1
|
Faraci FM, Scheer FA. Hypertension: Causes and Consequences of Circadian Rhythms in Blood Pressure. Circ Res 2024; 134:810-832. [PMID: 38484034 PMCID: PMC10947115 DOI: 10.1161/circresaha.124.323515] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/19/2024]
Abstract
Hypertension is extremely common, affecting approximately 1 in every 2 adults globally. Chronic hypertension is the leading modifiable risk factor for cardiovascular disease and premature mortality worldwide. Despite considerable efforts to define mechanisms that underlie hypertension, a potentially major component of the disease, the role of circadian biology has been relatively overlooked in both preclinical models and humans. Although the presence of daily and circadian patterns has been observed from the level of the genome to the whole organism, the functional and structural impact of biological rhythms, including mechanisms such as circadian misalignment, remains relatively poorly defined. Here, we review the impact of daily rhythms and circadian systems in regulating blood pressure and the onset, progression, and consequences of hypertension. There is an emphasis on the impact of circadian biology in relation to vascular disease and end-organ effects that, individually or in combination, contribute to complex phenotypes such as cognitive decline and the loss of cardiac and brain health. Despite effective treatment options for some individuals, control of blood pressure remains inadequate in a substantial portion of the hypertensive population. Greater insight into circadian biology may form a foundation for novel and more widely effective molecular therapies or interventions to help in the prevention, treatment, and management of hypertension and its related pathophysiology.
Collapse
Affiliation(s)
- Frank M. Faraci
- Department of Internal Medicine, Francois M. Abboud Cardiovascular Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1081
- Department of Neuroscience and Pharmacology, Francois M. Abboud Cardiovascular Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1081
| | - Frank A.J.L. Scheer
- Division of Sleep Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, 02115
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, 02115
| |
Collapse
|
2
|
Gršković P, Korać P. Circadian Gene Variants in Diseases. Genes (Basel) 2023; 14:1703. [PMID: 37761843 PMCID: PMC10531145 DOI: 10.3390/genes14091703] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The circadian rhythm is a self-sustaining 24 h cycle that regulates physiological processes within the body, including cycles of alertness and sleepiness. Cells have their own intrinsic clock, which consists of several proteins that regulate the circadian rhythm of each individual cell. The core of the molecular clock in human cells consists of four main circadian proteins that work in pairs. The CLOCK-BMAL1 heterodimer and the PER-CRY heterodimer each regulate the other pair's expression, forming a negative feedback loop. Several other proteins are involved in regulating the expression of the main circadian genes, and can therefore also influence the circadian rhythm of cells. This review focuses on the existing knowledge regarding circadian gene variants in both the main and secondary circadian genes, and their association with various diseases, such as tumors, metabolic diseases, cardiovascular diseases, and sleep disorders.
Collapse
Affiliation(s)
| | - Petra Korać
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10 000 Zagreb, Croatia;
| |
Collapse
|
3
|
Zhang L, Malkemper EP. Cryptochromes in mammals: a magnetoreception misconception? Front Physiol 2023; 14:1250798. [PMID: 37670767 PMCID: PMC10475740 DOI: 10.3389/fphys.2023.1250798] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/01/2023] [Indexed: 09/07/2023] Open
Abstract
Cryptochromes are flavoproteins related to photolyases that are widespread throughout the plant and animal kingdom. They govern blue light-dependent growth in plants, control circadian rhythms in a light-dependent manner in invertebrates, and play a central part in the circadian clock in vertebrates. In addition, cryptochromes might function as receptors that allow animals to sense the Earth's magnetic field. As cryptochromes are also present in mammals including humans, the possibility of a magnetosensitive protein is exciting. Here we attempt to provide a concise overview of cryptochromes in mammals. We briefly review their canonical role in the circadian rhythm from the molecular level to physiology, behaviour and diseases. We then discuss their disputed light sensitivity and proposed role in the magnetic sense in mammals, providing three mechanistic hypotheses. Specifically, mammalian cryptochromes could form light-induced radical pairs in particular cellular milieus, act as magnetoreceptors in darkness, or as secondary players in a magnetoreception signalling cascade. Future research can test these hypotheses to investigate if the role of mammalian cryptochromes extends beyond the circadian clock.
Collapse
Affiliation(s)
| | - E. Pascal Malkemper
- Max Planck Research Group Neurobiology of Magnetoreception, Max Planck Institute for Neurobiology of Behavior—caesar, Bonn, Germany
| |
Collapse
|
4
|
Firouzabadi FD, Mirzababaei A, Shiraseb F, Tangestani H, Mirzaei K. The interaction between CRY1 Polymorphism and Alternative Healthy Eating Index (AHEI) on cardiovascular risk factors in overweight women and women with obesity: a cross-sectional study. BMC Endocr Disord 2023; 23:172. [PMID: 37580741 PMCID: PMC10424458 DOI: 10.1186/s12902-023-01429-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 08/01/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND According to some studies, diet can be interaction with CRY1 polymorphism and may be related to obesity and the risk of cardiovascular diseases (CVD). So, this study examined the interaction between CRY1 polymorphism and AHEI on cardiovascular risk factors in overweight women and women with obesity. METHODS This cross-sectional study was performed on 377 Iranian women with overweight and obesity aged 18-48(BMI ≥ 25 kg/m2). Dietary intake was evaluated by the use of a food frequency questionnaire (FFQ) with 147 items. The AHEI was calculated based on previous studies. Anthropometric and biochemical measurements were assessed and the bioelectrical impedance analysis method was used for body analysis. The rs2287161 was genotyped by the restriction fragment length polymorphism (PCR-RFLP) method. Objects were divided into three groups based on rs2287161 genotypes. RESULTS Our findings determined that the prevalence of the C allele was 51.9% and the G allele was 48.0%. The mean age and BMI were 36.6 ± 9.1years and 31 ± 4 kg/m2 respectively. After controlling for confounders (BMI, age, total energy intake, and physical activity), this study demonstrated that there was a significant interaction between CC genotype and adherence to AHEI on odds of hyper LDL (OR = 1.94, 95% CI = 1.24-3.05, P for interaction = 0.004), hypertension (OR = 1.80, 95% CI = 1.11-2.93, P for interaction = 0.01) and hyperglycemia (OR = 1.56, 95% CI = 0.98-2.47, P for interaction = 0.05). CONCLUSIONS This study indicated that adherence to AHEI can reduce the odds of hyper LDL, hypertension, and hyperglycemia in the CC genotype of rs2287161.
Collapse
Affiliation(s)
- Fatemeh Dehghani Firouzabadi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box: 14155-6117, Tehran, Iran
| | - Atieh Mirzababaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box: 14155-6117, Tehran, Iran
| | - Farideh Shiraseb
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box: 14155-6117, Tehran, Iran
| | - Hadith Tangestani
- Department of Nutrition, Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box: 14155-6117, Tehran, Iran.
