1
|
Ogolowa BO, Brelsford A, Fjeldså J, Fulgione A, Hadjioannou L, Henderson EC, Moyle RG, Moysi M, Nwankwo EC, Rancilhac L, Smith TB, von Holdt BM, Kirschel ANG. Plio-Pleistocene Climatic Fluctuations and Divergence With Gene Flow Drive Continent-Wide Diversification in an African Bird. Mol Ecol 2025; 34:e17770. [PMID: 40259458 PMCID: PMC12051741 DOI: 10.1111/mec.17770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 04/23/2025]
Abstract
Diversification mechanisms in Sub-Saharan Africa have long attracted research interest, with varying support for either allopatric or parapatric models of speciation. However, studies have seldom been performed across the entire continent, a scale which could elucidate the relative importance of allopatric and parapatric models of divergence. To shed light on continental-scale patterns of African biogeography and diversification, we investigated the historical demography of a bird with a continent-wide distribution in Sub-Saharan Africa, the Yellow-Rumped Tinkerbird, Pogoniulus bilineatus. We sampled populations from across the continent and, using genomic data, assessed genetic diversity, structure, and differentiation, reconstructed the phylogeny, and performed alternative demographic model selection between neighbouring clade pairs. We uncovered substantial genetic structure and differentiation patterns which corroborated the phylogenetic topology. Structure was chiefly influenced by the arid corridor, a postulated biogeographical barrier in Sub-Saharan Africa. Moreover, peak genetic diversities coincided with postulated refugial areas while demographic reconstructions between genetic lineages supported allopatric models consistent with the Pleistocene Forest Refuge hypothesis. However, within lineages, divergence with gene flow was supported. Continent-wide patterns of diversification involve an integration of both allopatric and parapatric mechanisms, with a role for both periods of divergence in isolation and across ecological gradients. Furthermore, our study emphasises the importance of the arid corridor as a primary biogeographical feature across which diversification occurs, yet one that has hitherto received scant attention regarding its importance in avian diversification in Sub-Saharan Africa.
Collapse
Affiliation(s)
| | - Alan Brelsford
- Department of Evolution, Ecology and Organismal BiologyUniversity of California RiversideRiversideCaliforniaUSA
| | - Jon Fjeldså
- Natural History of Museum, DenmarkUniversity of CopenhagenCopenhagenDenmark
| | - Andrea Fulgione
- Max Planck Institute for Plant Breeding ResearchCologneGermany
| | | | - Elisa C. Henderson
- Department of Evolution, Ecology and Organismal BiologyUniversity of California RiversideRiversideCaliforniaUSA
| | - Robert G. Moyle
- Biodiversity Institute and Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansasUSA
| | - Michaella Moysi
- Department of Biological SciencesUniversity of CyprusNicosiaCyprus
| | | | - Loïs Rancilhac
- Department of Biological SciencesUniversity of CyprusNicosiaCyprus
| | - Thomas B. Smith
- Department of Ecology and Evolutionary Biology and Institute of the Environment and SustainabilityUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Bridgett M. von Holdt
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
| | - Alexander N. G. Kirschel
- Department of Biological SciencesUniversity of CyprusNicosiaCyprus
- Department of Ecology and Evolutionary Biology and Institute of the Environment and SustainabilityUniversity of California Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
2
|
Lagunas-Robles G, Alam Z, Brelsford A. Unexpected absence of a multiple-queen supergene haplotype from supercolonial populations of Formica ants. J Evol Biol 2025; 38:543-553. [PMID: 40087875 PMCID: PMC12009684 DOI: 10.1093/jeb/voaf023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/02/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
Ants exhibit many complex social organization strategies. One particularly elaborate strategy is supercoloniality, in which a colony consists of many interconnected nests (= polydomy) with many queens (= polygyny). In many species of Formica ants, an ancient queen number supergene determines whether a colony is monogyne (= headed by single queen) or polygyne. The presence of the rearranged P haplotype typically leads colonies to be polygyne. However, the presence and function of this supergene polymorphism have not been examined in supercolonial populations. Here, we use genomic data from species in the Formica rufa group to determine whether the P haplotype leads to supercoloniality. In a Formica paralugubris population, we find that nests are polygyne despite the absence of the P haplotype in workers. We find spatial genetic ancestry patterns in nests consistent with supercolonial organization. Additionally, we find that the P haplotype is also absent in workers from supercolonial Formica aquilonia and Formica aquilonia × polyctena hybrid populations but is present in some Formica polyctena workers. We conclude that the P haplotype is not necessary for supercoloniality in the Formica rufa group, despite its long-standing association with non-supercolonial polygyny across the Formica genus.
Collapse
Affiliation(s)
- German Lagunas-Robles
- Department of Biology, Indiana University, Bloomington, IN, United States
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, United States
| | - Zul Alam
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, United States
| | - Alan Brelsford
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
3
|
Dvorak E, Mazet ID, Couture C, Delmotte F, Foulongne-Oriol M. Recombination landscape and karyotypic variations revealed by linkage mapping in the grapevine downy mildew pathogen Plasmopara viticola. G3 (BETHESDA, MD.) 2025; 15:jkae259. [PMID: 39613312 PMCID: PMC11979753 DOI: 10.1093/g3journal/jkae259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/11/2024] [Indexed: 12/01/2024]
Abstract
Plasmopara viticola, the causal agent of grapevine downy mildew, is a biotrophic oomycete engaged in a tight coevolutionary relationship with its host. Rapid adaptation of the pathogen is favored by annual sexual reproduction that generates genotypic diversity. With the aim of studying the recombination landscape across the P. viticola genome, we generated 2 half-sibling F1 progenies (N = 189 and 162). Using targeted SNP sequencing, between 1,405 and 1,894 markers were included in parental linkage maps, and a consensus map was obtained by integrating 4,509 markers. The reference genome could be assembled into 17 pseudochromosomes, anchoring 88% of its physical length. We observed a strong collinearity between parental genomes and extensive synteny with the downy mildew Peronospora effusa. In the consensus map, the median recombination rate was 13.8 cM/Mb. The local recombination rate was highly variable along chromosomes, and recombination was suppressed in putative centromeric regions. Recombination rate was found negatively correlated with repeats' coverage and positively correlated with gene coverage. However, genes encoding secreted proteins and putative effectors were underrepresented in highly recombining regions. In both progenies, about 5% of the individuals presented karyotypic anomalies. Aneuploidies and triploidies almost exclusively originated from the male-transmitted chromosomes. Triploids resulted from fertilization by diploid gametes, but also from dispermy. Obligatory sexual reproduction each year may explain the lower level of karyotypic variation in P. viticola compared to other oomycetes. The linkage maps will be useful to guide future de novo chromosome-scale assemblies of P. viticola genomes and to perform forward genetics.
Collapse
Affiliation(s)
- Etienne Dvorak
- SAVE, INRAE, Bordeaux Sciences Agro, ISVV, Villenave d’Ornon F-33140, France
| | - Isabelle D Mazet
- SAVE, INRAE, Bordeaux Sciences Agro, ISVV, Villenave d’Ornon F-33140, France
| | - Carole Couture
- SAVE, INRAE, Bordeaux Sciences Agro, ISVV, Villenave d’Ornon F-33140, France
| | - François Delmotte
- SAVE, INRAE, Bordeaux Sciences Agro, ISVV, Villenave d’Ornon F-33140, France
| | | |
Collapse
|
4
|
Dufresnes C, Jablonski D, Ambu J, Prasad VK, Bala Gautam K, Kamei RG, Mahony S, Hofmann S, Masroor R, Alard B, Crottini A, Edmonds D, Ohler A, Jiang J, Khatiwada JR, Gupta SK, Borzée A, Borkin LJ, Skorinov DV, Melnikov DA, Milto KD, Konstantinov EL, Künzel S, Suchan T, Arkhipov DV, Trofimets AV, Nguyen TV, Suwannapoom C, Litvinchuk SN, Poyarkov NA. Speciation and historical invasions of the Asian black-spined toad (Duttaphrynus melanostictus). Nat Commun 2025; 16:298. [PMID: 39774107 PMCID: PMC11706960 DOI: 10.1038/s41467-024-54933-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Animal translocations provide striking examples of the human footprint on biodiversity. Combining continental-wide genomic and DNA-barcoding analyses, we reconstructed the historical biogeography of the Asian black-spined toad (Duttaphrynus melanostictus), a toxic commensal amphibian that currently threatens two biodiversity hotspots through biological invasions (Wallacea and Madagascar). The results emphasize a complex diversification shaped by speciation and mitochondrial introgression that comprises two distinct species. One species (true D. melanostictus) is distributed in the Indian subcontinent and is invasive in Wallacea. The other species, whose nomenclature remains unsettled, diverged from D. melanostictus in the Miocene era (~7 Mya) and diversified across Southeast Asia, from where it was introduced to Madagascar. Remarkably, the Indonesian population of D. melanostictus was recently established from India, which suggests historical, possibly human-assisted dispersal across the Bay of Bengal, reflecting the centuries-old connection between these regions.
Collapse
Affiliation(s)
- Christophe Dufresnes
- Laboratory for Amphibian Systematics and Evolutionary Research, College of Ecology and Environment, Nanjing Forestry University, Nanjing, Jiangsu, People's Republic of China.
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE-PSL, Université des Antilles, 55 rue Buffon, CP 51, Paris, France.
| | - Daniel Jablonski
- Department of Zoology, Comenius University in Bratislava, Bratislava, Slovakia
| | - Johanna Ambu
- Laboratory for Amphibian Systematics and Evolutionary Research, College of Ecology and Environment, Nanjing Forestry University, Nanjing, Jiangsu, People's Republic of China
| | - Vishal Kumar Prasad
- Laboratory of Animal Behaviour and Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu, People's Republic of China
- Wildlife Institute of India, Dehradun, Uttarakhand, India
| | - Kumudani Bala Gautam
- Wildlife Institute of India, Dehradun, Uttarakhand, India
- Graphic Era (Deemed to be University) Clement Town Dehradun, Dehradun, Uttarakhand, India
| | - Rachunliu G Kamei
- Amphibians and Reptiles Collections, Gantz Family Collections Center, The Field Museum of Natural History, Chicago, IL, USA
- Department of Life Sciences, The Natural History Museum, London, UK
| | - Stephen Mahony
- Department of Life Sciences, The Natural History Museum, London, UK
- Life Sciences Section, Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA
| | - Sylvia Hofmann
- Leibniz Institute of the Analysis of Biodiversity Change, Museum Koenig, Bonn, Germany
| | - Rafaqat Masroor
- Zoological Sciences Division, Pakistan Museum of Natural History, Garden Avenue, Shakarparian, Islamabad, Pakistan
| | - Bérénice Alard
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Porto, Vairão, Portugal
| | - Angelica Crottini
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Porto, Vairão, Portugal
- Department of Biology, University of Florence, Via Madonna del Piano 6, I-50019 Sesto Fiorentino, Florence, Italy
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Porto, Vairão, Portugal
| | - Devin Edmonds
- Association Mitsinjo, Andasibe, Madagascar
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Annemarie Ohler
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE-PSL, Université des Antilles, 55 rue Buffon, CP 51, Paris, France
| | - Jianping Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, People's Republic of China
| | | | | | - Amaël Borzée
- Laboratory of Animal Behaviour and Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu, People's Republic of China
| | - Leo J Borkin
- Laboratory of Herpetology, Zoological Institute of the Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg, Russia
| | - Dmitriy V Skorinov
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky prosp. 4, St. Petersburg, Russia
| | - Daniel A Melnikov
- Laboratory of Herpetology, Zoological Institute of the Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg, Russia
| | - Konstantin D Milto
- Laboratory of Herpetology, Zoological Institute of the Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg, Russia
| | | | - Sven Künzel
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Tomasz Suchan
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz, 46, Kraków, Poland
| | - Dmitriy V Arkhipov
- Department of Vertebrate Zoology, Lomonosov Moscow State University, Leninskiye Gory, 10 GSP-1, Moscow, Russia
| | - Alexei V Trofimets
- Department of Vertebrate Zoology, Lomonosov Moscow State University, Leninskiye Gory, 10 GSP-1, Moscow, Russia
| | - Tan Van Nguyen
- Institute for Research and Training in Medicine, Biology and Pharmacy, Duy Tan University, Da Nang, Vietnam
- College of Medicine and Pharmacy, Duy Tan University, 120 Hoang Minh Thao, Lien Chieu, Da Nang, Vietnam
| | - Chatmongkon Suwannapoom
- Division of Fishery, School of Agriculture and Natural Resources, University of Phayao, Phayao, Thailand
| | - Spartak N Litvinchuk
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky prosp. 4, St. Petersburg, Russia
- Department of Biology, Dagestan State University, ul. M. Gadzhiyeva 43-a, Makhachkala, Russia
| | - Nikolay A Poyarkov
- Department of Vertebrate Zoology, Lomonosov Moscow State University, Leninskiye Gory, 10 GSP-1, Moscow, Russia
- Joint Vietnam-Russia Tropical Research and Technological Center, Nghia Do, Cau Giay, Hanoi, Vietnam
| |
Collapse
|
5
|
Ambu J, Dufresnes C. Genomic and bioacoustic variation in a midwife toad hybrid zone: A role for reinforcement? PLoS One 2024; 19:e0314477. [PMID: 39585918 PMCID: PMC11588267 DOI: 10.1371/journal.pone.0314477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/11/2024] [Indexed: 11/27/2024] Open
Abstract
Hybrid zones, i.e., geographic areas where diverging lineages meet, hybridize and eventually mix their genomes, offer opportunities to understand the mechanisms behind reproductive isolation and speciation. Hybrid zones are particularly well suited to study reinforcement, i.e., the process by which selection against hybridization increases reproductive barriers, which, in anuran amphibians, is typically expressed by increased divergence in advertisement calls-the main cue to assortative mating-in parapatric ranges. Using mitochondrial barcoding (16S sequences), population genomics (thousands of SNPs) and bioacoustic analyses (four call parameters), we examine the hybrid zone between two incipient species of midwife toads (Alytes obstetricans and A. almogavarii) in southern France, with the purposes of locating their transition, measuring genetic introgression, and documenting potential signatures of reinforcement. We map range boundaries in the Eastern Pyrenees and the southwestern foothills of the Massif Central, namely along the Ariège valley and the Montagne Noire area. Similarly to another transition between these species in Spain, we found the hybrid zone to be narrow, involving geographically restricted gene flow (~20 km wide allele frequency clines) and barrier loci (i.e., loci resisting introgression), both suggestive of partial post-zygotic isolation (hybrid incompatibilities). The calls of the species overlap less inside than outside the hybrid zone, due to a reduction of their standing variation rather than a shift towards distinctive variants. While neutral causes cannot be excluded, this pattern follows the general expectations of reinforcement, yet without reproductive character displacement. Our study highlights the potential of amphibian hybrid zones to assess the genetic and behavioral drivers of reproductive isolation in statu nascendi and under various evolutionary contexts.
