1
|
Qi S, Dai S, Zhou X, Wei X, Chen P, He Y, Kocher TD, Wang D, Li M. Dmrt1 is the only male pathway gene tested indispensable for sex determination and functional testis development in tilapia. PLoS Genet 2024; 20:e1011210. [PMID: 38536778 PMCID: PMC10971778 DOI: 10.1371/journal.pgen.1011210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Sex is determined by multiple factors derived from somatic and germ cells in vertebrates. We have identified amhy, dmrt1, gsdf as male and foxl2, foxl3, cyp19a1a as female sex determination pathway genes in Nile tilapia. However, the relationship among these genes is largely unclear. Here, we found that the gonads of dmrt1;cyp19a1a double mutants developed as ovaries or underdeveloped testes with no germ cells irrespective of their genetic sex. In addition, the gonads of dmrt1;cyp19a1a;cyp19a1b triple mutants still developed as ovaries. The gonads of foxl3;cyp19a1a double mutants developed as testes, while the gonads of dmrt1;cyp19a1a;foxl3 triple mutants eventually developed as ovaries. In contrast, the gonads of amhy;cyp19a1a, gsdf;cyp19a1a, amhy;foxl2, gsdf;foxl2 double and amhy;cyp19a1a;cyp19a1b, gsdf;cyp19a1a;cyp19a1b triple mutants developed as testes with spermatogenesis via up-regulation of dmrt1 in both somatic and germ cells. The gonads of amhy;foxl3 and gsdf;foxl3 double mutants developed as ovaries but with germ cells in spermatogenesis due to up-regulation of dmrt1. Taking the respective ovary and underdeveloped testis of dmrt1;foxl3 and dmrt1;foxl2 double mutants reported previously into consideration, we demonstrated that once dmrt1 mutated, the gonad could not be rescued to functional testis by mutating any female pathway gene. The sex reversal caused by mutation of male pathway genes other than dmrt1, including its upstream amhy and downstream gsdf, could be rescued by mutating female pathway gene. Overall, our data suggested that dmrt1 is the only male pathway gene tested indispensable for sex determination and functional testis development in tilapia.
Collapse
Affiliation(s)
- Shuangshuang Qi
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Shengfei Dai
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Xin Zhou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Xueyan Wei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Ping Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Yuanyuan He
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Thomas D. Kocher
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
| | - Deshou Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Minghui Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Li M, Sun L, Zhou L, Wang D. Tilapia, a good model for studying reproductive endocrinology. Gen Comp Endocrinol 2024; 345:114395. [PMID: 37879418 DOI: 10.1016/j.ygcen.2023.114395] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/07/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
The Nile tilapia (Oreochromis niloticus), with a system of XX/XY sex determination, is a worldwide farmed fish with a shorter sexual maturation time than that of most cultured fish. Tilapia show a spawning cycle of approximately 14 days and can be artificially propagated in the laboratory all year round to obtain genetically all female (XX) and all male (XY) fry. Its genome sequence has been opened, and a perfect gene editing platform has been established. With a moderate body size, it is convenient for taking enough blood to measure hormone level. In recent years, using tilapia as animal model, we have confirmed that estrogen is crucial for female development because 1) mutation of star2, cyp17a1 or cyp19a1a (encoding aromatase, the key enzyme for estrogen synthesis) results in sex reversal (SR) due to estrogen deficiency in XX tilapia, while mutation of star1, cyp11a1, cyp17a2, cyp19a1b or cyp11c1 affects fertility due to abnormal androgen, cortisol and DHP levels in XY tilapia; 2) when the estrogen receptors (esr2a/esr2b) are mutated, the sex is reversed from female to male, while when the androgen receptors are mutated, the sex cannot be reversed; 3) the differentiated ovary can be transdifferentiated into functional testis by inhibition of estrogen synthesis, and the differentiated testis can be transdifferentiated into ovary by simultaneous addition of exogenous estrogen and androgen synthase inhibitor; 4) loss of male pathway genes amhy, dmrt1, gsdf causes SR with upregulation of cyp19a1a in XY tilapia. Disruption of estrogen synthesis rescues the male to female SR of amhy and gsdf but not dmrt1 mutants; 5) mutation of female pathway genes foxl2 and sf-1 causes SR with downregulation of cyp19a1a in XX tilapia; 6) the germ cell SR of foxl3 mutants fails to be rescued by estrogen treatment, indicating that estrogen determines female germ cell fate through foxl3. This review also summarized the effects of deficiency of other steroid hormones, such as androgen, DHP and cortisol, on fish reproduction. Overall, these studies demonstrate that tilapia is an excellent animal model for studying reproductive endocrinology of fish.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Lina Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
3
|
