1
|
A 5′ UTR Mutation Contributes to Down-Regulation of Bbs7 in the Berlin Fat Mouse. Int J Mol Sci 2022; 23:ijms232113018. [PMID: 36361806 PMCID: PMC9658298 DOI: 10.3390/ijms232113018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/25/2022] Open
Abstract
The Bardet–Biedl Syndrome 7 (Bbs7) gene was identified as the most likely candidate gene causing juvenile obesity in the Berlin Fat Mouse Inbred (BFMI) line. Bbs7 expression is significantly lower in the brain, adipose tissue, and liver of BFMI mice compared to lean C57BL/6NCrl (B6N) mice. A DNA sequence comparison between BFMI and B6N revealed 16 sequence variants in the Bbs7 promoter region. Here, we tested if these mutations contribute to the observed differential expression of Bbs7. In a cell-based dual-luciferase assay, we compared the effects of the BFMI and the B6N haplotypes of different regions of the Bbs7 promotor on the reporter gene expression. A single-nucleotide polymorphism (SNP) was identified causing a significant reduction in the reporter gene expression. This SNP (rs29947545) is located in the 5′ UTR of Bbs7 at Chr3:36.613.350. The SNP is not unique to BFMI mice but also occurs in several other mouse strains, where the BFMI allele is not associated with lower Bbs7 transcript amounts. Thus, we suggest a compensatory mutation in the other mouse strains that keeps Bbs7 expression at the normal level. This compensatory mechanism is missing in BFMI mice and the cell lines tested.
Collapse
|
2
|
Delpero M, Arends D, Freiberg A, Brockmann GA, Hesse D. QTL-mapping in the obese Berlin Fat Mouse identifies additional candidate genes for obesity and fatty liver disease. Sci Rep 2022; 12:10471. [PMID: 35729251 PMCID: PMC9213485 DOI: 10.1038/s41598-022-14316-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022] Open
Abstract
The Berlin Fat Mouse Inbred line (BFMI) is a model for obesity and the metabolic syndrome. This study aimed to identify genetic variants associated with liver weight, liver triglycerides, and body weight using the obese BFMI sub-line BFMI861-S1. BFMI861-S1 mice are insulin resistant and store ectopic fat in the liver. In generation 10, 58 males and 65 females of the advanced intercross line (AIL) BFMI861-S1xB6N were phenotyped under a standard diet over 20 weeks. QTL analysis was performed after genotyping with the MiniMUGA Genotyping Array. Whole-genome sequencing and gene expression data of the parental lines was used for the prioritization of positional candidate genes. Three QTLs associated with liver weight, body weight, and subcutaneous adipose tissue (scAT) weight were identified. A highly significant QTL on chromosome (Chr) 1 (157–168 Mb) showed an association with liver weight. A QTL for body weight at 20 weeks was found on Chr 3 (34.1–40 Mb) overlapping with a QTL for scAT weight. In a multiple QTL mapping approach, an additional QTL affecting body weight at 16 weeks was identified on Chr 6 (9.5–26.1 Mb). Considering sequence variants and expression differences, Sec16b and Astn1 were prioritized as top positional candidate genes for the liver weight QTL on Chr 1; Met and Ica1 for the body weight QTL on Chr 6. Interestingly, all top candidate genes have previously been linked with metabolic traits. This study shows once more the power of an advanced intercross line for fine mapping. QTL mapping combined with a detailed prioritization approach allowed us to identify additional and plausible candidate genes linked to metabolic traits in the BFMI861-S1xB6N AIL. By reidentifying known candidate genes in a different crossing population the causal link with specific traits is underlined and additional evidence is given for further investigations.
Collapse
Affiliation(s)
- Manuel Delpero
- Department for Crop and Animal Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences Humboldt-Universität Zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| | - Danny Arends
- Department for Crop and Animal Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences Humboldt-Universität Zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| | - Aimée Freiberg
- Department for Crop and Animal Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences Humboldt-Universität Zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| | - Gudrun A Brockmann
- Department for Crop and Animal Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences Humboldt-Universität Zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| | - Deike Hesse
- Department for Crop and Animal Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences Humboldt-Universität Zu Berlin, Unter den Linden 6, 10099, Berlin, Germany.
