1
|
Nomura S, Akagawa H, Yamaguchi K, Azuma K, Nakamura A, Fukui A, Matsuzawa F, Aihara Y, Ishikawa T, Moteki Y, Chiba K, Hashimoto K, Morita S, Ishiguro T, Okada Y, Vetiska S, Andrade-Barazarte H, Radovanovic I, Kawashima A, Kawamata T. Difference in Clinical Phenotype, Mutation Position, and Structural Change of RNF213 Rare Variants Between Pediatric and Adult Japanese Patients with Moyamoya Disease. Transl Stroke Res 2024; 15:1142-1153. [PMID: 37768541 DOI: 10.1007/s12975-023-01194-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
It is unclear how rare RNF213 variants, other than the p.R4810K founder variant, affect the clinical phenotype or the function of RNF213 in moyamoya disease (MMD). This study included 151 Japanese patients with MMD. After performing targeted resequencing for all coding exons in RNF213, we investigated the clinical phenotype and statistically analyzed the genotype-phenotype correlation. We mapped RNF213 variants on a three-dimensional (3D) model of human RNF213 and analyzed the structural changes due to variants. The RNF213 p.R4810K homozygous variant, p.R4810K heterozygous variant, and wild type were detected in 10 (6.6%), 111 (73.5%), and 30 (19.9%) MMD patients, respectively. In addition, 15 rare variants were detected in 16 (10.6%) patients. In addition to the influence of the p.R4810K homozygous variant, the frequency of cerebral infarction at disease onset was higher in pediatric patients with other rare variants (3/6, 50.0%, P = 0.006) than in those with only the p.R4810K heterozygous variant or with no variants (2/51, 3.9%). Furthermore, on 3D modelling of RNF213, the majority of rare variants found in pediatric patients were located in the E3 module and associated with salt bridge loss, contrary to the results for adult patients. The clinical phenotype of rare RNF213 variants, mapped mutation position, and their predicted structural change differed between pediatric and adult patients with MMD. Rare RNF213 variants, in addition to the founder p.R4810K homozygous variant, can influence MMD clinical phenotypes or structural change which may contribute to the destabilization of RNF213.
Collapse
Affiliation(s)
- Shunsuke Nomura
- Department of Neurosurgery, Tokyo Women's Medical University Yachiyo Medical Center, Owadashinden, Yachiyo-Shi, Chiba, 477-96, Japan.
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan.
- Krembil Brain Institute, University Health Network, University of Toronto, 60 Leonard Ave., Toronto, ON, M5T 0S8, Canada.
| | - Hiroyuki Akagawa
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan
| | - Koji Yamaguchi
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Kenko Azuma
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan
| | - Akikazu Nakamura
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Atsushi Fukui
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | | | - Yasuo Aihara
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Tatsuya Ishikawa
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Yosuke Moteki
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Kentaro Chiba
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | | | - Shuhei Morita
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Taichi Ishiguro
- Department of Neurosurgery, Tokyo Women's Medical University Yachiyo Medical Center, Owadashinden, Yachiyo-Shi, Chiba, 477-96, Japan
| | - Yoshikazu Okada
- Department of Neurosurgery, St. Luke's International Hospital, Tokyo, Japan
| | - Sandra Vetiska
- Krembil Brain Institute, University Health Network, University of Toronto, 60 Leonard Ave., Toronto, ON, M5T 0S8, Canada
| | - Hugo Andrade-Barazarte
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Ivan Radovanovic
- Krembil Brain Institute, University Health Network, University of Toronto, 60 Leonard Ave., Toronto, ON, M5T 0S8, Canada
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Akitsugu Kawashima
- Department of Neurosurgery, Tokyo Women's Medical University Yachiyo Medical Center, Owadashinden, Yachiyo-Shi, Chiba, 477-96, Japan
- Department of Neurosurgery, St. Luke's International Hospital, Tokyo, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
2
|
