1
|
Zhang X, Tian H, Xie C, Yang Y, Li P, Cheng J. The role and mechanism of vascular wall cell ion channels in vascular fibrosis remodeling. Channels (Austin) 2024; 18:2418128. [PMID: 39425532 PMCID: PMC11492694 DOI: 10.1080/19336950.2024.2418128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/24/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024] Open
Abstract
Fibrosis is usually the final pathological state of many chronic inflammatory diseases and may lead to organ malfunction. Excessive deposition of extracellular matrix (ECM) molecules is a characteristic of most fibrotic tissues. The blood vessel wall contains three layers of membrane structure, including the intima, which is composed of endothelial cells; the media, which is composed of smooth muscle cells; and the adventitia, which is formed by the interaction of connective tissue and fibroblasts. The occurrence and progression of vascular remodeling are closely associated with cardiovascular diseases, and vascular remodeling can alter the original structure and function of the blood vessel. Dysregulation of the composition of the extracellular matrix in blood vessels leads to the continuous advancement of vascular stiffening and fibrosis. Vascular fibrosis reaction leads to excessive deposition of the extracellular matrix in the vascular adventitia, reduces vessel compliance, and ultimately alters key aspects of vascular biomechanics. The pathogenesis of fibrosis in the vasculature and strategies for its reversal have become interesting and important challenges. Ion channels are widely expressed in the cardiovascular system; they regulate blood pressure, maintain cardiovascular function homeostasis, and play important roles in ion transport, cell differentiation, proliferation. In blood vessels, different types of ion channels in fibroblasts, smooth muscle cells and endothelial cells may be relevant mediators of the development of fibrosis in organs or tissues. This review discusses the known roles of ion channels in vascular fibrosis remodeling and discusses potential therapeutic targets for regulating remodeling and repair after vascular injury.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Public Center of Experimental Technology, Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Hai Tian
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Public Center of Experimental Technology, Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Cheng Xie
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Public Center of Experimental Technology, Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Yan Yang
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Public Center of Experimental Technology, Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Pengyun Li
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Public Center of Experimental Technology, Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Jun Cheng
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Public Center of Experimental Technology, Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| |
Collapse
|
2
|
Hiraishi K, Kurahara LH, Ishikawa K, Go T, Yokota N, Hu Y, Fujita T, Inoue R, Hirano K. Potential of the TRPM7 channel as a novel therapeutic target for pulmonary arterial hypertension. J Smooth Muscle Res 2022; 58:50-62. [PMID: 35944979 PMCID: PMC9364263 DOI: 10.1540/jsmr.58.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is an intractable vascular disease characterized by
a progressive increase in pulmonary vascular resistance caused by pulmonary vascular
remodeling, which ultimately leads to right-sided heart failure. PAH remains incurable,
despite the development of PAH-targeted therapeutics centered on pulmonary artery
relaxants. It is necessary to identify the target molecules that contribute to pulmonary
artery remodeling. Transient receptor potential (TRP) channels have been suggested to
modulate pulmonary artery remodeling. Our study focused on the transient receptor
potential ion channel subfamily M, member 7, or the TRPM7 channel, which modulates
endothelial-to-mesenchymal transition and smooth muscle proliferation in the pulmonary
artery. In this review, we summarize the role and expression profile of TRPM7 channels in
PAH progression and discuss TRPM7 channels as possible therapeutic targets. In addition,
we discuss the therapeutic effect of a Chinese herbal medicine, Ophiocordyceps
sinensis (OCS), on PAH progression, which partly involves TRPM7 inhibition.
Collapse
Affiliation(s)
- Keizo Hiraishi
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.,Department of Physiology, School of Medicine, Fukuoka University, 8-19-1 Nanakuma, Jounan-ku, Fukuoka-shi, Fukuoka 814-0180, Japan
| | - Lin Hai Kurahara
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Kaori Ishikawa
- Department of General Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Tetsuhiko Go
- Department of General Thoracic Surgery, Faculty of Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Naoya Yokota
- Department of General Thoracic Surgery, Faculty of Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Yaopeng Hu
- Department of Physiology, School of Medicine, Fukuoka University, 8-19-1 Nanakuma, Jounan-ku, Fukuoka-shi, Fukuoka 814-0180, Japan
| | - Takayuki Fujita
- Department of Physiology, School of Medicine, Fukuoka University, 8-19-1 Nanakuma, Jounan-ku, Fukuoka-shi, Fukuoka 814-0180, Japan
| | - Ryuji Inoue
- Department of Physiology, School of Medicine, Fukuoka University, 8-19-1 Nanakuma, Jounan-ku, Fukuoka-shi, Fukuoka 814-0180, Japan
| | - Katsuya Hirano
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| |
Collapse
|
3
|
Song B, Chen D, Liu Z, Cheng Y, Zhang Z, Han W, Zhang R, Gong Y. Stromal cell-derived factor-1 exerts opposing roles through CXCR4 and CXCR7 in angiotensin II-induced adventitial remodeling. Biochem Biophys Res Commun 2022; 594:38-45. [PMID: 35066378 DOI: 10.1016/j.bbrc.2022.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/29/2021] [Accepted: 01/09/2022] [Indexed: 11/02/2022]
Abstract
Recent studies have emphasized the role of vascular adventitia inflammation and immune response in hypertension. It has been reported that stromal cell-derived factor-1 (SDF-1) plays various biological functions through its receptors C-X-C motif chemokine receptor 4 (CXCR4) and CXCR7 in tumor growth and tissue repair. However, it is unclear that whether SDF-1/CXCR4/CXCR7 axis is involved in hypertensive vascular remodeling. In the present study, the involvement of SDF-1/CXCR4/CXCR7 axis was evaluated with lentivirus-mediated shRNA of SDF-1 and CXCR7, CXCR4 antagonist AMD3100 and CXCR7 agonist VUF11207 in angiotensin II (AngII)-induced hypertensive mice and in cultured adventitial fibroblasts (AFs). Results showed that AngII infusion markedly increased SDF-1 expressed in vascular adventitia, but not in media and endothelium. Importantly, blockade of SDF-1/CXCR4 axis strikingly potentiated AngII-induced adventitial thickening and fibrosis, as indicated by enhanced collagen I deposition. In contrast, CXCR7 shRNA largely attenuated AngII-induced adventitial thickness and fibrosis, whereas CXCR7 activation with VUF11207 significantly potentiated AngII-induced adventitial thickening and fibrosis. In consistent with these in vivo study, CXCR4 inhibition with AMD3100 and CXCR7 activation with VUF11207 aggravated AngII-induced inflammation, proliferation and migration in cultured AFs. In summary, these results suggested that SDF-1 exerted opposing effects through CXCR4 and CXCR7 in AngII-induced vascular adventitial remodeling.