| |
Collapse
|
3
|
Arends D, Kärst S, Heise S, Korkuc P, Hesse D, Brockmann GA. Transmission distortion and genetic incompatibilities between alleles in a multigenerational mouse advanced intercross line. Genetics 2022; 220:iyab192. [PMID: 34791189 PMCID: PMC8733443 DOI: 10.1093/genetics/iyab192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/15/2021] [Indexed: 11/23/2022] Open
Abstract
While direct additive and dominance effects on complex traits have been mapped repeatedly, additional genetic factors contributing to the heterogeneity of complex traits have been scarcely investigated. To assess genetic background effects, we investigated transmission ratio distortions (TRDs) of alleles from parent to offspring using an advanced intercross line (AIL) of an initial cross between the mouse inbred strains C57BL/6NCrl (B6N) and BFMI860-12 [Berlin Fat Mouse Inbred (BFMI)]. A total of 341 males of generation 28 and their respective 61 parents and 66 grandparents were genotyped using Mega Mouse Universal Genotyping Arrays. TRDs were investigated using allele transmission asymmetry tests, and pathway overrepresentation analysis was performed. Sequencing data were used to test for overrepresentation of nonsynonymous SNPs (nsSNPs) in TRD regions. Genetic incompatibilities were tested using the Bateson-Dobzhansky-Muller two-locus model. A total of 62 TRD regions were detected, many in close proximity to the telocentric centromere. TRD regions contained 44.5% more nsSNPs than randomly selected regions (182 vs 125.9 ± 17.0, P < 1 × 10-4). Testing for genetic incompatibilities between TRD regions identified 29 genome-wide significant incompatibilities between TRD regions [P(BF) < 0.05]. Pathway overrepresentation analysis of genes in TRD regions showed that DNA methylation, epigenetic regulation of RNA, and meiotic/meiosis regulation pathways were affected independent of the parental origin of the TRD. Paternal BFMI TRD regions showed overrepresentation in the small interfering RNA biogenesis and in the metabolism of lipids and lipoproteins. Maternal B6N TRD regions harbored genes involved in meiotic recombination, cell death, and apoptosis pathways. The analysis of genes in TRD regions suggests the potential distortion of protein-protein interactions influencing obesity and diabetic retinopathy as a result of disadvantageous combinations of allelic variants in Aass, Pgx6, and Nme8. Using an AIL significantly improves the resolution at which we can investigate TRD. Our analysis implicates distortion of protein-protein interactions as well as meiotic drive as the underlying mechanisms leading to the observed TRD in our AIL. Furthermore, genes with large amounts of nsSNPs located in TRD regions are more likely to be involved in pathways that are related to the phenotypic differences between the parental strains. Genes in these TRD regions provide new targets for investigating genetic adaptation, protein-protein interactions, and determinants of complex traits such as obesity.
Collapse
Affiliation(s)
- Danny Arends
- Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer Institute for Agricultural and Horticultural Sciences, Humboldt University Berlin, Berlin D-10115, Germany
| | - Stefan Kärst
- Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer Institute for Agricultural and Horticultural Sciences, Humboldt University Berlin, Berlin D-10115, Germany
| | - Sebastian Heise
- Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer Institute for Agricultural and Horticultural Sciences, Humboldt University Berlin, Berlin D-10115, Germany
| | - Paula Korkuc
- Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer Institute for Agricultural and Horticultural Sciences, Humboldt University Berlin, Berlin D-10115, Germany
| | - Deike Hesse
- Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer Institute for Agricultural and Horticultural Sciences, Humboldt University Berlin, Berlin D-10115, Germany
| | - Gudrun A Brockmann
- Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer Institute for Agricultural and Horticultural Sciences, Humboldt University Berlin, Berlin D-10115, Germany
| |
Collapse
|
4
|
Krause F, Mohebian K, Delpero M, Hesse D, Kühn R, Arends D, Brockmann GA. A deletion containing a CTCF-element in intron 8 of the Bbs7 gene is partially responsible for juvenile obesity in the Berlin Fat Mouse. Mamm Genome 2021; 33:465-470. [PMID: 34910225 PMCID: PMC9360062 DOI: 10.1007/s00335-021-09938-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/29/2021] [Indexed: 11/25/2022]
Abstract
The Berlin Fat Mouse Inbred (BFMI) line is a model for juvenile obesity. Previous studies on crosses between BFMI and C57Bl/6N (B6N) have identified a recessive defect causing juvenile obesity on chromosome 3 (jObes1). Bbs7 was identified as the most likely candidate gene for the observed effect. Comparative sequence analysis showed a 1578 bp deletion in intron 8 of Bbs7 in BFMI mice. A CTCF-element is located inside this deletion. To investigate the functional effect of this deletion, it was introduced into B6N mice using CRISPR/Cas9. Two mice containing the target deletion were obtained (B6N Bbs7emI8∆1 and Bbs7emI8∆2) and were subsequently mated to BFMI and B6N to generate two families suitable for complementation. Inherited alleles were determined and body composition was measured by quantitative magnetic resonance. Evidence for a partial complementation (13.1-15.1%) of the jObes1 allele by the CRISPR/Cas9 modified B6N Bbs7emI8∆1 and Bbs7emI8∆2 alleles was found. Mice carrying the complementation alleles had a 23-27% higher fat-to-lean ratio compared to animals which have a B6N allele (P(Bbs7emI8∆1) = 4.25 × 10-7; P(Bbs7emI8∆2) = 3.17 × 10-5). Consistent with previous findings, the recessive effect of the BFMI allele was also seen for the B6N Bbs7emI8∆1 and Bbs7emI8∆2 alleles. However, the effect size of the B6N Bbs7emI8∆1 and Bbs7emI8∆2 alleles was smaller than the BFMI allele, and thus showed only a partial complementation. Findings suggest additional variants near Bbs7 in addition to or interacting with the deletion in intron 8.
Collapse
Affiliation(s)
- Florian Krause
- Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| | - Kourosh Mohebian
- Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| | - Manuel Delpero
- Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| | - Deike Hesse
- Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| | - Ralf Kühn
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Danny Arends
- Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| | - Gudrun A Brockmann
- Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany.
