1
|
Carneiro FS, Katashima CK, Dodge JD, Cintra DE, Pauli JR, Da Silva ASR, Ropelle ER. Tissue-specific roles of mitochondrial unfolded protein response during obesity. Obes Rev 2024; 25:e13791. [PMID: 38880974 DOI: 10.1111/obr.13791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/20/2024] [Accepted: 06/02/2024] [Indexed: 06/18/2024]
Abstract
Obesity is a worldwide multifactorial disease caused by an imbalance in energy metabolism, increasing adiposity, weight gain, and promoting related diseases such as diabetes, cardiovascular diseases, neurodegeneration, and cancer. Recent findings have reported that metabolic stress related to obesity induces a mitochondrial stress response called mitochondrial unfolded protein response (UPRmt), a quality control pathway that occurs in a nuclear DNA-mitochondria crosstalk, causing transduction of chaperones and proteases under stress conditions. The duality of UPRmt signaling, with both beneficial and detrimental effects, acts in different contexts depending on the tissue, cell type, and physiological states, affecting the mitochondrial function and efficiency and the metabolism homeostasis during obesity, which remains not fully clarified. Therefore, this review discusses the most recent findings regarding UPRmt signaling during obesity, bringing an overview of UPRmt across different metabolic tissues.
Collapse
Affiliation(s)
- Fernanda S Carneiro
- Laboratory of Molecular Biology of Exercise (LaBMEx), Faculty of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Carlos K Katashima
- Laboratory of Molecular Biology of Exercise (LaBMEx), Faculty of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Joshua D Dodge
- Department of Biology, The University of Texas at Arlington (UTA), Arlington, Texas, USA
| | - Dennys E Cintra
- Laboratory of Nutritional Genomic, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), Faculty of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Adelino S R Da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Eduardo R Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), Faculty of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
2
|
Rodriguez-Muñoz A, Motahari-Rad H, Martin-Chaves L, Benitez-Porres J, Rodriguez-Capitan J, Gonzalez-Jimenez A, Insenser M, Tinahones FJ, Murri M. A Systematic Review of Proteomics in Obesity: Unpacking the Molecular Puzzle. Curr Obes Rep 2024; 13:403-438. [PMID: 38703299 PMCID: PMC11306592 DOI: 10.1007/s13679-024-00561-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/14/2024] [Indexed: 05/06/2024]
Abstract
PURPOSE OF REVIEW The present study aims to review the existing literature to identify pathophysiological proteins in obesity by conducting a systematic review of proteomics studies. Proteomics may reveal the mechanisms of obesity development and clarify the links between obesity and related diseases, improving our comprehension of obesity and its clinical implications. RECENT FINDINGS Most of the molecular events implicated in obesity development remain incomplete. Proteomics stands as a powerful tool for elucidating the intricate interactions among proteins in the context of obesity. This methodology has the potential to identify proteins involved in pathological processes and to evaluate changes in protein abundance during obesity development, contributing to the identification of early disease predisposition, monitoring the effectiveness of interventions and improving disease management overall. Despite many non-targeted proteomic studies exploring obesity, a comprehensive and up-to-date systematic review of the molecular events implicated in obesity development is lacking. The lack of such a review presents a significant challenge for researchers trying to interpret the existing literature. This systematic review was conducted following the PRISMA guidelines and included sixteen human proteomic studies, each of which delineated proteins exhibiting significant alterations in obesity. A total of 41 proteins were reported to be altered in obesity by at least two or more studies. These proteins were involved in metabolic pathways, oxidative stress responses, inflammatory processes, protein folding, coagulation, as well as structure/cytoskeleton. Many of the identified proteomic biomarkers of obesity have also been reported to be dysregulated in obesity-related disease. Among them, seven proteins, which belong to metabolic pathways (aldehyde dehydrogenase and apolipoprotein A1), the chaperone family (albumin, heat shock protein beta 1, protein disulfide-isomerase A3) and oxidative stress and inflammation proteins (catalase and complement C3), could potentially serve as biomarkers for the progression of obesity and the development of comorbidities, contributing to personalized medicine in the field of obesity. Our systematic review in proteomics represents a substantial step forward in unravelling the complexities of protein alterations associated with obesity. It provides valuable insights into the pathophysiological mechanisms underlying obesity, thereby opening avenues for the discovery of potential biomarkers and the development of personalized medicine in obesity.
Collapse
Affiliation(s)
- Alba Rodriguez-Muñoz
- Endocrinology and Nutrition UGC, Hospital Universitario Virgen de La Victoria, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Clínico Virgen de La Victoria, Málaga, Spain
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Málaga, Spain
| | - Hanieh Motahari-Rad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Laura Martin-Chaves
- Heart Area, Hospital Universitario Virgen de La Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Department of Dermatology and Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Javier Benitez-Porres
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Clínico Virgen de La Victoria, Málaga, Spain
- Department of Human Physiology, Physical Education and Sport, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Jorge Rodriguez-Capitan
- Heart Area, Hospital Universitario Virgen de La Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Biomedical Research Network Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | | | - Maria Insenser
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology & Nutrition, Hospital Universitario Ramón y Cajal & Universidad de Alcalá & Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) & Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
| | - Francisco J Tinahones
- Endocrinology and Nutrition UGC, Hospital Universitario Virgen de La Victoria, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Clínico Virgen de La Victoria, Málaga, Spain
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Málaga, Spain
- Department of Dermatology and Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Mora Murri
- Endocrinology and Nutrition UGC, Hospital Universitario Virgen de La Victoria, Málaga, Spain.
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Clínico Virgen de La Victoria, Málaga, Spain.
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Málaga, Spain.