Collapse
Affiliation(s)
- Bei Song
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongrui Chen
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zixiong Liu
- Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuwen Cheng
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zebei Zhang
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Han
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruiyan Zhang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yanchun Gong
- Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Liang HY, Chen Y, Wei X, Ma GG, Ding J, Lu C, Zhou RP, Hu W. Immunomodulatory functions of TRPM7 and its implications in autoimmune diseases. Immunology 2021; 165:3-21. [PMID: 34558663 DOI: 10.1111/imm.13420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 08/17/2021] [Accepted: 09/14/2021] [Indexed: 12/18/2022] Open
Abstract
An autoimmune disease is an inappropriate response to one's tissues due to a break in immune tolerance and exposure to self-antigens. It often leads to structural and functional damage to organs and systemic disorders. To date, there are no effective interventions to prevent the progression of autoimmune diseases. Hence, there is an urgent need for new treatment targets. TRPM7 is an enzyme-coupled, transient receptor ion channel of the subfamily M that plays a vital role in pathologic and physiologic conditions. While TRPM7 is constitutively activated under certain conditions, it can regulate cell migration, polarization, proliferation and cytokine secretion. However, a growing body of evidence highlights the critical role of TRPM7 in autoimmune diseases, including rheumatoid arthritis, multiple sclerosis and diabetes. Herein, we present (a) a review of the channel kinase properties of TRPM7 and its pharmacological properties, (b) discuss the role of TRPM7 in immune cells (neutrophils, macrophages, lymphocytes and mast cells) and its upstream immunoreactive substances, and (c) highlight TRPM7 as a potential therapeutic target for autoimmune diseases.
Collapse
Affiliation(s)
- Hong-Yu Liang
- The Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yong Chen
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Xin Wei
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Gang-Gang Ma
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Jie Ding
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Chao Lu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Ren-Peng Zhou
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Liu J, Chen L, Huang J, Guo S, Zhu D, Gao P. Transient Receptor Potential Melastatin 7 Promotes Vascular Adventitial Fibroblasts Phenotypic Transformation and Inflammatory Reaction Induced by Mechanical Stretching Stress via p38 MAPK/JNK Pathway. J Vasc Res 2021; 58:108-120. [PMID: 33494094 DOI: 10.1159/000512595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/23/2020] [Indexed: 11/19/2022] Open
Abstract
Remodeling of the arteries is one of the pathological bases of hypertension. We have previously shown that transient receptor potential melastatin 7 (TRPM7) aggravates the vascular adventitial remodeling caused by pressure overload in the transverse aortic constriction (TAC) model. In this study, we sought to explore the functional expression and downstream signaling of TRPM7 in vascular adventitial fibroblasts (AFs) stimulated by mechanical stretching stress (MSS). The expression of TRPM7 was upregulated with a concomitant translocation to the cytoplasm in the AFs stimulated with 20% MSS. Meanwhile, the expression of α-smooth muscle actin (α-SMA), a marker of transformation from AFs to myofibroblasts (MFs) was also increased. Moreover, AF-conditioned medium caused a significant migration of macrophages after treatment with MSS and contained high levels of monocyte chemotactic protein-1 (MCP-1), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α). Pharmacological and RNA interference approaches using the TRPM7 inhibitor 2-aminoethoxydiphenyl borate (2-APB) and specific anti-TRPM7 small interfering RNA (si-RNA-TRPM7) abrogated these changes significantly. Further exploration uncloaked that inhibition of TRPM7 reduced the phosphorylation of p38 MAP kinase (p38MAPK) and c-Jun N-terminal kinase (JNK) in the AFs stimulated with MSS. Furthermore, inhibition of the phosphorylation of p38MAPK or JNK could also alleviate the MSS-induced expression of α-SMA and secretion of inflammatory factors. These observations indicate that activated TRPM7 participates in the phenotypic transformation and inflammatory action of AFs in response to MSS through the p38MAPK/JNK pathway and suggest that TRPM7 may be a potential therapeutic target for vascular remodeling caused by hemodynamic changes in hypertension.