| |
Collapse
|
5
|
Delpero M, Arends D, Sprechert M, Krause F, Kluth O, Schürmann A, Brockmann GA, Hesse D. Identification of four novel QTL linked to the metabolic syndrome in the Berlin Fat Mouse. Int J Obes (Lond) 2021; 46:307-315. [PMID: 34689180 PMCID: PMC8794782 DOI: 10.1038/s41366-021-00991-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 12/30/2022]
Abstract
Background The Berlin Fat Mouse Inbred line (BFMI) is a model for obesity and the metabolic syndrome. This study aimed to identify genetic variants associated with impaired glucose metabolism using the obese lines BFMI861-S1 and BFMI861-S2, which are genetically closely related, but differ in several traits. BFMI861-S1 is insulin resistant and stores ectopic fat in the liver, whereas BFMI861-S2 is insulin sensitive. Methods In generation 10, 397 males of an advanced intercross line (AIL) BFMI861-S1 × BFMI861-S2 were challenged with a high-fat, high-carbohydrate diet and phenotyped over 25 weeks. QTL-analysis was performed after selective genotyping of 200 mice using the GigaMUGA Genotyping Array. Additional 197 males were genotyped for 7 top SNPs in QTL regions. For the prioritization of positional candidate genes whole genome sequencing and gene expression data of the parental lines were used. Results Overlapping QTL for gonadal adipose tissue weight and blood glucose concentration were detected on chromosome (Chr) 3 (95.8–100.1 Mb), and for gonadal adipose tissue weight, liver weight, and blood glucose concentration on Chr 17 (9.5–26.1 Mb). Causal modeling suggested for Chr 3-QTL direct effects on adipose tissue weight, but indirect effects on blood glucose concentration. Direct effects on adipose tissue weight, liver weight, and blood glucose concentration were suggested for Chr 17-QTL. Prioritized positional candidate genes for the identified QTL were Notch2 and Fmo5 (Chr 3) and Plg and Acat2 (Chr 17). Two additional QTL were detected for gonadal adipose tissue weight on Chr 15 (67.9–74.6 Mb) and for body weight on Chr 16 (3.9–21.4 Mb). Conclusions QTL mapping together with a detailed prioritization approach allowed us to identify candidate genes associated with traits of the metabolic syndrome. In addition, we provided evidence for direct and indirect genetic effects on blood glucose concentration in the insulin-resistant mouse line BFMI861-S1.
Collapse
Affiliation(s)
- Manuel Delpero
- Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Danny Arends
- Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maximilian Sprechert
- Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Florian Krause
- Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Oliver Kluth
- Department für Experimentelle Diabetologie, Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke (DIfE), Nuthetal, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Annette Schürmann
- Department für Experimentelle Diabetologie, Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke (DIfE), Nuthetal, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,University of Potsdam, Institute of Nutritional Science, Potsdam, Germany
| | - Gudrun A Brockmann
- Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Deike Hesse
- Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
6
|
Hesse D, Trost J, Schäfer N, Schwerbel K, Hoeflich A, Schürmann A, Brockmann GA. Effect of adipocyte-derived IGF-I on adipose tissue mass and glucose metabolism in the Berlin Fat Mouse. Growth Factors 2018; 36:78-88. [PMID: 30196772 DOI: 10.1080/08977194.2018.1497621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Besides liver, IGF-I is expressed in adipose tissue. However, the effects of this local IGF-I on adipose tissue and metabolism are unclear. We generated adipocyte-specific knock-out mice on the background of the Berlin Fat Mouse Inbred (BFMI) line to evaluate the contribution of adipocyte-IGF-I on glucose metabolism and adipose tissue development. BFMI mice are obese, non-diabetic with elevated plasma insulin and IGF-I concentration. The knock-out in adipocytes led to a total white adipose tissue expression of 50-60% due to unaltered Igf-1 expression in stromavascular cells. The lack of IGF-I from adipocytes did not alter plasma IGF-I concentration. BFMIChr3-Igf-I-KOQ-AT mice had reduced adipose tissue mass in most depots. During oral glucose tolerance tests, BFMIChr3-Igf-I-KOQ-AT mice showed an impaired glucose clearance (p = .03). Interestingly, insulin action was enhanced during insulin tolerance tests (p = .05). In conclusion, adipocyte-specific IGF-I ablation in obese BFMI mice results in reduced adipose tissue mass and thereby alters glucose metabolism.
Collapse
Affiliation(s)
- Deike Hesse
- a Department of Crop and Animal Sciences, Humboldt-Universität zu Berlin , Berlin , Germany
| | - Jan Trost
- a Department of Crop and Animal Sciences, Humboldt-Universität zu Berlin , Berlin , Germany
| | - Nadine Schäfer
- a Department of Crop and Animal Sciences, Humboldt-Universität zu Berlin , Berlin , Germany
| | - Kristin Schwerbel
- b German Institute of Human Nutrition , Nuthetal , Germany
- c German Center for Diabetes Research , München-Neuherberg , Germany
| | - Andreas Hoeflich
- d Leibniz Institute for Farm Animal Biology , Dummerstorf , Germany
| | - Annette Schürmann
- b German Institute of Human Nutrition , Nuthetal , Germany
- c German Center for Diabetes Research , München-Neuherberg , Germany
| | - Gudrun A Brockmann
- a Department of Crop and Animal Sciences, Humboldt-Universität zu Berlin , Berlin , Germany
| |
Collapse
|
7
|
Fine mapping a major obesity locus (jObes1) using a Berlin Fat Mouse × B6N advanced intercross population. Int J Obes (Lond) 2016; 40:1784-1788. [PMID: 27538457 DOI: 10.1038/ijo.2016.150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/12/2016] [Accepted: 07/22/2016] [Indexed: 11/08/2022]
Abstract
BACKGROUND/OBJECTIVES The Berlin Fat Mouse Inbred line 860 is a model for juvenile obesity. Previously, a recessive major effect locus (jObes1) on chromosome 3 between 34 and 44 Mb has been found to be responsible for 39% of the variance of total fat mass at 10 weeks in a (BFMI860 x C57BL/6NCrl) F2 population. The aim of this study was fine mapping of the jObes1 locus. SUBJECTS/METHODS An advanced intercross line (AIL) was generated from the initial F2 mapping population. Three hundred and forty-four male mice of generation 28 were excessively phenotyped and genotyped using the MegaMuga mouse chip containing 22 164 informative single-nucleotide polymorphisms. Expression of candidate genes was investigated in gonadal adipose tissue, liver and whole brain from mice of different genotype classes. Classical genetic complementation tests were performed to test candidate genes. RESULTS The high mapping resolution of the AIL reduced the confidence interval for jObes1 from 10 to 0.37 Mb between 36.48 and 36.85 Mb. This region was highly significantly (logarithm (base 10) of odds (LOD) score after Benjamini and Hochberg correction (LOD(BH))>50) associated with total fat mass starting at puberty (6 weeks). Male homozygous carriers of the jObese1 BFMI allele had 3 g more fat than the other genotypes. Surprisingly, this genotype class showed lower body mass until weaning at 3 weeks (LOD(BH)=3.2). The mapped interval contains four genes. Bbs7, the most likely candidate gene that also caused obesity in the complementation test was differentially expressed in all tissues examined, whereas the neighboring cyclin A2 (Ccna2) gene showed differential expression in gonadal adipose tissue. CONCLUSIONS Using an AIL, the confidence interval for jObes1 could be 27-fold reduced by finding chromosomal recombinations. Although Bbs7 is the most likely obesity gene in the jObes1 region, neighboring genes cannot be entirely excluded. Further examinations are needed to enlighten the mechanism leading to physiological consequences on body mass and fat mass in juvenile animals.