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Fryk E, Rodrigues Silva VR, Strindberg L, Strand R, Ahlström H, Michaëlsson K, Kullberg J, Lind L, Jansson PA. Metabolic profiling of galectin-1 and galectin-3: a cross-sectional, multi-omics, association study. Int J Obes (Lond) 2024; 48:1180-1189. [PMID: 38777863 PMCID: PMC11281902 DOI: 10.1038/s41366-024-01543-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVES Experimental studies indicate a role for galectin-1 and galectin-3 in metabolic disease, but clinical evidence from larger populations is limited. METHODS We measured circulating levels of galectin-1 and galectin-3 in the Prospective investigation of Obesity, Energy and Metabolism (POEM) study, participants (n = 502, all aged 50 years) and characterized the individual association profiles with metabolic markers, including clinical measures, metabolomics, adipose tissue distribution (Imiomics) and proteomics. RESULTS Galectin-1 and galectin-3 were associated with fatty acids, lipoproteins and triglycerides including lipid measurements in the metabolomics analysis adjusted for body mass index (BMI). Galectin-1 was associated with several measurements of adiposity, insulin secretion and insulin sensitivity, while galectin-3 was associated with triglyceride-glucose index (TyG) and fasting insulin levels. Both galectins were associated with inflammatory pathways and fatty acid binding protein (FABP)4 and -5-regulated triglyceride metabolic pathways. Galectin-1 was also associated with several proteins related to adipose tissue differentiation. CONCLUSIONS The association profiles for galectin-1 and galectin-3 indicate overlapping metabolic effects in humans, while the distinctly different associations seen with fat mass, fat distribution, and adipose tissue differentiation markers may suggest a functional role of galectin-1 in obesity.
Collapse
Affiliation(s)
- Emanuel Fryk
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Vagner Ramon Rodrigues Silva
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lena Strindberg
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Robin Strand
- Department of Information Technology, Uppsala University, Uppsala, Sweden
| | - Håkan Ahlström
- Division of Radiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Antaros Medical AB, BioVenture Hub, Mölndal, Sweden
| | - Karl Michaëlsson
- Department of Surgical Sciences, Medical Epidemiology, Uppsala University, Uppsala, Sweden
| | - Joel Kullberg
- Division of Radiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Antaros Medical AB, BioVenture Hub, Mölndal, Sweden
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Per-Anders Jansson
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Arvidsson D, Rodrigues Silva VR, Ekblom Ö, Ekblom-Bak E, Fryk E, Jansson PA, Börjesson M. Cardiorespiratory fitness and the association with galectin-1 in middle-aged individuals. PLoS One 2024; 19:e0301412. [PMID: 38578722 PMCID: PMC10997126 DOI: 10.1371/journal.pone.0301412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/16/2024] [Indexed: 04/07/2024] Open
Abstract
Galectin-1 plays a functional role in human metabolism and the levels are altered in obesity and type 2 diabetes (T2D). This study investigates the association of cardiorespiratory fitness (CRF) with galectin-1 and the interconnection with body fatness. Cross-sectional data from the Swedish CArdioPulmonary bioImage Study (SCAPIS) pilot was analyzed, including a sample of 774 middle-aged individuals. A submaximal cycle ergometer test was used to estimate CRF as an indirect measure of the physical activity (PA) level. Serum-galectin-1 concentration was determined from venous blood collected after an overnight fast. Body mass index (BMI) was used as an indirect measure of body fatness. CRF was significantly associated with galectin-1, when controlled for age and sex (regression coefficient (regr coeff) = -0.29, p<0.001). The strength of the association was attenuated when BMI was added to the regression model (regr coeff = -0.09, p = 0.07), while the association between BMI and galectin-1 remained strong (regr coeff = 0.40, p<0.001). CRF was associated with BMI (regr coeff = -0.50, p<0.001). The indirect association between CRF and galectin-1 through BMI (-0.50 x 0.40) contributed to 69% of total association (mediation analysis). In group comparisons, individuals with low CRF-high BMI had the highest mean galectin-1 level (25 ng/ml), while individuals with high CRF-low BMI had the lowest level (21 ng/ml). Intermediate levels of galectin-1 were found in the low CRF-low BMI and high CRF-high BMI groups (both 22 ng/ml). The galectin-1 level in the low CRF-high BMI group was significantly different from the other three groups (P<0.001). In conclusion, galectin-1 is associated with CRF as an indirect measure of the PA level through interconnection with body fatness. The size of the association is of clinical relevance.
Collapse
Affiliation(s)
- Daniel Arvidsson
- Center for Health and Performance, Department of Food and Nutrition, and Sport Science, Faculty of Education, University of Gothenburg, Gothenburg, Sweden
| | - Vagner Ramon Rodrigues Silva
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Örjan Ekblom
- Department of Physical Activity and Health, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Elin Ekblom-Bak
- Department of Physical Activity and Health, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Emanuel Fryk
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Per-Anders Jansson
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mats Börjesson
- Center for Lifestyle Intervention, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| |
Collapse
|
5
|
Osorio-Conles Ó, Olbeyra R, Vidal J, Ibarzabal A, Balibrea JM, de Hollanda A. Expression of Adipose Tissue Extracellular Matrix-Related Genes Predicts Weight Loss after Bariatric Surgery. Cells 2023; 12:cells12091262. [PMID: 37174662 PMCID: PMC10177079 DOI: 10.3390/cells12091262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND We evaluated the association between white adipose tissue parameters before bariatric surgery (BS) and post-surgical weight loss, with an especial focus on extracellular matrix (ECM) gene expression. METHODS Paired samples from subcutaneous (SAT) and visceral adipose tissue (VAT) were obtained from 144 subjects undergoing BS. The association between total body weight loss (%TBWL) at 12 months after BS and the histological characteristics and gene expression of selected genes in SAT and VAT was analyzed. RESULTS Fat cell area, size-frequency distribution, and fibrosis in SAT or VAT prior to surgery were not associated with %TBWL. On the contrary, the SAT expression of COL5A1 and COL6A3 was associated with %TBWL after BS (both p < 0.001), even after adjusting for age, gender, baseline BMI, and type 2 diabetes status (T2D). Furthermore, in logistic regression analyses, the expression of these genes was significantly associated with insufficient WL (IWL = TBWL < 20%) after BS (respectively, p = 0.030 and p = 0.031). Indeed, in ROC analysis, the prediction of IWL based on sex, age, BMI, T2D, and the type of surgery (AUC = 0.71) was significantly improved with the addition of SAT-COL5A1 gene expression (AUC = 0.88, Z = 2.13, p = 0.032). CONCLUSIONS Our data suggest that the expression of SAT ECM-related genes may help explain the variability in TBWL following BS.