Collapse
Affiliation(s)
- Jiachen Liu
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Laijiang Chen
- Department of Cardiology, Ningbo Medical Center Lihuili Hospital, Zhejiang, Ningbo, China
| | - Jun Huang
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shujie Guo
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,
| | - Dingliang Zhu
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pingjin Gao
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Chen DR, Jiang H, Chen J, Ruan CC, Han WQ, Gao PJ. Involvement of Angiotensin II Type 1 Receptor and Calcium Channel in Vascular Remodeling and Endothelial Dysfunction in Rats with Pressure Overload. Curr Med Sci 2020; 40:320-326. [PMID: 32337692 DOI: 10.1007/s11596-020-2171-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 03/19/2020] [Indexed: 01/03/2023]
Abstract
Vascular remodeling is an adaptive response to various stimuli, including mechanical forces, inflammatory cytokines and hormones. In the present study, we investigated the role of angiotensin II type 1 receptor (AT1R) and calcium channel in carotid artery remodeling in response to increased biomechanical forces by using the transverse aortic constriction (TAC) rat model. TAC was induced on ten-week-old male Sprague-Dawley rats and these models were treated with AT1R blocker olmesartan (1 mg/kg/day) or/and calcium channel blocker (CCB) amlodipine (0.5 mg/kg/day) for 14 days. After the treatment, the right common carotid artery proximal to the band (RCCA-B) was collected for further assay. Results showed that olmesartan, but not amlodipine, significantly prevented TAC-induced adventitial hyperplasia. Similarly, olmesartan, but not amlodipine, signifcantly prevented vascular infammation, as indicated by increased tumor necrosis factor α (TNF-α) and increased p65 phosphorylation, an indicator of nuclear factor κ-light-chain-enhancer of activated B cells (NFκB) activation in RCCA-B. In contrast, both olmesartan and amlodipine reversed the decreased expression of endothelial nitric oxidase synthase (eNOS) and improved endothelium-dependent vasodilation, whereas combination of olmesartan and amlodipine showed no further synergistic protective effects. These results suggest that AT1R was involved in vascular remodeling and inflammation in response to pressure overload, whereas AT1R and subsequent calcium channel were involved in endothelial dysfunction.
Collapse
Affiliation(s)
- Dong-Rui Chen
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Institute of Hypertension, Shanghai, 200025, China
| | - Hui Jiang
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Institute of Hypertension, Shanghai, 200025, China
| | - Jing Chen
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Institute of Hypertension, Shanghai, 200025, China
| | - Cheng-Chao Ruan
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Institute of Hypertension, Shanghai, 200025, China
| | - Wei-Qing Han
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Shanghai Institute of Hypertension, Shanghai, 200025, China.
| | - Ping-Jin Gao
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Institute of Hypertension, Shanghai, 200025, China
| |
Collapse
|
7
|
Shi J, Chen C, Xu X, Lu Q. miR-29a promotes pathological cardiac hypertrophy by targeting the PTEN/AKT/mTOR signalling pathway and suppressing autophagy. Acta Physiol (Oxf) 2019; 227:e13323. [PMID: 31162869 DOI: 10.1111/apha.13323] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/13/2019] [Accepted: 05/31/2019] [Indexed: 12/26/2022]
Abstract
AIM Although miR-29 has emerged as a crucial non-coding RNA in the regulation of pathological cardiac hypertrophy, further exploration of its specific mechanisms is necessary to resolve controversy about its major role in this condition. This study therefore evaluated the role of miR-29a and whether it acts through the PTEN/AKT/mTOR pathway. METHODS In this study, a rat model of pressure-induced cardiac hypertrophy was established by transverse aortic constriction and verified by echocardiography, histological analysis and quantitative RT-PCR. At the cellular level, we explored the role of miR-29a in angiotensin II-stimulated hypertrophic H9c2 cardiomyoblasts by transfecting the cells with miR-29a inhibitor and mimic. The relationship between miR-29a and the signalling pathway was investigated with dual luciferase reporter assays, immunofluorescence analysis and Western blotting. We also examined whether autophagy is involved in the regulatory mechanism of miR-29a through transmission electron microscopy and detection of autophagy-associated proteins. RESULTS The results showed that miR-29a was upregulated both in rats 4 weeks after surgery and in 10-6 M angiotensin II-stimulated cells. In contrast, inhibition of miR-29a partially attenuated angiotensin II-induced hypertrophy. Additionally, bioinformatics analysis revealed that PTEN was one of the target genes of miR-29a, which was also verified by luciferase assay. The results of immunofluorescence and Western blotting indicated that overexpression of miR-29a inhibited the expression of PTEN, activated the AKT/mTOR pathway and suppressed autophagy, which ultimately led to cardiac hypertrophy. CONCLUSION In pathological cardiac hypertrophy, miR-29a was overexpressed and promoted cardiac hypertrophy by regulating the PTEN/AKT/mTOR pathway and suppressing autophagy.