Collapse
|
8
|
Xue Y, Li J, Yan L, Lu L, Liao FF. Genetic variability to diet-induced hippocampal dysfunction in BXD recombinant inbred (RI) mouse strains. Behav Brain Res 2015; 292:83-94. [PMID: 26092713 DOI: 10.1016/j.bbr.2015.06.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 06/11/2015] [Accepted: 06/13/2015] [Indexed: 11/26/2022]
Abstract
Evidence has emerged suggesting that diet-induced obesity can have a negative effect on cognitive function. Here, we exploited a mouse genetic reference population to look for the linkage between these two processes on a genome-wide scale. The focus of this report is to determine whether the various BXD RI strains exhibited different behavioral performance and hippocampal function under high fat dietary (HFD) condition. We quantified genetic variation in body weight gain and consequent influences on behavioral tests in a cohort of 14 BXD strains of mice (8-12 mice/strain, n = 153), for which we have matched data on gene expression and neuroanatomical changes in the hippocampus. It showed that BXD66 was the most susceptible, whereas BXD77 was the least susceptible strain to dietary influences. The performance of spatial reference memory tasks was strongly correlated with body weight gain (P < 0.05). The obesity-prone strains displayed more pronounced spatial memory defects compared to the obesity-resistant strains. These abnormalities were associated with neuroinflammation, synaptic dysfunction, and neuronal loss in the hippocampus. The biological relevance of DSCAM gene polymorphism was assessed using the trait correlation analysis tool in Genenetwork. Furthermore, a significant strain-dependent gene expression difference of DSCAM was detected in the hippocampus of obese BXD strains by real-time quantitative PCR. In conclusion, a variety of across-strain hippocampal alterations and genetic predispositions to diet-induced obesity were found in a set of BXD strains. The obesity-prone and obesity-resistant lines we have identified should be highly useful to study the molecular genetics of diet-induced cognitive decline.
Collapse
Affiliation(s)
| | | | - Lei Yan
- Department of Genetics, Genomics & Informatics, University Tennessee Health Science Center, 874 Union Avenue, Memphis, TN 38163, USA
| | - Lu Lu
- Department of Genetics, Genomics & Informatics, University Tennessee Health Science Center, 874 Union Avenue, Memphis, TN 38163, USA; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong 226000, China.
| | | |
Collapse
|
9
|
Sen I, Bozkurt O, Aras E, Heise S, Brockmann GA, Severcan F. Lipid profiles of adipose and muscle tissues in mouse models of juvenile onset of obesity without high fat diet induction: a Fourier transform infrared (FT-IR) spectroscopic study. APPLIED SPECTROSCOPY 2015; 69:679-688. [PMID: 26054332 DOI: 10.1366/14-07443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The current study aims to determine lipid profiles in terms of the content and structure of skeletal muscle and adipose tissues to better understand the characteristics of juvenile-onset spontaneous obesity without high fat diet induction. For the purposes of this study, muscle (longissimus, quadriceps) and adipose (inguinal, gonadal) tissues of 10-week-old male DBA/2J and Berlin fat mouse inbred (BFMI) lines (BFMI856, BFMI860, BFMI861) fed with a standard breeding diet were used. Biomolecular structure and composition was determined using attenuated total reflection Fourier transform (ATR FT-IR) spectroscopy, and muscle triglyceride content was further quantified using high-performance liquid chromatography (HPLC) coupled with an evaporative light scattering detector (ELSD). The results revealed a loss of unsaturation in BFMI860 and BFMI861 lines in both muscles and inguinal adipose tissue, together with a decrease in the hydrocarbon chain length of lipids, especially in the BFMI860 line in muscles, suggesting an increased lipid peroxidation. There was an increase in saturated lipid and triglyceride content in all tissues of BFMI lines, more profoundly in longissimus muscle, where the increased triglyceride content was quantitatively confirmed by HPLC-ELSD. Moreover, an increase in the metabolic turnover of carbohydrates in muscles of the BFMI860 line was observed. The results demonstrated that subcutaneous (inguinal) fat also displayed considerable obesity-induced alterations. Taken together, the results revealed differences in lipid structure and content of BFMI lines, which may originate from different insulin sensitivity levels of the lines, making them promising animal models for spontaneous obesity. The results will contribute to the understanding of the generation of insulin resistance in obesity without high fat diet induction.