- Department of Nutrition, Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
5
|
Toffoli B, Tonon F, Giudici F, Ferretti T, Ghirigato E, Contessa M, Francica M, Candido R, Puato M, Grillo A, Fabris B, Bernardi S. Preliminary Study on the Effect of a Night Shift on Blood Pressure and Clock Gene Expression. Int J Mol Sci 2023; 24:ijms24119309. [PMID: 37298261 DOI: 10.3390/ijms24119309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Night shift work has been found to be associated with a higher risk of cardiovascular and cerebrovascular disease. One of the underlying mechanisms seems to be that shift work promotes hypertension, but results have been variable. This cross-sectional study was carried out in a group of internists with the aim of performing a paired analysis of 24 h blood pressure in the same physicians working a day shift and then a night shift, and a paired analysis of clock gene expression after a night of rest and a night of work. Each participant wore an ambulatory blood pressure monitor (ABPM) twice. The first time was for a 24 h period that included a 12 h day shift (08.00-20.00) and a night of rest. The second time was for a 30 h period that included a day of rest, a night shift (20.00-08.00), and a subsequent period of rest (08.00-14.00). Subjects underwent fasting blood sampling twice: after the night of rest and after the night shift. Night shift work significantly increased night systolic blood pressure (SBP), night diastolic blood pressure (DBP), and heart rate (HR) and decreased their respective nocturnal decline. Clock gene expression increased after the night shift. There was a direct association between night blood pressure and clock gene expression. Night shifts lead to an increase in blood pressure, non-dipping status, and circadian rhythm misalignment. Blood pressure is associated with clock genes and circadian rhythm misalignement.
Collapse
Affiliation(s)
- Barbara Toffoli
- Department of Medical Surgical and Health Sciences, University of Trieste, Cattinara Teaching Hospital, Strada di Fiume 447, 34149 Trieste, Italy
| | - Federica Tonon
- Department of Medical Surgical and Health Sciences, University of Trieste, Cattinara Teaching Hospital, Strada di Fiume 447, 34149 Trieste, Italy
| | - Fabiola Giudici
- Department of Medical Surgical and Health Sciences, University of Trieste, Cattinara Teaching Hospital, Strada di Fiume 447, 34149 Trieste, Italy
| | - Tommaso Ferretti
- Department of Medical Surgical and Health Sciences, University of Trieste, Cattinara Teaching Hospital, Strada di Fiume 447, 34149 Trieste, Italy
| | - Elena Ghirigato
- Department of Medical Surgical and Health Sciences, University of Trieste, Cattinara Teaching Hospital, Strada di Fiume 447, 34149 Trieste, Italy
| | - Matilde Contessa
- Department of Medical Surgical and Health Sciences, University of Trieste, Cattinara Teaching Hospital, Strada di Fiume 447, 34149 Trieste, Italy
| | - Morena Francica
- Department of Medical Surgical and Health Sciences, University of Trieste, Cattinara Teaching Hospital, Strada di Fiume 447, 34149 Trieste, Italy
| | - Riccardo Candido
- Department of Medical Surgical and Health Sciences, University of Trieste, Cattinara Teaching Hospital, Strada di Fiume 447, 34149 Trieste, Italy
- SC Patologie Diabetiche, ASUGI, 34100 Trieste, Italy
| | - Massimo Puato
- SSD Angiologia e Fisiologia Clinica Vascolare Multidisciplinare Cattinara Teaching Hospital, Strada di Fiume 447, 34149 Trieste, Italy
| | - Andrea Grillo
- Department of Medical Surgical and Health Sciences, University of Trieste, Cattinara Teaching Hospital, Strada di Fiume 447, 34149 Trieste, Italy
- UCO Medicina Clinica, ASUGI Azienda Sanitaria Universitaria Giuliano-Isontina, Cattinara Teaching Hospital, Strada di Fiume 447, 34149 Trieste, Italy
| | - Bruno Fabris
- Department of Medical Surgical and Health Sciences, University of Trieste, Cattinara Teaching Hospital, Strada di Fiume 447, 34149 Trieste, Italy
- UCO Medicina Clinica, ASUGI Azienda Sanitaria Universitaria Giuliano-Isontina, Cattinara Teaching Hospital, Strada di Fiume 447, 34149 Trieste, Italy
| | - Stella Bernardi
- Department of Medical Surgical and Health Sciences, University of Trieste, Cattinara Teaching Hospital, Strada di Fiume 447, 34149 Trieste, Italy
- UCO Medicina Clinica, ASUGI Azienda Sanitaria Universitaria Giuliano-Isontina, Cattinara Teaching Hospital, Strada di Fiume 447, 34149 Trieste, Italy
| |
Collapse
|
6
|
Xu Y, Wang Y, Jiang Y, Liu M, Zhong W, Ge Z, Sun Z, Shen X. Relationship between cognitive dysfunction and the promoter methylation of PER1 and CRY1 in patients with cerebral small vessel disease. Front Aging Neurosci 2023; 15:1174541. [PMID: 37293664 PMCID: PMC10244731 DOI: 10.3389/fnagi.2023.1174541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
Background and purpose The prevalence of cerebral small vessel disease (CSVD) is increasing due to the accelerating global aging process, resulting in a substantial burden on all countries, as cognitive dysfunction associated with CSVD is also on the rise. Clock genes have a significant impact on cognitive decline and dementia. Furthermore, the pattern of DNA methylation in clock genes is strongly associated with cognitive impairment. Thus, the aim of this study was to explore the connection between DNA promoter methylation of PER1 and CRY1 and cognitive dysfunction in patients with CSVD. Methods We recruited patients with CSVD admitted to the Geriatrics Department of the Lianyungang Second People's Hospital between March 2021 and June 2022. Based on their Mini-Mental State Examination score, patients were categorized into two groups: 65 cases with cognitive dysfunction and 36 cases with normal cognitive function. Clinical data, 24-h ambulatory blood pressure monitoring parameters, and CSVD total load scores were collected. Moreover, we employed methylation-specific PCR to analyze the peripheral blood promoter methylation levels of clock genes PER1 and CRY1 in all CSVD patients who were enrolled. Finally, we used binary logistic regression models to assess the association between the promoter methylation of clock genes (PER1 and CRY1) and cognitive dysfunction in patients with CSVD. Results (1) A total of 101 individuals with CSVD were included in this study. There were no statistical differences between the two groups in baseline clinical data except MMSE and AD8 scores. (2) After B/H correction, the promoter methylation rate of PER1 was higher in the cognitive dysfunction group than that in the normal group, and the difference was statistically significant (adjusted p < 0.001). (3) There was no significant correlation between the promoter methylation rates of PER1 and CRY1 in peripheral blood and circadian rhythm of blood pressure (p > 0.05). (4) Binary logistic regression models showed that the influence of promoter methylation of PER1 and CRY1 on cognitive dysfunction were statistically significant in Model 1 (p < 0.001; p = 0.025), and it still existed after adjusting for confounding factors in Model 2. Patients with the promoter methylation of PER1 gene (OR = 16.565, 95%CI, 4.057-67.628; p < 0.001) and the promoter methylation of CRY1 gene (OR = 6.017, 95%CI, 1.290-28.069; p = 0.022) were at greater risk of cognitive dysfunction compared with those with unmethylated promoters of corresponding genes in Model 2. Conclusion The promoter methylation rate of PER1 gene was higher in the cognitive dysfunction group among CSVD patients. And the hypermethylation of the promoters of clock genes PER1 and CRY1 may be involved in affecting cognitive dysfunction in patients with CSVD.