Collapse
Affiliation(s)
- Jia‐yu Shi
- Department of Cardiology Affiliated Hospital of Nantong University Nantong China
| | - Chu Chen
- Department of Cardiology Affiliated Hospital of Nantong University Nantong China
| | - Xuan Xu
- Department of Cardiology Affiliated Hospital of Nantong University Nantong China
| | - Qi Lu
- Department of Cardiology Affiliated Hospital of Nantong University Nantong China
| |
Collapse
|
8
|
Inoue R, Kurahara LH, Hiraishi K. TRP channels in cardiac and intestinal fibrosis. Semin Cell Dev Biol 2018; 94:40-49. [PMID: 30445149 DOI: 10.1016/j.semcdb.2018.11.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/05/2018] [Accepted: 11/09/2018] [Indexed: 02/06/2023]
Abstract
It is now widely accepted that advanced fibrosis underlies many chronic inflammatory disorders and is the main cause of morbidity and mortality of the modern world. The pathogenic mechanism of advanced fibrosis involves diverse and intricate interplays between numerous extracellular and intracellular signaling molecules, among which the non-trivial roles of a stress-responsive Ca2+/Na+-permeable cation channel superfamily, the transient receptor potential (TRP) protein, are receiving growing attention. Available evidence suggests that several TRP channels such as TRPC3, TRPC6, TRPV1, TRPV3, TRPV4, TRPA1, TRPM6 and TRPM7 may play central roles in the progression and/or prevention of fibroproliferative disorders in vital visceral organs such as lung, heart, liver, kidney, and bowel as well as brain, blood vessels and skin, and may contribute to both acute and chronic inflammatory processes involved therein. This short paper overviews the current knowledge accumulated in this rapidly growing field, with particular focus on cardiac and intestinal fibrosis, which are tightly associated with the pathogenesis of atrial fibrillation and inflammatory bowel diseases such as Crohn's disease.
Collapse
Affiliation(s)
- Ryuji Inoue
- Department of Physiology, Fukuoka University School of medicine, Nanakuma 7-451, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Lin-Hai Kurahara
- Department of Physiology, Fukuoka University School of medicine, Nanakuma 7-451, Jonan-ku, Fukuoka 814-0180, Japan
| | - Keizo Hiraishi
- Department of Physiology, Fukuoka University School of medicine, Nanakuma 7-451, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
9
|
Nadolni W, Zierler S. The Channel-Kinase TRPM7 as Novel Regulator of Immune System Homeostasis. Cells 2018; 7:cells7080109. [PMID: 30126133 PMCID: PMC6115979 DOI: 10.3390/cells7080109] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/13/2018] [Accepted: 08/13/2018] [Indexed: 12/16/2022] Open
Abstract
The enzyme-coupled transient receptor potential channel subfamily M member 7, TRPM7, has been associated with immunity and immune cell signalling. Here, we review the role of this remarkable signalling protein in lymphocyte proliferation, differentiation, activation and survival. We also discuss its role in mast cell, neutrophil and macrophage function and highlight the potential of TRPM7 to regulate immune system homeostasis. Further, we shed light on how the cellular signalling cascades involving TRPM7 channel and/or kinase activity culminate in pathologies as diverse as allergic hypersensitivity, arterial thrombosis and graft versus host disease (GVHD), stressing the need for TRPM7 specific pharmacological modulators.
Collapse
Affiliation(s)
- Wiebke Nadolni
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Goethestr. 33, 80336 Munich, Germany.
| | - Susanna Zierler
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Goethestr. 33, 80336 Munich, Germany.
| |
Collapse
|
10
|
Zierler S, Hampe S, Nadolni W. TRPM channels as potential therapeutic targets against pro-inflammatory diseases. Cell Calcium 2017; 67:105-115. [PMID: 28549569 DOI: 10.1016/j.ceca.2017.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/02/2017] [Indexed: 02/08/2023]
Abstract
The immune system protects our body against foreign pathogens. However, if it overshoots or turns against itself, pro-inflammatory diseases, such as rheumatoid arthritis, inflammatory bowel disease, or diabetes develop. Ions, the most basic signaling molecules, shape intracellular signaling cascades resulting in immune cell activation and subsequent immune responses. Mutations in ion channels required for calcium signaling result in human immunodeficiencies and highlight those ion channels as valued targets for therapies against pro-inflammatory diseases. Signaling pathways regulated by melastatin-like transient receptor potential (TRPM) cation channels also play crucial roles in calcium signaling and leukocyte physiology, affecting phagocytosis, degranulation, chemokine and cytokine expression, chemotaxis and invasion, as well as lymphocyte development and proliferation. Therefore, this review discusses their regulation, possible interactions and whether they can be exploited as targets for therapeutic approaches to pro-inflammatory diseases.