Collapse
Affiliation(s)
- Ilke Sen
- Middle East Technical University, Department of Biological Sciences, 06800 Ankara, Turkey
| | | | | | | | | | | |
Collapse
|
10
|
Nassar MK, Goraga ZS, Brockmann GA. Quantitative trait loci segregating in crosses between New Hampshire and White Leghorn chicken lines: IV. Growth performance. Anim Genet 2015; 46:441-6. [PMID: 25908024 DOI: 10.1111/age.12298] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2015] [Indexed: 11/29/2022]
Abstract
Reciprocal crosses between the inbred lines New Hampshire (NHI) and White Leghorn (WL77) comprising 579 F2 individuals were used to map QTL for body weight and composition. Here, we examine the growth performance until 20 weeks of age. Linkage analysis provided evidence for highly significant QTL on GGA1, 2, 4, 10 and 27 which had specific effects on early or late growth. The highest QTL effects, accounting for 4.6-25.6% of the phenotypic F2 variance, were found on the distal region of GGA4 between 142 and 170 cM (F ≥ 13.68). The NHI QTL allele increased body mass by 141.86 g at 20 weeks. Using body weight as a covariate in the analysis of body composition traits provided evidence for genes in the GGA4 QTL region affecting fat mass independently of body mass. The QTL effect size differed between sexes and depended on the direction of cross. TBC1D1, CCKAR and PPARGC1A are functional candidate genes in the QTL peak region. Our study confirmed the importance of the distal GGA4 region for chicken growth performance. The strong effect of the GGA4 QTL makes fine mapping and gene discovery feasible.
Collapse
Affiliation(s)
- M K Nassar
- Albrecht Daniel Thaer-Institut for Agricultural and Horticultural Sciences, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Z S Goraga
- Debre Zeit Agricultural Research Center, Debre Zeit, Ethiopia
| | - G A Brockmann
- Albrecht Daniel Thaer-Institut for Agricultural and Horticultural Sciences, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
11
|
Schäfer N, Yu Z, Wagener A, Millrose MK, Reissmann M, Bortfeldt R, Dieterich C, Adamski J, Wang-Sattler R, Illig T, Brockmann GA. Changes in metabolite profiles caused by genetically determined obesity in mice. Metabolomics 2014; 10:461-472. [PMID: 24772056 PMCID: PMC3984667 DOI: 10.1007/s11306-013-0590-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/28/2013] [Indexed: 12/28/2022]
Abstract
The Berlin Fat Mouse Inbred (BFMI) line harbors a major recessive gene defect on chromosome 3 (jobes1) leading to juvenile obesity and metabolic syndrome. The present study aimed at the identification of metabolites that might be linked to recessively acting genes in the obesity locus. Firstly, serum metabolites were analyzed between obese BFMI and lean B6 and BFMI × B6 F1 mice to identify metabolites that are different. In a second step, a metabolite-protein network analysis was performed linking metabolites typical for BFMI mice with genes of the jobes1 region. The levels of 22 diacyl-phosphatidylcholines (PC aa), two lyso-PC and three carnitines were found to be significantly lower in obese mice compared with lean mice, while serine, glycine, arginine and hydroxysphingomyelin were higher for the same comparison. The network analysis identified PC aa C42:1 as functionally linked with the genes Ccna2 and Trpc3 via the enzymes choline kinase alpha and phospholipase A2 group 1B (PLA2G1B), respectively. Gene expression analysis revealed elevated Ccna2 expression in adipose tissue of BFMI mice. Furthermore, unique mutations were found in the Ccna2 promoter of BFMI mice which are located in binding sites for transcription factors or micro RNAs and could cause differential Ccna2 mRNA levels between BFMI and B6 mice. Increased expression of Ccna2 was consistent with higher mitotic activity of adipose tissue in BFMI mice. Therefore, we suggest a higher demand for PC necessary for adipose tissue growth and remodeling. This study highlights the relationship between metabolite profiles and the underlying genetics of obesity in the BFMI line.