Gupta N, Miller E, Bhatia A, Richer J, Aviv RI, Wilson N. Imaging Review of Pediatric Monogenic CNS Vasculopathy with Genetic Correlation. Radiographics 2024; 44:e230087. [PMID: 38573816 DOI: 10.1148/rg.230087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Monogenic cerebral vasculopathy is a rare but progressively recognizable cause of pediatric cerebral vasculopathy manifesting as early as fetal life. These monogenic cerebral vasculopathies can be silent or manifest variably as fetal or neonatal distress, neurologic deficit, developmental delay, cerebral palsy, seizures, or stroke. The radiologic findings can be nonspecific, but the presence of disease-specific cerebral and extracerebral imaging features can point to a diagnosis and guide genetic testing, allowing targeted treatment. The authors review the existing literature describing the frequently encountered and rare monogenic cerebral vascular disorders affecting young patients and describe the relevant pathogenesis, with an attempt to categorize them based on the defective step in vascular homeostasis and/or signaling pathways and characteristic cerebrovascular imaging findings. The authors also highlight the role of imaging and a dedicated imaging protocol in identification of distinct cerebral and extracerebral findings crucial in the diagnostic algorithm and selection of genetic testing. Early and precise recognition of these entities allows timely intervention, preventing or delaying complications and thereby improving quality of life. It is also imperative to identify the specific pathogenic variant and pattern of inheritance for satisfactory genetic counseling and care of at-risk family members. Last, the authors present an image-based approach to these young-onset monogenic cerebral vasculopathies that is guided by the size and predominant radiologic characteristics of the affected vessel with reasonable overlap. ©RSNA, 2024 Test Your Knowledge questions for this article are available in the supplemental material.
Collapse
Affiliation(s)
- Neetika Gupta
- From the Department of Diagnostic and Interventional Radiology, Divisions of ER (N.G.) and Neuroradiology (E.M.), The Hospital for Sick Children, University of Toronto, 170 Elizabeth St, Toronto, ON, Canada M5G 1E8; Departments of Medical Imaging (N.G., N.W.) and Genetics (J.R.), Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada; Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pa (A.B.); and Department of Radiology, Radiation Oncology, and Medical Physics, Division of Neuroradiology, Civic and General Campus, University of Ottawa, The Ottawa Hospital, Ottawa, Canada (R.I.A.)
| | - Elka Miller
- From the Department of Diagnostic and Interventional Radiology, Divisions of ER (N.G.) and Neuroradiology (E.M.), The Hospital for Sick Children, University of Toronto, 170 Elizabeth St, Toronto, ON, Canada M5G 1E8; Departments of Medical Imaging (N.G., N.W.) and Genetics (J.R.), Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada; Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pa (A.B.); and Department of Radiology, Radiation Oncology, and Medical Physics, Division of Neuroradiology, Civic and General Campus, University of Ottawa, The Ottawa Hospital, Ottawa, Canada (R.I.A.)
| | - Aashim Bhatia
- From the Department of Diagnostic and Interventional Radiology, Divisions of ER (N.G.) and Neuroradiology (E.M.), The Hospital for Sick Children, University of Toronto, 170 Elizabeth St, Toronto, ON, Canada M5G 1E8; Departments of Medical Imaging (N.G., N.W.) and Genetics (J.R.), Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada; Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pa (A.B.); and Department of Radiology, Radiation Oncology, and Medical Physics, Division of Neuroradiology, Civic and General Campus, University of Ottawa, The Ottawa Hospital, Ottawa, Canada (R.I.A.)
| | - Julie Richer
- From the Department of Diagnostic and Interventional Radiology, Divisions of ER (N.G.) and Neuroradiology (E.M.), The Hospital for Sick Children, University of Toronto, 170 Elizabeth St, Toronto, ON, Canada M5G 1E8; Departments of Medical Imaging (N.G., N.W.) and Genetics (J.R.), Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada; Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pa (A.B.); and Department of Radiology, Radiation Oncology, and Medical Physics, Division of Neuroradiology, Civic and General Campus, University of Ottawa, The Ottawa Hospital, Ottawa, Canada (R.I.A.)