Collapse
Affiliation(s)
- Susanna Zierler
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Germany.
| | - Sarah Hampe
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Germany
| | - Wiebke Nadolni
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Germany
| |
Collapse
|
11
|
Guo SJ, Zhang P, Wu LY, Zhang GN, Chen WD, Gao PJ. Adenovirus-Mediated Overexpression of Septin 2 Attenuates α-Smooth Muscle Actin Expression and Adventitial Myofibroblast Migration Induced by Angiotensin II. J Vasc Res 2016; 53:309-316. [PMID: 27974709 DOI: 10.1159/000452413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/09/2016] [Indexed: 11/19/2022] Open
Abstract
Phenotypic transformation from adventitial fibroblasts (AFs) to myofibroblasts (MFs) is critical for vascular remodeling. Septin 2 was found to be downregulated during the differentiation of AFs to MFs induced by angiotensin II (Ang II); however, the role of septin 2 in this process is still unknown. In this study, we investigate whether septin 2 contributes to the adventitial MF phenotypic modulation caused by Ang II. The decreased level of septin 2 and the increased expression of α-smooth muscle actin (α-SMA), a marker of MFs, were readily observed in Ang II-stimulated MF differentiation. After gene transfer of septin 2, the expression of α-SMA was markedly decreased and the MF migration response to Ang II was inhibited. Furthermore, the inhibition of RhoA, another molecule involved in MF phenotypic modulation, decreased the motility of MFs and the expression of septin 2 triggered in Ang II. Finally, transfection of septin 2 rescued the level of acetyl-α-tubulin in MFs. These findings demonstrate that, as a downstream molecule of RhoA, septin 2 blunted the responses of AFs to Ang II by protecting α-tubulin acetylation, which suggests that septin 2 may serve as a potential therapeutic target for vascular injury.
Collapse
Affiliation(s)
- Shu-Jie Guo
- Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | |
Collapse
|
12
|
Xu R, Zhang ZZ, Chen LJ, Yu HM, Guo SJ, Xu YL, Oudit GY, Zhang Y, Chang Q, Song B, Chen DR, Zhu DL, Zhong JC. Ascending aortic adventitial remodeling and fibrosis are ameliorated with Apelin-13 in rats after TAC via suppression of the miRNA-122 and LGR4-β-catenin signaling. Peptides 2016; 86:85-94. [PMID: 27773659 DOI: 10.1016/j.peptides.2016.10.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/10/2016] [Accepted: 10/10/2016] [Indexed: 12/21/2022]
Abstract
Apelin has been proved to be a critical mediator of vascular function and homeostasis. Here, we investigated roles of Apelin in aortic remodeling and fibrosis in rats with transverse aortic constriction (TAC). Male Sprague-Dawley rats were subjected to TAC and then randomized to daily deliver Apelin-13 (50μg/kg) or angiotensin type 1 receptor (AT1) blocker Irbesartan (50mg/kg) for 4 weeks. Pressure overload resulted in myocardial hypertrophy, systolic dysfunction, aortic remodeling and adventitial fibrosis with reduced levels of Apelin in ascending aortas of rat after TAC compared with sham-operated group. These changes were associated with marked increases in levels of miRNA-122, TGFβ1, CTGF, NFAT5, LGR4, and β-catenin. More importantly, Apelin and Irbesartan treatment strikingly prevented TAC-mediated aortic remodeling and adventitial fibrosis in pressure overloaded rats by blocking AT1 receptor and miRNA-122 levels and repressing activation of the CTGF-NFAT5 and LGR4-β-catenin signaling. In cultured primary rat adventitial fibroblasts, exposure to angiotensin II (100nmolL-1) led to significant increases in cellular migration and levels of TGFβ1, CTGF, NFAT5, LGR4 and β-catenin, which were effectively reversed by pre-treatment with Apelin (100nmolL-1) and miRNA-122 inhibitor (50nmolL-1). In conclusion, Apelin counterregulated against TAC-mediated ascending aortic remodeling and angiotensin II-induced promotion of cellular migration by blocking AT1 receptor and miRNA-122 levels and preventing activation of the TGFβ1-CTGF-NFAT5 and LGR4-β-catenin signaling, ultimately contributing to attenuation of aortic adventitial fibrosis. Our data point to Apelin as an important regulator of aortic remodeling and adventitial fibrosis and a promising target for vasoprotective therapies.
Collapse
Affiliation(s)
- Ran Xu
- State Key Laboratory of Medical Genomics, Pôle Sino-Français de Recherches en Science du Vivant et Génomique, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai 200025, China; Institute of Health Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China
| | - Zhen-Zhou Zhang
- State Key Laboratory of Medical Genomics, Pôle Sino-Français de Recherches en Science du Vivant et Génomique, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai 200025, China; Institute of Health Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China
| | - Lai-Jiang Chen
- State Key Laboratory of Medical Genomics, Pôle Sino-Français de Recherches en Science du Vivant et Génomique, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai 200025, China; Institute of Health Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China
| | - Hui-Min Yu
- Department of Cardiology, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Shu-Jie Guo
- State Key Laboratory of Medical Genomics, Pôle Sino-Français de Recherches en Science du Vivant et Génomique, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai 200025, China
| | - Ying-Le Xu
- State Key Laboratory of Medical Genomics, Pôle Sino-Français de Recherches en Science du Vivant et Génomique, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai 200025, China
| | - Gavin Y Oudit
- Department of Medicine, University of Alberta, Mazankowski Alberta Heart Institute, Edmonton T6G 2S2, Canada
| | - Yan Zhang
- State Key Laboratory of Medical Genomics, Pôle Sino-Français de Recherches en Science du Vivant et Génomique, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai 200025, China
| | - Qing Chang
- State Key Laboratory of Medical Genomics, Pôle Sino-Français de Recherches en Science du Vivant et Génomique, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai 200025, China
| | - Bei Song
- State Key Laboratory of Medical Genomics, Pôle Sino-Français de Recherches en Science du Vivant et Génomique, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai 200025, China
| | - Dong-Rui Chen
- State Key Laboratory of Medical Genomics, Pôle Sino-Français de Recherches en Science du Vivant et Génomique, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai 200025, China
| | - Ding-Liang Zhu
- State Key Laboratory of Medical Genomics, Pôle Sino-Français de Recherches en Science du Vivant et Génomique, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai 200025, China; Institute of Health Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China
| | - Jiu-Chang Zhong
- State Key Laboratory of Medical Genomics, Pôle Sino-Français de Recherches en Science du Vivant et Génomique, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai 200025, China; Institute of Health Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China.