Gdnf Acts as a Germ Cell-Derived Growth Factor and Regulates the Zebrafish Germ Stem Cell Niche in Autocrine- and Paracrine-Dependent Manners. Cells 2022; 11:cells11081295. [PMID: 35455974 PMCID: PMC9030868 DOI: 10.3390/cells11081295] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/27/2022] [Accepted: 04/06/2022] [Indexed: 11/30/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) and its receptor (GDNF Family Receptor α1-GFRα1) are well known to mediate spermatogonial stem cell (SSC) proliferation and survival in mammalian testes. In nonmammalian species, Gdnf and Gfrα1 orthologs have been found but their functions remain poorly investigated in the testes. Considering this background, this study aimed to understand the roles of the Gdnf-Gfrα1 signaling pathway in zebrafish testes by combining in vivo, in silico and ex vivo approaches. Our analysis showed that zebrafish exhibit two paralogs for Gndf (gdnfa and gdnfb) and its receptor, Gfrα1 (gfrα1a and gfrα1b), in accordance with a teleost-specific third round of whole genome duplication. Expression analysis further revealed that both ligands and receptors were expressed in zebrafish adult testes. Subsequently, we demonstrated that gdnfa is expressed in the germ cells, while Gfrα1a/Gfrα1b was detected in early spermatogonia (mainly in types Aund and Adiff) and Sertoli cells. Functional ex vivo analysis showed that Gdnf promoted the creation of new available niches by stimulating the proliferation of both type Aund spermatogonia and their surrounding Sertoli cells but without changing pou5f3 mRNA levels. Strikingly, Gdnf also inhibited late spermatogonial differentiation, as shown by the decrease in type B spermatogonia and down-regulation of dazl in a co-treatment with Fsh. Altogether, our data revealed that a germ cell-derived factor is involved in maintaining germ cell stemness through the creation of new available niches, supporting the development of spermatogonial cysts and inhibiting late spermatogonial differentiation in autocrine- and paracrine-dependent manners.
Collapse
|
4
|
Dynamics of sexual development in teleosts with a note on Mugil cephalus. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Tucker EJ. The Genetics and Biology of FOXL2. Sex Dev 2021; 16:184-193. [PMID: 34727551 DOI: 10.1159/000519836] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/22/2021] [Indexed: 11/19/2022] Open
Abstract
FOXL2 encodes a transcription factor that regulates a wide array of target genes including those involved in sex development, eyelid development, ovarian function and maintenance, genomic integrity as well as cellular pathways such as cell-cycle progression, proliferation, and apoptosis. The role of FOXL2 has been widely studied in humans and animals. Consistent with its role in ovarian and eyelid development, over 100 germline variants in FOXL2 are associated with blepharophimosis, ptosis, and epicanthus inversus syndrome in humans, an autosomal dominant condition characterised by ovarian dysgenesis/premature ovarian insufficiency, as well as defective eyelid development. Reflecting its role in apoptosis and proliferation, a somatic variant in FOXL2 causes adult granulosa cell tumours in humans. Despite being widely studied and having clear relevance to human disease, much remains unknown about the genes FOXL2 regulates and how it exerts its wide-reaching effect on multiple organs. This review focuses on FOXL2 and its varied roles as a transcription factor in sex determination, ovarian maintenance and function, eyelid development, genome integrity, and cell regulation, followed by discussion of the in vivo disruption of FOXL2 in humans and other species.
Collapse
Affiliation(s)
- Elena J Tucker
- Reproductive Development, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
6
|
Aase-Remedios ME, Ferrier DEK. Improved Understanding of the Role of Gene and Genome Duplications in Chordate Evolution With New Genome and Transcriptome Sequences. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.703163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Comparative approaches to understanding chordate genomes have uncovered a significant role for gene duplications, including whole genome duplications (WGDs), giving rise to and expanding gene families. In developmental biology, gene families created and expanded by both tandem and WGDs are paramount. These genes, often involved in transcription and signalling, are candidates for underpinning major evolutionary transitions because they are particularly prone to retention and subfunctionalisation, neofunctionalisation, or specialisation following duplication. Under the subfunctionalisation model, duplication lays the foundation for the diversification of paralogues, especially in the context of gene regulation. Tandemly duplicated paralogues reside in the same regulatory environment, which may constrain them and result in a gene cluster with closely linked but subtly different expression patterns and functions. Ohnologues (WGD paralogues) often diversify by partitioning their expression domains between retained paralogues, amidst the many changes in the genome during rediploidisation, including chromosomal rearrangements and extensive gene losses. The patterns of these retentions and losses are still not fully understood, nor is the full extent of the impact of gene duplication on chordate evolution. The growing number of sequencing projects, genomic resources, transcriptomics, and improvements to genome assemblies for diverse chordates from non-model and under-sampled lineages like the coelacanth, as well as key lineages, such as amphioxus and lamprey, has allowed more informative comparisons within developmental gene families as well as revealing the extent of conserved synteny across whole genomes. This influx of data provides the tools necessary for phylogenetically informed comparative genomics, which will bring us closer to understanding the evolution of chordate body plan diversity and the changes underpinning the origin and diversification of vertebrates.