Collapse
Affiliation(s)
- Johanna Ambu
- Laboratory for Amphibian Systematics and Evolution, College of Biology & the Environment, Nanjing Forestry University, Nanjing, China
| | - Christophe Dufresnes
- Laboratory for Amphibian Systematics and Evolution, College of Biology & the Environment, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
6
|
Scarparo G, West M, Brelsford A, Purcell J. Broad host use and frequent polyandry in the facultative dulotic species Formica aserva (Hymenoptera: Formicidae). ANNALS OF THE ENTOMOLOGICAL SOCIETY OF AMERICA 2024; 117:257-269. [PMID: 39267795 PMCID: PMC11388004 DOI: 10.1093/aesa/saae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/04/2024] [Accepted: 07/31/2024] [Indexed: 09/15/2024]
Abstract
The study of social parasitism faces numerous challenges arising from the intricate and intranidal host-parasite interactions and the rarity of parasites compared to their free-living counterparts. As a result, our understanding of the ecology and evolution of most social parasites remains limited. Using whole-genome and reduced-representation sequence data, we conducted a study to fill knowledge gaps on host use, colony social structure, and population genetics of the facultative dulotic ant Formica aserva Forel. Our study reveals the remarkable ability of F. aserva to exploit at least 20 different host species across its wide geographic distribution. In some cases, one social parasite colony exploits multiple hosts simultaneously, suggesting a high degree of generalization even at a local spatial scale. Approximately 80% of the colonies were monogyne (with a single queen), with many exhibiting higher rates of polyandry compared to most Formica ants. Although we identified a supergene on chromosome 3, its association with colony structure remains uncertain due to the rarity of polygyny in our sample. Population genetic analyses reveal substantial geographic population structure, with the greatest divergence between California populations and those from the rest of the range. Mitochondrial population structure differs from structure inferred from the nuclear genome on a broad geographic scale, suggesting a possible role of adaptive introgression or genetic drift. This study provides valuable insights into the ecology and evolution of F. aserva, underscoring the need for further research to decipher the complexities of host interactions and the genetic mechanisms that regulate social structure.
Collapse
Affiliation(s)
- Giulia Scarparo
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| | - Mari West
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| | - Alan Brelsford
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| | - Jessica Purcell
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
7
|
Dufresnes C, Ghielmi S, Halpern B, Martínez-Freiría F, Mebert K, Jelić D, Crnobrnja-Isailović J, Gippner S, Jablonski D, Joger U, Laddaga L, Petrovan S, Tomović L, Vörös J, İğci N, Kariş M, Zinenko O, Ursenbacher S. Phylogenomic insights into the diversity and evolution of Palearctic vipers. Mol Phylogenet Evol 2024; 197:108095. [PMID: 38729384 DOI: 10.1016/j.ympev.2024.108095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Despite decades of molecular research, phylogenetic relationships in Palearctic vipers (genus Vipera) still essentially rely on a few loci, such as mitochondrial barcoding genes. Here we examined the diversity and evolution of Vipera with ddRAD-seq data from 33 representative species and subspecies. Phylogenomic analyses of ∼ 1.1 Mb recovered nine major clades corresponding to known species/species complexes which are generally consistent with the mitochondrial phylogeny, albeit with a few deep discrepancies that highlight past hybridization events. The most spectacular case is the Italian-endemic V. walser, which is grouped with the alpine genetic diversity of V. berus in the nuclear tree despite carrying a divergent mitogenome related to the Caucasian V. kaznakovi complex. Clustering analyses of SNPs suggest potential admixture between diverged Iberian taxa (V. aspis zinnikeri and V. seoanei), and confirm that the Anatolian V. pontica corresponds to occasional hybrids between V. (ammodytes) meridionalis and V. kaznakovi. Finally, all analyzed lineages of the V. berus complex (including V. walser and V. barani) form vast areas of admixture and may be delimited as subspecies. Our study sets grounds for future taxonomic and phylogeographic surveys on Palearctic vipers, a group of prime interest for toxinological, ecological, biogeographic and conservation research.
Collapse
Affiliation(s)
- Christophe Dufresnes
- Laboratory for Amphibian Systematics and Evolutionary Research, College of Biology & the Environment, Nanjing Forestry University, Nanjing, China; Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE-PSL, Université des Antilles, Paris, France.
| | | | - Bálint Halpern
- MME Birdlife Hungary, Budapest, Hungary; Department of Systematic Zoology and Ecology, Institute of Biology, ELTE-Eötvös Loránd University, Budapest, Hungary; HUN-REN - ELTE - MTM Integrative Ecology Research Group, Budapest, Hungary
| | - Fernando Martínez-Freiría
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Konrad Mebert
- Global Biology, 5242 Birr, Switzerland; Institute of Development, Ecology, Conservation and Cooperation, 00144 Rome, Italy
| | - Dusan Jelić
- Croatian Institute for Biodiversity, BIOTA Ltd, 10000 Zagreb, Croatia
| | - Jelka Crnobrnja-Isailović
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia; Department of Evolutionary Biology, Institute for Biological Research « S. Stanković », University of Belgrade - National Institute for Republic of Serbia, 11108 Belgrade, Serbia
| | - Sven Gippner
- Zoological Institute, Technical University of Braunschweig, Mendelssohnstr. 4, 38106 Braunschweig, Germany
| | - Daniel Jablonski
- Department of Zoology, Comenius University in Bratislava, Bratislava, Slovakia
| | - Ulrich Joger
- State Museum of Natural History, Braunschweig, Germany
| | - Lorenzo Laddaga
- Società di Scienze Naturali del Verbano Cusio Ossola, Museo di Scienze Naturali, Collegio Mellerio Rosmini, Domodossola, Italy
| | - Silviu Petrovan
- Conservation Science Group, Department of Zoology, University of Cambridge, UK
| | - Ljiljana Tomović
- Institute of Zoology, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Judit Vörös
- Department of Zoology, Hungarian Natural History Museum, 1088 Budapest, Hungary
| | - Naşit İğci
- Department of Molecular Biology and Genetics, Faculty of Science and Arts, Nevşehir Haci Bektaş Veli University, 50300 Nevşehir, Türkiye
| | - Mert Kariş
- Laboratory Technology Program, Acıgöl Vocational School of Technical Sciences, Nevşehir Haci Bektaş Veli University, 50300 Nevşehir, Türkiye
| | | | - Sylvain Ursenbacher
- info fauna - Karch, University of Neuchâtel, Avenue de Bellevaux 51, 2000 Neuchâtel, Switzerland; Balaton Limnological Research Institute, Klebelsberg Kuno u. 3, 8237 Tihany, Hungary.
| |
Collapse
|
8
|
Xiao Y, Liao G, Luo W, Xia Y, Zeng X. Homology in Sex Determination in Two Distant Spiny Frogs, Nanorana quadranus and Quasipaa yei. Animals (Basel) 2024; 14:1849. [PMID: 38997961 PMCID: PMC11240834 DOI: 10.3390/ani14131849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Sex determination is remarkably diverse, with frequent transitions between sex chromosomes, in amphibians. Under these transitions, some chromosomes are more likely to be recurrently co-opted as sex chromosomes, as they are often observed across deeply divergent taxa. However, little is known about the pattern of sex chromosome evolution among closely related groups. Here, we examined sex chromosome and sex determination in two spiny frogs, Nanorana quadranus and Quasipaa yei. We conducted an analysis of genotyping-by-sequencing (GBS) data from a total of 34 individuals to identify sex-specific makers, with the results verified by PCR. The results suggest that chromosome 1 is a homologous sex chromosome with an XY pattern in both species. This chromosome has been evolutionarily conserved across these closely related groups within a period of time. The DMRT1 gene is proposed to be implicated in homology across two distantly related spiny frog species as a putative candidate sex-determining gene. Harboring the DMRT1 gene, chromosome 1 would have been independently co-opted for sex determination in deeply divergent groups of anurans.
Collapse
Affiliation(s)
- Yu Xiao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangjiong Liao
- Xiaozhaizigou National Nature Reserve, Beichuan, Mianyang 622750, China;
| | - Wei Luo
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, China;
| | - Yun Xia
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China;
| | - Xiaomao Zeng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China;
| |
Collapse
|
9
|
Kuhl H, Tan WH, Klopp C, Kleiner W, Koyun B, Ciorpac M, Feron R, Knytl M, Kloas W, Schartl M, Winkler C, Stöck M. A candidate sex determination locus in amphibians which evolved by structural variation between X- and Y-chromosomes. Nat Commun 2024; 15:4781. [PMID: 38839766 PMCID: PMC11153619 DOI: 10.1038/s41467-024-49025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/17/2024] [Indexed: 06/07/2024] Open
Abstract
Most vertebrates develop distinct females and males, where sex is determined by repeatedly evolved environmental or genetic triggers. Undifferentiated sex chromosomes and large genomes have caused major knowledge gaps in amphibians. Only a single master sex-determining gene, the dmrt1-paralogue (dm-w) of female-heterogametic clawed frogs (Xenopus; ZW♀/ZZ♂), is known across >8740 species of amphibians. In this study, by combining chromosome-scale female and male genomes of a non-model amphibian, the European green toad, Bufo(tes) viridis, with ddRAD- and whole genome pool-sequencing, we reveal a candidate master locus, governing a male-heterogametic system (XX♀/XY♂). Targeted sequencing across multiple taxa uncovered structural X/Y-variation in the 5'-regulatory region of the gene bod1l, where a Y-specific non-coding RNA (ncRNA-Y), only expressed in males, suggests that this locus initiates sex-specific differentiation. Developmental transcriptomes and RNA in-situ hybridization show timely and spatially relevant sex-specific ncRNA-Y and bod1l-gene expression in primordial gonads. This coincided with differential H3K4me-methylation in pre-granulosa/pre-Sertoli cells, pointing to a specific mechanism of amphibian sex determination.
Collapse
Affiliation(s)
- Heiner Kuhl
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Müggelseedamm 301 & 310, 12587, Berlin, Germany
| | - Wen Hui Tan
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Block S1A, Level 6, Singapore, 117543, Singapore
| | - Christophe Klopp
- SIGENAE, Plate-forme Bio-informatique Genotoul, Mathématiques et Informatique Appliquées de Toulouse, INRAe, 31326, Castanet-Tolosan, France
| | - Wibke Kleiner
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Müggelseedamm 301 & 310, 12587, Berlin, Germany
| | - Baturalp Koyun
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Müggelseedamm 301 & 310, 12587, Berlin, Germany
- Department of Molecular Biology and Genetics, Genetics, Faculty of Science, Bilkent University, SB Building, Ankara, 06800, Turkey
| | - Mitica Ciorpac
- Danube Delta National Institute for Research and Development, Tulcea, 820112, Romania
- Advanced Research and Development Center for Experimental Medicine-CEMEX, "Grigore T. Popa", University of Medicine and Pharmacy, Mihail Kogălniceanu Street 9-13, Iasi, 700259, Romania
| | - Romain Feron
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Martin Knytl
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague, 12843, Czech Republic
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Ontario, ON, Canada
| | - Werner Kloas
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Müggelseedamm 301 & 310, 12587, Berlin, Germany
| | - Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Wuerzburg, Am Hubland, 97074, Wuerzburg, Germany
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Christoph Winkler
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Block S1A, Level 6, Singapore, 117543, Singapore.
| | - Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Müggelseedamm 301 & 310, 12587, Berlin, Germany.
| |
Collapse
|
10
|
Garaud L, Nusbaumer D, Marques da Cunha L, de Guttry C, Ançay L, Atherton A, Lasne E, Wedekind C. Parental kinship coefficient but not paternal coloration predicts early offspring growth in lake char. Heredity (Edinb) 2024; 132:247-256. [PMID: 38480957 PMCID: PMC11074127 DOI: 10.1038/s41437-024-00678-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 05/08/2024] Open
Abstract
The 'good genes' hypotheses of sexual selection predict that females prefer males with strong ornaments because they are in good health and vigor and can afford the costs of the ornaments. A key assumption of this concept is that male health and vigor are useful predictors of genetic quality and hence offspring performance. We tested this prediction in wild-caught lake char (Salvelinus umbla) whose breeding coloration is known to reveal aspects of male health. We first reanalyzed results from sperm competition trials in which embryos of known parenthood had been raised singly in either a stress- or non-stress environment. Paternal coloration did not correlate with any measures of offspring performance. However, offspring growth was reduced with higher kinship coefficients between the parents. To test the robustness of these first observations, we collected a new sample of wild males and females, used their gametes in a full-factorial in vitro breeding experiment, and singly raised about 3000 embryos in either a stress- or non-stress environment (stress induced by microbes). Again, paternal coloration did not predict offspring performance, while offspring growth was reduced with higher kinship between the parents. We conclude that, in lake char, the genetic benefits of mate choice would be strongest if females could recognize and avoid genetically related males, while male breeding colors may be more relevant in intra-sexual selection.