Collapse
Affiliation(s)
- Yiwen Xu
- Department of Geriatrics, Lianyungang Hospital Affiliated to Jiangsu University (Lianyungang Second People’s Hospital), Lianyungang, China
| | - Yugang Wang
- Department of Neurology, The First People’s Hospital of XianYang, XianYang, China
| | - Yi Jiang
- Department of Geriatrics, Lianyungang Hospital Affiliated to Bengbu University (Lianyungang Second People’s Hospital), Lianyungang, China
| | - Mengqian Liu
- Department of Geriatrics, Lianyungang Hospital Affiliated to Jiangsu University (Lianyungang Second People’s Hospital), Lianyungang, China
| | - Wen Zhong
- Department of Geriatrics, Lianyungang Hospital Affiliated to Jiangsu University (Lianyungang Second People’s Hospital), Lianyungang, China
| | - Zhonglin Ge
- Department of Neurology, Lianyungang Second People′s Hospital, Lianyungang, China
| | - Zhichao Sun
- Department of Pathology, Lianyungang Second People′s Hospital, Lianyungang, China
| | - Xiaozhu Shen
- Department of Geriatrics, Lianyungang Hospital Affiliated to Jiangsu University (Lianyungang Second People’s Hospital), Lianyungang, China
| |
Collapse
|
7
|
Grosjean E, Simonneaux V, Challet E. Reciprocal Interactions between Circadian Clocks, Food Intake, and Energy Metabolism. BIOLOGY 2023; 12:biology12040539. [PMID: 37106739 PMCID: PMC10136292 DOI: 10.3390/biology12040539] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
Like other biological functions, food intake and energy metabolism display daily rhythms controlled by the circadian timing system that comprises a main circadian clock and numerous secondary clocks in the brain and peripheral tissues. Each secondary circadian clock delivers local temporal cues based on intracellular transcriptional and translational feedback loops that are tightly interconnected to intracellular nutrient-sensing pathways. Genetic impairment of molecular clocks and alteration in the rhythmic synchronizing cues, such as ambient light at night or mistimed meals, lead to circadian disruption that, in turn, negatively impacts metabolic health. Not all circadian clocks are sensitive to the same synchronizing signals. The master clock in the suprachiasmatic nuclei of the hypothalamus is mostly synchronized by ambient light and, to a lesser extent, by behavioral cues coupled to arousal and exercise. Secondary clocks are generally phase-shifted by timed metabolic cues associated with feeding, exercise, and changes in temperature. Furthermore, both the master and secondary clocks are modulated by calorie restriction and high-fat feeding. Taking into account the regularity of daily meals, the duration of eating periods, chronotype, and sex, chrononutritional strategies may be useful for improving the robustness of daily rhythmicity and maintaining or even restoring the appropriate energy balance.
Collapse
Affiliation(s)
- Emma Grosjean
- Institute of Cellular and Integrative Neurosciences, CNRS UPR3212, University of Strasbourg, 67000 Strasbourg, France
| | - Valérie Simonneaux
- Institute of Cellular and Integrative Neurosciences, CNRS UPR3212, University of Strasbourg, 67000 Strasbourg, France
| | - Etienne Challet
- Institute of Cellular and Integrative Neurosciences, CNRS UPR3212, University of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
8
|
Schroor MM, Plat J, Mensink RP. Relation between single nucleotide polymorphisms in circadian clock relevant genes and cholesterol metabolism. Mol Genet Metab 2023; 138:107561. [PMID: 37023502 DOI: 10.1016/j.ymgme.2023.107561] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/21/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
Single nucleotide polymorphisms (SNPs) in circadian clock relevant genes are associated with several metabolic health variables, but little is known about their associations with human cholesterol metabolism. Therefore, this study examined associations between SNPs in ARNTL, ARNTL2, CLOCK, CRY1, CRY2, PER2, and PER3 with the intestinal cholesterol absorption markers campesterol and sitosterol, the endogenous cholesterol synthesis marker lathosterol, and total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) concentrations in 456 healthy individuals from Western European descent. One SNP in ARNTL2 (rs1037924) showed a significant association with lathosterol. Several SNPs in ARNTL (rs4146388, rs58901760, rs6486121), ARNTL2 (rs73075788), CLOCK (rs13113518, rs35115774, rs6832769), and CRY1 (rs2078074) were significantly associated with intestinal cholesterol absorption. Genetic variants in CRY2, PER2, and PER3 were not significantly associated with intestinal cholesterol absorption or endogenous cholesterol synthesis. None of the SNPs were associated with TC or LDL-C, except for one SNP in PER2 (rs11894491) with serum LDL-C concentrations. The findings suggest that various SNPs in ARNTL, ARNTL2, CLOCK and CRY1 play a role in intestinal cholesterol absorption and endogenous cholesterol synthesis, which was not reflected in TC and LDL-C concentrations. The significant associations between SNPs and intestinal cholesterol absorption and endogenous cholesterol synthesis should be validated in other cohorts.
Collapse
Affiliation(s)
- Maite M Schroor
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, the Netherlands.
| | - Jogchum Plat
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Ronald P Mensink
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, the Netherlands
| |
Collapse
|
9
|
rs2253820 Variant Controls Blood Pressure Dip After Stroke by Increasing CLOCK–BMAL1 Expression. Transl Stroke Res 2022:10.1007/s12975-022-01063-y. [DOI: 10.1007/s12975-022-01063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 10/16/2022]
|
10
|
Bryant AJ, Ebrahimi E, Nguyen A, Wolff CA, Gumz ML, Liu AC, Esser KA. A wrinkle in time: circadian biology in pulmonary vascular health and disease. Am J Physiol Lung Cell Mol Physiol 2022; 322:L84-L101. [PMID: 34850650 PMCID: PMC8759967 DOI: 10.1152/ajplung.00037.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
An often overlooked element of pulmonary vascular disease is time. Cellular responses to time, which are regulated directly by the core circadian clock, have only recently been elucidated. Despite an extensive collection of data regarding the role of rhythmic contribution to disease pathogenesis (such as systemic hypertension, coronary artery, and renal disease), the roles of key circadian transcription factors in pulmonary hypertension remain understudied. This is despite a large degree of overlap in the pulmonary hypertension and circadian rhythm fields, not only including shared signaling pathways, but also cell-specific effects of the core clock that are known to result in both protective and adverse lung vessel changes. Therefore, the goal of this review is to summarize the current dialogue regarding common pathways in circadian biology, with a specific emphasis on its implications in the progression of pulmonary hypertension. In this work, we emphasize specific proteins involved in the regulation of the core molecular clock while noting the circadian cell-specific changes relevant to vascular remodeling. Finally, we apply this knowledge to the optimization of medical therapy, with a focus on sleep hygiene and the role of chronopharmacology in patients with this disease. In dissecting the unique relationship between time and cellular biology, we aim to provide valuable insight into the practical implications of considering time as a therapeutic variable. Armed with this information, physicians will be positioned to more efficiently use the full four dimensions of patient care, resulting in improved morbidity and mortality of pulmonary hypertension patients.