Collapse
|
7
|
Dai S, Qi S, Wei X, Liu X, Li Y, Zhou X, Xiao H, Lu B, Wang D, Li M. Germline sexual fate is determined by the antagonistic action of dmrt1 and foxl3/foxl2 in tilapia. Development 2021; 148:dev.199380. [PMID: 33741713 DOI: 10.1242/dev.199380] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/04/2021] [Indexed: 12/21/2022]
Abstract
Germline sexual fate has long been believed to be determined by the somatic environment, but this idea is challenged by recent studies of foxl3 mutants in medaka. Here, we demonstrate that the sexual fate of tilapia germline is determined by the antagonistic interaction of dmrt1 and foxl3, which are transcriptionally repressed in male and female germ cells, respectively. Loss of dmrt1 rescued the germ cell sex reversal in foxl3Δ7/Δ7 XX fish, and loss of foxl3 partially rescued germ cell sex reversal but not somatic cell fate in dmrt1Δ5/Δ5 XY fish. Interestingly, germ cells lost sexual plasticity in dmrt1Δ5/Δ5 XY and foxl3Δ7/Δ7 XX single mutants, as aromatase inhibitor (AI) and estrogen treatment failed to rescue the respective phenotypes. However, recovery of germ cell sexual plasticity was observed in dmrt1/foxl3 double mutants. Importantly, mutation of somatic cell-specific foxl2 resulted in testicular development in foxl3Δ7/Δ7 or dmrt1Δ5/Δ5 mutants. Our findings demonstrate that sexual plasticity of germ cells relies on the presence of both dmrt1 and foxl3. The existence of dmrt1 and foxl3 allows environmental factors to influence the sex fate decision in vertebrates.
Collapse
Affiliation(s)
- Shengfei Dai
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Shuangshuang Qi
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xueyan Wei
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xingyong Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yibing Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xin Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Hesheng Xiao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Baoyue Lu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
8
|
Qu M, Ding S, Schartl M, Adolfi MC. Spatial and temporal expression pattern of sex-related genes in ovo-testis of the self-fertilizing mangrove killifish (Kryptolebias marmoratus). Gene 2020; 742:144581. [PMID: 32173540 DOI: 10.1016/j.gene.2020.144581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 01/23/2023]
Abstract
In vertebrates, sex determination and differentiation comprehend a fine balance between female and male factors, leading the bipotential anlage to develop towards ovary or testis, respectively. Nevertheless, the mangrove killifish, (Kryptolebias marmoratus) a simultaneous hermaphroditic species, could overcome those antagonistic pathways and evolved to develop and maintain reproductively active ovarian and testicular tissues in the same organ. Morphological and mRNA localization analyzes of developing and adult gonads demonstrate that genes related to testis (dmrt1 and amh) and ovary differentiation (foxl2 and sox9a) follow the same expression pattern observed in gonochoristic species, thus functioning as two independent organs. In addition, Amh expression patterns make it a strong candidate for initiation of the formation and maintenance of the testicular tissue in the hermaphroditic gonad. Differently from described so far, foxl3 seems to have an important role in oogenesis as well as spermatogenesis and gonadal structure.
Collapse
Affiliation(s)
- Meng Qu
- University of Wuerzburg, Physiological Chemistry, Biocenter, Am Hubland, D-97074 Wuerzburg, Germany; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China; CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Guangzhou 510220, China
| | - Shaoxiong Ding
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China
| | - Manfred Schartl
- University of Wuerzburg, Physiological Chemistry, Biocenter, Am Hubland, D-97074 Wuerzburg, Germany; University of Wuerzburg, Developmental Biochemistry, Biocenter, Am Hubland, D-97074 Wuerzburg, Germany; The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, USA
| | - Mateus Contar Adolfi
- University of Wuerzburg, Physiological Chemistry, Biocenter, Am Hubland, D-97074 Wuerzburg, Germany; University of Wuerzburg, Developmental Biochemistry, Biocenter, Am Hubland, D-97074 Wuerzburg, Germany.