Collapse
Affiliation(s)
- Laura Garaud
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
| | - David Nusbaumer
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
| | | | - Christian de Guttry
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Environmental Bioinformatic Group, Lausanne, Switzerland
| | - Laurie Ançay
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
| | - Audrey Atherton
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
| | - Emilien Lasne
- Université Savoie Mont Blanc, INRAE, UMR CARRTEL, Station d'Hydrobiologie Lacustre, Thonon Cedex, France
- UMR DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMER, Rennes, France
| | - Claus Wedekind
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
11
|
Schmidt R, Dufresnes C, Krištín A, Künzel S, Vences M, Hawlitschek O. Phylogenetic insights into Central European Chorthippus and Pseudochorthippus (Orthoptera: Acrididae) species using ddRADseq data. Mol Phylogenet Evol 2024; 193:108012. [PMID: 38224796 DOI: 10.1016/j.ympev.2024.108012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/09/2023] [Accepted: 01/06/2024] [Indexed: 01/17/2024]
Abstract
The evolution of several orthopteran groups, especially within the grasshopper family Acrididae, remains poorly understood. This is particularly true for the subfamily Gomphocerinae, which comprises cryptic sympatric and syntopic species. Previous mitochondrial studies have highlighted major discrepancies between taxonomic and phylogenetic hypotheses, thereby emphasizing the necessity of genome-wide approaches. In this study, we employ double-digest restriction site-associated DNA sequencing (ddRADseq) to reconstruct the evolution of Central European Chorthippus and Pseudochorthippus species, especially C.smardai, P.tatrae and the C.biguttulus group. Our phylogenomic analyses recovered deep discordance with mitochondrial DNA barcoding, emphasizing its unreliability in Gomphocerinae grasshoppers. Specifically, our data robustly distinguished the C.biguttulus group and confirmed the distinctiveness of C.eisentrauti, also shedding light on its presence in the Berchtesgaden Alps. Moreover, our results support the reclassification of C.smardai to the genus Pseudochorthippus and of P.tatrae to the genus Chorthippus. Our study demonstrates the efficiency of high-throughput genomic methods such as RADseq without prior optimization to elucidate the complex evolution of grasshopper radiations with direct taxonomic implications. While RADseq has predominantly been utilized for population genomics and within-genus phylogenomics, its application extends to resolve relationships between deeply-diverged clades representative of distinct genera.
Collapse
Affiliation(s)
- Robin Schmidt
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany.
| | - Christophe Dufresnes
- LASER, College of Biology and Environment, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Anton Krištín
- Institute of Forest Ecology SAS, Ľ. Štúra 2, Zvolen, Slovakia
| | - Sven Künzel
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Miguel Vences
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany
| | - Oliver Hawlitschek
- Leibniz Institute for the Analysis of Biodiversity Change (LIB), Museum of Nature, Hamburg, Germany; Department of Evolutionary Biology and Environmental Studies, Universität Zürich, Zürich, Switzerland
| |
Collapse
|
12
|
Bertola LV, Hoskin CJ, Jones DB, Zenger KR, McKnight DT, Higgie M. The first linkage map for Australo-Papuan Treefrogs (family: Pelodryadidae) reveals the sex-determination system of the Green-eyed Treefrog (Litoria serrata). Heredity (Edinb) 2023; 131:263-272. [PMID: 37542195 PMCID: PMC10539516 DOI: 10.1038/s41437-023-00642-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/06/2023] Open
Abstract
Amphibians represent a useful taxon to study the evolution of sex determination because of their highly variable sex-determination systems. However, the sex-determination system for many amphibian families remains unknown, in part because of a lack of genomic resources. Here, using an F1 family of Green-eyed Treefrogs (Litoria serrata), we produce the first genetic linkage map for any Australo-Papuan Treefrogs (family: Pelodryadidae). The resulting linkage map contains 8662 SNPs across 13 linkage groups. Using an independent set of sexed adults, we identify a small region in linkage group 6 matching an XY sex-determination system. These results suggest Litoria serrata possesses a male heterogametic system, with a candidate sex-determination locus on linkage group 6. Furthermore, this linkage map represents the first genomic resource for Australo-Papuan Treefrogs, an ecologically diverse family of over 220 species.
Collapse
Affiliation(s)
- Lorenzo V Bertola
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4811, Australia.
| | - Conrad J Hoskin
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - David B Jones
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, 4811, Australia
| | - Kyall R Zenger
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, 4811, Australia
| | - Donald T McKnight
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
- Department of Environment and Genetics, School of Agriculture, Biomedicine and Environment, West Wodonga, La Trobe University, Melbourne, VIC, 3690, Australia
| | - Megan Higgie
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4811, Australia
| |
Collapse
|
13
|
Martchenko D, Shafer ABA. Contrasting whole-genome and reduced representation sequencing for population demographic and adaptive inference: an alpine mammal case study. Heredity (Edinb) 2023; 131:273-281. [PMID: 37532838 PMCID: PMC10539292 DOI: 10.1038/s41437-023-00643-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 07/22/2023] [Accepted: 07/22/2023] [Indexed: 08/04/2023] Open
Abstract
Genomes capture the adaptive and demographic history of a species, but the choice of sequencing strategy and sample size can impact such inferences. We compared whole genome and reduced representation sequencing approaches to study the population demographic and adaptive signals of the North American mountain goat (Oreamnos americanus). We applied the restriction site-associated DNA sequencing (RADseq) approach to 254 individuals and whole genome resequencing (WGS) approach to 35 individuals across the species range at mid-level coverage (9X) and to 5 individuals at high coverage (30X). We used ANGSD to estimate the genotype likelihoods and estimated the effective population size (Ne), population structure, and explicitly modelled the demographic history with δaδi and MSMC2. The data sets were overall concordant in supporting a glacial induced vicariance and extremely low Ne in mountain goats. We evaluated a set of climatic variables and geographic location as predictors of genetic diversity using redundancy analysis. A moderate proportion of total variance (36% for WGS and 21% for RADseq data sets) was explained by geography and climate variables; both data sets support a large impact of drift and some degree of local adaptation. The empirical similarities of WGS and RADseq presented herein reassuringly suggest that both approaches will recover large demographic and adaptive signals in a population; however, WGS offers several advantages over RADseq, such as inferring adaptive processes and calculating runs-of-homozygosity estimates. Considering the predicted climate-induced changes in alpine environments and the genetically depauperate mountain goat, the long-term adaptive capabilities of this enigmatic species are questionable.
Collapse
Affiliation(s)
- Daria Martchenko
- Environmental and Life Sciences Graduate Program, Trent University, 2140 East Bank Drive, Peterborough, ON, K9J 7B8, Canada.
| | - Aaron B A Shafer
- Environmental and Life Sciences Graduate Program, Trent University, 2140 East Bank Drive, Peterborough, ON, K9J 7B8, Canada
- Department of Forensics & Environmental and Life Sciences Graduate Program, Trent University, 2140 East Bank Drive, Peterborough, ON, K9J 7B8, Canada
| |
Collapse
|
14
|
Nusbaumer D, Garaud L, de Guttry C, Ançay L, Wedekind C. Sperm of more colourful males are better adapted to ovarian fluids in lake char (Salmonidae). Mol Ecol 2023; 32:5369-5381. [PMID: 37602965 DOI: 10.1111/mec.17103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/11/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
Fish often spawn eggs with ovarian fluids that have been hypothesized to support the sperm of some males over others (cryptic female choice). Alternatively, sperm reactions to ovarian fluids could reveal male strategies. We used wild-caught lake char (Salvelinus umbla) to experimentally test whether sperm react differently to the presence of ovarian fluid, and whether any differential sperm reaction could be predicted by male breeding coloration, male inbreeding coefficients (based of 4150 SNPs) or the kinship coefficients between males and females. Male coloration was positively linked to body size and current health (based on lymphocytosis and thrombocytosis) but was a poor predictor of inbreeding or kinship coefficients. We found that sperm of more colourful males were faster in diluted ovarian fluids than in water only, while sperm of paler males were faster in water than in ovarian fluids. We then let equal numbers of sperm compete for fertilizations in the presence or absence of ovarian fluids and genetically assigned 1464 embryos (from 70 experimental trials) to their fathers. The presence of ovarian fluids significantly increased the success of the more colourful competitors. Sperm of less inbred competitors were more successful when tested in water only than in diluted ovarian fluids. The kinship coefficients had no significant effects on sperm traits or fertilization success in the presence of ovarian fluids, although parallel stress tests on embryos had revealed that females would profit more from mating with least related males rather than most coloured ones. We conclude that sperm of more colourful males are best adapted to ovarian fluids, and that the observed reaction norms suggest male strategies rather than cryptic female choice.
Collapse
Affiliation(s)
- David Nusbaumer
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
| | - Laura Garaud
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
| | - Christian de Guttry
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
| | - Laurie Ançay
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
| | - Claus Wedekind
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
15
|
Freitas S, Parker DJ, Labédan M, Dumas Z, Schwander T. Evidence for cryptic sex in parthenogenetic stick insects of the genus Timema. Proc Biol Sci 2023; 290:20230404. [PMID: 37727092 PMCID: PMC10509586 DOI: 10.1098/rspb.2023.0404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
Obligately parthenogenetic species are expected to be short lived since the lack of sex and recombination should translate into a slower adaptation rate and increased accumulation of deleterious alleles. Some, however, are thought to have been reproducing without males for millions of years. It is not clear how these old parthenogens can escape the predicted long-term costs of parthenogenesis, but an obvious explanation is cryptic sex. In this study, we screen for signatures of cryptic sex in eight populations of four parthenogenetic species of Timema stick insects, some estimated to be older than 1 Myr. Low genotype diversity, homozygosity of individuals and high linkage disequilibrium (LD) unaffected by marker distances support exclusively parthenogenetic reproduction in six populations. However, in two populations (namely, of the species Timema douglasi and T. monikensis) we find strong evidence for cryptic sex, most likely mediated by rare males. These populations had comparatively high genotype diversities, lower LD, and a clear LD decay with genetic distance. Rare sex in species that are otherwise largely parthenogenetic could help explain the unusual success of parthenogenesis in the Timema genus and raises the question whether episodes of rare sex are in fact the simplest explanation for the persistence of many old parthenogens in nature.
Collapse
Affiliation(s)
- Susana Freitas
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Darren J. Parker
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- School of Natural Sciences, Bangor University, Bangor, UK
| | - Marjorie Labédan
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Zoé Dumas
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Tanja Schwander
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
16
|
Lajmi A, Glinka F, Privman E. Optimizing ddRAD sequencing for population genomic studies with ddgRADer. Mol Ecol Resour 2023. [PMID: 37732396 DOI: 10.1111/1755-0998.13870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 08/04/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023]
Abstract
Double-digest Restriction-site Associated DNA sequencing (ddRADseq) is widely used to generate genomic data for non-model organisms in evolutionary and ecological studies. Along with affordable paired-end sequencing, this method makes population genomic analyses more accessible. However, multiple factors should be considered when designing a ddRADseq experiment, which can be challenging for new users. The generated data often suffer from substantial read overlaps and adaptor contamination, severely reducing sequencing efficiency and affecting data quality. Here, we analyse diverse datasets from the literature and carry out controlled experiments to understand the effects of enzyme choice and size selection on sequencing efficiency. The empirical data reveal that size selection is imprecise and has limited efficacy. In certain scenarios, a substantial proportion of short fragments pass below the lower size-selection cut-off resulting in low sequencing efficiency. However, enzyme choice can considerably mitigate inadvertent inclusion of these shorter fragments. A simple model based on these experiments is implemented to predict the number of genomic fragments generated after digestion and size selection, number of SNPs genotyped, number of samples that can be multiplexed and the expected sequencing efficiency. We developed ddgRADer - http://ddgrader.haifa.ac.il/ - a user-friendly webtool and incorporated these calculations to aid in ddRADseq experimental design while optimizing sequencing efficiency. This tool can also be used for single enzyme protocols such as Genotyping-by-Sequencing. Given user-defined study goals, ddgRADer recommends enzyme pairs and allows users to compare and choose enzymes and size-selection criteria. ddgRADer improves the accessibility and ease of designing ddRADseq experiments and increases the probability of success of the first population genomic study conducted in labs with no prior experience in genomics.
Collapse
Affiliation(s)
- Aparna Lajmi
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa, Israel
| | - Felix Glinka
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa, Israel
| | - Eyal Privman
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa, Israel
| |
Collapse
|
17
|
Caeiro-Dias G, Brelsford A, Meneses-Ribeiro M, Crochet PA, Pinho C. Hybridization in late stages of speciation: Strong but incomplete genome-wide reproductive isolation and 'large Z-effect' in a moving hybrid zone. Mol Ecol 2023. [PMID: 37316984 DOI: 10.1111/mec.17035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/27/2023] [Accepted: 05/12/2023] [Indexed: 06/16/2023]
Abstract
In organisms reproducing sexually, speciation occurs when increasing divergence results in pre- or post-zygotic reproductive isolation between lineages. Studies focusing on reproductive isolation origin in early stages of speciation are common and many rely on genomic scans to infer introgression providing limited information on the genomic architecture of reproductive isolation long-term maintenance. This study analyses a natural hybrid zone between two species in a late stage of speciation. We used ddRADseq genotyping in the contact between Podarcis bocagei and P. carbonelli to examine admixture extent, analyse hybrid zone stability and assess genome-wide variation in selection against introgression. We confirmed strong but incomplete reproductive isolation in a bimodal hybrid zone. New findings revealed population genetic structure within P. carbonelli in the contact zone; geographical and genomic clines analysis suggested strong selection against gene flow, but a relatively small proportion of the loci can introgress, mostly within the narrow contact zone. However, geographical clines revealed that a few introgressed loci show signs of potential positive selection, particularly into P. bocagei. Geographical clines also detected a signal of hybrid zone movement towards P. bocagei distribution. Genomic cline analysis revealed heterogeneous patterns of introgression among loci within the syntopy zone, but the majority maintain a strong association with the genomic background of origin. However, incongruences between both cline approaches were found, potentially driven by confounding effects on genomic clines. Last, an important role of the Z chromosome in reproductive isolation is suggested. Importantly, overall patterns of restricted introgression seem to result from numerous strong intrinsic barriers across the genome.