Collapse
Affiliation(s)
- Nadine Schäfer
- Breeding Biology and Molecular Genetics, Department for Crop and Animal Sciences, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
- Present Address: The Institute for Research in Operative Medicine, Faculty of Health, Department of Medicine, Witten/Herdecke University, Ostmerheimer Str. 200, 51109 Cologne, Germany
| | - Zhonghao Yu
- Research Unit of Molecular Epidemiology, Helmholtz-Zentrum München (GmbH), German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Munich/Neuherberg, Germany
| | - Asja Wagener
- Breeding Biology and Molecular Genetics, Department for Crop and Animal Sciences, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Marion K. Millrose
- Breeding Biology and Molecular Genetics, Department for Crop and Animal Sciences, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Monika Reissmann
- Breeding Biology and Molecular Genetics, Department for Crop and Animal Sciences, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Ralf Bortfeldt
- Breeding Biology and Molecular Genetics, Department for Crop and Animal Sciences, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Christoph Dieterich
- Berlin Institute for Medical Systems Biology at the Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Str. 10, 13125 Berlin, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Rui Wang-Sattler
- Research Unit of Molecular Epidemiology, Helmholtz-Zentrum München (GmbH), German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Munich/Neuherberg, Germany
| | - Thomas Illig
- Research Unit of Molecular Epidemiology, Helmholtz-Zentrum München (GmbH), German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Munich/Neuherberg, Germany
- Present Address: Hannover Unified Biobank, Medical School Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Gudrun A. Brockmann
- Breeding Biology and Molecular Genetics, Department for Crop and Animal Sciences, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| |
Collapse
|
12
|
Brockmann GA, Schäfer N, Hesse C, Heise S, Neuschl C, Wagener A, Churchill GA, Li R. Relationship between obesity phenotypes and genetic determinants in a mouse model for juvenile obesity. Physiol Genomics 2013; 45:817-26. [PMID: 23922126 DOI: 10.1152/physiolgenomics.00058.2013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Obesity, a state of imbalance between lean mass and fat mass, is important for the etiology of diseases affected by the interplay of multiple genetic and environmental factors. Although genome-wide association studies have repeatedly associated genes with obesity and body weight, the mechanisms underlying the interaction between the muscle and adipose tissues remain unknown. Using 351 mice (at 10 wk of age) of an intercross population between Berlin Fat Mouse Inbred (BFMI) and C57BL/6NCrl (B6N) mice, we examined the causal relationships between genetic variations and multiple traits: body lean mass and fat mass, adipokines, and bone mineral density. Furthermore, evidence from structural equation modeling suggests causality among these traits. In the BFMI model, juvenile obesity affects lean mass and impairs bone mineral density via adipokines secreted from the white adipose tissues. While previous studies have indicated that lean mass has a causative effect on adiposity, in the Berlin Fat Mouse model that has been selected for juvenile obesity (at 9 wk of age) for >90 generations, however, the causality is switched from fat mass to lean mass. In addition, linkage studies and statistical modeling have indicated that quantitative trait loci on chromosomes 5 and 6 affect both lean mass and fat mass. These lines of evidence indicate that the muscle and adipose tissues interact with one another and the interaction is modulated by genetic variations that are shaped by selections. Experimental examinations are necessary to verify the biological role of the inferred causalities.
Collapse
Affiliation(s)
- Gudrun A Brockmann
- Breeding Biology and Molecular Genetics, Department for Crop and Animal Sciences, Humboldt-Universität zu Berlin, Berlin, Germany; and
| | | | | | | | | | | | | | | |
Collapse
|
13
|
ATR-FTIR spectroscopy reveals genomic loci regulating the tissue response in high fat diet fed BXD recombinant inbred mouse strains. BMC Genomics 2013; 14:386. [PMID: 23758785 PMCID: PMC3717084 DOI: 10.1186/1471-2164-14-386] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 05/20/2013] [Indexed: 12/14/2022] Open
Abstract
Background Obesity-associated organ-specific pathological states can be ensued from the dysregulation of the functions of the adipose tissues, liver and muscle. However, the influence of genetic differences underlying gross-compositional differences in these tissues is largely unknown. In the present study, the analytical method of ATR-FTIR spectroscopy has been combined with a genetic approach to identify genetic differences responsible for phenotypic alterations in adipose, liver and muscle tissues. Results Mice from 29 BXD recombinant inbred mouse strains were put on high fat diet and gross-compositional changes in adipose, liver and muscle tissues were measured by ATR-FTIR spectroscopy. The analysis of genotype-phenotype correlations revealed significant quantitative trait loci (QTL) on chromosome 12 for the content of fat and collagen, collagen integrity, and the lipid to protein ratio in adipose tissue and on chromosome 17 for lipid to protein ratio in liver. Using gene expression and sequence information, we suggest Rsad2 (viperin) and Colec11 (collectin-11) on chromosome 12 as potential quantitative trait candidate genes. Rsad2 may act as a modulator of lipid droplet contents and lipid biosynthesis; Colec11 might play a role in apoptopic cell clearance and maintenance of adipose tissue. An increased level of Rsad2 transcripts in adipose tissue of DBA/2J compared to C57BL/6J mice suggests a cis-acting genetic variant leading to differential gene activation. Conclusion The results demonstrate that the analytical method of ATR-FTIR spectroscopy effectively contributed to decompose the macromolecular composition of tissues that accumulate fat and to link this information with genetic determinants. The candidate genes in the QTL regions may contribute to obesity-related diseases in humans, in particular if the results can be verified in a bigger BXD cohort.
Collapse
|
14
|
Wagener A, Müller U, Brockmann GA. The age of attaining highest body weight correlates with lifespan in a genetically obese mouse model. Nutr Diabetes 2013; 3:e62. [PMID: 23507966 PMCID: PMC3608894 DOI: 10.1038/nutd.2013.4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Obesity has been associated with a higher risk of mortality, whereas caloric restriction reduces the risk. In this study, we examined how body weight development during life affects lifespan in a mouse model for obesity. Therefore, mice of the Berlin Fat Mouse Inbred line were set on either a standard or a high-fat diet (HFD). Median lifespans of standard diet-fed mice were 525 and 539 days for males and female animals, respectively. HFD feeding further decreased lifespan by increasing the risk of mortality. Our data provide evidence that the highest body weight reached in lifetime has only a minor effect on lifespan. More important is the age when the highest body weight is reached, which was positively correlated with lifespan (r=0.77, P<0.0001). Likewise, the daily gain of body weight was negatively correlated with the age of death (r=−0.76, P<0.0001). These data indicate that rapid weight gain in early life followed by rapid weight loss affect lifespan more than the body weight itself. These data suggest that intervention strategies to prevent rapid weight gain are of high impact for a long lifespan.