| |
Collapse
|
9
|
Eozenou C, Lesage-Padilla A, Mauffré V, Healey GD, Camous S, Bolifraud P, Giraud-Delville C, Vaiman D, Shimizu T, Miyamoto A, Sheldon IM, Constant F, Pannetier M, Sandra O. FOXL2 is a Progesterone Target Gene in the Endometrium of Ruminants. Int J Mol Sci 2020; 21:ijms21041478. [PMID: 32098259 PMCID: PMC7073057 DOI: 10.3390/ijms21041478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 02/08/2023] Open
Abstract
Forkhead Box L2 (FOXL2) is a member of the FOXL class of transcription factors, which are essential for ovarian differentiation and function. In the endometrium, FOXL2 is also thought to be important in cattle; however, it is not clear how its expression is regulated. The maternal recognition of pregnancy signal in cattle, interferon-Tau, does not regulate FOXL2 expression. Therefore, in the present study, we examined whether the ovarian steroid hormones that orchestrate implantation regulate FOXL2 gene expression in ruminants. In sheep, we confirmed that FOXL2 mRNA and protein was expressed in the endometrium across the oestrous cycle (day 4 to day 15 post-oestrus). Similar to the bovine endometrium, ovine FOXL2 endometrial expression was low during the luteal phase of the oestrous cycle (4 to 12 days post-oestrus) and at implantation (15 days post-oestrus) while mRNA and protein expression significantly increased during the luteolytic phase (day 15 post-oestrus in cycle). In pregnant ewes, inhibition of progesterone production by trilostane during the day 5 to 16 period prevented the rise in progesterone concentrations and led to a significant increase of FOXL2 expression in caruncles compared with the control group (1.4-fold, p < 0.05). Ovariectomized ewes or cows that were supplemented with exogenous progesterone for 12 days or 6 days, respectively, had lower endometrial FOXL2 expression compared with control ovariectomized females (sheep, mRNA, 1.8-fold; protein, 2.4-fold; cattle; mRNA, 2.2-fold; p < 0.05). Exogenous oestradiol treatments for 12 days in sheep or 2 days in cattle did not affect FOXL2 endometrial expression compared with control ovariectomized females, except at the protein level in both endometrial areas in the sheep. Moreover, treating bovine endometrial explants with exogenous progesterone for 48h reduced FOXL2 expression. Using in vitro assays with COS7 cells we also demonstrated that progesterone regulates the FOXL2 promoter activity through the progesterone receptor. Collectively, our findings imply that endometrial FOXL2 is, as a direct target of progesterone, involved in early pregnancy and implantation.
Collapse
Affiliation(s)
- Caroline Eozenou
- Université Paris-Saclay, INRAE, ENVA, UVSQ, BREED, 78350 Jouy-en-Josas, France; (A.L.-P.); (V.M.); (S.C.); (P.B.); (C.G.-D.); (F.C.); (M.P.)
- Institut Pasteur, UMR 3738, Biologie du Développement et Cellules Souches, Laboratoire de Génétique du Développement Humain, 25 rue du docteur roux, F75015 Paris, France
- Correspondence: (C.E.); (O.S.); Tel.: +33-144389136 (C.E.); +33-134642343 (O.S.)
| | - Audrey Lesage-Padilla
- Université Paris-Saclay, INRAE, ENVA, UVSQ, BREED, 78350 Jouy-en-Josas, France; (A.L.-P.); (V.M.); (S.C.); (P.B.); (C.G.-D.); (F.C.); (M.P.)
| | - Vincent Mauffré
- Université Paris-Saclay, INRAE, ENVA, UVSQ, BREED, 78350 Jouy-en-Josas, France; (A.L.-P.); (V.M.); (S.C.); (P.B.); (C.G.-D.); (F.C.); (M.P.)
| | - Gareth D. Healey
- Swansea University Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, UK; (G.D.H.); (I.M.S.)
| | - Sylvaine Camous
- Université Paris-Saclay, INRAE, ENVA, UVSQ, BREED, 78350 Jouy-en-Josas, France; (A.L.-P.); (V.M.); (S.C.); (P.B.); (C.G.-D.); (F.C.); (M.P.)
| | - Philippe Bolifraud
- Université Paris-Saclay, INRAE, ENVA, UVSQ, BREED, 78350 Jouy-en-Josas, France; (A.L.-P.); (V.M.); (S.C.); (P.B.); (C.G.-D.); (F.C.); (M.P.)
| | - Corinne Giraud-Delville
- Université Paris-Saclay, INRAE, ENVA, UVSQ, BREED, 78350 Jouy-en-Josas, France; (A.L.-P.); (V.M.); (S.C.); (P.B.); (C.G.-D.); (F.C.); (M.P.)
| | - Daniel Vaiman
- Institut Cochin, INSERM U1016, UMR 8104 CNRS, Faculté René Descartes, 24 rue du Faubourg St Jacques, 75014 Paris, France;
| | - Takashi Shimizu
- Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (T.S.); (A.M.)
| | - Akio Miyamoto
- Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (T.S.); (A.M.)
| | - Iain Martin Sheldon
- Swansea University Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, UK; (G.D.H.); (I.M.S.)
| | - Fabienne Constant
- Université Paris-Saclay, INRAE, ENVA, UVSQ, BREED, 78350 Jouy-en-Josas, France; (A.L.-P.); (V.M.); (S.C.); (P.B.); (C.G.-D.); (F.C.); (M.P.)
| | - Maëlle Pannetier
- Université Paris-Saclay, INRAE, ENVA, UVSQ, BREED, 78350 Jouy-en-Josas, France; (A.L.-P.); (V.M.); (S.C.); (P.B.); (C.G.-D.); (F.C.); (M.P.)
| | - Olivier Sandra
- Université Paris-Saclay, INRAE, ENVA, UVSQ, BREED, 78350 Jouy-en-Josas, France; (A.L.-P.); (V.M.); (S.C.); (P.B.); (C.G.-D.); (F.C.); (M.P.)