Collapse
Affiliation(s)
- Guilherme Caeiro-Dias
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France
| | - Alan Brelsford
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Biology Department, University of California Riverside, Riverside, California, USA
| | - Mariana Meneses-Ribeiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Pierre-André Crochet
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Catarina Pinho
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| |
Collapse
|
18
|
Ambu J, Martínez-Solano Í, Suchan T, Hernandez A, Wielstra B, Crochet PA, Dufresnes C. Genomic phylogeography illuminates deep cyto-nuclear discordances in midwife toads (Alytes). Mol Phylogenet Evol 2023; 183:107783. [PMID: 37044190 DOI: 10.1016/j.ympev.2023.107783] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 03/28/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023]
Abstract
The advent of genomic methods allows us to revisit the evolutionary history of organismal groups for which robust phylogenies are still lacking, particularly in species complexes that frequently hybridize. In this study, we conduct RAD-sequencing (RAD-seq) analyses of midwife toads (genus Alytes), an iconic group of western Mediterranean amphibians famous for their parental care behavior, but equally infamous for the difficulties to reconstruct their evolutionary history. Through admixture and phylogenetic analyses of thousands of loci, we provide the most comprehensive phylogeographic framework for the A. obstetricans complex to date, as well as the first fully resolved phylogeny for the entire genus. As part of this effort, we carefully explore the influence of different sampling schemes and data filtering thresholds on tree reconstruction, showing that several, slightly different, yet robust topologies may be retrieved with small datasets obtained by stringent SNP calling parameters, especially when admixed individuals are included. In contrast, analyses of incomplete but larger datasets converged on the same phylogeny, irrespective of the reconstruction method used or the proportion of missing data. The Alytes tree features three Miocene-diverged clades corresponding to the proposed subgenera Ammoryctis (A. cisternasii), Baleaphryne (A. maurus, A. dickhilleni and A. muletensis), and Alytes (A. obstetricans complex). The latter consists of six evolutionary lineages, grouped into three clades of Pliocene origin, and currently delimited as two species: (1) A. almogavarii almogavarii and A. a. inigoi; (2) A. obstetricans obstetricans and A. o. pertinax; (3) A. o. boscai and an undescribed taxon (A. o. cf. boscai). These results contradict the mitochondrial tree, due to past mitochondrial captures in A. a. almogavarii (central Pyrenees) and A. o. boscai (central Iberia) by A. obstetricans ancestors during the Pleistocene. Patterns of admixture between subspecies appear far more extensive than previously assumed from microsatellites, causing nomenclatural uncertainties, and even underlying the reticulate evolution of one taxon (A. o. pertinax). All Ammoryctis and Baleaphryne species form shallow clades, so their taxonomy should remain stable. Amid the prevalence of cyto-nuclear discordance among terrestrial vertebrates and the usual lack of resolution of conventional nuclear markers, our study advocates for phylogeography based on next-generation sequencing, but also encourages properly exploring parameter space and sampling schemes when building and analyzing genomic datasets.
Collapse
Affiliation(s)
- Johanna Ambu
- LASER, College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Íñigo Martínez-Solano
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Tomasz Suchan
- W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
| | - Axel Hernandez
- LASER, College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Ben Wielstra
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands; Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands
| | | | - Christophe Dufresnes
- LASER, College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
| |
Collapse
|
19
|
Gundappa MK, Peñaloza C, Regan T, Boutet I, Tanguy A, Houston RD, Bean TP, Macqueen DJ. Chromosome-level reference genome for European flat oyster ( Ostrea edulis L.). Evol Appl 2022; 15:1713-1729. [PMID: 36426132 PMCID: PMC9679249 DOI: 10.1111/eva.13460] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022] Open
Abstract
The European flat oyster (Ostrea edulis L.) is a bivalve naturally distributed across Europe, which was an integral part of human diets for centuries, until anthropogenic activities and disease outbreaks severely reduced wild populations. Despite a growing interest in genetic applications to support population management and aquaculture, a reference genome for this species is lacking to date. Here, we report a chromosome-level assembly and annotation for the European Flat oyster genome, generated using Oxford Nanopore, Illumina, Dovetail OmniC™ proximity ligation and RNA sequencing. A contig assembly (N50: 2.38 Mb) was scaffolded into the expected karyotype of 10 pseudochromosomes. The final assembly is 935.13 Mb, with a scaffold-N50 of 95.56 Mb, with a predicted repeat landscape dominated by unclassified elements specific to O. edulis. The assembly was verified for accuracy and completeness using multiple approaches, including a novel linkage map built with ddRAD-Seq technology, comprising 4016 SNPs from four full-sib families (eight parents and 163 F1 offspring). Annotation of the genome integrating multitissue transcriptome data, comparative protein evidence and ab-initio gene prediction identified 35,699 protein-coding genes. Chromosome-level synteny was demonstrated against multiple high-quality bivalve genome assemblies, including an O. edulis genome generated independently for a French O. edulis individual. Comparative genomics was used to characterize gene family expansions during Ostrea evolution that potentially facilitated adaptation. This new reference genome for European flat oyster will enable high-resolution genomics in support of conservation and aquaculture initiatives, and improves our understanding of bivalve genome evolution.
Collapse
Affiliation(s)
- Manu Kumar Gundappa
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghEdinburghUK
| | - Carolina Peñaloza
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghEdinburghUK
| | - Tim Regan
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghEdinburghUK
| | - Isabelle Boutet
- Station Biologique de RoscoffLaboratoire Adaptation et Diversité en Milieu Marin (UMR 7144 AD2M CNRS‐Sorbonne Université)RoscoffFrance
| | - Arnaud Tanguy
- Station Biologique de RoscoffLaboratoire Adaptation et Diversité en Milieu Marin (UMR 7144 AD2M CNRS‐Sorbonne Université)RoscoffFrance
| | - Ross D. Houston
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghEdinburghUK
| | - Tim P. Bean
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghEdinburghUK
| | - Daniel J. Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghEdinburghUK
| |
Collapse
|
20
|
Heterogeneous Evolution of Sex Chromosomes in the Torrent Frog Genus Amolops. Int J Mol Sci 2022; 23:ijms231911146. [PMID: 36232446 PMCID: PMC9570394 DOI: 10.3390/ijms231911146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/30/2022] Open
Abstract
In sharp contrast to birds and mammals, in numerous cold-blooded vertebrates, sex chromosomes have been described as homomorphic. This sex chromosome homomorphy has been suggested to result from the high turnovers often observed across deeply diverged clades. However, little is known about the tempo and mode of sex chromosome evolution among the most closely related species. Here, we examined the evolution of sex chromosome among nine species of the torrent frog genus Amolops. We analyzed male and female GBS and RAD-seq from 182 individuals and performed PCR verification for 176 individuals. We identified signatures of sex chromosomes involving two pairs of chromosomes. We found that sex-chromosome homomorphy results from both turnover and X–Y recombination in the Amolops species, which simultaneously exhibits heterogeneous evolution on homologous and non-homologous sex chromosomes. A low turnover rate of non-homologous sex chromosomes exists in these torrent frogs. The ongoing X–Y recombination in homologous sex chromosomes will act as an indispensable force in preventing sex chromosomes from differentiating.
Collapse
|
21
|
Dufresnes C, Crochet PA. Sex chromosomes as supergenes of speciation: why amphibians defy the rules? Philos Trans R Soc Lond B Biol Sci 2022; 377:20210202. [PMID: 35694748 PMCID: PMC9189495 DOI: 10.1098/rstb.2021.0202] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
As reflected by the two rules of speciation (Haldane's rule and the large X-/Z-effect), sex chromosomes are expected to behave like supergenes of speciation: they recombine only in one sex (XX females or ZZ males), supposedly recruit sexually antagonistic genes and evolve faster than autosomes, which can all contribute to pre-zygotic and post-zygotic isolation. While this has been mainly studied in organisms with conserved sex-determining systems and highly differentiated (heteromorphic) sex chromosomes like mammals, birds and some insects, these expectations are less clear in organismal groups where sex chromosomes repeatedly change and remain mostly homomorphic, like amphibians. In this article, we review the proposed roles of sex-linked genes in isolating nascent lineages throughout the speciation continuum and discuss their support in amphibians given current knowledge of sex chromosome evolution and speciation modes. Given their frequent recombination and lack of differentiation, we argue that amphibian sex chromosomes are not expected to become supergenes of speciation, which is reflected by the rarity of empirical studies consistent with a 'large sex chromosome effect' in frogs and toads. The diversity of sex chromosome systems in amphibians has a high potential to disentangle the evolutionary mechanisms responsible for the emergence of sex-linked speciation genes in other organisms. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.
Collapse
Affiliation(s)
- Christophe Dufresnes
- LASER, College of Biology and Environment, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | | |
Collapse
|
22
|
Pierce D, Sun P, Purcell J, Brelsford A. A socially polymorphic Formica ant species exhibits a novel distribution of social supergene genotypes. J Evol Biol 2022; 35:1031-1044. [PMID: 35759556 PMCID: PMC9543797 DOI: 10.1111/jeb.14038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/15/2022] [Accepted: 05/15/2022] [Indexed: 11/29/2022]
Abstract
Most supergenes discovered so far are young, occurring in one species or a few closely related species. An ancient supergene in the ant genus Formica presents an unusual opportunity to compare supergene‐associated phenotypes and the factors that influence the persistence of polymorphism in different species. We investigate the genetic architecture of social organization in Formica francoeuri, an ant species native to low‐ and mid‐elevation semiarid regions of southern California, and describe an efficient technique for estimating mode of social organization using population genomic data. Using this technique, we show that F. francoeuri exhibits polymorphism in colony social organization and that the phenotypic polymorphism is strongly associated with genotypes within the Formica social supergene region. The distribution of supergene haplotypes in F. francoeuri differs from that of related species Formica selysi in that colonies with multiple queens contain almost exclusively workers that are heterozygous for alternative supergene haplotypes. Moreover, heterozygous workers exhibit allele‐specific expression of the polygyne‐associated haplotype at the candidate gene Knockout, which is thought to influence social organization. We also report geographic population structure and variation in worker size across a large fraction of the species range. Our results suggest that, although the Formica supergene is conserved within the genus, the mechanisms that maintain the supergene and its associated polymorphisms differ among species.
Collapse
Affiliation(s)
- Daniel Pierce
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, USA
| | - Penglin Sun
- Department of Entomology, University of California, Riverside, California, USA
| | - Jessica Purcell
- Department of Entomology, University of California, Riverside, California, USA
| | - Alan Brelsford
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, USA
| |
Collapse
|
23
|
Gatto KP, Timoshevskaya N, Smith JJ, Lourenço LB. Sequencing of laser captured Z and W chromosomes of the tocantins paradoxical frog (Pseudis tocantins) provides insights on repeatome and chromosomal homology. J Evol Biol 2022; 35:1659-1674. [PMID: 35642451 DOI: 10.1111/jeb.14027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/06/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022]
Abstract
Pseudis tocantins is the only frog species of the hylid genus Pseudis that possesses highly heteromorphic sex chromosomes. Z and W chromosomes of Ps. tocantins differ in size, morphology, position of the nucleolar organizer region (NOR) and the amount and distribution of heterochromatin. A chromosomal inversion and heterochromatin amplification on the W chromosome were previously inferred to be involved in the evolution of this sex chromosome pair. Despite these findings, knowledge related to the molecular composition of the large heterochromatic band of this W chromosome is restricted to the PcP190 satellite DNA, and no data are available regarding the gene content of either the W or the Z chromosome of Ps. tocantins. Here, we sequenced microdissected Z and W chromosomes of this species to further resolve their molecular composition. Comparative genomic analysis suggests that Ps. tocantins sex chromosomes are likely homologous to chromosomes 4 and 10 of Xenopus tropicalis. Analyses of the repetitive DNA landscape in the Z and W assemblies allowed for the identification of several transposable elements and putative satellite DNA sequences. Finally, some transposable elements from the W assembly were found to be highly diverse and divergent from elements found elsewhere in the genome, suggesting a rapid amplification of these elements on the W chromosome.
Collapse
Affiliation(s)
- Kaleb Pretto Gatto
- Laboratory of Chromosome Studies, Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil.,Laboratory of Herpetology and Aquaculture Center, Department of Zoology, Institute of Biosciences, São Paulo State University, Rio Claro, Brazil
| | - Nataliya Timoshevskaya
- Department of Biology, College of Arts and Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Jeramiah J Smith
- Department of Biology, College of Arts and Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Luciana Bolsoni Lourenço
- Laboratory of Chromosome Studies, Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| |
Collapse
|
24
|
Castel J, Hourdez S, Pradillon F, Daguin-Thiébaut C, Ballenghien M, Ruault S, Corre E, Tran Lu Y A, Mary J, Gagnaire PA, Bonhomme F, Breusing C, Broquet T, Jollivet D. Inter-Specific Genetic Exchange Despite Strong Divergence in Deep-Sea Hydrothermal Vent Gastropods of the Genus Alviniconcha. Genes (Basel) 2022; 13:985. [PMID: 35741747 PMCID: PMC9223106 DOI: 10.3390/genes13060985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/29/2022] [Accepted: 05/17/2022] [Indexed: 02/05/2023] Open
Abstract
Deep hydrothermal vents are highly fragmented and unstable habitats at all temporal and spatial scales. Such environmental dynamics likely play a non-negligible role in speciation. Little is, however, known about the evolutionary processes that drive population-level differentiation and vent species isolation and, more specifically, how geography and habitat specialisation interplay in the species history of divergence. In this study, the species range and divergence of Alviniconcha snails that occupy active Western Pacific vent fields was assessed by using sequence variation data of the mitochondrial Cox1 gene, RNAseq, and ddRAD-seq. Combining morphological description and sequence datasets of the three species across five basins, we confirmed that A. kojimai, A. boucheti, and A. strummeri, while partially overlapping over their range, display high levels of divergence in the three genomic compartments analysed that usually encompass values retrieved for reproductively isolated species with divergences rang from 9% to 12.5% (mtDNA) and from 2% to 3.1% (nuDNA). Moreover, the three species can be distinguished on the basis of their external morphology by observing the distribution of bristles and the shape of the columella. According to this sampling, A. boucheti and A. kojimai form an east-to-west species abundance gradient, whereas A. strummeri is restricted to the Futuna Arc/Lau and North Fiji Basins. Surprisingly, population models with both gene flow and population size heterogeneities among genomes indicated that these three species are still able to exchange genes due to secondary contacts at some localities after a long period of isolation.