Collapse
Affiliation(s)
- Óscar Osorio-Conles
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Monforte de Lemos Ave. 3-5, 28029 Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló Street 149, 08036 Barcelona, Spain
| | - Romina Olbeyra
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló Street 149, 08036 Barcelona, Spain
| | - Josep Vidal
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Monforte de Lemos Ave. 3-5, 28029 Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló Street 149, 08036 Barcelona, Spain
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, Villarroel Street 170, 08036 Barcelona, Spain
| | - Ainitze Ibarzabal
- Gastrointestinal Surgery Department, Hospital Clínic de Barcelona, Villarroel Street 170, 08036 Barcelona, Spain
| | - José María Balibrea
- Gastrointestinal Surgery Department, Hospital Clínic de Barcelona, Villarroel Street 170, 08036 Barcelona, Spain
| | - Ana de Hollanda
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló Street 149, 08036 Barcelona, Spain
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, Villarroel Street 170, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red Fisiopatologia de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Monforte de Lemos Ave. 3-5, 28029 Madrid, Spain
| |
Collapse
|
6
|
Li W, Chen W. Weight cycling based on altered immune microenvironment as a result of metaflammation. Nutr Metab (Lond) 2023; 20:13. [PMID: 36814270 PMCID: PMC9945679 DOI: 10.1186/s12986-023-00731-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
As a result of the obesity epidemic, more people are concerned about losing weight; however, weight regain is common, leading to repeated weight loss and weight cycling. The health benefits of early weight loss are nullified by weight regain after weight cycling, which has much more severe metabolic consequences. Weight cycling alters body composition, resulting in faster fat recovery and slower muscle reconstruction. This evident fat accumulation, muscle loss, and ectopic fat deposition destroy the intestinal barrier, increase the permeability of the small intestinal epithelium, and cause the lipotoxicity of lipid metabolites and toxins to leak into extraintestinal tissues and circulation. It causes oxidative stress and hypoxia in local tissues and immune cell infiltration in various tissues, all contributing to the adaptation to this metabolic change. Immune cells transmit inflammatory responses in adipose and skeletal muscle tissue by secreting cytokines and adipokines, which mediate immune cell pathways and cause metaflammation and inefficient metabolic degradation. In this review, we focus on the regulatory function of the immunological microenvironment in the final metabolic outcome, with a particular emphasis on the cellular and molecular processes of local and systemic metaflammation induced by weight cycling-induced changes in body composition. Metaflammation in adipose and muscle tissues that is difficult to relieve may cause weight cycling. As this chronic low-grade inflammation spreads throughout the body, metabolic complications associated with weight cycling are triggered. Inhibiting the onset and progression of metabolic inflammation and enhancing the immune microenvironment of adipose and muscle tissues may be the first step in addressing weight cycling.
Collapse
Affiliation(s)
- Wanyang Li
- grid.413106.10000 0000 9889 6335Department of Clinical Nutrition, Chinese Academy of Medical Sciences - Peking Union Medical College, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730 China
| | - Wei Chen
- Department of Clinical Nutrition, Chinese Academy of Medical Sciences - Peking Union Medical College, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
7
|
Galectin-1 in Obesity and Type 2 Diabetes. Metabolites 2022; 12:metabo12100930. [PMID: 36295832 PMCID: PMC9606923 DOI: 10.3390/metabo12100930] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
Galectin-1 is a carbohydrate-binding protein expressed in many tissues. In recent years, increasing evidence has emerged for the role of galectin-1 in obesity, insulin resistance and type 2 diabetes. Galectin-1 has been highly conserved through evolution and is involved in key cellular functions such as tissue maturation and homeostasis. It has been shown that galectin-1 increases in obesity, both in the circulation and in the adipose tissue of human and animal models. Several proteomic studies have independently identified an increased galectin-1 expression in the adipose tissue in obesity and in insulin resistance. Large population-based cohorts have demonstrated associations for circulating galectin-1 and markers of insulin resistance and incident type 2 diabetes. Furthermore, galectin-1 is associated with key metabolic pathways including glucose and lipid metabolism, as well as insulin signalling and inflammation. Intervention studies in animal models alter animal weight and metabolic profile. Several studies have also linked galectin-1 to the progression of complications in diabetes, including kidney disease and retinopathy. Here, we review the current knowledge on the clinical potential of galectin-1 in obesity and type 2 diabetes.