| | - Richard I Aviv
- From the Department of Diagnostic and Interventional Radiology, Divisions of ER (N.G.) and Neuroradiology (E.M.), The Hospital for Sick Children, University of Toronto, 170 Elizabeth St, Toronto, ON, Canada M5G 1E8; Departments of Medical Imaging (N.G., N.W.) and Genetics (J.R.), Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada; Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pa (A.B.); and Department of Radiology, Radiation Oncology, and Medical Physics, Division of Neuroradiology, Civic and General Campus, University of Ottawa, The Ottawa Hospital, Ottawa, Canada (R.I.A.)
| | - Nagwa Wilson
- From the Department of Diagnostic and Interventional Radiology, Divisions of ER (N.G.) and Neuroradiology (E.M.), The Hospital for Sick Children, University of Toronto, 170 Elizabeth St, Toronto, ON, Canada M5G 1E8; Departments of Medical Imaging (N.G., N.W.) and Genetics (J.R.), Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada; Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pa (A.B.); and Department of Radiology, Radiation Oncology, and Medical Physics, Division of Neuroradiology, Civic and General Campus, University of Ottawa, The Ottawa Hospital, Ottawa, Canada (R.I.A.)
| |
Collapse
|
3
|
Cardoso I, Pinto M, Araújo A, Vila-Real M. Rare RNF213 variant in adolescent with moyamoya disease. Rev Neurol 2023; 76:177-181. [PMID: 36843178 PMCID: PMC10364028 DOI: 10.33588/rn.7605.2021392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Indexed: 02/28/2023]
Abstract
INTRODUCTION Moyamoya disease is a progressive steno-occlusive disease of the major intracranial arteries. Affected individuals are at risk for intracranial hemorrhagic or ischemic stroke, cognitive impairment, and developmental delays. Several susceptibility genes have been identified. The p.R4810K variant in the RNF213 gene has been identified in 95% of patients with familial moyamoya disease. CASE REPORT We present the case of a 15-year-old adolescent girl who presented with chief complaints of dysgraphia, lack of coordination in the right hand, with two months of evolution. Cerebral magnetic resonance imaging revealed several ischemic lesions with different rates of evolution and magnetic resonance angiography showed multiple subocclusive stenoses. In the study of the sequences of the coding regions and intronic flanking regions (±8 bp) of the RNF213 gene, the variant c.12185G>A, p.(Arg4062Gln) was detected in heterozygosity in the RNF213 gene. This result indicates that the patient is heterozygous for the c.12185G>A, p.(Arg4062Gln) variant in the RNF213 gene. The detected variant has already been reported in the literature as a founder variant in the Asian population, associated with moyamoya syndrome. This variant is described in ClinVar as a variant of unknown clinical significance? Furthermore, it is not described in population databases (dbSNP, ESP, gnomAD). CONCLUSION To our knowledge, the p.(Arg406262Gln) variant has been reported in three Japanese moyamoya disease patients and one European. Therefore, our patient was the second European moyamoya disease patient with this variant identified.
Collapse
Affiliation(s)
- Ivana Cardoso
- Servicio de PediatríaServicio de PediatríaServicio de PediatríaVila Nova de GaiaPortugal
| | - Mariana Pinto
- Servicio de Neurorradiología. Centro Hospitalar de Vila Nova de Gaia. Vila Nova de Gaia, PortugalCentro Hospitalar de Vila Nova de GaiaCentro Hospitalar de Vila Nova de GaiaVila Nova de GaiaPortugal
| | - André Araújo
- Servicio de Neurorradiología. Centro Hospitalar de Vila Nova de Gaia. Vila Nova de Gaia, PortugalCentro Hospitalar de Vila Nova de GaiaCentro Hospitalar de Vila Nova de GaiaVila Nova de GaiaPortugal
| | - Marta Vila-Real
- Servicio de PediatríaServicio de PediatríaServicio de PediatríaVila Nova de GaiaPortugal
| |
Collapse
|
4
|
Hara S, Mukawa M, Akagawa H, Thamamongood T, Inaji M, Tanaka Y, Maehara T, Kasuya H, Nariai T. Absence of the RNF213 p.R4810K variant may indicate a severe form of pediatric moyamoya disease in Japanese patients. J Neurosurg Pediatr 2022; 29:48-56. [PMID: 34624841 DOI: 10.3171/2021.7.peds21250] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/16/2021] [Indexed: 02/01/2023]
Abstract