- Correspondence: (C.E.); (O.S.); Tel.: +33-144389136 (C.E.); +33-134642343 (O.S.)
| |
Collapse
|
10
|
Ichikawa K, Ezaki R, Furusawa S, Horiuchi H. Comparison of sex determination mechanism of germ cells between birds and fish: Cloning and expression analyses of chicken forkhead box L3-like gene. Dev Dyn 2019; 248:826-836. [PMID: 31183904 PMCID: PMC6772005 DOI: 10.1002/dvdy.67] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/09/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022] Open
Abstract
Background Birds harbor specific sex determination and differentiation mechanisms. Although the molecular mechanisms associated with sex determination in somatic cells have been elucidated, those for germ cells remain unclear. Results Here, we characterized the chicken forkhead box L3 (foxl3)‐like gene as a sex‐determination factor in sexually indifferent medaka germline stem cells. The foxl3‐like gene was cloned by rapid amplification of cDNA ends, and the nucleotide sequence was analyzed. The deduced amino acid sequence was compared with FOXL3 sequences from other species, revealing low identity and similarity scores. Expression analysis of foxl3‐like mRNA during gonadogenesis showed female left‐gonad‐specific temporal expression in an egg incubated from 10 to 16 days, as well as low general expression in certain hatched female chicken organs. Moreover, the amino acid sequence deduced for the FOXL3‐like protein displayed low identity with medaka FOXL3, with the FOXL3‐like protein specifically localized in the oogonia, whereas medaka FOXL3 was found in sexually indifferent germline stem cells. Furthermore, the timing of expression differed between the foxl3‐like gene and that of medaka foxl3. Conclusions These results suggest that chicken FOXL3‐like protein and medaka FOXL3 differ in terms of their functions as female sex‐determination factors. The nucleotide sequence of the chicken foxl3‐like gene was determined by RACE. The expression of chicken foxl3‐like mRNA was virtually undetectable in specific organs, including the ovary, of 2‐week‐old female chickens. Chicken FOXL3‐like protein was detected in the oogonia of an egg incubated for 14 days. Temporal expression of chicken foxl3‐like mRNA was observed only in the oogonia of an egg incubated from 8 to 18 days during gonadogenesis, and the timing of gene expression differed from that of medaka foxl3.
Collapse
Affiliation(s)
- Kennosuke Ichikawa
- Laboratory of Immunobiology, Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Ryo Ezaki
- Laboratory of Immunobiology, Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Shuichi Furusawa
- Laboratory of Immunobiology, Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Hiroyuki Horiuchi
- Laboratory of Immunobiology, Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
11
|
Wu GC, Jeng SR, Pan YT, Li HW, Ku WL, Lin CJ, Chang CF. The germline-specific expression of Foxl3a and its paralogous Foxl3b are associated with male gonadal differentiation in the Japanese eel, Anguilla japonica. Gen Comp Endocrinol 2019; 277:56-65. [PMID: 30878349 DOI: 10.1016/j.ygcen.2019.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 10/27/2022]
Abstract
Unlike its paralog Foxl2, which is well known for its role in ovarian development in vertebrates, the function of Foxl3 is still unclear. Foxl3 is an ancient duplicated copy of Foxl2. It is present as a single copy in ray-finned fish. But, due to repeated losses, it is absent in most tetrapods. Our transcriptomic data, however, show that two Foxl3s (Foxl3a and its paralog Foxl3b) are present in Japanese eel. Foxl3a is predominantly expressed in the pituitary, and Foxl3b is predominantly expressed in the gills. Both Foxl3s show a sex-dimorphic expression, being higher expression in testes than in ovaries. Moreover, Foxl3a and Foxl3b were exclusively expressed during gonadal differentiation in control eels (100% male). Conversely, Foxl3a and Foxl3b significantly decreased after gonadal differentiation in E2-treated eels (100% female). Furthermore, in accordance the difference in adhesive ability between somatic cells and germline cells in testes, Foxl3s showed a high expression in suspension cells (putative germline cells) and low expression in adhesive cells (putative somatic cells). In situ hybridization further showed that Foxl3a and Foxl3b were expressed in the testicular germline cells. In addition, Foxl3s expression was not changed by sex steroids in in vitro testes culture. Taken together, our results suggest that the teleost-specific Foxl3 paralog was repeatedly lost in most fish after the third round of whole genome duplication. The two germline-expressed Foxl3s had higher expression levels in males than in females during gonadal differentiation in Japanese eel. These results demonstrated that Foxl3s might play an important role in germline sexual fate determination from ancient fish to modern fish.