Collapse
Affiliation(s)
- Andrew J. Bryant
- 1Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Elnaz Ebrahimi
- 1Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Amy Nguyen
- 1Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Christopher A. Wolff
- 2Department of Physiology, University of Florida College of Medicine, Gainesville, Florida
| | - Michelle L. Gumz
- 2Department of Physiology, University of Florida College of Medicine, Gainesville, Florida
| | - Andrew C. Liu
- 2Department of Physiology, University of Florida College of Medicine, Gainesville, Florida
| | - Karyn A. Esser
- 2Department of Physiology, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
11
|
Škrlec I, Talapko J, Džijan S, Cesar V, Lazić N, Lepeduš H. The Association between Circadian Clock Gene Polymorphisms and Metabolic Syndrome: A Systematic Review and Meta-Analysis. BIOLOGY 2021; 11:20. [PMID: 35053018 PMCID: PMC8773381 DOI: 10.3390/biology11010020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/11/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
Abstract
Metabolic syndrome (MetS) is a combination of cardiovascular risk factors associated with type 2 diabetes, obesity, and cardiovascular diseases. The circadian clock gene polymorphisms are very likely to participate in metabolic syndrome genesis and development. However, research findings of the association between circadian rhythm gene polymorphisms and MetS and its comorbidities are not consistent. In this study, a review of the association of circadian clock gene polymorphisms with overall MetS risk was performed. In addition, a meta-analysis was performed to clarify the association between circadian clock gene polymorphisms and MetS susceptibility based on available data. The PubMed and Scopus databases were searched for studies reporting the association between circadian rhythm gene polymorphisms (ARNTL, BMAL1, CLOCK, CRY, PER, NPAS2, REV-ERBα, REV-ERBβ, and RORα) and MetS, and its comorbidities diabetes, obesity, and hypertension. Thirteen independent studies were analyzed with 17,381 subjects in total. The results revealed that the BMAL1 rs7950226 polymorphism was associated with an increased risk of MetS in the overall population. In contrast, the CLOCK rs1801260 and rs6850524 polymorphisms were not associated with MetS. This study suggests that some circadian rhythm gene polymorphisms might be associated with MetS in different populations and potentially used as predictive biomarkers for MetS.
Collapse
Affiliation(s)
- Ivana Škrlec
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (J.T.); (S.D.); (V.C.); (N.L.); (H.L.)
| | - Jasminka Talapko
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (J.T.); (S.D.); (V.C.); (N.L.); (H.L.)
| | - Snježana Džijan
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (J.T.); (S.D.); (V.C.); (N.L.); (H.L.)
- Genos Ltd., DNA Laboratory, 10000 Zagreb, Croatia
| | - Vera Cesar
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (J.T.); (S.D.); (V.C.); (N.L.); (H.L.)
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Ul. Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - Nikolina Lazić
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (J.T.); (S.D.); (V.C.); (N.L.); (H.L.)
| | - Hrvoje Lepeduš
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (J.T.); (S.D.); (V.C.); (N.L.); (H.L.)
- Faculty of Humanities and Social Sciences Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
12
|
Makris KC. Desynchronized circadian clock and exposures to xenobiotics are associated with differentiated disease phenotypes: The interface of desynchronized circadian clock and exposures to xenobiotics would lead to adverse response and recovery. Bioessays 2021; 43:e2100159. [PMID: 34585760 DOI: 10.1002/bies.202100159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023]
Abstract
A paradigm shift in the human chronotoxicity of xenobiotics would study two-sided desynchronized phenomena of interfacial interactions between cyclic or periodic environmental insults and the endogenous response and recovery profile. These systems-based networks are under the influence of well-synchronized biological clocks and their metabolic regulators. This perspective argues in favor of addressing the concept of synchronization in studies involving critical life windows of susceptibility, or circadian rhythms, or 24-hour (periodic) diurnal rhythms and answering whether these disruptions in synchronization would affect response and recovery or disease phenotypes associated with environmental insults, e.g., xenobiotics. Synchronization or synchrony is defined as the totality of elements that appear during the same time period within a system, including the network of interactions between the system's elements. Desynchronized interfaces during critical life windows or in time-repeated exposure events would likely lead to initiating a cascade of adverse health effects associated with differentiated disease phenotypes.
Collapse
Affiliation(s)
- Konstantinos Christos Makris
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
13
|
Gul S, Rahim F, Isin S, Yilmaz F, Ozturk N, Turkay M, Kavakli IH. Structure-based design and classifications of small molecules regulating the circadian rhythm period. Sci Rep 2021; 11:18510. [PMID: 34531414 PMCID: PMC8445970 DOI: 10.1038/s41598-021-97962-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 08/27/2021] [Indexed: 11/09/2022] Open
Abstract
Circadian rhythm is an important mechanism that controls behavior and biochemical events based on 24 h rhythmicity. Ample evidence indicates disturbance of this mechanism is associated with different diseases such as cancer, mood disorders, and familial delayed phase sleep disorder. Therefore, drug discovery studies have been initiated using high throughput screening. Recently the crystal structures of core clock proteins (CLOCK/BMAL1, Cryptochromes (CRY), Periods), responsible for generating circadian rhythm, have been solved. Availability of structures makes amenable core clock proteins to design molecules regulating their activity by using in silico approaches. In addition to that, the implementation of classification features of molecules based on their toxicity and activity will improve the accuracy of the drug discovery process. Here, we identified 171 molecules that target functional domains of a core clock protein, CRY1, using structure-based drug design methods. We experimentally determined that 115 molecules were nontoxic, and 21 molecules significantly lengthened the period of circadian rhythm in U2OS cells. We then performed a machine learning study to classify these molecules for identifying features that make them toxic and lengthen the circadian period. Decision tree classifiers (DTC) identified 13 molecular descriptors, which predict the toxicity of molecules with a mean accuracy of 79.53% using tenfold cross-validation. Gradient boosting classifiers (XGBC) identified 10 molecular descriptors that predict and increase in the circadian period length with a mean accuracy of 86.56% with tenfold cross-validation. Our results suggested that these features can be used in QSAR studies to design novel nontoxic molecules that exhibit period lengthening activity.
Collapse
Affiliation(s)
- Seref Gul
- Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, Istabul, Turkey
| | - Fatih Rahim
- Department of Industrial Engineering, Koc University, Rumelifeneri Yolu, Sariyer, Istabul, Turkey
| | - Safak Isin
- Department of Molecular Biology and Genetics, Rumelifeneri Yolu, Sariyer, Istabul, Turkey
| | - Fatma Yilmaz
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, 41400, Kocaeli, Turkey
| | - Nuri Ozturk
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, 41400, Kocaeli, Turkey
| | - Metin Turkay
- Department of Industrial Engineering, Koc University, Rumelifeneri Yolu, Sariyer, Istabul, Turkey.
| | - Ibrahim Halil Kavakli
- Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, Istabul, Turkey.