OBJECTIVE The authors' objective was to investigate the influence of the RNF213 p.R4810K variant on the clinical presentation and outcomes of Japanese pediatric patients with moyamoya disease. METHODS A total of 129 Japanese patients with pediatric-onset moyamoya disease (onset age ≤ 15 years) who visited the authors' department from 2012 to 2020 participated in this study. After RNF213 p.R4810K genotyping of each patient was performed, the relationship between genotype and clinical presentation or outcomes, including onset age, initial presentation, surgical outcomes, and subsequent cerebrovascular events, was evaluated. Patients without the p.R4810K variant were tested for RNF213 variants other than p.R4810K. The authors especially focused on the results of patients who presented with moyamoya disease at younger than 1 year of age (infantile onset). RESULTS Compared with the patients with heterozygous variants, patients without the p.R4810K variant were younger at onset (7.1 ± 3.7 vs 4.4 ± 0.9 years), and all 4 patients with infantile onset lacked the p.R4810K variant. A greater proportion of patients without the p.R4810K variant presented with infarction than patients with the heterozygous variant (24.0% vs 7.6%) and a decreased proportion presented with transient ischemic attack (36.0% vs 71.7%). No significant correlation was observed between p.R4810K genotype and clinical outcomes, including surgical outcomes and subsequent cerebrovascular events; however, a decreased proportion of patients without the p.R4810K variant had good surgical outcomes compared with that of patients with the heterozygous variant (76.5% vs 92.2%). Among the 25 patients without the p.R4810K variant, 8 rare variants other than p.R4810K were identified. Three of 4 patients with infantile onset had RNF213 variants other than p.R4810K, which had a more severe functional effect on this gene than p.R4810K. CONCLUSIONS Absence of the RNF213 p.R4810K variant may be a novel biomarker for identification of a severe form of pediatric moyamoya disease.
Collapse
Affiliation(s)
- Shoko Hara
- 1Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo
| | - Maki Mukawa
- 1Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo
| | - Hiroyuki Akagawa
- 2Department of Neurosurgery, Tokyo Women's Medical University Institute for Integrated Medical Sciences, Tokyo; and.,3Department of Neurosurgery, Tokyo Women's Medical University Medical Center East, Tokyo, Japan
| | | | - Motoki Inaji
- 1Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo
| | - Yoji Tanaka
- 1Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo
| | - Taketoshi Maehara
- 1Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo
| | - Hidetoshi Kasuya
- 2Department of Neurosurgery, Tokyo Women's Medical University Institute for Integrated Medical Sciences, Tokyo; and.,3Department of Neurosurgery, Tokyo Women's Medical University Medical Center East, Tokyo, Japan
| | - Tadashi Nariai
- 1Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo
| |
Collapse
|
5
|
Mossa-Basha M, Zhu C, Wu L. Vessel Wall MR Imaging in the Pediatric Head and Neck. Magn Reson Imaging Clin N Am 2021; 29:595-604. [PMID: 34717847 DOI: 10.1016/j.mric.2021.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Vessel wall MR imaging (VWI) is a technique that progressively has gained traction in clinical diagnostic applications for evaluation of intracranial and extracranial vasculopathies, with increasing use in pediatric populations. The technique has shown promise in detection, differentiation, and characterization of both inflammatory and noninflammatory vasculopathies. In this article, optimal techniques for intracranial and extracranial VWI as well as applications and value for pediatric vascular disease evaluation are discussed.
Collapse
Affiliation(s)
- Mahmud Mossa-Basha
- Department of Radiology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA.
| | - Chengcheng Zhu
- Department of Radiology, University of Washington, 325 9th Avenue, Seattle, WA 98104, USA
| | - Lei Wu
- Department of Radiology, University of Washington, 1660 South Columbian Way, Seattle, WA 98108, USA
| |
Collapse
|
6
|
Zhang X, Yin L, Jia X, Zhang Y, Liu T, Zhang L. iTRAQ-based Quantitative Proteomic Analysis of Dural Tissues Reveals Upregulated Haptoglobin to be a Potential Biomarker of Moyamoya Disease. CURR PROTEOMICS 2021. [DOI: 10.2174/1570164617666191210103652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Moyamoya Disease (MMD) is a rare cerebrovascular disease with a high rate
of disability and mortality. Immune reactions have been implicated in the pathogenesis of MMD, however,
the underlying mechanism is still unclear.