Collapse
|
8
|
Latorre J, Aroca A, Fernández-Real JM, Romero LC, Moreno-Navarrete JM. The Combined Partial Knockdown of CBS and MPST Genes Induces Inflammation, Impairs Adipocyte Function-Related Gene Expression and Disrupts Protein Persulfidation in Human Adipocytes. Antioxidants (Basel) 2022; 11:antiox11061095. [PMID: 35739994 PMCID: PMC9220337 DOI: 10.3390/antiox11061095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/18/2022] Open
Abstract
Recent studies in mice and humans demonstrated the relevance of H2S synthesising enzymes, such as CTH, CBS, and MPST, in the physiology of adipose tissue and the differentiation of preadipocyte into adipocytes. Here, our objective was to investigate the combined role of CTH, CBS, and MPST in the preservation of adipocyte protein persulfidation and adipogenesis. Combined partial CTH, CBS, and MPST gene knockdown was achieved treating fully human adipocytes with siRNAs against these transcripts (siRNA_MIX). Adipocyte protein persulfidation was analyzed using label-free quantitative mass spectrometry coupled with a dimedone-switch method for protein labeling and purification. Proteomic analysis quantified 216 proteins with statistically different levels of persulfidation in KD cells compared to control adipocytes. In fully differentiated adipocytes, CBS and MPST mRNA and protein levels were abundant, while CTH expression was very low. It is noteworthy that siRNA_MIX administration resulted in a significant decrease in CBS and MPST expression, without impacting on CTH. The combined partial knockdown of the CBS and MPST genes resulted in reduced cellular sulfide levels in parallel to decreased expression of relevant genes for adipocyte biology, including adipogenesis, mitochondrial biogenesis, and lipogenesis, but increased proinflammatory- and senescence-related genes. It should be noted that the combined partial knockdown of CBS and MPST genes also led to a significant disruption in the persulfidation pattern of the adipocyte proteins. Although among the less persulfidated proteins, we identified several relevant proteins for adipocyte adipogenesis and function, among the most persulfidated, key mediators of adipocyte inflammation and dysfunction as well as some proteins that might play a positive role in adipogenesis were found. In conclusion, the current study indicates that the combined partial elimination of CBS and MPST (but not CTH) in adipocytes affects the expression of genes related to the maintenance of adipocyte function and promotes inflammation, possibly by altering the pattern of protein persulfidation in these cells, suggesting that these enzymes were required for the functional maintenance of adipocytes.
Collapse
Affiliation(s)
- Jessica Latorre
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain; (J.L.); (J.M.F.-R.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03/010), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Angeles Aroca
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones and Universidad de Sevilla, 41092 Seville, Spain; (A.A.); (L.C.R.)
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain; (J.L.); (J.M.F.-R.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03/010), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Medicine, Universitat de Girona, 17003 Girona, Spain
| | - Luis C. Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones and Universidad de Sevilla, 41092 Seville, Spain; (A.A.); (L.C.R.)
| | - José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain; (J.L.); (J.M.F.-R.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03/010), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-872-987087 (ext. 70)
| |
Collapse
|
9
|
Loid P, Pekkinen M, Mustila T, Tossavainen P, Viljakainen H, Lindstrand A, Mäkitie O. Targeted Exome Sequencing of Genes Involved in Rare CNVs in Early-Onset Severe Obesity. Front Genet 2022; 13:839349. [PMID: 35330733 PMCID: PMC8940233 DOI: 10.3389/fgene.2022.839349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/07/2022] [Indexed: 11/17/2022] Open
Abstract
Context: Rare copy number variants (CNVs) have been associated with the development of severe obesity. However, the potential disease-causing contribution of individual genes within the region of CNVs is often not known. Objective: Screening of rare variants in genes involved in CNVs in Finnish patients with severe early-onset obesity to find candidate genes linked to severe obesity. Methods: Custom-made targeted exome sequencing panel to search for rare (minor allele frequency <0.1%) variants in genes affected by previously identified CNVs in 92 subjects (median age 14 years) with early-onset severe obesity (median body mass index (BMI) Z-score + 4.0). Results: We identified thirteen rare heterozygous variants of unknown significance in eleven subjects in twelve of the CNV genes. Two rare missense variants (p.Pro405Arg and p.Tyr232Cys) were found in SORCS1, a gene highly expressed in the brain and previously linked to diabetes risk. Four rare variants were in genes in the proximal 16p11.2 region (a frameshift variant in TAOK2 and missense variants in SEZ6L2, ALDOA and KIF22) and three rare missense variants were in genes in the 22q11.21 region (AIFM3, ARVCF and KLHL22). Conclusion: We report several rare variants in CNV genes in subjects with childhood obesity. However, the role of the individual genes in the previously identified rare CNVs to development of obesity remains uncertain. More studies are needed to understand the potential role of the specific genes within obesity associated CNVs.
Collapse
Affiliation(s)
- Petra Loid
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Folkhälsan Research Center, Genetics Research Program, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Minna Pekkinen
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Folkhälsan Research Center, Genetics Research Program, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Taina Mustila
- City of Turku Wellfare Services, Diabetes Care, Turku, Finland
| | - Päivi Tossavainen
- Department of Pediatrics, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Heli Viljakainen
- Folkhälsan Research Center, Genetics Research Program, Helsinki, Finland.,Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Outi Mäkitie
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Folkhälsan Research Center, Genetics Research Program, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
10
|
Drake I, Fryk E, Strindberg L, Lundqvist A, Rosengren AH, Groop L, Ahlqvist E, Borén J, Orho-Melander M, Jansson PA. The role of circulating galectin-1 in type 2 diabetes and chronic kidney disease: evidence from cross-sectional, longitudinal and Mendelian randomisation analyses. Diabetologia 2022; 65:128-139. [PMID: 34743218 PMCID: PMC8660752 DOI: 10.1007/s00125-021-05594-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/05/2021] [Indexed: 11/11/2022]
Abstract
AIMS/HYPOTHESIS Galectin-1 modulates inflammation and angiogenesis, and cross-sectional studies indicate that galectin-1 may be a uniting factor between obesity, type 2 diabetes and kidney function. We examined whether circulating galectin-1 can predict incidence of chronic kidney disease (CKD) and type 2 diabetes in a middle-aged population, and if Mendelian randomisation (MR) can provide evidence for causal direction of effects. METHODS Participants (n = 4022; 58.6% women) in the Malmö Diet and Cancer Study-Cardiovascular Cohort enrolled between 1991 and 1994 (mean age 57.6 years) were examined. eGFR was calculated at baseline and after a mean follow-up of 16.6 ± 1.5 years. Diabetes status was ascertained through registry linkage (mean follow-up of 18.4 ± 6.1 years). The associations of baseline galectin-1 with incident CKD and type 2 diabetes were assessed with Cox regression, adjusting for established risk factors. In addition, a genome-wide association study on galectin-1 was performed to identify genetic instruments for two-sample MR analyses utilising the genetic associations obtained from the Chronic Kidney Disease Genetics (CKDGen) Consortium (41,395 cases and 439,303 controls) and the DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) consortium (74,124 cases and 824,006 controls). One genome-wide significant locus in the galectin-1 gene region was identified (sentinel SNP rs7285699; p = 2.4 × 10-11). The association between galectin-1 and eGFR was also examined in individuals with newly diagnosed diabetes from the All New Diabetics In Scania (ANDIS) cohort. RESULTS Galectin-1 was strongly associated with lower eGFR at baseline (p = 2.3 × 10-89) but not with incident CKD. However, galectin-1 was associated with increased risk of type 2 diabetes (per SD increase, HR 1.12; 95% CI 1.02, 1.24). Two-sample MR analyses could not ascertain a causal effect of galectin-1 on CKD (OR 0.92; 95% CI 0.82, 1.02) or type 2 diabetes (OR 1.05; 95% CI 0.98, 1.14) in a general population. However, in individuals with type 2 diabetes from ANDIS who belonged to the severe insulin-resistant diabetes subgroup and were at high risk of diabetic nephropathy, genetically elevated galectin-1 was significantly associated with higher eGFR (p = 5.7 × 10-3). CONCLUSIONS/INTERPRETATION Galectin-1 is strongly associated with lower kidney function in cross-sectional analyses, and two-sample MR analyses suggest a causal protective effect on kidney function among individuals with type 2 diabetes at high risk of diabetic nephropathy. Future studies are needed to explore the mechanisms by which galectin-1 affects kidney function and whether it could be a useful target among individuals with type 2 diabetes for renal improvement.