| |
Collapse
|
13
|
Zempo H, Suzuki JI, Ogawa M, Watanabe R, Fujiu K, Manabe I, Conway SJ, Taniyama Y, Morishita R, Hirata Y, Isobe M, Nagai R. Influence of periostin-positive cell-specific Klf5 deletion on aortic thickening in DOCA-salt hypertensive mice. Hypertens Res 2016; 39:764-768. [PMID: 27334059 DOI: 10.1038/hr.2016.65] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/30/2016] [Accepted: 05/05/2016] [Indexed: 12/30/2022]
Abstract
Chronic hypertension causes vascular remodeling that is associated with an increase in periostin- (postn) positive cells, including fibroblasts and smooth muscle cells. Krüppel-like factor (KLF) 5, a transcription factor, is also observed in vascular remodeling; however, it is unknown what role KLF5 plays in postn-positive cells during vascular remodeling induced by deoxycorticosterone-acetate (DOCA) salt. We used postn-positive cell-specific Klf5-deficient mice (Klf5PostnKO: Klf5flox/flox; PostnCre/-) and wild-type mice (WT: Klf5flox/flox; Postn-/-). We implanted a DOCA pellet and provided drinking water containing 0.9% NaCl for 8 weeks. The DOCA-salt treatment induced hypertension in both genotypes, as observed by increases in systolic blood pressure. In WT animals, DOCA-salt treatment increased the aortic medial area compared with the non-treated controls. Similarly, Tgfb1 was overexpressed in the aortas of the DOCA-salt treated WT mice compared with the controls. Immunofluorescence staining revealed that fibroblast-specific protein 1 (FSP1)+-α smooth muscle actin (αSMA)+ myofibroblasts exist in the medial area of the WT aortas after DOCA-salt intervention. Importantly, these changes were not observed in the Klf5PostnKO animals. In conclusion, the results of this study suggest that the presence of KLF5 in postn-positive cells contributes to the pathogenesis of aortic thickening induced by DOCA-salt hypertension.
Collapse
Affiliation(s)
- Hirofumi Zempo
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jun-Ichi Suzuki
- Department of Advanced Clinical Science and Therapeutics, The University of Tokyo, Tokyo, Japan
| | - Masahito Ogawa
- Westmead Millennium Institute for Medical Research, Westmead, New South Wales, Australia
| | - Ryo Watanabe
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Katsuhito Fujiu
- Department of Cardiovascular Medicine, University of Tokyo, Tokyo, Japan
| | - Ichiro Manabe
- Department of Cardiovascular Medicine, University of Tokyo, Tokyo, Japan
| | - Simon J Conway
- Developmental Biology and Neonatal Medicine Program, Herman B Wells Center for Pediatric Research, Indiana University of Medicine, Indianapolis, IN, USA
| | | | | | - Yasunobu Hirata
- Department of Advanced Clinical Science and Therapeutics, The University of Tokyo, Tokyo, Japan
| | - Mitsuaki Isobe
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryozo Nagai
- Jichi Medical University, Shimotsuke City, Tochigi, Japan
| |
Collapse
|
14
|
Antunes TT, Callera GE, He Y, Yogi A, Ryazanov AG, Ryazanova LV, Zhai A, Stewart DJ, Shrier A, Touyz RM. Transient Receptor Potential Melastatin 7 Cation Channel Kinase: New Player in Angiotensin II-Induced Hypertension. Hypertension 2016; 67:763-73. [PMID: 26928801 DOI: 10.1161/hypertensionaha.115.07021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/13/2016] [Indexed: 12/30/2022]
Abstract
Transient receptor potential melastatin 7 (TRPM7) is a bifunctional protein comprising a magnesium (Mg(2+))/cation channel and a kinase domain. We previously demonstrated that vasoactive agents regulate vascular TRPM7. Whether TRPM7 plays a role in the pathophysiology of hypertension and associated cardiovascular dysfunction is unknown. We studied TRPM7 kinase-deficient mice (TRPM7Δkinase; heterozygous for TRPM7 kinase) and wild-type (WT) mice infused with angiotensin II (Ang II; 400 ng/kg per minute, 4 weeks). TRPM7 kinase expression was lower in heart and aorta from TRPM7Δkinase versus WT mice, effects that were further reduced by Ang II infusion. Plasma Mg(2+) was lower in TRPM7Δkinase versus WT mice in basal and stimulated conditions. Ang II increased blood pressure in both strains with exaggerated responses in TRPM7Δkinase versus WT groups (P<0.05). Acetylcholine-induced vasorelaxation was reduced in Ang II-infused TRPM7Δkinase mice, an effect associated with Akt and endothelial nitric oxide synthase downregulation. Vascular cell adhesion molecule-1 expression was increased in Ang II-infused TRPM7 kinase-deficient mice. TRPM7 kinase targets, calpain, and annexin-1, were activated by Ang II in WT but not in TRPM7Δkinase mice. Echocardiographic and histopathologic analysis demonstrated cardiac hypertrophy and left ventricular dysfunction in Ang II-treated groups. In TRPM7 kinase-deficient mice, Ang II-induced cardiac functional and structural effects were amplified compared with WT counterparts. Our data demonstrate that in TRPM7Δkinase mice, Ang II-induced hypertension is exaggerated, cardiac remodeling and left ventricular dysfunction are amplified, and endothelial function is impaired. These processes are associated with hypomagnesemia, blunted TRPM7 kinase expression/signaling, endothelial nitric oxide synthase downregulation, and proinflammatory vascular responses. Our findings identify TRPM7 kinase as a novel player in Ang II-induced hypertension and associated vascular and target organ damage.