Collapse
Affiliation(s)
- Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan.
| | - Shan-Ru Jeng
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Yi-Tin Pan
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Hau-Wen Li
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Wei-Lun Ku
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Chien-Ju Lin
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan.
| |
Collapse
|
12
|
Lyu Q, Hu J, Yang X, Liu X, Chen Y, Xiao L, Liu Y, Wang Q, Chen J, Huang M, Yu Z, Yang H, Shi H, Zhang Y, Zhao H. Expression profiles of dmrts and foxls during gonadal development and sex reversal induced by 17α-methyltestosterone in the orange-spotted grouper. Gen Comp Endocrinol 2019; 274:26-36. [PMID: 30594589 DOI: 10.1016/j.ygcen.2018.12.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/24/2018] [Accepted: 12/26/2018] [Indexed: 12/19/2022]
Abstract
The orange-spotted grouper, Epinephelus coioides, is a marine protogynous hermaphrodite fish of commercial importance. There are many examples of sex change species among marine fish, but the molecular basis for the sex change is still unknown. Gonadal expression patterns of the dmrts and foxls genes in E. coioides have pointed to sexual dimorphism in this species and it has been shown that mRNA levels of dmrts and foxls to vary significantly during reproduction cycles. The steroid 17α-methyltestosterone was used to induce sex reversal in these fish, during which dmrts and foxls levels changed significantly and subsequently reverted to normal when 17α-methyltestosterone was withdrawn. Interestingly, the expression of dmrt2b and dmrt3 was not affected by this steroid. We speculate that the role of foxl2 in reproduction may be conserved via regulation of early differentiation of the ovary by the hypothalamus-pituitary-gonad axis, and dmrt2 may have a significant role in premature ovarian differentiation and maintenance in E. coioides. dmrt1 and foxl3 played a role in the development of the testes and are believed to be potential male regulatory genes.
Collapse
Affiliation(s)
- Qingji Lyu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - Juan Hu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - XianKuan Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - XiaoChun Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - YiBin Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - Ling Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, People's Republic of China
| | - YaLi Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, People's Republic of China
| | - Qing Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China; State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, People's Republic of China
| | - JiaXing Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, People's Republic of China
| | - MinWei Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, People's Republic of China
| | - ZeShu Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, People's Republic of China
| | - HuiRong Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - HeRong Shi
- Guangdong Marine Fishery Experiment Center, Huizhou 516081, Guangdong, People's Republic of China
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, People's Republic of China.
| | - HuiHong Zhao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China.
| |
Collapse
|
13
|
Candido-Ferreira IL, Kronenberger T, Sayegh RSR, Batista IDFC, da Silva Junior PI. Evidence of an Antimicrobial Peptide Signature Encrypted in HECT E3 Ubiquitin Ligases. Front Immunol 2017; 7:664. [PMID: 28119686 PMCID: PMC5220581 DOI: 10.3389/fimmu.2016.00664] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/16/2016] [Indexed: 12/11/2022] Open
Abstract
The ubiquitin-proteasome pathway (UPP) is a hallmark of the eukaryotic cell. In jawed vertebrates, it has been co-opted by the adaptive immune system, where proteasomal degradation produces endogenous peptides for major histocompatibility complex class I antigen presentation. However, proteolytic products are also necessary for the phylogenetically widespread innate immune system, as they often play a role as host defense peptides (HDPs), pivotal effectors against pathogens. Here, we report the identification of the arachnid HDP oligoventin, which shares homology to a core member of the UPP, E3 ubiquitin ligases. Oligoventin has broad antimicrobial activity and shows strong synergy with lysozymes. Using computational and phylogenetic approaches, we show high conservation of the oligoventin signature in HECT E3s. In silico simulation of HECT E3s self-proteolysis provides evidence that HDPs can be generated by fine-tuned 26S proteasomal degradation, and therefore are consistent with the hypothesis that oligoventin is a cryptic peptide released by the proteolytic processing of an Nedd4 E3 precursor protein. Finally, we compare the production of HDPs and endogenous antigens from orthologous HECT E3s by proteasomal degradation as a means of analyzing the UPP coupling to metazoan immunity. Our results highlight the functional plasticity of the UPP in innate and adaptive immune systems as a possibly recurrent mechanism to generate functionally diverse peptides.
Collapse
Affiliation(s)
- Ivan Lavander Candido-Ferreira
- Special Laboratory for Applied Toxinology (LETA), Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, São Paulo, Brazil; Biosciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Thales Kronenberger
- Department of Parasitology, Biomedical Sciences Institute, University of São Paulo , São Paulo, São Paulo , Brazil
| | - Raphael Santa Rosa Sayegh
- Special Laboratory for Applied Toxinology (LETA), Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, São Paulo, Brazil; Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | - Pedro Ismael da Silva Junior
- Special Laboratory for Applied Toxinology (LETA), Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute , São Paulo, São Paulo , Brazil
| |
Collapse
|
14
|
Abstract
Egg or sperm? The mechanism of sexual fate decision in germ cells has been a long‐standing issue in biology. A recent analysis identified foxl3 as a gene that determines the sexual fate decision of germ cells in the teleost fish, medaka. foxl3/Foxl3 acts in female germline stem cells to repress commitment into male fate (spermatogenesis), indicating that the presence of mitotic germ cells in the female is critical for continuous sexual fate decision of germ cells in medaka gonads. Interestingly, foxl3 is found in most vertebrate genomes except for mammals. This provides the interesting possibility that the sexual fate of germ cells in mammals is determined in a different way compared to foxl3‐possessing vertebrates. Considering the fact that germline stem cells are the cells where foxl3 begins to express and sexual fate decision initiates and mammalian ovary does not have typical germline stem cells, the mechanism in mammals may have been co‐evolved with germline stem cell loss in mammalian ovary.