Collapse
Affiliation(s)
- Jade Castel
- ‘Dynamique de la Diversité Marine’ (DyDiv) Lab, Station Biologique de Roscoff, Sorbonne Université, CNRS, UMR 7144, Place G. Teissier, 29680 Roscoff, France; (C.D.-T.); (M.B.); (S.R.); (J.M.); (T.B.); (D.J.)
| | - Stéphane Hourdez
- Laboratoire d’Ecogéochimie des Environnements Benthiques, Observatoire Océanologique de Banyuls, Sorbonne Université, CNRS, UMR 8222, Avenue Pierre Fabre, 66650 Banyuls-sur-Mer, France;
| | - Florence Pradillon
- Unité Biologie et Ecologie des Ecosystèmes Marins Profonds, Université de Brest, Ifremer, CNRS, 29280 Plouzané, France;
| | - Claire Daguin-Thiébaut
- ‘Dynamique de la Diversité Marine’ (DyDiv) Lab, Station Biologique de Roscoff, Sorbonne Université, CNRS, UMR 7144, Place G. Teissier, 29680 Roscoff, France; (C.D.-T.); (M.B.); (S.R.); (J.M.); (T.B.); (D.J.)
| | - Marion Ballenghien
- ‘Dynamique de la Diversité Marine’ (DyDiv) Lab, Station Biologique de Roscoff, Sorbonne Université, CNRS, UMR 7144, Place G. Teissier, 29680 Roscoff, France; (C.D.-T.); (M.B.); (S.R.); (J.M.); (T.B.); (D.J.)
| | - Stéphanie Ruault
- ‘Dynamique de la Diversité Marine’ (DyDiv) Lab, Station Biologique de Roscoff, Sorbonne Université, CNRS, UMR 7144, Place G. Teissier, 29680 Roscoff, France; (C.D.-T.); (M.B.); (S.R.); (J.M.); (T.B.); (D.J.)
| | - Erwan Corre
- ABiMS Bioinformatics Facility, Station biologique de Roscoff, Sorbonne Université, CNRS, FR2424, Place G. Teissier, 29680 Roscoff, France;
| | - Adrien Tran Lu Y
- Team MBE, Department Genφ, ISEM, Université de Montpellier, CNRS, EPHE, IRD, 34110 Montpellier, France; (A.T.L.Y.); (P.-A.G.); (F.B.)
| | - Jean Mary
- ‘Dynamique de la Diversité Marine’ (DyDiv) Lab, Station Biologique de Roscoff, Sorbonne Université, CNRS, UMR 7144, Place G. Teissier, 29680 Roscoff, France; (C.D.-T.); (M.B.); (S.R.); (J.M.); (T.B.); (D.J.)
| | - Pierre-Alexandre Gagnaire
- Team MBE, Department Genφ, ISEM, Université de Montpellier, CNRS, EPHE, IRD, 34110 Montpellier, France; (A.T.L.Y.); (P.-A.G.); (F.B.)
| | - François Bonhomme
- Team MBE, Department Genφ, ISEM, Université de Montpellier, CNRS, EPHE, IRD, 34110 Montpellier, France; (A.T.L.Y.); (P.-A.G.); (F.B.)
| | - Corinna Breusing
- Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Rd, Narragansett, RI 02882, USA;
| | - Thomas Broquet
- ‘Dynamique de la Diversité Marine’ (DyDiv) Lab, Station Biologique de Roscoff, Sorbonne Université, CNRS, UMR 7144, Place G. Teissier, 29680 Roscoff, France; (C.D.-T.); (M.B.); (S.R.); (J.M.); (T.B.); (D.J.)
| | - Didier Jollivet
- ‘Dynamique de la Diversité Marine’ (DyDiv) Lab, Station Biologique de Roscoff, Sorbonne Université, CNRS, UMR 7144, Place G. Teissier, 29680 Roscoff, France; (C.D.-T.); (M.B.); (S.R.); (J.M.); (T.B.); (D.J.)
| |
Collapse
|
25
|
Fontcuberta A, Kapun M, Tran Van P, Purcell J, Chapuisat M. Effects of social organization and elevation on spatial genetic structure in a montane ant. Ecol Evol 2022; 12:e8813. [PMID: 35600679 PMCID: PMC9108227 DOI: 10.1002/ece3.8813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Amaranta Fontcuberta
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
| | - Martin Kapun
- Center for Anatomy and Cell Biology Department of Cell and Developmental Biology Medical University of Vienna Vienna Austria
- Natural History Museum of Vienna Vienna Austria
| | - Patrick Tran Van
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
| | - Jessica Purcell
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
- Department of Entomology University of California Riverside California USA
| | - Michel Chapuisat
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
| |
Collapse
|
26
|
Using Sex-Linked Markers via Genotyping-by-Sequencing to Identify XX/XY Sex Chromosomes in the Spiny Frog (Quasipaa boulengeri). Genes (Basel) 2022; 13:genes13040575. [PMID: 35456381 PMCID: PMC9027009 DOI: 10.3390/genes13040575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 11/28/2022] Open
Abstract
We used genotyping-by-sequencing (GBS) to identify sex-linked markers in 43 wild-collected spiny frog (Quasipaa boulengeri) adults from a single site. We identified a total of 1049 putatively sex-linked GBS-tags, 98% of which indicated an XX/XY system, and finally confirmed 574 XY-type sex-linked loci. The sex specificity of five markers was further validated by PCR amplification using a large number of additional individuals from 26 populations of this species. A total of 27 sex linkage markers matched with the Dmrt1 gene, showing a conserved role in sex determination and differentiation in different organisms from flies and nematodes to mammals. Chromosome 1, which harbors Dmrt1, was considered as the most likely candidate sex chromosome in anurans. Five sex-linked SNP makers indicated sex reversals, which are sparsely present in wild amphibian populations, in three out of the one-hundred and thirty-three explored individuals. The variety of sex-linked markers identified could be used in population genetics analyses requiring information on individual sex or in investigations aimed at drawing inferences about sex determination and sex chromosome evolution.
Collapse
|
27
|
Tran Lu Y A, Ruault S, Daguin-Thiébaut C, Castel J, Bierne N, Broquet T, Wincker P, Perdereau A, Arnaud-Haond S, Gagnaire PA, Jollivet D, Hourdez S, Bonhomme F. Subtle limits to connectivity revealed by outlier loci within two divergent metapopulations of the deep-sea hydrothermal gastropod Ifremeria nautilei. Mol Ecol 2022; 31:2796-2813. [PMID: 35305041 DOI: 10.1111/mec.16430] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 11/30/2022]
Abstract
Hydrothermal vents form archipelagos of ephemeral deep-sea habitats that raise interesting questions about the evolution and dynamics of the associated endemic fauna, constantly subject to extinction-recolonization processes. These metal-rich environments are coveted for the mineral resources they harbor, thus raising recent conservation concerns. The evolutionary fate and demographic resilience of hydrothermal species strongly depend on the degree of connectivity among and within their fragmented metapopulations. In the deep sea, however, assessing connectivity is difficult and usually requires indirect genetic approaches. Improved detection of fine-scale genetic connectivity is now possible based on genome-wide screening for genetic differentiation. Here, we explored population connectivity in the hydrothermal vent snail Ifremeria nautilei across its species range encompassing five distinct back-arc basins in the Southwest Pacific. The global analysis, based on 10 570 single nucleotide polymorphism (SNP) markers derived from double digest restriction-site associated DNA sequencing (ddRAD-seq), depicted two semi-isolated and homogeneous genetic clusters. Demo-genetic modeling suggests that these two groups began to diverge about 70 000 generations ago, but continue to exhibit weak and slightly asymmetrical gene flow. Furthermore, a careful analysis of outlier loci showed subtle limitations to connectivity between neighboring basins within both groups. This finding indicates that migration is not strong enough to totally counterbalance drift or local selection, hence questioning the potential for demographic resilience at this latter geographical scale. These results illustrate the potential of large genomic datasets to understand fine-scale connectivity patterns in hydrothermal vents and the deep sea.
Collapse
Affiliation(s)
- Adrien Tran Lu Y
- ISEM, Institut des Sciences de l'Evolution, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Stéphanie Ruault
- Sorbonne Université, CNRS, UMR 7144, 'Dynamique de la Diversité Marine' (DyDiv) Lab, Station biologique de Roscoff, Place G. Teissier, 29680, Roscoff, France
| | - Claire Daguin-Thiébaut
- Sorbonne Université, CNRS, UMR 7144, 'Dynamique de la Diversité Marine' (DyDiv) Lab, Station biologique de Roscoff, Place G. Teissier, 29680, Roscoff, France
| | - Jade Castel
- Sorbonne Université, CNRS, UMR 7144, 'Dynamique de la Diversité Marine' (DyDiv) Lab, Station biologique de Roscoff, Place G. Teissier, 29680, Roscoff, France
| | - Nicolas Bierne
- ISEM, Institut des Sciences de l'Evolution, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Thomas Broquet
- Sorbonne Université, CNRS, UMR 7144, 'Dynamique de la Diversité Marine' (DyDiv) Lab, Station biologique de Roscoff, Place G. Teissier, 29680, Roscoff, France
| | - Patrick Wincker
- Génomique Métabolique, Génoscope, Institut de Biologie François Jacob, CEA, CNRS, Université Évry, Université Paris-Saclay, Évry, France
| | - Aude Perdereau
- Génomique Métabolique, Génoscope, Institut de Biologie François Jacob, CEA, CNRS, Université Évry, Université Paris-Saclay, Évry, France
| | - Sophie Arnaud-Haond
- MARBEC, Marine Biodiversity Exploitation and Conservation, Univ Montpellier, CNRS, IFREMER, IRD, Sète, France
| | | | - Didier Jollivet
- Sorbonne Université, CNRS, UMR 7144, 'Dynamique de la Diversité Marine' (DyDiv) Lab, Station biologique de Roscoff, Place G. Teissier, 29680, Roscoff, France
| | - Stéphane Hourdez
- Sorbonne Université, CNRS, UMR 8222, Laboratoire d'Ecogéochimie des Environnements Benthiques, Observatoire Océanologique de Banyuls, Avenue Pierre Fabre, 66650, Banyuls-sur-Mer, France
| | - François Bonhomme
- ISEM, Institut des Sciences de l'Evolution, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
28
|
Scarparo G, Sankovitz M, Loope KJ, Wilson‐Rankin E, Purcell J. Early queen joining and long-term queen associations in polygyne colonies of an invasive wasp revealed by longitudinal genetic analysis. Evol Appl 2021; 14:2901-2914. [PMID: 34950236 PMCID: PMC8674895 DOI: 10.1111/eva.13324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 12/02/2022] Open
Abstract
Invasive social insects rank among the most damaging of terrestrial species. They are responsible for extensive damage and severely threaten the biodiversity of environments where they are introduced. Variation in colony social form commonly occurs in introduced populations of yellowjacket wasps (genus Vespula). In particular, invasive colonies may contain multiple queens (i.e., polygyne) and persist several years, while in the native range, the colonies are usually annual and harbor a single queen (i.e., monogyne). In this study, we used genome-wide loci obtained by double digest restriction site-associated DNA sequencing (RADseq) to investigate the genetic structure and queen turnover in colonies of the western yellowjacket, Vespula pensylvanica, in their introduced range in Hawaii. Of the 27 colonies monitored over four months (October-January), 19 were polygyne and already contained multiple queens on the first day of sampling. Contrary to previous speculation, this finding suggests that polygyny often arises early in the annual colony cycle, before the production of new queens in the fall. Furthermore, polygyne colonies exhibited a prolonged average lifespan relative to those headed by a single queen. As a result, there is no clear window during which colony eradication efforts would be more effective than upon first discovery. The relatedness among nestmate queens was slightly above zero, indicating that these colonies are generally composed of nonrelatives. The queen turnover within each colony was low, and we detected some full-sibling workers sampled up to four months apart. Finally, we did not detect any population structure among colonies, suggesting that queens disperse up to several kilometers. Taken together, our results provide the first insights into the requeening dynamics in this invasive and incipiently polygyne population and illuminate the early establishment of multiple long-lasting queens in these damaging colonies.
Collapse
Affiliation(s)
- Giulia Scarparo
- Department of EntomologyUniversity of California RiversideRiversideCaliforniaUSA
| | - Madison Sankovitz
- Department of EntomologyUniversity of California RiversideRiversideCaliforniaUSA
| | - Kevin J. Loope
- Department of EntomologyUniversity of California RiversideRiversideCaliforniaUSA
- Department of Fish and Wildlife ConservationVirginia TechBlacksburgVirginiaUSA
| | - Erin Wilson‐Rankin
- Department of EntomologyUniversity of California RiversideRiversideCaliforniaUSA
| | - Jessica Purcell
- Department of EntomologyUniversity of California RiversideRiversideCaliforniaUSA
| |
Collapse
|
29
|
Lagunas-Robles G, Purcell J, Brelsford A. Linked supergenes underlie split sex ratio and social organization in an ant. Proc Natl Acad Sci U S A 2021; 118:e2101427118. [PMID: 34772805 PMCID: PMC8609651 DOI: 10.1073/pnas.2101427118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2021] [Indexed: 12/19/2022] Open
Abstract
Sexually reproducing organisms usually invest equally in male and female offspring. Deviations from this pattern have led researchers to new discoveries in the study of parent-offspring conflict, genomic conflict, and cooperative breeding. Some social insect species exhibit the unusual population-level pattern of split sex ratio, wherein some colonies specialize in the production of future queens and others specialize in the production of males. Theoretical work predicted that worker control of sex ratio and variation in relatedness asymmetry among colonies would cause each colony to specialize in the production of one sex. While some empirical tests supported theoretical predictions, others deviated from them, leaving many questions about how split sex ratio emerges. One factor yet to be investigated is whether colony sex ratio may be influenced by the genotypes of queens or workers. Here, we sequence the genomes of 138 Formica glacialis workers from 34 male-producing and 34 gyne-producing colonies to determine whether split sex ratio is under genetic control. We identify a supergene spanning 5.5 Mbp that is closely associated with sex allocation in this system. Strikingly, this supergene is adjacent to another supergene spanning 5 Mbp that is associated with variation in colony queen number. We identify a similar pattern in a second related species, Formica podzolica. The discovery that split sex ratio is determined, at least in part, by a supergene in two species opens future research on the evolutionary drivers of split sex ratio.