Collapse
Affiliation(s)
- A Wagener
- Division of Breeding Biology and Molecular Genetics, Department of Crop and Animal Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | |
Collapse
|
15
|
Kärst S, Strucken EM, Schmitt AO, Weyrich A, de Villena FPM, Yang H, Brockmann GA. Effect of the myostatin locus on muscle mass and intramuscular fat content in a cross between mouse lines selected for hypermuscularity. BMC Genomics 2013; 14:16. [PMID: 23324137 PMCID: PMC3626839 DOI: 10.1186/1471-2164-14-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 12/19/2012] [Indexed: 12/07/2022] Open
Abstract
Background This study is aimed at the analysis of genetic and physiological effects of myostatin on economically relevant meat quality traits in a genetic background of high muscularity. For this purpose, we generated G3 populations of reciprocal crosses between the two hypermuscular mouse lines BMMI866, which carries a myostatin mutation and is lean, and BMMI806, which has high intramuscular and body fat content. To assess the relationship between muscle mass, body composition and muscle quality traits, we also analysed intramuscular fat content (IMF), water holding capacity (WHC), and additional physiological parameters in M. quadriceps and M. longissimus in 308 G3-animals. Results We found that individuals with larger muscles have significantly lower total body fat (r = −0.28) and IMF (r = −0.64), and in females, a lower WHC (r = −0.35). In males, higher muscle mass was also significantly correlated with higher glycogen contents (r = 0.2) and lower carcass pH-values 24 hours after dissection (r = −0.19). Linkage analyses confirmed the influence of the myostatin mutation on higher lean mass (1.35 g), reduced body fat content (−1.15%), and lower IMF in M. longissimus (−0.13%) and M. quadriceps (−0.07%). No effect was found for WHC. A large proportion of variation of intramuscular fat content of the M. longissimus at the myostatin locus could be explained by sex (23%) and direction-of-cross effects (26%). The effects were higher in males (+0.41%). An additional locus with negative over-dominance effects on total fat mass (−0.55 g) was identified on chromosome 16 at 94 Mb (86–94 Mb) which concurs with fat related QTL in syntenic regions on SSC13 in pigs and BTA1 in cattle. Conclusion The data shows QTL effects on mouse muscle that are similar to those previously observed in livestock, supporting the mouse model. New information from the mouse model helps to describe variation in meat quantity and quality, and thus contribute to research in livestock.
Collapse
Affiliation(s)
- Stefan Kärst
- Department for Crop and Animal Sciences, Breeding Biology and Molecular Genetics, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Kärst S, Vahdati AR, Brockmann GA, Hager R. Genomic imprinting and genetic effects on muscle traits in mice. BMC Genomics 2012; 13:408. [PMID: 22906226 PMCID: PMC3475036 DOI: 10.1186/1471-2164-13-408] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 07/13/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genomic imprinting refers to parent-of-origin dependent gene expression caused by differential DNA methylation of the paternally and maternally derived alleles. Imprinting is increasingly recognized as an important source of variation in complex traits, however, its role in explaining variation in muscle and physiological traits, especially those of commercial value, is largely unknown compared with genetic effects. RESULTS We investigated both genetic and genomic imprinting effects on key muscle traits in mice from the Berlin Muscle Mouse population, a key model system to study muscle traits. Using a genome scan, we first identified loci with either imprinting or genetic effects on phenotypic variation. Next, we established the proportion of phenotypic variation explained by additive, dominance and imprinted QTL and characterized the patterns of effects. In total, we identified nine QTL, two of which show large imprinting effects on glycogen content and potential, and body weight. Surprisingly, all imprinting patterns were of the bipolar type, in which the two heterozygotes are different from each other but the homozygotes are not. Most QTL had pleiotropic effects and explained up to 40% of phenotypic variance, with individual imprinted loci accounting for 4-5% of variation alone. CONCLUSION Surprisingly, variation in glycogen content and potential was only modulated by imprinting effects. Further, in contrast to general assumptions, our results show that genomic imprinting can impact physiological traits measured at adult stages and that the expression does not have to follow the patterns of paternal or maternal expression commonly ascribed to imprinting effects.
Collapse
Affiliation(s)
- Stefan Kärst
- Department for Crop and Animal Sciences, Humboldt-University Berlin, Berlin, Germany
| | - Ali R Vahdati
- Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Gudrun A Brockmann
- Department for Crop and Animal Sciences, Humboldt-University Berlin, Berlin, Germany
| | - Reinmar Hager
- Department for Crop and Animal Sciences, Humboldt-University Berlin, Berlin, Germany
| |
Collapse
|
17
|
Hantschel C, Wagener A, Neuschl C, Schmitt AO, Brockmann GA. Age and depot-specific adipokine responses to obesity in mice. Health (London) 2012. [DOI: 10.4236/health.2012.412a218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Schäfer N, Wagener A, Hantschel C, Mauel S, Gruber AD, Brockmann GA. IGF-I contributes to glucose homeostasis in the Berlin Fat Mouse Inbred line. Growth Factors 2011; 29:298-309. [PMID: 22023218 DOI: 10.3109/08977194.2011.625026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study aimed to investigate the tissue-specific role of the insulin-like growth factor 1 (IGF-I) on glucose homeostasis in the high-fatness selected Berlin Fat Mouse Inbred (BFMI) line. Therefore, the expression of different IGF-I transcripts and IGF-I protein, IGF-binding proteins, insulin as well as glucose tolerance was analyzed in BFMI in comparison with that in lean mice. In addition, dietary effects were investigated. The BFMI line showed normal blood glucose clearance on standard diet, but on high-fat diet the clearance was impaired, indicating the beginning of insulin resistance. Circulating IGF-I and insulin levels were elevated in BFMI than in lean mice on both diets along with a down-regulation of three IGF-I binding proteins in BFMI mice. Serum IGF-I levels corresponded with the expression pattern for both hepatic and one class II splice variants in reproductive adipose tissue, but not in muscle. High insulin and high IGF-I levels likely prevent BFMI mice from diabetes.
