affiliation(s)
- Muhammad Farooq Rai
- Department of Orthopaedic Surgery, Washington University School of Medicine at Barnes-Jewish Hospital, 660 S. Euclid Ave. MS 8233, St. Louis MO 63110 United States
| | - Shingo Hashimoto
- Department of Orthopaedic Surgery, Washington University School of Medicine at Barnes-Jewish Hospital, 660 S. Euclid Ave. MS 8233, St. Louis MO 63110 United States
| | - Eric E. Johnson
- Department of Orthopaedic Surgery, Washington University School of Medicine at Barnes-Jewish Hospital, 660 S. Euclid Ave. MS 8233, St. Louis MO 63110 United States
| | - Kara L. Janiszak
- Anatomy and Neurobiology, Washington University School of Medicine at Barnes-Jewish Hospital, 660 S. Euclid Ave. MS 8233, St. Louis MO 63110 United States
| | - Jamie Fitzgerald
- Department of Orthopaedics and Rehabilitation, Mail code OP31, Oregon Health and Science University, Portland, OR, 97239 United States
| | - Ellen Heber-Katz
- Cellular and Molecular Oncogenesis and Gene Expression, Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104 United States
| | - James M. Cheverud
- Anatomy and Neurobiology, Washington University School of Medicine at Barnes-Jewish Hospital, 660 S. Euclid Ave. MS 8233, St. Louis MO 63110 United States
| | - Linda J. Sandell
- Department of Orthopaedic Surgery, Washington University School of Medicine at Barnes-Jewish Hospital, 660 S. Euclid Ave. MS 8233, St. Louis MO 63110 United States
- Cell Biology and Physiology, Washington University School of Medicine at Barnes-Jewish Hospital, 660 S. Euclid Ave. MS 8233, St. Louis MO 63110 United States
| |
Collapse
|