Collapse
Affiliation(s)
- Minoru Tanaka
- Laboratory of Molecular Genetics of Reproduction, National Institute for Basic Biology, Okazaki, Japan
| |
Collapse
|
15
|
Bertho S, Pasquier J, Pan Q, Le Trionnaire G, Bobe J, Postlethwait JH, Pailhoux E, Schartl M, Herpin A, Guiguen Y. Foxl2 and Its Relatives Are Evolutionary Conserved Players in Gonadal Sex Differentiation. Sex Dev 2016; 10:111-29. [PMID: 27441599 DOI: 10.1159/000447611] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Indexed: 11/19/2022] Open
Abstract
Foxl2 is a member of the large family of Forkhead Box (Fox) domain transcription factors. It emerged during the last 15 years as a key player in ovarian differentiation and oogenesis in vertebrates and especially mammals. This review focuses on Foxl2 genes in light of recent findings on their evolution, expression, and implication in sex differentiation in animals in general. Homologs of Foxl2 and its paralog Foxl3 are found in all metazoans, but their gene evolution is complex, with multiple gains and losses following successive whole genome duplication events in vertebrates. This review aims to decipher the evolutionary forces that drove Foxl2/3 gene specialization through sub- and neo-functionalization during evolution. Expression data in metazoans suggests that Foxl2/3 progressively acquired a role in both somatic and germ cell gonad differentiation and that a certain degree of sub-functionalization occurred after its duplication in vertebrates. This generated a scenario where Foxl2 is predominantly expressed in ovarian somatic cells and Foxl3 in male germ cells. To support this hypothesis, we provide original results showing that in the pea aphid (insects) foxl2/3 is predominantly expressed in sexual females and showing that in bovine ovaries FOXL2 is specifically expressed in granulosa cells. Overall, current results suggest that Foxl2 and Foxl3 are evolutionarily conserved players involved in somatic and germinal differentiation of gonadal sex.
Collapse
Affiliation(s)
- Sylvain Bertho
- INRA, UR1037 Fish Physiology and Genomics, Rennes, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Geraldo MT, Valente GT, Nakajima RT, Martins C. Dimerization and Transactivation Domains as Candidates for Functional Modulation and Diversity of Sox9. PLoS One 2016; 11:e0156199. [PMID: 27196604 PMCID: PMC4873142 DOI: 10.1371/journal.pone.0156199] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/10/2016] [Indexed: 01/08/2023] Open
Abstract
Sox9 plays an important role in a large variety of developmental pathways in vertebrates. It is composed of three domains: high-mobility group box (HMG box), dimerization (DIM) and transactivation (TAD). One of the main processes for regulation and variability of the pathways involving Sox9 is the self-gene expression regulation of Sox9. However, the subsequent roles of the Sox9 domains can also generate regulatory modulations. Studies have shown that TADs can bind to different types of proteins and its function seems to be influenced by DIM. Therefore, we hypothesized that both domains are directly associated and can be responsible for the functional variability of Sox9. We applied a method based on a broad phylogenetic context, using sequences of the HMG box domain, to ensure the homology of all the Sox9 copies used herein. The data obtained included 4,921 sequences relative to 657 metazoan species. Based on coevolutionary and selective pressure analyses of the Sox9 sequences, we observed coevolutions involving DIM and TADs. These data, along with the experimental data from literature, indicate a functional relationship between these domains. Moreover, DIM and TADs may be responsible for the functional plasticity of Sox9 because they are more tolerant for molecular changes (higher Ka/Ks ratio than the HMG box domain). This tolerance could allow a differential regulation of target genes or promote novel targets during transcriptional activation. In conclusion, we suggest that DIM and TADs functional association may regulate differentially the target genes or even promote novel targets during transcription activation mediated by Sox9 paralogs, contributing to the subfunctionalization of Sox9a and Sox9b in teleosts.