Collapse
Affiliation(s)
- German Lagunas-Robles
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA 92521
| | - Jessica Purcell
- Department of Entomology, University of California, Riverside, CA 92521
| | - Alan Brelsford
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA 92521;
| |
Collapse
|
30
|
Jin L, Liao WB, Merilä J. Genomic evidence for adaptive differentiation among
Microhyla fissipes
populations: Implications for conservation. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Long Jin
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education) China West Normal University Nanchong China
| | - Wen Bo Liao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education) China West Normal University Nanchong China
| | - Juha Merilä
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Programme Faculty of Biological and Environmental Sciences FI‐00014 University of Helsinki Helsinki Finland
- Research Division for Ecology and Biodiversity School Biological Sciences The University of Hong KongHong Kong SAR
| |
Collapse
|
31
|
Le Moan A, Roby C, Fraïsse C, Daguin-Thiébaut C, Bierne N, Viard F. An introgression breakthrough left by an anthropogenic contact between two ascidians. Mol Ecol 2021; 30:6718-6732. [PMID: 34547149 DOI: 10.1111/mec.16189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 01/28/2023]
Abstract
Human-driven translocations of species have diverse evolutionary consequences such as promoting hybridization between previously geographically isolated taxa. This is well illustrated by the solitary tunicate, Ciona robusta, native to the North East Pacific and introduced in the North East Atlantic. It is now co-occurring with its congener Ciona intestinalis in the English Channel, and C. roulei in the Mediterranean Sea. Despite their long allopatric divergence, first and second generation crosses showed a high hybridization success between the introduced and native taxa in the laboratory. However, previous genetic studies failed to provide evidence of recent hybridization between C. robusta and C. intestinalis in the wild. Using SNPs obtained from ddRAD-sequencing of 397 individuals from 26 populations, we further explored the genome-wide population structure of the native Ciona taxa. We first confirmed results documented in previous studies, notably (i) a chaotic genetic structure at regional scale, and (ii) a high genetic similarity between C. roulei and C. intestinalis, which is calling for further taxonomic investigation. More importantly, and unexpectedly, we also observed a genomic hotspot of long introgressed C. robusta tracts into C. intestinalis genomes at several locations of their contact zone. Both the genomic architecture of introgression, restricted to a 1.5 Mb region of chromosome 5, and its absence in allopatric populations suggest introgression is recent and occurred after the introduction of the non-native species. Overall, our study shows that anthropogenic hybridization can be effective in promoting introgression breakthroughs between species at a late stage of the speciation continuum.
Collapse
Affiliation(s)
- Alan Le Moan
- Sorbonne Université, CNRS, UMR 7144, Station Biologique de Roscoff, Roscoff, France.,Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
| | - Charlotte Roby
- Sorbonne Université, CNRS, UMR 7144, Station Biologique de Roscoff, Roscoff, France
| | | | | | | | - Frédérique Viard
- Sorbonne Université, CNRS, UMR 7144, Station Biologique de Roscoff, Roscoff, France.,ISEM, Univ Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
32
|
Mass of genes rather than master genes underlie the genomic architecture of amphibian speciation. Proc Natl Acad Sci U S A 2021; 118:2103963118. [PMID: 34465621 DOI: 10.1073/pnas.2103963118] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genetic architecture of speciation, i.e., how intrinsic genomic incompatibilities promote reproductive isolation (RI) between diverging lineages, is one of the best-kept secrets of evolution. To directly assess whether incompatibilities arise in a limited set of large-effect speciation genes, or in a multitude of loci, we examined the geographic and genomic landscapes of introgression across the hybrid zones of 41 pairs of frog and toad lineages in the Western Palearctic region. As the divergence between lineages increases, phylogeographic transitions progressively become narrower, and larger parts of the genome resist introgression. This suggests that anuran speciation proceeds through a gradual accumulation of multiple barrier loci scattered across the genome, which ultimately deplete hybrid fitness by intrinsic postzygotic isolation, with behavioral isolation being achieved only at later stages. Moreover, these loci were disproportionately sex linked in one group (Hyla) but not in others (Rana and Bufotes), implying that large X-effects are not necessarily a rule of speciation with undifferentiated sex chromosomes. The highly polygenic nature of RI and the lack of hemizygous X/Z chromosomes could explain why the speciation clock ticks slower in amphibians compared to other vertebrates. The clock-like dynamics of speciation combined with the analytical focus on hybrid zones offer perspectives for more standardized practices of species delimitation.
Collapse
|
33
|
Perrin N. Sex-chromosome evolution in frogs: what role for sex-antagonistic genes? Philos Trans R Soc Lond B Biol Sci 2021; 376:20200094. [PMID: 34247502 PMCID: PMC8273499 DOI: 10.1098/rstb.2020.0094] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Sex-antagonistic (SA) genes are widely considered to be crucial players in the evolution of sex chromosomes, being instrumental in the arrest of recombination and degeneration of Y chromosomes, as well as important drivers of sex-chromosome turnovers. To test such claims, one needs to focus on systems at the early stages of differentiation, ideally with a high turnover rate. Here, I review recent work on two families of amphibians, Ranidae (true frogs) and Hylidae (tree frogs), to show that results gathered so far from these groups provide no support for a significant role of SA genes in the evolutionary dynamics of their sex chromosomes. The findings support instead a central role for neutral processes and deleterious mutations. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.
Collapse
Affiliation(s)
- Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
34
|
Caeiro-Dias G, Rocha S, Couto A, Pereira C, Brelsford A, Crochet PA, Pinho C. Nuclear phylogenies and genomics of a contact zone establish the species rank of Podarcis lusitanicus (Squamata, Lacertidae). Mol Phylogenet Evol 2021; 164:107270. [PMID: 34352374 DOI: 10.1016/j.ympev.2021.107270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 05/19/2021] [Accepted: 07/26/2021] [Indexed: 11/27/2022]
Abstract
Unravelling when divergent lineages constitute distinct species can be challenging, particularly in complex scenarios combining cryptic diversity and phylogenetic discordances between different types of molecular markers. Combining a phylogenetic approach with the study of contact zones can help to overcome such difficulties. The Podarcis hispanicus species complex has proven to be prosperous in independent evolutionary units, sometimes associated with cryptic diversity. Previous studies have revealed that one of the species of this complex, P. guadarramae, comprises two deeply divergent yet morphologically indistinguishable evolutionary units, currently regarded as subspecies (P. g. guadarramae and P. g. lusitanicus). In this study we used molecular data to address the systematics of the two lineages of Podarcis guadarramae and the closely related P. bocagei. Firstly, we reconstructed the species tree of these three and two additional taxa based on 30 nuclear loci using the multispecies coalescent with and without gene flow. Secondly, we used SNPs obtained from RADseq data to analyze the population structure across the distribution limits P. g. lusitanicus and P. g. guadarramae, and for comparison, a contact zone between P. bocagei and P. g. lusitanicus. Nuclear phylogenetic relationships between these three taxa are clearly difficult to determine due to the influence of gene flow, but our results give little support to the monophyly of P. guadarramae, potentially due to a nearly simultaneous divergence between them. Genetic structure and geographic cline analysis revealed that the two lineages of P. guadarramae replace each other abruptly across the sampled region and that gene flow is geographically restricted, implying the existence of strong reproductive isolation. Podarcis bocagei and P. g. lusitanicus show a similar degree of genetic differentiation and reproductive isolation, with very low levels of admixture in syntopy. These results support that all three forms are equally differentiated and reproductively isolated. In consequence, we conclude that the two former subspecies of Podarcis guadarramae constitute valid, yet cryptic species, that should be referred to as P. lusitanicus and P. guadarramae.
Collapse
Affiliation(s)
- Guilherme Caeiro-Dias
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO/InBio, Vairão, Portugal.
| | - Sara Rocha
- CINBIO, Universidade de Vigo, 36310 Vigo, España; Instituto de Investigación Sanitaria Galicia Sur, Hospital Álvaro Cunqueiro, 36213 Vigo, España
| | - Alvarina Couto
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO/InBio, Vairão, Portugal
| | - Carolina Pereira
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO/InBio, Vairão, Portugal
| | - Alan Brelsford
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland; Biology Department, University of California Riverside, CA, USA
| | | | - Catarina Pinho
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO/InBio, Vairão, Portugal
| |
Collapse
|
35
|
Torres-Martínez L, Porter SS, Wendlandt C, Purcell J, Ortiz-Barbosa G, Rothschild J, Lampe M, Warisha F, Le T, Weisberg AJ, Chang JH, Sachs JL. Evolution of specialization in a plant-microbial mutualism is explained by the oscillation theory of speciation. Evolution 2021; 75:1070-1086. [PMID: 33782951 DOI: 10.1111/evo.14222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/18/2021] [Accepted: 03/14/2021] [Indexed: 12/11/2022]
Abstract
Specialization in mutualisms is thought to be a major driver of diversification, but few studies have explored how novel specialization evolves, or its relation to the evolution of other niche axes. A fundamental question is whether generalist interactions evolve to become more specialized (i.e., oscillation hypothesis) or if partner switches evolve without any change in niche breadth (i.e., musical chairs hypothesis). We examined alternative models for the evolution of specialization by estimating the mutualistic, climatic, and edaphic niche breadths of sister plant species, combining phylogenetic, environmental, and experimental data on Acmispon strigosus and Acmispon wrangelianus genotypes across their overlapping ranges in California. We found that specialization along all three niche axes was asymmetric across species, such that the species with broader climatic and edaphic niches, Acmispon strigosus, was also able to gain benefit from and invest in associating with a broader set of microbial mutualists. Our data are consistent with the oscillation model of specialization, and a parallel narrowing of the edaphic, climatic, and mutualistic dimensions of the host species niche. Our findings provide novel evidence that the evolution of specialization in mutualism is accompanied by specialization in other niche dimensions.
Collapse
Affiliation(s)
- Lorena Torres-Martínez
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, 92521
| | - Stephanie S Porter
- School of Biological Sciences, Washington State University, Vancouver, Washington, 98686, United States of America
| | - Camille Wendlandt
- School of Biological Sciences, Washington State University, Vancouver, Washington, 98686, United States of America
| | - Jessica Purcell
- Department of Entomology, University of California, Riverside, California, 92521, United States of America
| | - Gabriel Ortiz-Barbosa
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, 92521, United States of America
| | - Jacob Rothschild
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, 92521
| | - Mathew Lampe
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, 92521
| | - Farsamin Warisha
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, 92521
| | - Tram Le
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, 92521
| | - Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, 97331, United States of America
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, 97331, United States of America
| | - Joel L Sachs
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, 92521.,Department of Microbiology and Plant Pathology, University of California, Riverside, California, 92521, United States of America.,Institute of Integrative Genome Biology, University of California, Riverside, California, 92521, United States of America
| |
Collapse
|
36
|
Ma WJ, Veltsos P. The Diversity and Evolution of Sex Chromosomes in Frogs. Genes (Basel) 2021; 12:483. [PMID: 33810524 PMCID: PMC8067296 DOI: 10.3390/genes12040483] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 11/30/2022] Open
Abstract
Frogs are ideal organisms for studying sex chromosome evolution because of their diversity in sex chromosome differentiation and sex-determination systems. We review 222 anuran frogs, spanning ~220 Myr of divergence, with characterized sex chromosomes, and discuss their evolution, phylogenetic distribution and transitions between homomorphic and heteromorphic states, as well as between sex-determination systems. Most (~75%) anurans have homomorphic sex chromosomes, with XY systems being three times more common than ZW systems. Most remaining anurans (~25%) have heteromorphic sex chromosomes, with XY and ZW systems almost equally represented. There are Y-autosome fusions in 11 species, and no W-/Z-/X-autosome fusions are known. The phylogeny represents at least 19 transitions between sex-determination systems and at least 16 cases of independent evolution of heteromorphic sex chromosomes from homomorphy, the likely ancestral state. Five lineages mostly have heteromorphic sex chromosomes, which might have evolved due to demographic and sexual selection attributes of those lineages. Males do not recombine over most of their genome, regardless of which is the heterogametic sex. Nevertheless, telomere-restricted recombination between ZW chromosomes has evolved at least once. More comparative genomic studies are needed to understand the evolutionary trajectories of sex chromosomes among frog lineages, especially in the ZW systems.
Collapse
Affiliation(s)
- Wen-Juan Ma
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Paris Veltsos
- Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA;
| |
Collapse
|
37
|
Caeiro-Dias G, Brelsford A, Kaliontzopoulou A, Meneses-Ribeiro M, Crochet PA, Pinho C. Variable levels of introgression between the endangered Podarcis carbonelli and highly divergent congeneric species. Heredity (Edinb) 2021; 126:463-476. [PMID: 33199832 PMCID: PMC8027454 DOI: 10.1038/s41437-020-00386-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 11/08/2022] Open
Abstract
Recent empirical studies have demonstrated that speciation with gene flow is more common than previously thought. From a conservation perspective, the potential negative effects of hybridization raise concerns on the genetic integrity of endangered species. However, introgressive hybridization has also been growingly recognized as a source of diversity and new advantageous alleles. Carbonell's wall lizard (Podarcis carbonelli) is an endangered species whose distribution overlaps with four other congeneric species. Our goal here was to determine whether P. carbonelli is completely reproductively isolated from its congeners and to evaluate the relevance of hybridization and interspecific gene flow for developing a conservation plan. We used restriction site associated DNA (RAD) sequencing to discover SNPs in samples from four contact zones between P. carbonelli and four other species. Principal component analysis, multilocus genotype assignment and interspecific heterozygosity suggest incomplete reproductive isolation and ongoing gene flow between species. However, hybridization dynamics vary across all pairs, suggesting complex interactions between multiple intrinsic and extrinsic barriers. Despite seemingly ubiquitous interspecific gene flow, we found evidence of strong reproductive isolation across most contact zones. Instead, indirect effects of hybridization like waste of reproductive effort in small isolated populations may be more problematic. Our results highlight the need to further evaluate the consequences of introgression for P. carbonelli, both on a geographic and genomic level and included in a comprehensive and urgently needed conservation plan. Besides, those findings will add important insights on the potential effects of hybridization and introgression for endangered species.
Collapse
Affiliation(s)
- Guilherme Caeiro-Dias
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO/InBIO, Universidade do Porto, Vairão, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.