Objective:
To identify proteins related to MMD specially involved in the immunogenesis, we performed
a proteomic study.
Methods:
In this work, dural tissues or plasma from 98 patients with MMD, 17 disease controls without
MMD, and 12 healthy donors were included. Proteomic profiles of dural tissues from 4 MMD and
4 disease controls were analyzed by an isobaric tag for relative and absolute quantitation (iTRAQ)-
based proteomics. The immune-related proteins were explored by bioinformatics and the key MMDrelated
proteins were verified by western blot, multiple reaction monitoring methods, enzyme-linked
immunosorbent assay, and tissue microarray.
Results:
1,120 proteins were identified, and 82 MMD-related proteins were found with more than 1.5
fold difference compared with those in the control samples. Gene Ontology analysis showed that 29
proteins were immune-related. In particular, Haptoglobin (HP) was up-regulated in dural tissue and
plasma of MMD samples compared to the controls, and its up-regulation was found to be sex- and
MMD Suzuki grade dependent. Through Receiver Operating Characteristic (ROC) analysis, HP can
well discriminate MMD and healthy donors with the Area Under the Curve (AUC) of 0.953.
Conclusion:
We identified the biggest protein database of the dura mater. 29 out of 82 differentially
expressed proteins in MMD are involved in the immune process. Of which, HP was up-regulated in
dural tissue and plasma of MMD, with sex- and MMD Suzuki grade-dependence. HP might be a potential
biomarker of MMD.
Collapse
Affiliation(s)
- Xiaojun Zhang
- The 85th Hospital of the Chinese People's Liberation Army, Shanghai 200052, China
| | - Lin Yin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Xiaofang Jia
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yujiao Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Tiefu Liu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Lijun Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| |
Collapse
|
7
|
Hongo H, Miyawaki S, Imai H, Shimizu M, Yagi S, Mitsui J, Ishiura H, Yoshimura J, Doi K, Qu W, Teranishi Y, Okano A, Ono H, Nakatomi H, Shimizu T, Morishita S, Tsuji S, Saito N. Comprehensive investigation of RNF213 nonsynonymous variants associated with intracranial artery stenosis. Sci Rep 2020; 10:11942. [PMID: 32686731 PMCID: PMC7371676 DOI: 10.1038/s41598-020-68888-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 07/01/2020] [Indexed: 12/22/2022] Open
Abstract
Intracranial artery stenosis (ICAS) is the most common cause of ischemic stroke worldwide. RNF213 single nucleotide variant c.14429G > A (p.Arg4810Lys, rs112735431) was recently reported to be associated with ICAS in East Asians. However, the disease susceptibility of other RNF213 variants has not been clarified. This study comprehensively investigated ICAS-associated RNF213 variants in a pool of 168 Japanese ICAS patients and 1,194 control subjects. We found 138 nonsynonymous germline variants by target resequencing of all coding exons in RNF213. Association study between ICAS patients and control subjects revealed that only p.Arg4810Lys had significant association with ICAS (P = 1.5 × 10-28, odds ratio = 29.3, 95% confidence interval 15.31-56.2 [dominant model]). Fourteen of 138 variants were rare variants detected in ICAS patients not harboring p.Arg4810Lys variant. Two of these rare variants (p.Cys118Arg and p.Leu2356Phe) consistent with variants previously reported in moyamoya disease patients characterized by stenosis of intracranial artery and association with RNF213, and three rare variants (p.Ser193Gly, p.Val1817Leu, and p.Asp3329Tyr) were found neither in control subjects and Single Nucleotide Polymorphism Database. The present findings may improve our understanding of the genetic background of intracranial artery stenosis.