- Department of Molecular Biology and Genetics, Rumelifeneri Yolu, Sariyer, Istabul, Turkey.
| |
Collapse
|
14
|
Škrlec I, Talapko J, Juzbašić M, Steiner R. Sex Differences in Circadian Clock Genes and Myocardial Infarction Susceptibility. J Cardiovasc Dev Dis 2021; 8:53. [PMID: 34066863 PMCID: PMC8151899 DOI: 10.3390/jcdd8050053] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/23/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
The growing body of evidence shows a significant difference in the circadian rhythm of cardiovascular disease based on biological sex. The incidence of cardiovascular disease varies between women and men. Additionally, biological sex is vital for the timely application of therapy-chronotherapy, which benefits both sexes. This study aimed to examine the potential difference of single nucleotide polymorphisms (SNPs) of the circadian rhythm genes ARNTL, CLOCK, CRY2 and PER2 in women and men with myocardial infarction. A cross-sectional study was conducted, including 200 patients with myocardial infarction. Altogether, ten single nucleotide polymorphisms in the ARNTL, CLOCK, CRY2 and PER2 genes were analyzed. The Chi-square test yielded statistically significant differences in CLOCK gene rs11932595 polymorphism in a recessive genotype model between women and men with a p-value of 0.03 and an odds ratio 2.66, and a corresponding 95% confidence interval of 1.07 to 6.66. Other analyzed polymorphisms of the circadian rhythm genes ARNTL, CRY2, and PER2 did not significantly differ between the sexes. According to the study's current results, the CLOCK gene's genetic variability might affect myocardial infarction concerning biological sex.
Collapse
Affiliation(s)
- Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (M.J.)
| | - Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (M.J.)
| | - Martina Juzbašić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (M.J.)
| | - Robert Steiner
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, HR-31000 Osijek, Croatia;
- Clinical Department of Cardiovascular Diseases and Intensive Care, Clinic for Internal Medicine, University Hospital Osijek, Josipa Huttlera 4, HR-31000 Osijek, Croatia
| |
Collapse
|
15
|
Assessment of Selected Clock Proteins (CLOCK and CRY1) and Their Relationship with Biochemical, Anthropometric, and Lifestyle Parameters in Hypertensive Patients. Biomolecules 2021; 11:biom11040517. [PMID: 33808431 PMCID: PMC8067097 DOI: 10.3390/biom11040517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/29/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Circadian rhythms misalignment is associated with hypertension. The aim of the study was to evaluate the concentration of selected clock proteins-cryptochrome 1 (CRY1) and circadian locomotor output cycles kaput (CLOCK) to determine their relationships with biochemical and anthropometric parameters and lifestyle elements (diet, physical activity, and quality of sleep) in hypertensive patients. METHODS In 31 females with hypertension (HT) and 55 non-hypertensive women (NHT) the CRY1 and CLOCK concentrations, total antioxidant status (TAS), lipid profile, and glycemia were analyzed. Blood pressure and anthropometric measurements, nutritional, exercise, and sleep analyses were performed. RESULTS In the HT group, the CRY1 level was 37.38% lower than in the NHT group. No differences were noted in CLOCK concentration between groups. BMI, FBG, and TG were higher in the HT group compared to the NHT group, while TC, LDL, and HDL levels were similar. The study showed no relationship between CRY1 or CLOCK concentrations and glucose or lipids profile, amount of physical activity, or sleep quality, although CRY1 was associated with some anthropometric indicators. In the HT group, increased CLOCK and CRY1 values were associated with a high TAS level. CONCLUSIONS The serum level of CRY1 could be considered in a detailed diagnostic of hypertension risk in populations with abnormal anthropometric indices.
Collapse
|
16
|
Gul S, Aydin C, Ozcan O, Gurkan B, Surme S, Baris I, Kavakli IH. The Arg-293 of Cryptochrome1 is responsible for the allosteric regulation of CLOCK-CRY1 binding in circadian rhythm. J Biol Chem 2020; 295:17187-17199. [PMID: 33028638 PMCID: PMC7863883 DOI: 10.1074/jbc.ra120.014333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/01/2020] [Indexed: 11/06/2022] Open
Abstract
Mammalian circadian clocks are driven by transcription/translation feedback loops composed of positive transcriptional activators (BMAL1 and CLOCK) and negative repressors (CRYPTOCHROMEs (CRYs) and PERIODs (PERs)). CRYs, in complex with PERs, bind to the BMAL1/CLOCK complex and repress E-box-driven transcription of clock-associated genes. There are two individual CRYs, with CRY1 exhibiting higher affinity to the BMAL1/CLOCK complex than CRY2. It is known that this differential binding is regulated by a dynamic serine-rich loop adjacent to the secondary pocket of both CRYs, but the underlying features controlling loop dynamics are not known. Here we report that allosteric regulation of the serine-rich loop is mediated by Arg-293 of CRY1, identified as a rare CRY1 SNP in the Ensembl and 1000 Genomes databases. The p.Arg293His CRY1 variant caused a shortened circadian period in a Cry1-/-Cry2-/- double knockout mouse embryonic fibroblast cell line. Moreover, the variant displayed reduced repressor activity on BMAL1/CLOCK driven transcription, which is explained by reduced affinity to BMAL1/CLOCK in the absence of PER2 compared with CRY1. Molecular dynamics simulations revealed that the p.Arg293His CRY1 variant altered a communication pathway between Arg-293 and the serine loop by reducing its dynamicity. Collectively, this study provides direct evidence that allosterism in CRY1 is critical for the regulation of circadian rhythm.
Collapse
Affiliation(s)
- Seref Gul
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Cihan Aydin
- Department of Molecular Biology and Genetics, Istanbul Medeniyet University, Istanbul, Turkey
| | - Onur Ozcan
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Berke Gurkan
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Saliha Surme
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Ibrahim Baris
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Ibrahim Halil Kavakli
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey; Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey.
| |
Collapse
|
17
|
Škrlec I, Milić J, Heffer M, Wagner J, Peterlin B. Circadian clock genes and circadian phenotypes in patients with myocardial infarction. Adv Med Sci 2019; 64:224-229. [PMID: 30818221 DOI: 10.1016/j.advms.2018.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/31/2018] [Accepted: 12/07/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE Human physiological activities and diseases are under the control of the circadian rhythm. There are strong epidemiological associations between disrupted circadian rhythms, sleep duration and diseases. Sleep disorders are associated with vascular outcomes, such as myocardial infarction (MI). METHODS We conducted an association study of genotype-phenotype interaction, to determine which circadian clock gene variants might be associated with the circadian phenotypes in patients with MI. In the present study, we analyzed the allele frequencies of 10 single nucleotide polymorphisms in four circadian clock genes in two independent samples: MI patients and controls. Chronotype was assessed using the Morningness - Eveningness Questionnaire (MEQ) and daytime sleepiness using the Epworth Sleepiness Scale (ESS). RESULTS Chronotype was associated with the ARNTL genetic variant rs12363415 in MI patients. The polymorphisms rs11932595 of the CLOCK gene and rs934945 of the PER2 gene were associated with daytime sleepiness in the patient group. CONCLUSION Our data suggest that genetic variations in some circadian clock genes might be related to circadian phenotype (i.e., chronotype and daytime sleepiness) in patients with myocardial infarction.