- CEFE, CNRS, Université de Montpellier, EPHE, IRD, Université Paul Valéry Montpellier 3, Montpellier, France.
| | - Alan Brelsford
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Biology Department, University of California Riverside, Riverside, CA, USA
| | - Antigoni Kaliontzopoulou
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO/InBIO, Universidade do Porto, Vairão, Portugal
| | - Mariana Meneses-Ribeiro
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO/InBIO, Universidade do Porto, Vairão, Portugal
| | - Pierre-André Crochet
- CEFE, CNRS, Université de Montpellier, EPHE, IRD, Université Paul Valéry Montpellier 3, Montpellier, France
| | - Catarina Pinho
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO/InBIO, Universidade do Porto, Vairão, Portugal
| |
Collapse
|
38
|
Capture and return of sexual genomes by hybridogenetic frogs provide clonal genome enrichment in a sexual species. Sci Rep 2021; 11:1633. [PMID: 33452404 PMCID: PMC7810977 DOI: 10.1038/s41598-021-81240-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 01/04/2021] [Indexed: 01/29/2023] Open
Abstract
Hybridogenesis is a reproductive tool for sexual parasitism. Hybridogenetic hybrids use gametes from their sexual host for their own reproduction, but sexual species gain no benefit from such matings as their genome is later eliminated. Here, we examine the presence of sexual parasitism in water frogs through crossing experiments and genome-wide data. We specifically focus on the famous Central-European populations where Pelophylax esculentus males (hybrids of P. ridibundus and P. lessonae) live with P. ridibundus. We identified a system where the hybrids commonly produce two types of clonal gametes (hybrid amphispermy). The haploid lessonae genome is clonally inherited from generation to generation and assures the maintenance of hybrids through a process, in which lessonae sperm fertilize P. ridibundus eggs. The haploid ridibundus genome in hybrids received from P. ridibundus a generation ago, is perpetuated as clonal ridibundus sperm and used to fertilize P. ridibundus eggs, yielding female P. ridibundus progeny. These results imply animal reproduction in which hybridogenetic taxa are not only sexual parasites, but also participate in the formation of a sexual taxon in a remarkable way. This occurs through a process by which sexual gametes are being captured, converted to clones, and returned to sexual populations in one generation.
Collapse
|
39
|
Dufresnes C, Rodrigues N, Savary R. Slow and steady wins the race: contrasted phylogeographic signatures in two Alpine amphibians. Integr Zool 2021; 17:181-190. [PMID: 33433936 DOI: 10.1111/1749-4877.12518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A deeper phylogeographic structure is expected for slow-dispersing habitat specialists compared to widespread adaptable species, especially in topographically complex regions. We tested this classic assumption by comparing the genomic (RAD-sequencing) phylogeographies of two amphibians inhabiting the Swiss Alps: the mobile, cosmopolitan common frog (Rana temporaria) against the stationary, mountain endemic Alpine salamander (Salamandra atra). Our results ran opposite of predictions: the frog displayed significantly higher genetic divergences and lower within-population variation compared to the salamander. This implies a prominent role for their distinctive glacial histories in shaping intraspecific diversity and structure: diversification and recolonization from several circum-Alpine micro-refugia for the frog versus a single refugium for the salamander, potentially combined with better population connectivity and stability. These striking differences emphasize the great variability of phylogeographic responses to the Quaternary glaciations, hence the complexity to predict general patterns of genetic diversity at the regional scale, and the forces that underlie them.
Collapse
Affiliation(s)
- Christophe Dufresnes
- LASER, College of Biology and Environment, Nanjing Forestry University, Nanjing, China
| | - Nicolas Rodrigues
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
| | - Romain Savary
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
40
|
Dufresnes C, Brelsford A, Baier F, Perrin N. When Sex Chromosomes Recombine Only in the Heterogametic Sex: Heterochiasmy and Heterogamety in Hyla Tree Frogs. Mol Biol Evol 2021; 38:192-200. [PMID: 32761205 PMCID: PMC7782862 DOI: 10.1093/molbev/msaa201] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sex chromosomes are classically predicted to stop recombining in the heterogametic sex, thereby enforcing linkage between sex-determining (SD) and sex-antagonistic (SA) genes. With the same rationale, a pre-existing sex asymmetry in recombination is expected to affect the evolution of heterogamety, for example, a low rate of male recombination might favor transitions to XY systems, by generating immediate linkage between SD and SA genes. Furthermore, the accumulation of deleterious mutations on nonrecombining Y chromosomes should favor XY-to-XY transitions (which discard the decayed Y), but disfavor XY-to-ZW transitions (which fix the decayed Y as an autosome). Like many anuran amphibians, Hyla tree frogs have been shown to display drastic heterochiasmy (males only recombine at chromosome tips) and are typically XY, which seems to fit the above expectations. Instead, here we demonstrate that two species, H. sarda and H. savignyi, share a common ZW system since at least 11 Ma. Surprisingly, the typical pattern of restricted male recombination has been maintained since then, despite female heterogamety. Hence, sex chromosomes recombine freely in ZW females, not in ZZ males. This suggests that heterochiasmy does not constrain heterogamety (and vice versa), and that the role of SA genes in the evolution of sex chromosomes might have been overemphasized.
Collapse
Affiliation(s)
- Christophe Dufresnes
- LASER, College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Alan Brelsford
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA
| | - Felix Baier
- Department of Molecular and Cellular Biology, Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA
| | - Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
41
|
Kirschel ANG, Nwankwo EC, Pierce DK, Lukhele SM, Moysi M, Ogolowa BO, Hayes SC, Monadjem A, Brelsford A. CYP2J19 mediates carotenoid colour introgression across a natural avian hybrid zone. Mol Ecol 2020; 29:4970-4984. [PMID: 33058329 DOI: 10.1111/mec.15691] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
Abstract
It has long been of interest to identify the phenotypic traits that mediate reproductive isolation between related species, and more recently, the genes that underpin them. Much work has focused on identifying genes associated with animal colour, with the candidate gene CYP2J19 identified in laboratory studies as the ketolase converting yellow dietary carotenoids to red ketocarotenoids in birds with red pigments. However, evidence that CYP2J19 explains variation between red and yellow feather coloration in wild populations of birds is lacking. Hybrid zones provide the opportunity to identify genes associated with specific traits. Here we investigate genomic regions associated with colour in red-fronted and yellow-fronted tinkerbirds across a hybrid zone in southern Africa. We sampled 85 individuals, measuring spectral reflectance of forecrown feathers and scoring colours from photographs, while testing for carotenoid presence with Raman spectroscopy. We performed a genome-wide association study to identify associations with carotenoid-based coloration, using double-digest RAD sequencing aligned to a short-read whole genome of a Pogoniulus tinkerbird. Admixture mapping using 104,933 single nucleotide polymorphisms (SNPs) identified a region of chromosome 8 that includes CYP2J19 as the only locus with more than two SNPs significantly associated with both crown hue and crown score, while Raman spectra provided evidence of ketocarotenoids in red feathers. Asymmetric backcrossing in the hybrid zone suggests that yellow-fronted females mate more often with red-fronted males than vice versa. Female red-fronted tinkerbirds mating assortatively with red-crowned males is consistent with the hypothesis that converted carotenoids are an honest signal of quality.
Collapse
Affiliation(s)
| | - Emmanuel C Nwankwo
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Daniel K Pierce
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| | - Sifiso M Lukhele
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Michaella Moysi
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Bridget O Ogolowa
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Sophia C Hayes
- Department of Chemistry, University of Cyprus, Nicosia, Cyprus
| | - Ara Monadjem
- Department of Biological Sciences, University of Eswatini, Kwaluseni, Eswatini.,Department of Zoology & Entomology, Mammal Research Institute, University of Pretoria, Hatfield, South Africa
| | - Alan Brelsford
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
42
|
Furman BLS, Cauret CMS, Knytl M, Song XY, Premachandra T, Ofori-Boateng C, Jordan DC, Horb ME, Evans BJ. A frog with three sex chromosomes that co-mingle together in nature: Xenopus tropicalis has a degenerate W and a Y that evolved from a Z chromosome. PLoS Genet 2020; 16:e1009121. [PMID: 33166278 PMCID: PMC7652241 DOI: 10.1371/journal.pgen.1009121] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/16/2020] [Indexed: 11/18/2022] Open
Abstract
In many species, sexual differentiation is a vital prelude to reproduction, and disruption of this process can have severe fitness effects, including sterility. It is thus interesting that genetic systems governing sexual differentiation vary among-and even within-species. To understand these systems more, we investigated a rare example of a frog with three sex chromosomes: the Western clawed frog, Xenopus tropicalis. We demonstrate that natural populations from the western and eastern edges of Ghana have a young Y chromosome, and that a male-determining factor on this Y chromosome is in a very similar genomic location as a previously known female-determining factor on the W chromosome. Nucleotide polymorphism of expressed transcripts suggests genetic degeneration on the W chromosome, emergence of a new Y chromosome from an ancestral Z chromosome, and natural co-mingling of the W, Z, and Y chromosomes in the same population. Compared to the rest of the genome, a small sex-associated portion of the sex chromosomes has a 50-fold enrichment of transcripts with male-biased expression during early gonadal differentiation. Additionally, X. tropicalis has sex-differences in the rates and genomic locations of recombination events during gametogenesis that are similar to at least two other Xenopus species, which suggests that sex differences in recombination are genus-wide. These findings are consistent with theoretical expectations associated with recombination suppression on sex chromosomes, demonstrate that several characteristics of old and established sex chromosomes (e.g., nucleotide divergence, sex biased expression) can arise well before sex chromosomes become cytogenetically distinguished, and show how these characteristics can have lingering consequences that are carried forward through sex chromosome turnovers.
Collapse
Affiliation(s)
- Benjamin L. S. Furman
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
- Department of Zoology, University of British Columbia, 6270 University Blvd Vancouver, British Columbia, V6T 1Z4 Canada
| | - Caroline M. S. Cauret
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Martin Knytl
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
- Department of Cell Biology, Charles University, 7 Vinicna Street, Prague, 12843, Czech Republic
| | - Xue-Ying Song
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Tharindu Premachandra
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | | | - Danielle C. Jordan
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, 7 MBL St, Woods Hole, MA 02543 USA
| | - Marko E. Horb
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, 7 MBL St, Woods Hole, MA 02543 USA
| | - Ben J. Evans
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
43
|
Farhat S, Tanguy A, Pales Espinosa E, Guo X, Boutet I, Smolowitz R, Murphy D, Rivara GJ, Allam B. Identification of variants associated with hard clam, Mercenaria mercenaria, resistance to Quahog Parasite Unknown disease. Genomics 2020; 112:4887-4896. [PMID: 32890702 DOI: 10.1016/j.ygeno.2020.08.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/12/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
Severe losses in aquacultured and wild hard clam (Mercenaria mercenaria) stocks have been previously reported in the northeastern United States due to a protistan parasite called QPX (Quahog Parasite Unknown). Previous work demonstrated that clam resistance to QPX is under genetic control. This study identifies single nucleotide polymorphism (SNP) associated with clam survivorship from two geographically segregated populations, both deployed in an enzootic site. The analysis contrasted samples collected before and after undergoing QPX-related mortalities and relied on a robust draft clam genome assembly. ~200 genes displayed significant variant enrichment at each sampling point in both populations, including 18 genes shared between both populations. Markers from both populations were identified in genes related to apoptosis pathways, protein-protein interaction, receptors, and signaling. This research begins to identify genetic markers associated with clam resistance to QPX disease, leading the way for the development of resistant clam stocks through marker-assisted selection.
Collapse
Affiliation(s)
- Sarah Farhat
- Marine Animal Disease Laboratory, School of Marine and Atmospheric Sciences, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794-5000, USA
| | - Arnaud Tanguy
- Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Sorbonne Université, Place Georges Teissier, 29680 Roscoff, France
| | - Emmanuelle Pales Espinosa
- Marine Animal Disease Laboratory, School of Marine and Atmospheric Sciences, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794-5000, USA
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, 6959 Miller Avenue, Port Norris, NJ 08349, USA
| | - Isabelle Boutet
- Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Sorbonne Université, Place Georges Teissier, 29680 Roscoff, France
| | - Roxanna Smolowitz
- Roger Williams University, Department of Biology, Marine Biology, and Environmental Science, 1 Old Ferry Rd, Bristol, RI 02809, USA
| | - Diane Murphy
- Cape Cod Cooperative Extension, 3195 Main St, Barnstable, MA 02630, NY 1197, USA
| | - Gregg J Rivara
- Cornell University Cooperative Extension of Suffolk County, 3690 Cedar Beach Rd, Southold, NY 11971, USA
| | - Bassem Allam
- Marine Animal Disease Laboratory, School of Marine and Atmospheric Sciences, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794-5000, USA.
| |
Collapse
|
44
|
Dufresnes C, Litvinchuk SN, Rozenblut-Kościsty B, Rodrigues N, Perrin N, Crochet PA, Jeffries DL. Hybridization and introgression between toads with different sex chromosome systems. Evol Lett 2020; 4:444-456. [PMID: 33014420 PMCID: PMC7523563 DOI: 10.1002/evl3.191] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 01/26/2023] Open
Abstract
The growing interest in the lability of sex determination in non‐model vertebrates such as amphibians and fishes has revealed high rates of sex chromosome turnovers among closely related species of the same clade. Can such lineages hybridize and admix with different sex‐determining systems, or could the changes have precipitated their speciation? We addressed these questions in incipient species of toads (Bufonidae), where we identified a heterogametic transition and characterized their hybrid zone with genome‐wide markers (RADseq). Adult and sibship data confirmed that the common toad B. bufo is female heterogametic (ZW), while its sister species the spined toad B. spinosus is male heterogametic (XY). Analysis of a fine scale transect across their parapatric ranges in southeastern France unveiled a narrow tension zone (∼10 km), with asymmetric mitochondrial and nuclear admixture over hundreds of kilometers southward and northward, respectively. The geographic extent of introgression is consistent with an expansion of B. spinosus across B. bufo’s former ranges in Mediterranean France, as also suggested by species distribution models. However, widespread cyto‐nuclear discordances (B. spinosus backrosses carrying B. bufo mtDNA) run against predictions from the dominance effects of Haldane's rule, perhaps because Y and W heterogametologs are not degenerated. Common and spined toads can thus successfully cross‐breed despite fundamental differences in their sex determination mechanisms, but remain partially separated by reproductive barriers. Whether and how the interactions of their XY and ZW genes contribute to these barriers shall provide novel insights on the debated role of labile sex chromosomes in speciation.