Collapse
Affiliation(s)
- Tayze T Antunes
- From the Kidney Research Centre (T.T.A., G.E.C., Y.H., A.Y., R.M.T.) and Sprott Centre for Stem Cell Research and Regenerative Medicine Program (A.Z., D.J.S.), Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Canada; Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ (A.G.R., L.V.R.); Department of Physiology and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC, Canada (A.S.); and BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.)
| | - Glaucia E Callera
- From the Kidney Research Centre (T.T.A., G.E.C., Y.H., A.Y., R.M.T.) and Sprott Centre for Stem Cell Research and Regenerative Medicine Program (A.Z., D.J.S.), Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Canada; Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ (A.G.R., L.V.R.); Department of Physiology and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC, Canada (A.S.); and BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.)
| | - Ying He
- From the Kidney Research Centre (T.T.A., G.E.C., Y.H., A.Y., R.M.T.) and Sprott Centre for Stem Cell Research and Regenerative Medicine Program (A.Z., D.J.S.), Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Canada; Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ (A.G.R., L.V.R.); Department of Physiology and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC, Canada (A.S.); and BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.)
| | - Alvaro Yogi
- From the Kidney Research Centre (T.T.A., G.E.C., Y.H., A.Y., R.M.T.) and Sprott Centre for Stem Cell Research and Regenerative Medicine Program (A.Z., D.J.S.), Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Canada; Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ (A.G.R., L.V.R.); Department of Physiology and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC, Canada (A.S.); and BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.)
| | - Alexey G Ryazanov
- From the Kidney Research Centre (T.T.A., G.E.C., Y.H., A.Y., R.M.T.) and Sprott Centre for Stem Cell Research and Regenerative Medicine Program (A.Z., D.J.S.), Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Canada; Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ (A.G.R., L.V.R.); Department of Physiology and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC, Canada (A.S.); and BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.)
| | - Lillia V Ryazanova
- From the Kidney Research Centre (T.T.A., G.E.C., Y.H., A.Y., R.M.T.) and Sprott Centre for Stem Cell Research and Regenerative Medicine Program (A.Z., D.J.S.), Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Canada; Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ (A.G.R., L.V.R.); Department of Physiology and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC, Canada (A.S.); and BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.)
| | - Alexander Zhai
- From the Kidney Research Centre (T.T.A., G.E.C., Y.H., A.Y., R.M.T.) and Sprott Centre for Stem Cell Research and Regenerative Medicine Program (A.Z., D.J.S.), Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Canada; Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ (A.G.R., L.V.R.); Department of Physiology and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC, Canada (A.S.); and BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.)
| | - Duncan J Stewart
- From the Kidney Research Centre (T.T.A., G.E.C., Y.H., A.Y., R.M.T.) and Sprott Centre for Stem Cell Research and Regenerative Medicine Program (A.Z., D.J.S.), Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Canada; Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ (A.G.R., L.V.R.); Department of Physiology and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC, Canada (A.S.); and BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.)
| | - Alvin Shrier
- From the Kidney Research Centre (T.T.A., G.E.C., Y.H., A.Y., R.M.T.) and Sprott Centre for Stem Cell Research and Regenerative Medicine Program (A.Z., D.J.S.), Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Canada; Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ (A.G.R., L.V.R.); Department of Physiology and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC, Canada (A.S.); and BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.)
| | - Rhian M Touyz
- From the Kidney Research Centre (T.T.A., G.E.C., Y.H., A.Y., R.M.T.) and Sprott Centre for Stem Cell Research and Regenerative Medicine Program (A.Z., D.J.S.), Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Canada; Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ (A.G.R., L.V.R.); Department of Physiology and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC, Canada (A.S.); and BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.).