Collapse
Affiliation(s)
- Ivana Škrlec
- Department of Biology and Chemistry, Faculty of Dental Medicine and Health, J. J. Strossmayer University of Osijek, Osijek, Croatia; Department of Medical Biology and Genetics, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia.
| | - Jakov Milić
- Department of Medical Biology and Genetics, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Marija Heffer
- Department of Medical Biology and Genetics, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Jasenka Wagner
- Department of Biology and Chemistry, Faculty of Dental Medicine and Health, J. J. Strossmayer University of Osijek, Osijek, Croatia; Department of Medical Biology and Genetics, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Borut Peterlin
- Clinical Institute of Medical Genetics, University Medical Center Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
18
|
Kovac U, Jasper EA, Smith CJ, Baer RJ, Bedell B, Donovan BM, Weathers N, Prosenc Zmrzljak U, Jelliffe-Pawlowski LL, Rozman D, Ryckman KK. The Association of Polymorphisms in Circadian Clock and Lipid Metabolism Genes With 2 nd Trimester Lipid Levels and Preterm Birth. Front Genet 2019; 10:540. [PMID: 31249592 PMCID: PMC6584752 DOI: 10.3389/fgene.2019.00540] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/17/2019] [Indexed: 12/19/2022] Open
Abstract
Deregulation of the circadian system in humans and animals can lead to various adverse reproductive outcomes due to genetic mutations and environmental factors. In addition to the clock, lipid metabolism may also play an important role in influencing reproductive outcomes. Despite the importance of the circadian clock and lipid metabolism in regulating birth timing few studies have examined the relationship between circadian genetics with lipid levels during pregnancy and their relationship with preterm birth (PTB). In this study we aimed to determine if single nucleotide polymorphisms (SNPs) in genes from the circadian clock and lipid metabolism influence 2nd trimester maternal lipid levels and if this is associated with an increased risk for PTB. We genotyped 72 SNPs across 40 genes previously associated with various metabolic abnormalities on 930 women with 2nd trimester serum lipid measurements. SNPs were analyzed for their relationship to levels of total cholesterol, high density lipoprotein (HDL), low density lipoprotein (LDL) and triglycerides (TG) using linear regression. SNPs were also evaluated for their relationship to PTB using logistic regression. Five SNPs in four genes met statistical significance after Bonferroni correction (p < 1.8 × 10-4) with one or more lipid levels. Of these, four SNPs were in lipid related metabolism genes: rs7412 in APOE with total cholesterol, HDL and LDL, rs646776 and rs599839 in CELSR2-PSRC1-SORT1 gene cluster with total cholesterol, HDL and LDL and rs738409 in PNPLA3 with HDL and TG and one was in a circadian clock gene: rs228669 in PER3 with TG. Of these SNPs only PER3 rs228669 was marginally associated with PTB (p = 0.02). In addition, PER3 rs228669 acts as an effect modifier on the relationship between TG and PTB.
Collapse
Affiliation(s)
- Ursa Kovac
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Elizabeth A Jasper
- Department of Epidemiology, The University of Iowa, Iowa City, IA, United States
| | - Caitlin J Smith
- Department of Epidemiology, The University of Iowa, Iowa City, IA, United States
| | - Rebecca J Baer
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States.,California Preterm Birth Initiative, University of California, San Francisco, San Francisco, CA, United States
| | - Bruce Bedell
- Department of Epidemiology, The University of Iowa, Iowa City, IA, United States
| | - Brittney M Donovan
- Department of Epidemiology, The University of Iowa, Iowa City, IA, United States
| | - Nancy Weathers
- Department of Epidemiology, The University of Iowa, Iowa City, IA, United States
| | - Ursula Prosenc Zmrzljak
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Laura L Jelliffe-Pawlowski
- California Preterm Birth Initiative, University of California, San Francisco, San Francisco, CA, United States.,Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, United States
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Kelli K Ryckman
- Department of Epidemiology, The University of Iowa, Iowa City, IA, United States
| |
Collapse
|
19
|
|
20
|
Tedjasukmana R, Purba JS, Wanandi SI, Suyatna FD. Neuroglobin correlates with cryptochrome-1 in obstructive sleep apnea with primary aldosteronism. PLoS One 2018; 13:e0204390. [PMID: 30235329 PMCID: PMC6147504 DOI: 10.1371/journal.pone.0204390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 09/09/2018] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Neuroglobin (Ngb) is highly expressed in the suprachiasmatic nucleus, and can regulate Per1 gene expression. It is still not known whether Ngb also influences Cryptochrome (Cry). Cry is implicated in hypertension and primary aldosteronism (PA) in mice. There is a strong correlation between Obstructive Sleep Apnea (OSA) and PA. We propose to prove that Ngb and Cry play a role in OSA with PA. METHODS Subjects were recruited consecutively from residents of Jakarta, Indonesia; subjects aged 30-65 years with moderate to severe OSA and hypertension were included in the study. OSA was diagnosed using an unattended type 2 portable monitor (Alice Pdx), hypertension was diagnosed when morning blood pressure exceeded 140/90 mmHg or when taking anti-hypertensive drugs. Serum concentration of aldosterone, renin, Cry1, Cry2 and Ngb protein were determined using ELISA method. Primary aldosteronism (PA) was defined as ARR ≥20. RESULTS Forty subjects were recruited, 26 male and 14 female, median age 52.5 years, BMI 27.46 kg/m2, and AHI 34.8 times/hour. We found 16 subjects with PA and 24 non PA. Cry1 and Cry2 did not correlate with ARR in PA and non PA groups. Ngb correlated positively with Cry1 (Spearman's rho = 0.455, p = 0.038) but not Cry2 in PA patients. Cry1 concentration decreased in severe hypoxia. CONCLUSIONS Ngb correlates with Cry1 in OSA with PA. There is no correlation between Cry1 or Cry2 with PA.
Collapse
Affiliation(s)
- Rimawati Tedjasukmana
- Biomedical Department, Universitas Indonesia, Jakarta, Indonesia
- Department of Neurology, Universitas Krida Wacana, Jakarta, Indonesia
| | - Jan Sudir Purba
- Department of Neurology, Universitas Indonesia, Jakarta, Indonesia
| | - Septelia Inawati Wanandi
- Biomedical Department, Universitas Indonesia, Jakarta, Indonesia
- Department of Biochemistry and Molecular Biology, Universitas Indonesia, Jakarta, Indonesia
| | - Franciscus D. Suyatna
- Biomedical Department, Universitas Indonesia, Jakarta, Indonesia
- Department of Pharmacology, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
21
|
Škrlec I, Milic J, Heffer M, Peterlin B, Wagner J. Genetic variations in circadian rhythm genes and susceptibility for myocardial infarction. Genet Mol Biol 2018; 41:403-409. [PMID: 29767668 PMCID: PMC6082246 DOI: 10.1590/1678-4685-gmb-2017-0147] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/22/2017] [Indexed: 02/07/2023] Open
Abstract
Disruption of endogenous circadian rhythms has been shown to increase the risk of developing myocardial infarction (MI), suggesting that circadian genes might play a role in determining disease susceptibility. We conducted a case-control study on 200 patients hospitalized due to MI and 200 healthy controls, investigating the association between MI and single nucleotide polymorphisms (SNPs) in four circadian genes (ARNTL, CLOCK, CRY2, and PER2). The variants of all four genes were chosen based on their previously reported association with cardiovascular risk factors, which have a major influence on the occurrence of myocardial infarction. Statistically significant differences, assessed through Chi-square analysis, were found in genotype distribution between cases and controls of the PER2 gene rs35333999 (p=0.024) and the CRY2 gene rs2292912 (p=0.028); the corresponding unadjusted odds ratios, also significant, were respectively OR=0.49 (95% CI 0.26-0.91) and OR=0.32 (95% CI 0.11-0.89). Our data suggest that genetic variability in the CRY2 and PER2 genes might be associated with myocardial infarction.