Collapse
Affiliation(s)
- Hiroki Hongo
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Satoru Miyawaki
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Hideaki Imai
- Department of Neurosurgery, Japan Community Healthcare Organization Tokyo Shinjuku Medical Center, Tokyo, Japan
| | | | - Shinichi Yagi
- Kanto Neurosurgical Hospital, Kumagaya, Saitama, Japan
| | - Jun Mitsui
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun Yoshimura
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Koichiro Doi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.,School of Bioscience and Biotechnology, Tokyo University of Technology, Tokyo, Japan
| | - Wei Qu
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Yu Teranishi
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Atsushi Okano
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hideaki Ono
- Department of Neurosurgery, Fuji Brain Institute and Hospital, Fujinomiya, Shizuoka, Japan
| | - Hirofumi Nakatomi
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | | | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Shoji Tsuji
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,International University of Health and Welfare, Narita, Chiba, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
8
|
Kim J, Park YS, Woo MH, An HJ, Kim JO, Park HS, Ryu CS, Kim OJ, Kim NK. Distribution of Intracranial Major Artery Stenosis/Occlusion According to RNF213 Polymorphisms. Int J Mol Sci 2020; 21:E1956. [PMID: 32182997 PMCID: PMC7139595 DOI: 10.3390/ijms21061956] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/24/2020] [Accepted: 03/10/2020] [Indexed: 11/29/2022] Open
Abstract
Intracranial major artery stenosis/occlusion (ICASO) is the major cause of ischemic stroke. Recent studies have suggested that variants of RNF213, a susceptibility gene for moyamoya disease (MMD), are also related to non-MMD ICASO. Regarding the predominant involvement of steno-occlusion on anterior circulation in MMD, we hypothesized that the ICASO distribution pattern (anterior/posterior) in non-MMD may differ according to RNF213 variants. This study analyzed 1024 consecutive Korean subjects without MMD who underwent computed tomography angiography (CTA) or magnetic resonance angiography (MRA). We evaluated four single nucleotide polymorphisms (SNPs) in the exon region of RNF213: 4448G > A (rs148731719), 4810G > A (rs112735431), 4863G > A (rs760732823), and 4950G > A (rs371441113). Associations between RNF213 variants and anterior/posterior ICASO were examined using multivariate logistic regression analysis. Anterior ICASO was present in 23.0% of study subjects, and posterior ICASO was present in 8.2%. The GA genotype of RNF213 4810G > A (adjusted odds ratio (AOR) [95% confidence interval (CI)], 2.39 [1.14-4.87] compared to GG; p = 0.018) and GA genotype of RNF213 4950G > A (AOR [95% CI], 1.71 [1.11-2.63] compared to GG; p = 0.015) were more frequent in subjects with anterior ICASO. The genotype frequency of RNF213 4863G > A differed significantly according to the presence of posterior ICASO. Further investigations of the functional and biological roles of RNF213 will improve our understanding of the pathomechanisms of ICASO and cerebrovascular disease.
Collapse
Affiliation(s)
- Jinkwon Kim
- Department of Neurology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin 16995, Korea;
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea;
| | - Young Seok Park
- Department of Neurosurgery, Chungbuk National University Hospital, Chungbuk National University, College of Medicine, Cheongju 28644, Korea;
| | - Min-Hee Woo
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea;
| | - Hui Jeong An
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea; (H.J.A.); (J.O.K.); (H.S.P.); (C.S.R.)
| | - Jung Oh Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea; (H.J.A.); (J.O.K.); (H.S.P.); (C.S.R.)
| | - Han Sung Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea; (H.J.A.); (J.O.K.); (H.S.P.); (C.S.R.)
| | - Chang Soo Ryu
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea; (H.J.A.); (J.O.K.); (H.S.P.); (C.S.R.)
| | - Ok Joon Kim
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea;
| | - Nam Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea; (H.J.A.); (J.O.K.); (H.S.P.); (C.S.R.)
| |
Collapse
|
9
|
Shulgina AA, Lukshin VA, Korshunov AE, Usachev DY, Pronin IN. [Combination of double and indirect two-sided revascularization of the brain in the treatment of moyamoya disease]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2020; 84:93-102. [PMID: 32412198 DOI: 10.17116/neiro20208402193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An adult patient with progressive chronic cerebral ischemia associated with moyamoya disease who underwent combined revascularization of both cerebral hemispheres in step-by-step fashion is reported in the article. The feature of this case is a large volume of revascularization procedures with double-barrel extra-intracranial anastomoses combined with indirect synangioses. This surgical approach ensured early postoperative development of extensive collateral network and complete compensation of impaired cerebral circulation. Particular attention is paid to description and discussion of preoperative diagnosis, the choice of surgical treatment, as well as the features of surgical technique. The advantages and disadvantages of this approach are discussed in comparison with literature data.