Collapse
Affiliation(s)
- Christophe Dufresnes
- LASER College of Biology and the Environment Nanjing Forestry University Nanjing People's Republic of China.,Department of Animal and Plant Sciences University of Sheffield Sheffield United Kingdom
| | - Spartak N Litvinchuk
- Institute of Cytology Russian Academy of Sciences Saint Petersburg Russia.,Dagestan State University Makhachkala Russia
| | - Beata Rozenblut-Kościsty
- Department of Evolutionary Biology and Conservation of Vertebrates Faculty of Biological Sciences University of Wrocław Wrocław Poland
| | - Nicolas Rodrigues
- Department of Ecology & Evolution University of Lausanne Lausanne Switzerland
| | - Nicolas Perrin
- Department of Ecology & Evolution University of Lausanne Lausanne Switzerland
| | - Pierre-André Crochet
- CEFE Univ. Montpellier, CNRS, EPHE, IRD Univ Paul Valéry Montpellier 3 Montpellier France
| | - Daniel L Jeffries
- Department of Ecology & Evolution University of Lausanne Lausanne Switzerland
| |
Collapse
|
45
|
Determinants of genetic variation across eco-evolutionary scales in pinnipeds. Nat Ecol Evol 2020; 4:1095-1104. [PMID: 32514167 DOI: 10.1038/s41559-020-1215-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 04/28/2020] [Indexed: 11/09/2022]
Abstract
The effective size of a population (Ne), which determines its level of neutral variability, is a key evolutionary parameter. Ne can substantially depart from census sizes of present-day breeding populations (NC) as a result of past demographic changes, variation in life-history traits and selection at linked sites. Using genome-wide data we estimated the long-term coalescent Ne for 17 pinniped species represented by 36 population samples (total n = 458 individuals). Ne estimates ranged from 8,936 to 91,178, were highly consistent within (sub)species and showed a strong positive correlation with NC ([Formula: see text] = 0.59; P = 0.0002). Ne/NC ratios were low (mean, 0.31; median, 0.13) and co-varied strongly with demographic history and, to a lesser degree, with species' ecological and life-history variables such as breeding habitat. Residual variation in Ne/NC, after controlling for past demographic fluctuations, contained information about recent population size changes during the Anthropocene. Specifically, species of conservation concern typically had positive residuals indicative of a smaller contemporary NC than would be expected from their long-term Ne. This study highlights the value of comparative population genomic analyses for gauging the evolutionary processes governing genetic variation in natural populations, and provides a framework for identifying populations deserving closer conservation attention.
Collapse
|
46
|
Huang Y, Morrison GR, Brelsford A, Franklin J, Jolles DD, Keeley JE, Parker VT, Saavedra N, Sanders AC, Stoughton TR, Wahlert GA, Litt A. Subspecies differentiation in an enigmatic chaparral shrub species. AMERICAN JOURNAL OF BOTANY 2020; 107:923-940. [PMID: 32498125 DOI: 10.1002/ajb2.1496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 03/12/2020] [Indexed: 06/11/2023]
Abstract
PREMISE Delimiting biodiversity units is difficult in organisms in which differentiation is obscured by hybridization, plasticity, and other factors that blur phenotypic boundaries. Such work is more complicated when the focal units are subspecies, the definition of which has not been broadly explored in the era of modern genetic methods. Eastwood manzanita (Arctostaphylos glandulosa Eastw.) is a widely distributed and morphologically complex chaparral shrub species with much subspecific variation, which has proven challenging to categorize. Currently 10 subspecies are recognized, however, many of them are not geographically segregated, and morphological intermediates are common. Subspecies delimitation is of particular importance in this species because two of the subspecies are rare. The goal of this study was to apply an evolutionary definition of "subspecies" to characterize structure within Eastwood manzanita. METHODS We used publicly available geospatial environmental data and reduced-representation genome sequencing to characterize environmental and genetic differentiation among subspecies. In addition, we tested whether subspecies could be differentiated by environmentally associated genetic variation. RESULTS Our analyses do not show genetic differentiation among subspecies of Eastwood manzanita, with the exception of one of the two rare subspecies. In addition, our environmental analyses did not show ecological differentiation, though limitations of the analysis prevent strong conclusions. CONCLUSIONS Genetic structure within Eastwood manzanita does not correspond to current subspecies circumscriptions, but rather reflects geographic distribution. Our study suggests that subspecies concepts need to be reconsidered in long-lived plant species, especially in the age of next-generation sequencing.
Collapse
Affiliation(s)
- Yi Huang
- University of California, Riverside, Riverside, CA, 92521
| | | | - Alan Brelsford
- University of California, Riverside, Riverside, CA, 92521
| | - Janet Franklin
- University of California, Riverside, Riverside, CA, 92521
| | | | - Jon E Keeley
- U.S. Geological Survey Western Ecological Research Center, Three Rivers, CA, 93271
| | | | | | | | | | | | - Amy Litt
- University of California, Riverside, Riverside, CA, 92521
| |
Collapse
|
47
|
Furman BLS, Metzger DCH, Darolti I, Wright AE, Sandkam BA, Almeida P, Shu JJ, Mank JE. Sex Chromosome Evolution: So Many Exceptions to the Rules. Genome Biol Evol 2020; 12:750-763. [PMID: 32315410 PMCID: PMC7268786 DOI: 10.1093/gbe/evaa081] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2020] [Indexed: 01/10/2023] Open
Abstract
Genomic analysis of many nonmodel species has uncovered an incredible diversity of sex chromosome systems, making it possible to empirically test the rich body of evolutionary theory that describes each stage of sex chromosome evolution. Classic theory predicts that sex chromosomes originate from a pair of homologous autosomes and recombination between them is suppressed via inversions to resolve sexual conflict. The resulting degradation of the Y chromosome gene content creates the need for dosage compensation in the heterogametic sex. Sex chromosome theory also implies a linear process, starting from sex chromosome origin and progressing to heteromorphism. Despite many convergent genomic patterns exhibited by independently evolved sex chromosome systems, and many case studies supporting these theoretical predictions, emerging data provide numerous interesting exceptions to these long-standing theories, and suggest that the remarkable diversity of sex chromosomes is matched by a similar diversity in their evolution. For example, it is clear that sex chromosome pairs are not always derived from homologous autosomes. In addition, both the cause and the mechanism of recombination suppression between sex chromosome pairs remain unclear, and it may be that the spread of recombination suppression is a more gradual process than previously thought. It is also clear that dosage compensation can be achieved in many ways, and displays a range of efficacy in different systems. Finally, the remarkable turnover of sex chromosomes in many systems, as well as variation in the rate of sex chromosome divergence, suggest that assumptions about the inevitable linearity of sex chromosome evolution are not always empirically supported, and the drivers of the birth-death cycle of sex chromosome evolution remain to be elucidated. Here, we concentrate on how the diversity in sex chromosomes across taxa highlights an equal diversity in each stage of sex chromosome evolution.
Collapse
Affiliation(s)
- Benjamin L S Furman
- Beaty Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - David C H Metzger
- Beaty Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Iulia Darolti
- Beaty Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alison E Wright
- Department of Animal and Plant Sciences, University of Sheffield, United Kingdom
| | - Benjamin A Sandkam
- Beaty Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pedro Almeida
- Department of Genetics, Evolution and Environment, University College London, United Kingdom
| | - Jacelyn J Shu
- Beaty Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Judith E Mank
- Beaty Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Genetics, Evolution and Environment, University College London, United Kingdom
| |
Collapse
|
48
|
Le Cam S, Daguin‐Thiébaut C, Bouchemousse S, Engelen AH, Mieszkowska N, Viard F. A genome-wide investigation of the worldwide invader Sargassum muticum shows high success albeit (almost) no genetic diversity. Evol Appl 2020; 13:500-514. [PMID: 32431732 PMCID: PMC7045713 DOI: 10.1111/eva.12837] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/10/2019] [Accepted: 05/24/2019] [Indexed: 12/31/2022] Open
Abstract
Twenty years of genetic studies of marine invaders have shown that successful invaders are often characterized by native and introduced populations displaying similar levels of genetic diversity. This pattern is presumably due to high propagule pressure and repeated introductions. The opposite pattern is reported in this study of the brown seaweed, Sargassum muticum, an emblematic species for circumglobal invasions. Albeit demonstrating polymorphism in the native range, microsatellites failed to detect any genetic variation over 1,269 individuals sampled from 46 locations over the Pacific-Atlantic introduction range. Single-nucleotide polymorphisms (SNPs) obtained from ddRAD sequencing revealed some genetic variation, but confirmed severe founder events in both the Pacific and Atlantic introduction ranges. Our study thus exemplifies the need for extreme caution in interpreting neutral genetic diversity as a proxy for invasive potential. Our results confirm a previously hypothesized transoceanic secondary introduction from NE Pacific to Europe. However, the SNP panel unexpectedly revealed two additional distinct genetic origins of introductions. Also, conversely to scenarios based on historical records, southern rather than northern NE Pacific populations could have seeded most of the European populations. Finally, the most recently introduced populations showed the lowest selfing rates, suggesting higher levels of recombination might be beneficial at the early stage of the introduction process (i.e., facilitating evolutionary novelties), whereas uniparental reproduction might be favored later in sustainably established populations (i.e., sustaining local adaptation).
Collapse
Affiliation(s)
- Sabrina Le Cam
- Station Biologique de Roscoff, CNRSLaboratory Adaptation & Diversity in Marine Environments (UMR 7144 CNRS SU), Sorbonne UniversitéRoscoffFrance
| | - Claire Daguin‐Thiébaut
- Station Biologique de Roscoff, CNRSLaboratory Adaptation & Diversity in Marine Environments (UMR 7144 CNRS SU), Sorbonne UniversitéRoscoffFrance
| | - Sarah Bouchemousse
- Station Biologique de Roscoff, CNRSLaboratory Adaptation & Diversity in Marine Environments (UMR 7144 CNRS SU), Sorbonne UniversitéRoscoffFrance
| | | | - Nova Mieszkowska
- Marine Biological Association of the U.K. (MBA)PlymouthUK
- School of Environmental SciencesUniversity of LiverpoolLiverpoolUK
| | - Frédérique Viard
- Station Biologique de Roscoff, CNRSLaboratory Adaptation & Diversity in Marine Environments (UMR 7144 CNRS SU), Sorbonne UniversitéRoscoffFrance
| |
Collapse
|
49
|
Dufresnes C, Nicieza AG, Litvinchuk SN, Rodrigues N, Jeffries DL, Vences M, Perrin N, Martínez-Solano Í. Are glacial refugia hotspots of speciation and cytonuclear discordances? Answers from the genomic phylogeography of Spanish common frogs. Mol Ecol 2020; 29:986-1000. [PMID: 32012388 DOI: 10.1111/mec.15368] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/16/2022]
Abstract
Subdivided Pleistocene glacial refugia, best known as "refugia within refugia", provided opportunities for diverging populations to evolve into incipient species and/or to hybridize and merge following range shifts tracking the climatic fluctuations, potentially promoting extensive cytonuclear discordances and "ghost" mtDNA lineages. Here, we tested which of these opposing evolutionary outcomes prevails in northern Iberian areas hosting multiple historical refugia of common frogs (Rana cf. temporaria), based on a genomic phylogeography approach (mtDNA barcoding and RAD-sequencing). We found evidence for both incipient speciation events and massive cytonuclear discordances. On the one hand, populations from northwestern Spain (Galicia and Asturias, assigned to the regional endemic R. parvipalmata), are deeply-diverged at mitochondrial and nuclear genomes (~4 My of independent evolution), and barely admix with northeastern populations (assigned to R. temporaria sensu stricto) across a narrow hybrid zone (~25 km) located in the Cantabrian Mountains, suggesting that they represent distinct species. On the other hand, the most divergent mtDNA clade, widespread in Cantabria and the Basque country, shares its nuclear genome with other R. temporaria s. s. lineages. Patterns of population expansions and isolation-by-distance among these populations are consistent with past mitochondrial capture and/or drift in generating and maintaining this ghost mitochondrial lineage. This remarkable case study emphasizes the complex evolutionary history that shaped the present genetic diversity of refugial populations, and stresses the need to revisit their phylogeography by genomic approaches, in order to make informed taxonomic inferences.
Collapse
Affiliation(s)
- Christophe Dufresnes
- LASER, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Alfredo G Nicieza
- Department of Organisms and Systems Biology, University of Oviedo, Oviedo, Spain.,Research Unit of Biodiversity (UMIB, CSIC-UO-PA), Mieres, Spain
| | - Spartak N Litvinchuk
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia.,Dagestan State University, Makhachkala, Russia
| | - Nicolas Rodrigues
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
| | - Daniel L Jeffries
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
| | - Miguel Vences
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nicolas Perrin
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
| | - Íñigo Martínez-Solano
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| |
Collapse
|
50
|
Abstract
Sex differences in overall recombination rates are well known, but little theoretical or empirical attention has been given to how and why sexes differ in their recombination landscapes: the patterns of recombination along chromosomes. In the first scientific review of this phenomenon, we find that recombination is biased toward telomeres in males and more uniformly distributed in females in most vertebrates and many other eukaryotes. Notable exceptions to this pattern exist, however. Fine-scale recombination patterns also frequently differ between males and females. The molecular mechanisms responsible for sex differences remain unclear, but chromatin landscapes play a role. Why these sex differences evolve also is unclear. Hypotheses suggest that they may result from sexually antagonistic selection acting on coding genes and their regulatory elements, meiotic drive in females, selection during the haploid phase of the life cycle, selection against aneuploidy, or mechanistic constraints. No single hypothesis, however, can adequately explain the evolution of sex differences in all cases. Sex-specific recombination landscapes have important consequences for population differentiation and sex chromosome evolution.
Collapse
Affiliation(s)
- Jason M. Sardell
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712
| | - Mark Kirkpatrick
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|