Collapse
Affiliation(s)
- Ivana Škrlec
- University of OsijekUniversity of OsijekDepartment of Medical Biology and
GeneticsCroatiaDepartment of Medical Biology and Genetics,
Faculty of Medicine, J. J. Strossmayer University of Osijek,
Croatia
- University of OsijekUniversity of OsijekFaculty of Dental Medicine and
HealthCroatiaFaculty of Dental Medicine and Health, J.
J. Strossmayer University of Osijek, Croatia
| | - Jakov Milic
- University of OsijekUniversity of OsijekDepartment of Medical Biology and
GeneticsCroatiaDepartment of Medical Biology and Genetics,
Faculty of Medicine, J. J. Strossmayer University of Osijek,
Croatia
| | - Marija Heffer
- University of OsijekUniversity of OsijekDepartment of Medical Biology and
GeneticsCroatiaDepartment of Medical Biology and Genetics,
Faculty of Medicine, J. J. Strossmayer University of Osijek,
Croatia
| | - Borut Peterlin
- University Medical Center
LjubljanaUniversity Medical Center
LjubljanaClinical Institute of Medical
GeneticsSloveniaClinical Institute of Medical Genetics,
University Medical Center Ljubljana, Slovenia
| | - Jasenka Wagner
- University of OsijekUniversity of OsijekDepartment of Medical Biology and
GeneticsCroatiaDepartment of Medical Biology and Genetics,
Faculty of Medicine, J. J. Strossmayer University of Osijek,
Croatia
- University of OsijekUniversity of OsijekFaculty of Dental Medicine and
HealthCroatiaFaculty of Dental Medicine and Health, J.
J. Strossmayer University of Osijek, Croatia
| |
Collapse
|
22
|
The Role of Circadian Rhythms in the Hypertension of Diabetes Mellitus and the Metabolic Syndrome. Curr Hypertens Rep 2018; 20:43. [PMID: 29730779 DOI: 10.1007/s11906-018-0843-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE OF THE REVIEW Cellular circadian clocks regulate physiological functions during day and night. It has been convincingly demonstrated that hypertension in patients suffering from diabetes mellitus or metabolic syndrome is characterized in most cases by a disturbed 24-h profile resulting in a nondipper pattern. We consider possible correlation between biological clocks and symptoms of the metabolic syndrome. RECENT FINDINGS Changes in circadian clock function have been linked to metabolic disorders in genome-wide association studies. Epidemiological studies have shown that a loss of nocturnal decline in blood pressure increases the risk of cardiovascular morbidity and mortality and end-organ damage. Looking at clock genes, however, there is no obvious association between symptoms of diabetes or metabolic syndrome and clock gene expression. Emerging data suggest that circadian rhythm disruption is a risk factor for metabolic and cardiovascular disorders, while disease feedback on clock function is limited.
Collapse
|
23
|
Independent Maternal and Fetal Genetic Effects on Midgestational Circulating Levels of Environmental Pollutants. G3-GENES GENOMES GENETICS 2017; 7:1287-1299. [PMID: 28235828 PMCID: PMC5386877 DOI: 10.1534/g3.117.039784] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Maternal exposure to environmental pollutants could affect fetal brain development and increase autism spectrum disorder (ASD) risk in conjunction with differential genetic susceptibility. Organohalogen congeners measured in maternal midpregnancy blood samples have recently shown significant, but negative associations with offspring ASD outcome. We report the first large-scale maternal and fetal genetic study of the midpregnancy serum levels of a set of 21 organohalogens in a subset of 790 genotyped women and 764 children collected in California by the Early Markers for Autism (EMA) Project. Levels of PCB (polychlorinated biphenyl) and PBDE (polybrominated diphenyl ether) congeners showed high maternal and fetal estimated SNP-based heritability (h2g) accounting for 39–99% of the total variance. Genome-wide association analyses identified significant maternal loci for p,p′-DDE (P = 7.8 × 10−11) in the CYP2B6 gene and for BDE-28 (P = 3.2 × 10−8) near the SH3GL2 gene, both involved in xenobiotic and lipid metabolism. Fetal genetic loci contributed to the levels of BDE-100 (P = 4.6 × 10−8) and PCB187 (P = 2.8 × 10−8), near the potential metabolic genes LOXHD1 and PTPRD, previously implicated in neurodevelopment. Negative associations were observed for BDE-100, BDE153, and the sum of PBDEs with ASD, partly explained by genome-wide additive genetic effects that predicted PBDE levels. Our results support genetic control of midgestational biomarkers for environmental exposures by nonoverlapping maternal and fetal genetic determinants, suggesting that future studies of environmental risk factors should take genetic variation into consideration. The independent influence of fetal genetics supports previous hypotheses that fetal genotypes expressed in placenta can influence maternal physiology and the transplacental transfer of organohalogens.
Collapse
|
24
|
Lin E, Kuo PH, Liu YL, Yang AC, Kao CF, Tsai SJ. Effects of circadian clock genes and health-related behavior on metabolic syndrome in a Taiwanese population: Evidence from association and interaction analysis. PLoS One 2017; 12:e0173861. [PMID: 28296937 PMCID: PMC5352001 DOI: 10.1371/journal.pone.0173861] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/28/2017] [Indexed: 12/12/2022] Open
Abstract
Increased risk of developing metabolic syndrome (MetS) has been associated with the circadian clock genes. In this study, we assessed whether 29 circadian clock-related genes (including ADCYAP1, ARNTL, ARNTL2, BHLHE40, CLOCK, CRY1, CRY2, CSNK1D, CSNK1E, GSK3B, HCRTR2, KLF10, NFIL3, NPAS2, NR1D1, NR1D2, PER1, PER2, PER3, REV1, RORA, RORB, RORC, SENP3, SERPINE1, TIMELESS, TIPIN, VIP, and VIPR2) are associated with MetS and its individual components independently and/or through complex interactions in a Taiwanese population. We also analyzed the interactions between environmental factors and these genes in influencing MetS and its individual components. A total of 3,000 Taiwanese subjects from the Taiwan Biobank were assessed in this study. Metabolic traits such as waist circumference, triglyceride, high-density lipoprotein cholesterol, systolic and diastolic blood pressure, and fasting glucose were measured. Our data showed a nominal association of MetS with several single nucleotide polymorphisms (SNPs) in five key circadian clock genes including ARNTL, GSK3B, PER3, RORA, and RORB; but none of these SNPs persisted significantly after performing Bonferroni correction. Moreover, we identified the effect of GSK3B rs2199503 on high fasting glucose (P = 0.0002). Additionally, we found interactions among the ARNTL rs10832020, GSK3B rs2199503, PER3 rs10746473, RORA rs8034880, and RORB rs972902 SNPs influenced MetS (P < 0.001 ~ P = 0.002). Finally, we investigated the influence of interactions between ARNTL rs10832020, GSK3B rs2199503, PER3 rs10746473, and RORB rs972902 with environmental factors such as alcohol consumption, smoking status, and physical activity on MetS and its individual components (P < 0.001 ~ P = 0.002). Our study indicates that circadian clock genes such as ARNTL, GSK3B, PER3, RORA, and RORB genes may contribute to the risk of MetS independently as well as through gene-gene and gene-environment interactions.