Collapse
Affiliation(s)
- Isabel Drake
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Emanuel Fryk
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lena Strindberg
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Annika Lundqvist
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders H Rosengren
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Leif Groop
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Emma Ahlqvist
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marju Orho-Melander
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Per-Anders Jansson
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
11
|
van Baak MA, Roumans NJT, Mariman ECM. Diet Composition, Glucose Homeostasis, and Weight Regain in the YoYo Study. Nutrients 2021; 13:nu13072257. [PMID: 34208914 PMCID: PMC8308328 DOI: 10.3390/nu13072257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/14/2021] [Accepted: 06/25/2021] [Indexed: 01/21/2023] Open
Abstract
Based on several randomized clinical trials, it has been suggested that baseline glucose homeostasis interacts with the influence of diet composition on weight loss and weight loss maintenance. In this secondary analysis of the YoYo study, a study investigating predictors of weight loss maintenance, we tested the hypothesis that (self-selected) dietary carbohydrate and/or fibre intake interact with the glucose homeostasis parameters for weight loss maintenance. Sixty-one overweight or obese individuals lost around 10 kg of body weight on an energy-restricted diet and were then followed for 9 months. During this period, participants were advised to maintain their body weight and eat a healthy diet without further recommendations on calorie intake or diet composition. Contrary to our hypothesis, carbohydrate intake showed no positive association with weight regain after weight loss, and no interaction with baseline fasting glucose concentration was found. There was a non-significant negative association between fibre intake and weight regain (B = −0.274, standard error (SE) 0.158, p = 0.090), but again, no interaction with fasting plasma glucose was found. In conclusion, the data from the YoYo study do not support a role for baseline glucose homeostasis in determining the association between self-reported carbohydrate and/or fibre intake and weight regain after weight loss.
Collapse
|
12
|
Dedov II, Shestakova MV, Melnichenko GA, Mazurina NV, Andreeva EN, Bondarenko IZ, Gusova ZR, Dzgoeva FK, Eliseev MS, Ershova EV, Zhuravleva MV, Zakharchuk TA, Isakov VA, Klepikova MV, Komshilova KA, Krysanova VS, Nedogoda SV, Novikova AM, Ostroumova OD, Pereverzev AP, Rozhivanov RV, Romantsova TI, Ruyatkina LA, Salasyuk AS, Sasunova AN, Smetanina SA, Starodubova AV, Suplotova LA, Tkacheva ON, Troshina EA, Khamoshina MV, Chechelnitskaya SM, Shestakova EA, Sheremet’eva EV. INTERDISCIPLINARY CLINICAL PRACTICE GUIDELINES "MANAGEMENT OF OBESITY AND ITS COMORBIDITIES". OBESITY AND METABOLISM 2021; 18:5-99. [DOI: 10.14341/omet12714] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Affiliation(s)
| | | | | | | | | | | | | | | | - M. S. Eliseev
- Research Institute of Rheumatogy named after V.A. Nasonova
| | | | | | | | - V. A. Isakov
- Federal Research Center of Nutrition, Biotechnology and Food Safety
| | - M. V. Klepikova
- Russian Medical Academy of Continuous Professional Education
| | | | | | | | - A. M. Novikova
- Research Institute of Rheumatogy named after V.A. Nasonova
| | - O. D. Ostroumova
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry
| | - A. P. Pereverzev
- Russian National Research Medical University named after N.I. Pirogov
| | | | | | | | | | - A. N. Sasunova
- Federal Research Center of Nutrition, Biotechnology and Food Safety
| | | | | | | | - O. N. Tkacheva
- Russian National Research Medical University named after N.I. Pirogov
| | | | | | | | | | | |
Collapse
|
13
|
Autocitrullination of PAD4 does not alter its enzymatic activity: In vitro and in silico studies. Int J Biochem Cell Biol 2021; 134:105938. [PMID: 33529715 DOI: 10.1016/j.biocel.2021.105938] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/30/2020] [Accepted: 01/22/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Protein arginine deiminase 4 (PAD4) is an enzyme capable of converting arginine (positively charged residue) into citrulline (neutral residue). PAD4 is a promiscuous enzyme since it citrullinates various substrates, including small peptides, large proteins and itself. The effect of autocitrullination on PAD4 activity remains controversial and inconclusive. We hypothesized that PAD4 autocitrullination may influence the activity of PAD4 by indirectly altering its binding to substrate. METHODS We employed mass spectrometry analysis to study the process of autocitrullination. The kinetics of citrullination of PAD4 and citrullinated PAD4 (citPAD4) towards substrates of different sizes (0.17-15.4 kDa), i.e. free arginine, a peptidyl substrate, and histone H3, were studied by colorimetric assay and Western blotting. Molecular dynamics (MD) simulations were performed to investigate structural dynamic and binding properties of PAD4/citPAD4 in the absence and presence of substrates. RESULTS We observed that 23/27 arginine residues in PAD4 (85 %) can be citrullinated, including R372, R374 and R639 located near the substrate binding pocket. PAD4 and citPAD4 expressed comparable enzymatic activities towards different substrates. In agreement with experimental results, MD simulations indicated that autocitrullination does not change the shape of the substrate binding pocket and PAD4/citPAD4 exhibited comparable binding free energy with a H3-derived peptidyl substrate (6-TARKS-10). CONCLUSION While the effect of autocitrullination on PAD4 activity thus far remained unclear and controversial, here we have demonstrated that autocitrullination does not affect the activity of PAD4. Thus, the regulation of PAD4 activity is probably not controlled by autocitrullination but likely by other mechanisms that need further investigation.