| |
Collapse
|
15
|
Earley S, Brayden JE. Transient receptor potential channels in the vasculature. Physiol Rev 2015; 95:645-90. [PMID: 25834234 DOI: 10.1152/physrev.00026.2014] [Citation(s) in RCA: 318] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The mammalian genome encodes 28 distinct members of the transient receptor potential (TRP) superfamily of cation channels, which exhibit varying degrees of selectivity for different ionic species. Multiple TRP channels are present in all cells and are involved in diverse aspects of cellular function, including sensory perception and signal transduction. Notably, TRP channels are involved in regulating vascular function and pathophysiology, the focus of this review. TRP channels in vascular smooth muscle cells participate in regulating contractility and proliferation, whereas endothelial TRP channel activity is an important contributor to endothelium-dependent vasodilation, vascular wall permeability, and angiogenesis. TRP channels are also present in perivascular sensory neurons and astrocytic endfeet proximal to cerebral arterioles, where they participate in the regulation of vascular tone. Almost all of these functions are mediated by changes in global intracellular Ca(2+) levels or subcellular Ca(2+) signaling events. In addition to directly mediating Ca(2+) entry, TRP channels influence intracellular Ca(2+) dynamics through membrane depolarization associated with the influx of cations or through receptor- or store-operated mechanisms. Dysregulation of TRP channels is associated with vascular-related pathologies, including hypertension, neointimal injury, ischemia-reperfusion injury, pulmonary edema, and neurogenic inflammation. In this review, we briefly consider general aspects of TRP channel biology and provide an in-depth discussion of the functions of TRP channels in vascular smooth muscle cells, endothelial cells, and perivascular cells under normal and pathophysiological conditions.
Collapse
Affiliation(s)
- Scott Earley
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada; and Department of Pharmacology, University of Vermont College of Medicine, Burlington, Vermont
| | - Joseph E Brayden
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada; and Department of Pharmacology, University of Vermont College of Medicine, Burlington, Vermont
| |
Collapse
|
16
|
Therapeutic effects of udenafil on pressure-overload cardiac hypertrophy. Hypertens Res 2015; 38:597-604. [PMID: 25832922 DOI: 10.1038/hr.2015.46] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 01/18/2015] [Accepted: 02/10/2015] [Indexed: 12/23/2022]
Abstract
This study was performed to determine whether the newly developed phosphodiesterase type 5 (PDE5) inhibitor udenafil had beneficial effects on pressure-overload cardiac hypertrophy. Pressure overload cardiac hypertrophy was created by using suprarenal aortic constriction (SAC) in male Sprague-Dawley rats. Rats were divided into three groups: sham (n=19), SAC (n=18) and SAC+udenafil (n=14) groups. Three-week periods of SAC provoked significant left ventricular (LV) hypertrophy. Udenafil was administered (20 mg kg(-1) PO, daily) between the 3rd and 20th weeks after SAC in the SAC+udenafil group. Udenafil improved the survival rate (log-rank P=0.012) and exercise capacity (maximal exercise duration at the 20th week after surgery: 448±54 s for the SAC+udenafil group versus 317±73 s for the SAC group, P<0.05) of the rats with SAC. Serial echocardiographic examinations showed that udenafil attenuated LV remodeling processes following SAC (mean LV end-diastolic dimension at the 20th week after surgery: 9.84±0.59 mm for SAC and 9.05±0.58 mm for SAC+udenafil group, P<0.05). Invasive hemodynamic studies showed that udenafil improved the LV performance. Udenafil-attenuated myocardial fibrosis and apoptosis. Udenafil also decreased myocardial matrix metalloproteinase-9 expression and augmented serum interleukin-10 concentration. Long-term udenafil use prevented cardiac remodeling and improved exercise capacity and survival in rats exposed to pressure-overload cardiac hypertrophy.
Collapse
|
17
|
Proton-sensitive cation channels and ion exchangers in ischemic brain injury: new therapeutic targets for stroke? Prog Neurobiol 2014; 115:189-209. [PMID: 24467911 DOI: 10.1016/j.pneurobio.2013.12.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/28/2013] [Accepted: 12/24/2013] [Indexed: 12/13/2022]
Abstract
Ischemic brain injury results from complicated cellular mechanisms. The present therapy for acute ischemic stroke is limited to thrombolysis with the recombinant tissue plasminogen activator (rtPA) and mechanical recanalization. Therefore, a better understanding of ischemic brain injury is needed for the development of more effective therapies. Disruption of ionic homeostasis plays an important role in cell death following cerebral ischemia. Glutamate receptor-mediated ionic imbalance and neurotoxicity have been well established in cerebral ischemia after stroke. However, non-NMDA receptor-dependent mechanisms, involving acid-sensing ion channel 1a (ASIC1a), transient receptor potential melastatin 7 (TRPM7), and Na(+)/H(+) exchanger isoform 1 (NHE1), have recently emerged as important players in the dysregulation of ionic homeostasis in the CNS under ischemic conditions. These H(+)-sensitive channels and/or exchangers are expressed in the majority of cell types of the neurovascular unit. Sustained activation of these proteins causes excessive influx of cations, such as Ca(2+), Na(+), and Zn(2+), and leads to ischemic reperfusion brain injury. In this review, we summarize recent pre-clinical experimental research findings on how these channels/exchangers are regulated in both in vitro and in vivo models of cerebral ischemia. The blockade or transgenic knockdown of these proteins was shown to be neuroprotective in these ischemia models. Taken together, these non-NMDA receptor-dependent mechanisms may serve as novel therapeutic targets for stroke intervention.
Collapse
|