Collapse
Affiliation(s)
- Eugene Lin
- Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Vita Genomics, Inc., Taipei, Taiwan
- TickleFish Systems Corporation, Seattle, Western Australia, United States of America
- * E-mail: (EL); (SJT)
| | - Po-Hsiu Kuo
- Department of Public Health, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Albert C. Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Feng Kao
- Department of Agronomy, College of Agriculture & Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan
- * E-mail: (EL); (SJT)
| |
Collapse
|
25
|
Estimation methods for human circadian phase by use of peripheral tissues. Hypertens Res 2016; 39:623-7. [DOI: 10.1038/hr.2016.68] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/14/2016] [Accepted: 04/15/2016] [Indexed: 12/19/2022]
|
26
|
Nutrigenetics and Nutrimiromics of the Circadian System: The Time for Human Health. Int J Mol Sci 2016; 17:299. [PMID: 26927084 PMCID: PMC4813163 DOI: 10.3390/ijms17030299] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 02/08/2016] [Accepted: 02/16/2016] [Indexed: 12/15/2022] Open
Abstract
Even though the rhythmic oscillations of life have long been known, the precise molecular mechanisms of the biological clock are only recently being explored. Circadian rhythms are found in virtually all organisms and affect our lives. Thus, it is not surprising that the correct running of this clock is essential for cellular functions and health. The circadian system is composed of an intricate network of genes interwined in an intrincated transcriptional/translational feedback loop. The precise oscillation of this clock is controlled by the circadian genes that, in turn, regulate the circadian oscillations of many cellular pathways. Consequently, variations in these genes have been associated with human diseases and metabolic disorders. From a nutrigenetics point of view, some of these variations modify the individual response to the diet and interact with nutrients to modulate such response. This circadian feedback loop is also epigenetically modulated. Among the epigenetic mechanisms that control circadian rhythms, microRNAs are the least studied ones. In this paper, we review the variants of circadian-related genes associated to human disease and nutritional response and discuss the current knowledge about circadian microRNAs. Accumulated evidence on the genetics and epigenetics of the circadian system points to important implications of chronotherapy in the clinical practice, not only in terms of pharmacotherapy, but also for dietary interventions. However, interventional studies (especially nutritional trials) that include chronotherapy are scarce. Given the importance of chronobiology in human health such studies are warranted in the near future.
Collapse
|
27
|
Shimizu I, Yoshida Y, Minamino T. A role for circadian clock in metabolic disease. Hypertens Res 2016; 39:483-91. [DOI: 10.1038/hr.2016.12] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 01/17/2016] [Accepted: 01/18/2016] [Indexed: 12/11/2022]
|
28
|
Takeda N, Maemura K. Circadian clock and the onset of cardiovascular events. Hypertens Res 2016; 39:383-90. [PMID: 26888119 DOI: 10.1038/hr.2016.9] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 02/07/2023]
Abstract
The onset of cardiovascular diseases often shows time-of-day variation. Acute myocardial infarction or ventricular arrhythmia such as ventricular tachycardia occurs mainly in the early morning. Multiple biochemical and physiological parameters show circadian rhythm, which may account for the diurnal variation of cardiovascular events. These include the variations in blood pressure, activity of the autonomic nervous system and renin-angiotensin axis, coagulation cascade, vascular tone and the intracellular metabolism of cardiomyocytes. Importantly, the molecular clock system seems to underlie the circadian variation of these parameters. The center of the biological clock, also known as the central clock, exists in the suprachiasmatic nucleus. In contrast, the molecular clock system is also activated in each cell of the peripheral organs and constitute the peripheral clock. The biological clock system is currently considered to have a beneficial role in maintaining the homeostasis of each organ. Discoordination, however, between the peripheral clock and external environment could potentially underlie the development of cardiovascular events. Therefore, understanding the molecular and cellular pathways by which cardiovascular events occur in a diurnal oscillatory pattern will help the establishment of a novel therapeutic approach to the management of cardiovascular disorders.
Collapse
Affiliation(s)
- Norihiko Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Koji Maemura
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
29
|
|
30
|
Dashti HS, Aslibekyan S, Scheer FAJL, Smith CE, Lamon-Fava S, Jacques P, Lai CQ, Tucker KL, Arnett DK, Ordovás JM. Clock Genes Explain a Large Proportion of Phenotypic Variance in Systolic Blood Pressure and This Control Is Not Modified by Environmental Temperature. Am J Hypertens 2016; 29:132-40. [PMID: 26045533 DOI: 10.1093/ajh/hpv082] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/13/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Diurnal variation in blood pressure (BP) is regulated, in part, by an endogenous circadian clock; however, few human studies have identified associations between clock genes and BP. Accounting for environmental temperature may be necessary to correct for seasonal bias. METHODS We examined whether environmental temperature on the day of participants' assessment was associated with BP, using adjusted linear regression models in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) (n = 819) and the Boston Puerto Rican Health Study (BPRHS) (n = 1,248) cohorts. We estimated phenotypic variance in BP by 18 clock genes and examined individual single-nucleotide polymorphism (SNP) associations with BP using an additive genetic model, with further consideration of environmental temperature. RESULTS In GOLDN, each additional 1 °C increase in environmental temperature was associated with 0.18 mm Hg lower systolic BP [SBP; β ± SE = -0.18 ± 0.05 mm Hg; P = 0.0001] and 0.10mm Hg lower diastolic BP [DBP; -0.10 ± 0.03 mm Hg; P = 0.001]. Similar results were seen in the BPRHS for SBP only. Clock genes explained a statistically significant proportion of the variance in SBP [V G/V P ± SE = 0.071 ± 0.03; P = 0.001] in GOLDN, but not in the BPRHS, and we did not observe associations between individual SNPs and BP. Environmental temperature did not influence the identified genetic associations. CONCLUSIONS We identified clock genes that explained a statistically significant proportion of the phenotypic variance in SBP, supporting the importance of the circadian pathway underlying cardiac physiology. Although temperature was associated with BP, it did not affect results with genetic markers in either study. Therefore, it does not appear that temperature measures are necessary for interpreting associations between clock genes and BP. CLINICAL TRIAL REGISTRATION Trials related to this study were registered at clinicaltrials.gov as NCT00083369 (Genetic and Environmental Determinants of Triglycerides) and NCT01231958 (Boston Puerto Rican Health Study).
Collapse
Affiliation(s)
- Hassan S Dashti
- Nutrition and Genomics Laboratory, Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA;
| | - Stella Aslibekyan
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Frank A J L Scheer
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, Massachusetts, USA; Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Caren E Smith
- Nutrition and Genomics Laboratory, Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| | - Stefania Lamon-Fava
- Cardiovascular Nutrition Laboratory, Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| | - Paul Jacques
- Nutritional Epidemiology Laboratory, Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| | - Chao-Qiang Lai
- Nutrition and Genomics Laboratory, Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| | | | - Donna K Arnett
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - José M Ordovás
- Nutrition and Genomics Laboratory, Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA; Department of Epidemiology, Centro Nacional Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Instituto Madrileño de Estudios Avanzados en Alimentación (IMDEA-FOOD), Madrid, Spain
| |
Collapse
|