Collapse
|
14
|
Yeung C, Shi IQ, Sung HK. Physiological Responses of Post-Dietary Effects: Lessons from Pre-Clinical and Clinical Studies. Metabolites 2021; 11:metabo11020062. [PMID: 33498462 PMCID: PMC7909542 DOI: 10.3390/metabo11020062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Dieting regimens such as calorie restriction (CR) are among the most commonly practiced interventions for weight management and metabolic abnormalities. Due to its independence from pharmacological agents and considerable flexibility in regimens, many individuals turn to dieting as a form of mitigation and maintenance of metabolic health. While metabolic benefits of CR have been widely studied, weight loss maintenance and metabolic benefits are reported to be lost overtime when the diet regimen has been terminated—referred to as post-dietary effects. Specifically, due to the challenges of long-term adherence and compliance to dieting, post-dietary repercussions such as body weight regain and loss of metabolic benefits pose as major factors in the efficacy of CR. Intermittent fasting (IF) regimens, which are defined by periodic energy restriction, have been deemed as more flexible, compliant, and easily adapted diet interventions that result in many metabolic benefits which resemble conventional CR diets. Many individuals find that IF regimens are easier to adhere to, resulting in fewer post-dietary effects; therefore, IF may be a more effective intervention. Unfortunately, there is a severe gap in current research regarding IF post-dietary effects. We recognize the importance of understanding the sustainability of dieting; as such, we will review the known physiological responses of CR post-dietary effects and its potential mechanisms through synthesizing lessons from both pre-clinical and clinical studies. This review aims to provide insight from a translational medicine perspective to allow for the development of more practical and effective diet interventions. We suggest more flexible and easily practiced dieting regimens such as IF due to its more adaptable and practical nature.
Collapse
Affiliation(s)
- Christy Yeung
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (C.Y.); (I.Q.S.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Irisa Qianwen Shi
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (C.Y.); (I.Q.S.)
| | - Hoon-Ki Sung
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (C.Y.); (I.Q.S.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence:
| |
Collapse
|
15
|
Ruppert PMM, Michielsen CCJR, Hazebroek EJ, Pirayesh A, Olivecrona G, Afman LA, Kersten S. Fasting induces ANGPTL4 and reduces LPL activity in human adipose tissue. Mol Metab 2020; 40:101033. [PMID: 32504883 PMCID: PMC7334813 DOI: 10.1016/j.molmet.2020.101033] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/28/2020] [Accepted: 05/31/2020] [Indexed: 02/06/2023] Open
Abstract
Objective Studies in mice have shown that the decrease in lipoprotein lipase (LPL) activity in adipose tissue upon fasting is mediated by induction of the inhibitor ANGPTL4. Here, we aimed to validate this concept in humans by determining the effect of a prolonged fast on ANGPTL4 and LPL gene and protein expression in human subcutaneous adipose tissue. Methods Twenty-three volunteers ate a standardized meal at 18.00 h and fasted until 20.00 h the next day. Blood was drawn and periumbilical adipose tissue biopsies were collected 2 h and 26 h after the meal. Results Consistent with previous mouse data, LPL activity in human adipose tissue was significantly decreased by fasting (−60%), concurrent with increased ANGPTL4 mRNA (+90%) and decreased ANGPTL8 mRNA (−94%). ANGPTL4 protein levels in adipose tissue were also significantly increased by fasting (+46%), whereas LPL mRNA and protein levels remained unchanged. In agreement with the adipose tissue data, plasma ANGPTL4 levels increased upon fasting (+100%), whereas plasma ANGPTL8 decreased (−79%). Insulin, levels of which significantly decreased upon fasting, downregulated ANGPTL4 mRNA and protein in primary human adipocytes. By contrast, cortisol, levels of which significantly increased upon fasting, upregulated ANGPTL4 mRNA and protein in primary human adipocytes as did fatty acids. Conclusion ANGPTL4 levels in human adipose tissue are increased by fasting, likely via increased plasma cortisol and free fatty acids and decreased plasma insulin, resulting in decreased LPL activity. This clinical trial was registered with identifier NCT03757767. 24-h fast in humans reduces LPL activity in subcutaneous adipose tissue. 24-h fast in humans increases adipose ANGPTL4 mRNA, protein, and plasma ANGPTL4 levels. Cortisol, fatty acids, and insulin regulate ANGPTL4 in vitro. ANGPTL4 mediates the reduction in adipose LPL activity during fasting. 24-h fast in humans decreases adipose ANGPTL8 mRNA and plasma ANGPTL8 levels.