Collapse
Affiliation(s)
- Nadine Schäfer
- Department for Crop and Animal Sciences, Humboldt-Universität zu Berlin, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Kärst S, Cheng R, Schmitt AO, Yang H, de Villena FPM, Palmer AA, Brockmann GA. Genetic determinants for intramuscular fat content and water-holding capacity in mice selected for high muscle mass. Mamm Genome 2011; 22:530-43. [PMID: 21732194 PMCID: PMC3318964 DOI: 10.1007/s00335-011-9342-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 05/27/2011] [Indexed: 12/22/2022]
Abstract
Intramuscular fat content and water-holding capacity are important traits in livestock as they influence meat quality, nutritive value of the muscle, and animal health. As a model for livestock, two inbred lines of the Berlin Muscle Mouse population, which had been long-term selected for high muscle mass, were used to identify genomic regions affecting intramuscular fat content and water-holding capacity. The intramuscular fat content of the Musculus longissimus was on average 1.4 times higher in BMMI806 than in BMMI816 mice. This was accompanied by a 1.5 times lower water-holding capacity of the Musculus quadriceps in BMMI816 mice. Linkage analyses with 332 G(3) animals of reciprocal crosses between these two lines revealed quantitative trait loci for intramuscular fat content on chromosome 7 and for water-holding capacity on chromosome 2. In part, the identified loci coincide with syntenic regions in pigs in which genetic effects for the same traits were found. Therefore, these muscle-weight-selected mouse lines and the produced intercross populations are valuable genetic resources to identify genes that could also contribute to meat quality in other species.
Collapse
Affiliation(s)
- Stefan Kärst
- Department for Crop and Animal Sciences, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
20
|
Hantschel C, Wagener A, Neuschl C, Teupser D, Brockmann GA. Features of the metabolic syndrome in the Berlin Fat Mouse as a model for human obesity. Obes Facts 2011; 4:270-7. [PMID: 21921649 PMCID: PMC6444685 DOI: 10.1159/000330819] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The Berlin Fat Mouse BFMI860 is a polygenic obesity mouse model which harbors a natural major gene defect resulting in early onset of obesity. To elucidate adult bodily responses in BFMI860 mice that develop juvenile obesity, we studied features of the metabolic syndrome at 20 weeks. METHODS We examined fat deposition patterns, adipokines, lipid profiles in serum, glucose homeostasis, and insulin sensitivity in mice that were fed either a standard maintenance (SMD) or a high-fat diet (HFD). RESULTS Like many obese humans, BFMI860 mice showed hyperleptinemia accompanied by hypoadiponectinemia already at SMD that was further unbalanced as a result of HFD. Furthermore, BFMI860 mice had high triglyceride concentrations. However, triglyceride clearance after an oral oil gavage was impaired on SMD but improved on HFD. The oral and intraperitoneal glucose as well as the insulin tolerance tests provided evidence for reduced insulin sensitivity under SMD and insulin resistance on HFD. BFMI860 mice can maintain normal glucose clearance over a wide range of feeding conditions according to an adaptation via increasing the insulin concentrations. CONCLUSIONS BFMI860 mice show obesity, dyslipidemia, and insulin resistance as three major components of the metabolic syndrome. As these mice develop the described phenotype as a result of a major gene defect, they are a unique model for the investigation of genetic and pathophysiological mechanisms underlying the observed features of the metabolic syndrome and to search for potential strategies to revert the adverse effects under controlled conditions.
Collapse
Affiliation(s)
- Claudia Hantschel
- Department for Crop and Animal Sciences, Humboldt-Universität zu Berlin
| | - Asja Wagener
- Department for Crop and Animal Sciences, Humboldt-Universität zu Berlin
| | - Christina Neuschl
- Department for Crop and Animal Sciences, Humboldt-Universität zu Berlin
| | - Daniel Teupser
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Germany
| | - Gudrun A. Brockmann
- Department for Crop and Animal Sciences, Humboldt-Universität zu Berlin
- * Breeding Biology and Molecular Genetics, Department for Crop and Animal Sciences, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany, Tel. +49 30 2093-6449/6089, Fax -6397,
| |
Collapse
|
21
|
SYSGENET: a meeting report from a new European network for systems genetics. Mamm Genome 2010; 21:331-6. [PMID: 20623354 PMCID: PMC2923724 DOI: 10.1007/s00335-010-9273-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 06/24/2010] [Indexed: 12/22/2022]
Abstract
The first scientific meeting of the newly established European SYSGENET network took place at the Helmholtz Centre for Infection Research (HZI) in Braunschweig, April 7-9, 2010. About 50 researchers working in the field of systems genetics using mouse genetic reference populations (GRP) participated in the meeting and exchanged their results, phenotyping approaches, and data analysis tools for studying systems genetics. In addition, the future of GRP resources and phenotyping in Europe was discussed.
Collapse
|