Collapse
Affiliation(s)
| | - V A Lukshin
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | | | - I N Pronin
- Burdenko Neurosurgical Center, Moscow, Russia
| |
Collapse
|
10
|
Gagunashvili AN, Ocaka L, Kelberman D, Munot P, Bacchelli C, Beales PL, Ganesan V. Novel missense variants in the RNF213 gene from a European family with Moyamoya disease. Hum Genome Var 2019; 6:35. [PMID: 31645973 PMCID: PMC6804521 DOI: 10.1038/s41439-019-0066-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/06/2019] [Accepted: 06/21/2019] [Indexed: 01/30/2023] Open
Abstract
In this report, we present a European family with six individuals affected with Moyamoya disease (MMD). We detected two novel missense variants in the Moyamoya susceptibility gene RNF213, c.12553A>G (p.(Lys4185Glu)) and c.12562G>A (p.(Ala4188Thr)). Cosegregation of the variants with MMD, as well as a previous report of a variant affecting the same amino acid residue in unrelated MMD patients, supports the role of RNF213 in the pathogenesis of MMD.
Collapse
Affiliation(s)
- Andrey N Gagunashvili
- 1GOSgene, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Louise Ocaka
- 1GOSgene, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Daniel Kelberman
- 1GOSgene, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Pinki Munot
- 2Neurology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Chiara Bacchelli
- 1GOSgene, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Philip L Beales
- 1GOSgene, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Vijeya Ganesan
- 2Neurology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,3Clinical Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
11
|
Nomura S, Akagawa H, Yamaguchi K, Ishikawa T, Kawashima A, Kasuya H, Mukawa M, Nariai T, Maehara T, Okada Y, Kawamata T. Rare and Low-Frequency Variants in RNF213 Confer Susceptibility to Moyamoya Syndrome Associated with Hyperthyroidism. World Neurosurg 2019; 127:e460-e466. [PMID: 30922903 DOI: 10.1016/j.wneu.2019.03.172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Moyamoya syndrome (MMS), distinguished from definite moyamoya disease (MMD), is characterized by moyamoya vasculopathy thought to develop secondary to underlying conditions (e.g., hyperthyroidism). Recent studies have shown that a proportion of East Asian (EAS) patients with MMS possess the p.R4810K variant of RNF213 (rs112735431), the foremost susceptibility variant among EAS patients with MMD. We evaluated the association between hyperthyroidism-associated MMS (hMMS) and sequence variants in RNF213. METHODS We performed next-generation sequencing of RNF213 in 15 patients with hMMS. Candidate coding variants for the association analysis were defined by allelic frequencies of <1%, based on the p.R4810K frequency in the Japanese population. The association with hMMS was tested using a collapsing method, and 260 unrelated EAS women from the 1000 Genomes Project served as population-based controls. RESULTS All patients were female, reflecting female predominance in both moyamoya and hyperthyroid conditions. Five candidate missense variants in RNF213 were identified in 8 of 15 patients (53.3%): p.C118R, p.R4062Q, and p.R4810K as heterozygous; and p.A3468V and p.S3986N as compound heterozygous with p.R4810K. Among 260 EAS female controls, 36 (13.8%) had putatively functional variants. All identified variants were missense variants and were significantly overrepresented among patients compared with EAS controls (permuted P = 0.00010; odds ratio = 7.03; 95% confidence interval, 2.09-24.3). CONCLUSIONS Rare and low-frequency missense variants in RNF213 confer susceptibility to both MMD and hMMS. This finding indicates that susceptibility variants in RNF213 may require additional clinical factors with an effect equivalent to hyperthyroidism in order to develop moyamoya vasculopathy.