Collapse
Affiliation(s)
- Philip M M Ruppert
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Charlotte C J R Michielsen
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Eric J Hazebroek
- Department of Bariatric Surgery, Rijnstate Hospital/Vitalys Clinic, Arnhem, the Netherlands; Nutrition and Disease Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Ali Pirayesh
- Amsterdam Plastic Surgery, Amsterdam, the Netherlands
| | - Gunilla Olivecrona
- Department of Medical Biosciences/Physiological Chemistry, Umeå University, Umeå, Sweden
| | - Lydia A Afman
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands.
| |
Collapse
|
16
|
Deng J, Wang M, Guo Y, Fischer H, Yu X, Kem D, Li H. Activation of α7nAChR via vagus nerve prevents obesity-induced insulin resistance via suppressing endoplasmic reticulum stress-induced inflammation in Kupffer cells. Med Hypotheses 2020; 140:109671. [PMID: 32182560 DOI: 10.1016/j.mehy.2020.109671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 12/21/2022]
Abstract
Obesity is a major risk factor for type 2 diabetes mellitus and insulin resistance (IR). In the state of obesity, excess fat accumulates in the liver, a key organ in systemic metabolism, altering the inflammatory and metabolic signals contributing substantially to the development of hepatic IR. Current therapies for these metabolic disorders have not been able to reverse their rapidly rising prevalence. One of the reasons is that the effects of existing drugs are predominantly non-lasting [1,2]. The vagus nerve (VN) is known to play an essential role in maintaining metabolic homeostasis while decreased VN activity has been suggested to contribute to obesity associated metabolic syndrome [3,4]. Several studies have reported that activation of α7 nicotinic acetylcholine receptor (α7nAChR) cholinergic signaling with or without VN intervention has protective effects against obesity-related inflammation and other metabolic complications [5]. However, the molecular mechanisms are still not elucidated. Exaggerated endoplasmic reticulum (ER) stress and consequent dysregulated inflammation has been implicated in the development of lipid accumulation and IR [6]. Whether targeting α7nAChR can regulate IR through these pathways is rarely reported. Accordingly, the present proposal posits that activation of the α7nAChR by VNS attenuates ER stress induced inflammation, thus ameliorating hepatic IR in Kupffer cell. We will focus on the specific interaction between vagal cholinergic activity and the modulation of ER stress induced inflammation via the α7nAChR associated pathway during IR development. Recently, the Endocrine Society has emphasized the absence of specific evidence from basic science, clinical, and epidemiological literature to assess current knowledge regarding underlying mechanisms of obesity [7]. In this proposal, we assign a significant role to α7nAChR in obesity-induced hepatic IR, and suggest a possible therapeutic strategy with VNS intervention.
Collapse
Affiliation(s)
- Jielin Deng
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Meng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yankai Guo
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, China; Cardiac Pacing and Electrophysiology Department, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hayley Fischer
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, China
| | - Xichun Yu
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, China
| | - David Kem
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, China
| | - Hongliang Li
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, China.
| |
Collapse
|
17
|
Tareen SHK, Kutmon M, de Kok TM, Mariman ECM, van Baak MA, Evelo CT, Adriaens ME, Arts ICW. Stratifying cellular metabolism during weight loss: an interplay of metabolism, metabolic flexibility and inflammation. Sci Rep 2020; 10:1651. [PMID: 32015415 PMCID: PMC6997359 DOI: 10.1038/s41598-020-58358-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/21/2019] [Indexed: 01/29/2023] Open
Abstract
Obesity is a global epidemic, contributing significantly to chronic non-communicable diseases, such as type 2 diabetes mellitus, cardiovascular diseases and metabolic syndrome. Metabolic flexibility, the ability of organisms to switch between metabolic substrates, is found to be impaired in obesity, possibly contributing to the development of chronic illnesses. Several studies have shown the improvement of metabolic flexibility after weight loss. In this study, we have mapped the cellular metabolism of the adipose tissue from a weight loss study to stratify the cellular metabolic processes and metabolic flexibility during weight loss. We have found that for a majority of the individuals, cellular metabolism was downregulated during weight loss, with gene expression of all major cellular metabolic processes (such as glycolysis, fatty acid β-oxidation etc.) being lowered during weight loss and weight maintenance. Parallel to this, the gene expression of immune system related processes involving interferons and interleukins increased. Previously, studies have indicated both negative and positive effects of post-weight loss inflammation in the adipose tissue with regards to weight loss or obesity and its co-morbidities; however, mechanistic links need to be constructed in order to determine the effects further. Our study contributes towards this goal by mapping the changes in gene expression across the weight loss study and indicates possible cross-talk between cellular metabolism and inflammation.
Collapse
Affiliation(s)
- Samar H K Tareen
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands.
| | - Martina Kutmon
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
- Department of Bioinformatics - BiGCaT, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Theo M de Kok
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
- Department of Toxicogenomics, GROW School of Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Edwin C M Mariman
- Department of Human Biology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Marleen A van Baak
- Department of Human Biology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Chris T Evelo
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
- Department of Bioinformatics - BiGCaT, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Michiel E Adriaens
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
| | - Ilja C W Arts
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
- Department of Epidemiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
18
|
Kwon YK, Kim SY, Lim YW, Park YB. Review on Predictors of Weight Loss Maintenance after Successful Weight Loss in Obesity Treatment. ACTA ACUST UNITED AC 2019. [DOI: 10.15429/jkomor.2019.19.2.119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Qiao Q, Bouwman FG, van Baak MA, Roumans NJT, Vink RG, Coort SLM, Renes JW, Mariman ECM. Adipocyte abundances of CES1, CRYAB, ENO1 and GANAB are modified in-vitro by glucose restriction and are associated with cellular remodelling during weight regain. Adipocyte 2019; 8:190-200. [PMID: 31037987 PMCID: PMC6768247 DOI: 10.1080/21623945.2019.1608757] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Long-term weight loss maintenance is a problem of overweight and obesity. Changes of gene expression during weight loss (WL) by calorie restriction (CR) are linked to the risk of weight regain (WR). However, detailed information on genes/proteins involved in the mechanism is still lacking. Therefore, we developed an in-vitro model system for glucose restriction (GR) and refeeding (RF) to uncover proteome differences between GR with RF vs normal feeding, of which we explored the relation with WR after WL. Human Simpson-Golabi-Behmel Syndrome cells were subjected to changing levels of glucose to mimic the condition of CR and RF. Proteome profiling was performed by liquid chromatography tandem mass spectrometry. This in-vitro model revealed 44 proteins differentially expressed after GR and RF versus feeding including proteins of the focal adhesions. Four proteins showed a persistent up- or down-regulation: liver carboxylesterase (CES1), mitochondrial superoxide dismutase [Mn] (SOD2), alpha-crystallin B-chain (CRYAB), alpha-enolase (ENO1). In-vivo weight loss-induced RNA expression changes linked CES1, CRYAB and ENO1 to WR. Moreover, of these 44 proteins, CES1 and glucosidase II alpha subunit (GANAB) during follow up correlated with WR. Correlation clustering of in-vivo protein expression data indicated an interaction of these proteins with structural components of the focal adhesions and cytoplasmic filaments in the adipocytes.