Collapse
Affiliation(s)
- Marcos Tadeu Geraldo
- Integrative Genomics Laboratory, Department of Morphology, Institute of Biosciences, Sao Paulo State University-UNESP, Botucatu, SP, 18618-000, Brazil
| | - Guilherme Targino Valente
- Systems Biology and Genomics Laboratory, Department of Bioprocess and Biotechnology, Agronomical Science Faculty, Sao Paulo State University-UNESP, Botucatu, SP, 18610-307, Brazil
| | - Rafael Takahiro Nakajima
- Integrative Genomics Laboratory, Department of Morphology, Institute of Biosciences, Sao Paulo State University-UNESP, Botucatu, SP, 18618-000, Brazil
| | - Cesar Martins
- Integrative Genomics Laboratory, Department of Morphology, Institute of Biosciences, Sao Paulo State University-UNESP, Botucatu, SP, 18618-000, Brazil
| |
Collapse
|
17
|
Nishimura T, Sato T, Yamamoto Y, Watakabe I, Ohkawa Y, Suyama M, Kobayashi S, Tanaka M. foxl3 is a germ cell–intrinsic factor involved in sperm-egg fate decision in medaka. Science 2015; 349:328-31. [DOI: 10.1126/science.aaa2657] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 06/04/2015] [Indexed: 12/17/2022]
Abstract
Sex determination is an essential step in the commitment of a germ cell to a sperm or egg. However, the intrinsic factors that determine the sexual fate of vertebrate germ cells are unknown. Here, we show that foxl3, which is expressed in germ cells but not somatic cells in the gonad, is involved in sperm-egg fate decision in medaka fish. Adult XX medaka with disrupted foxl3 developed functional sperm in the expanded germinal epithelium of a histologically functional ovary. In chimeric medaka, mutant germ cells initiated spermatogenesis in female wild-type gonad. These results indicate that a germ cell–intrinsic cue for the sperm-egg fate decision is present in medaka and that spermatogenesis can proceed in a female gonadal environment.
Collapse
Affiliation(s)
- Toshiya Nishimura
- Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Okazaki 444-8787, Japan
- Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| | - Tetsuya Sato
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Fukuoka 812-8582, Japan
| | - Yasuhiro Yamamoto
- Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Okazaki 444-8787, Japan
| | - Ikuko Watakabe
- Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Okazaki 444-8787, Japan
| | - Yasuyuki Ohkawa
- Department of Advanced Medical Initiatives, JST-CREST, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Mikita Suyama
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Fukuoka 812-8582, Japan
| | - Satoru Kobayashi
- Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, Okazaki 444-8787, Japan
| | - Minoru Tanaka
- Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Okazaki 444-8787, Japan
- Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| |
Collapse
|
18
|
Crespo B, Lan-Chow-Wing O, Rocha A, Zanuy S, Gómez A. foxl2 and foxl3 are two ancient paralogs that remain fully functional in teleosts. Gen Comp Endocrinol 2013; 194:81-93. [PMID: 24045113 DOI: 10.1016/j.ygcen.2013.08.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 08/28/2013] [Accepted: 08/31/2013] [Indexed: 11/22/2022]
Abstract
FOXL2 is a forkhead transcription factor involved in mammalian development and regulation of reproduction. Two foxl2 paralogs, foxl2a and foxl2b, have been described in various teleost species and were considered as fish-specific duplicates. Here, we report the isolation and characterization of foxl2a (foxl2) and foxl2b (foxl3) in European sea bass (Dicentrarchus labrax), together with the identification of these two genes in non-teleost genomes. Phylogenetic and synteny analyses indicate that these paralogs originated from an ancient genome duplication event that happened long before the teleost specific duplication. While foxl2/foxl2a has been maintained in most vertebrate lineages, foxl2b, which we propose to rename as foxl3, was repeatedly lost in tetrapods. Gonadal expression patterns of the sea bass genes point to a strong sexual dimorphism, and the mRNA levels of foxl2 in ovary and foxl3 in testis vary significantly during the reproductive cycle. When overexpressed in cultured ovarian follicular cells, foxl2 and foxl3 produced functional transcription factors able to control the expression of reproduction-related genes. Taken together, these data suggest that Foxl2 may play a conserved role in ovarian maturation, while Foxl3 could be involved in testis physiology.
Collapse
Affiliation(s)
- Berta Crespo
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre la Sal, Consejo Superior de Investigaciones Científicas (CSIC), 12595 Torre la Sal, Ribera de Cabanes s/n, Castellón, Spain
| | | | | | | | | |
Collapse
|
19
|
Rocco L. Sex-related genomic sequences in cartilaginous fish: an overview. Cytogenet Genome Res 2013; 141:169-76. [PMID: 24052041 DOI: 10.1159/000354773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Sex determination and differentiation are key events in the development of either the testis or ovary in fish. Sex determination mechanisms include environmental and genetic regulation. Research on sex determination systems and their related genes have been implemented in the teleost species, but the amount of information about these genes in cartilaginous fish is very scarce. This paper summarizes the few available data on molecular studies and chromosome localization of specific sequences useful to discriminate between various chromosome pairs in the common torpedo, Torpedo torpedo, and in the scyliorhinid coral catshark, Atelomycterus marmoratus, species that do not have morphologically distinct sex chromosomes. In addition, recent results obtained by sequence analysis of foxl2, a female-specific gene expressed during early phases of gonadal development in interesting key-species, such as the holocephalian Callorhinchus milii, is discussed. Nevertheless, the mechanism of sex determination in cartilaginous fish remains largely unknown. Further research needs to be carried out regarding the importance of basic and applied sex determination studies in fish, including chromosomal distribution of sex-related sequences.
Collapse
Affiliation(s)
- L Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy
| |
Collapse
|