Collapse
Affiliation(s)
- Shunsuke Nomura
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan; Tokyo Women's Medical University Institute for Integrated Medical Sciences (TIIMS), Tokyo, Japan
| | - Hiroyuki Akagawa
- Tokyo Women's Medical University Institute for Integrated Medical Sciences (TIIMS), Tokyo, Japan; Department of Neurosurgery, Tokyo Women's Medical University Medical Center East, Tokyo, Japan.
| | - Koji Yamaguchi
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Tatsuya Ishikawa
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Akitsugu Kawashima
- Department of Neurosurgery, Tokyo Women's Medical University Yachiyo Medical Center, Chiba, Japan
| | - Hidetoshi Kasuya
- Department of Neurosurgery, Tokyo Women's Medical University Medical Center East, Tokyo, Japan
| | - Maki Mukawa
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tadashi Nariai
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Taketoshi Maehara
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshikazu Okada
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
12
|
Kim T, Heo J, Jang DK, Sunwoo L, Kim J, Lee KJ, Kang SH, Park SJ, Kwon OK, Oh CW. Machine learning for detecting moyamoya disease in plain skull radiography using a convolutional neural network. EBioMedicine 2018; 40:636-642. [PMID: 30598372 PMCID: PMC6413674 DOI: 10.1016/j.ebiom.2018.12.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/14/2018] [Accepted: 12/19/2018] [Indexed: 12/01/2022] Open
Abstract
Background Recently, innovative attempts have been made to identify moyamoya disease (MMD) by focusing on the morphological differences in the head of MMD patients. Following the recent revolution in the development of deep learning (DL) algorithms, we designed this study to determine whether DL can distinguish MMD in plain skull radiograph images. Methods Three hundred forty-five skull images were collected as an MMD-labeled dataset from patients aged 18 to 50 years with definite MMD. As a control-labeled data set, 408 skull images of trauma patients were selected by age and sex matching. Skull images were partitioned into training and test datasets at a 7:3 ratio using permutation. A total of six convolution layers were designed and trained. The accuracy and area under the receiver operating characteristic (AUROC) curve were evaluated as classifier performance. To identify areas of attention, gradient-weighted class activation mapping was applied. External validation was performed with a new dataset from another hospital. Findings For the institutional test set, the classifier predicted the true label with 84·1% accuracy. Sensitivity and specificity were both 0·84. AUROC was 0·91. MMD was predicted by attention to the lower face in most cases. Overall accuracy for external validation data set was 75·9%. Interpretation DL can distinguish MMD cases within specific ages from controls in plain skull radiograph images with considerable accuracy and AUROC. The viscerocranium may play a role in MMD-related skull features. Fund This work was supported by grant no. 18-2018-029 from the Seoul National University Bundang Hospital Research Fund.
Collapse
Affiliation(s)
- Tackeun Kim
- Department of Neurosurgery, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
| | - Jaehyuk Heo
- Department of Applied Statistics, The University of Suwon, 17, Wauan-gil, Bongdam-eup, Hwaseong-si, Gyeonggi-do 18323, Republic of Korea
| | - Dong-Kyu Jang
- Department of Neurosurgery, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 56, Dongsu-ro, Bupyeong-gu, Incheon, 21431, Republic of Korea
| | - Leonard Sunwoo
- Department of Radiology, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
| | - Joonghee Kim
- Department of Emergency Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
| | - Kyong Joon Lee
- Department of Radiology, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
| | - Si-Hyuck Kang
- Division of Cardiology, Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
| | - Sang Jun Park
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
| | - O-Ki Kwon
- Department of Neurosurgery, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Republic of Korea; Department of Neurosurgery, Seoul National University College of Medicine, 101 Daehak-Ro Jongno-Gu, Seoul 03080, Republic of Korea
| | - Chang Wan Oh
- Department of Neurosurgery, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Republic of Korea; Department of Neurosurgery, Seoul National University College of Medicine, 101 Daehak-Ro Jongno-Gu, Seoul 03080, Republic of Korea.
| |
Collapse
|