Collapse
Affiliation(s)
- Qi Qiao
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Freek G. Bouwman
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marleen A. van Baak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Nadia J. T. Roumans
- Institute for Technology-Inspired Regenerative Medicine, MERLN, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Roel G. Vink
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Susan L. M. Coort
- Department of Bioinformatics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Johan W. Renes
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Edwin C. M. Mariman
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
20
|
Reynés B, van Schothorst EM, Keijer J, Ceresi E, Oliver P, Palou A. Cold Induced Depot-Specific Browning in Ferret Aortic Perivascular Adipose Tissue. Front Physiol 2019; 10:1171. [PMID: 31620014 PMCID: PMC6759601 DOI: 10.3389/fphys.2019.01171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 08/29/2019] [Indexed: 12/23/2022] Open
Abstract
Brown adipose tissue is responsible for facultative thermogenesis to produce heat and increase energy expenditure in response to proper stimuli, e.g., cold. Acquisition of brown-like features (browning) in perivascular white adipose tissue (PVAT) may protect against obesity/cardiovascular disease. Most browning studies are performed in rodents, but translation to humans would benefit from a closer animal model. Therefore, we studied the browning response of ferret thoracic aortic PVAT (tPVAT) to cold. We performed global transcriptome analysis of tPVAT of 3-month-old ferrets acclimatized 1 week to 22 or 4°C, and compared the results with those of inguinal subcutaneous adipose tissue. Immunohistochemistry was used to visualize browning. Transcriptome data revealed a stronger cold exposure response of tPVAT, including increased expression of key brown/brite markers, compared to subcutaneous fat. This translated into a clear white-to-brown remodeling of tPVAT, with the appearance of multilocular highly UCP1-stained adipocytes. The pathway most affected by cold exposure in tPVAT was immune response, characterized by down-regulation of immune-related genes, with cardio protective implications. On the other hand, subcutaneous fat responded to cold by increasing energy metabolism based on increased expression of fatty acid oxidation and tricarboxylic acid cycle genes, concordant with lower inguinal adipose tissue weight in cold-exposed animals. Thus, ferret tPVAT responds to cold acclimation with a strong induction of browning and immunosuppression compared to subcutaneous fat. Our results present ferrets as an accessible translational animal model displaying functional responses relevant for obesity and cardiovascular disease prevention.
Collapse
Affiliation(s)
- Bàrbara Reynés
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, Palma, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición, Madrid, Spain.,Institut d'Investigació Sanitària Illes Balears, Palma, Spain
| | - Evert M van Schothorst
- Human and Animal Physiology, Wageningen University and Research, Wageningen, Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University and Research, Wageningen, Netherlands
| | - Enzo Ceresi
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, Palma, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición, Madrid, Spain.,Institut d'Investigació Sanitària Illes Balears, Palma, Spain
| | - Paula Oliver
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, Palma, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición, Madrid, Spain.,Institut d'Investigació Sanitària Illes Balears, Palma, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, Palma, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición, Madrid, Spain.,Institut d'Investigació Sanitària Illes Balears, Palma, Spain
| |
Collapse
|
21
|
Fryk E, Strindberg L, Lundqvist A, Sandstedt M, Bergfeldt L, Mattsson Hultén L, Bergström G, Jansson PA. Galectin-1 is inversely associated with type 2 diabetes independently of obesity - A SCAPIS pilot study. Metabol Open 2019; 4:100017. [PMID: 32812946 PMCID: PMC7424824 DOI: 10.1016/j.metop.2019.100017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/16/2019] [Accepted: 09/03/2019] [Indexed: 01/07/2023] Open
Abstract
Objectives Galectin-1 is a recently discovered adipokine that increases with obesity and increased energy intake in adipose tissue. Our aim was to assess whether serum galectin-1 is associated with type 2 diabetes (T2D) and other parameters of the metabolic syndrome independently of body mass index (BMI) in a cohort from the general population. Methods In this cross-sectional population-based cohort study from the western part of Sweden, we investigated associations between serum galectin-1, clinical characteristics and inflammatory markers in 989 women and men aged 50-65 years [part of the Swedish CArdioPulmonary bioImage Study (SCAPIS) pilot cohort]. Results We showed in linear models that serum galectin-1 was independently and: (1) inversely associated with T2D (p < 0.05) and glucose (p < 0.05); and (2) positively associated with age (p < 0.01), sex (p < 0.01), BMI (p < 0.01), insulin (p < 0.01) and C-reactive protein (p < 0.01). Furthermore, galectin-1 demonstrated univariate correlations with triglycerides (r = 0.20, p < 0.01), homeostasis model assessment for insulin resistance (r = 0.24, p < 0.01), tumor necrosis factor-α (r = 0.24, p < 0.01), interleukin-6 (IL-6; r = 0.20, p < 0.01) and HbA1c (r = 0.14, p < 0.01). Conclusion In a cross-sectional study of a middle-aged population, we showed that serum galectin-1 is: (1) inversely associated with T2D independently of BMI; and (2) independently associated with other markers of the metabolic syndrome These results warrant prospective and functional studies on the role of galectin-1 in T2D.
Collapse
Key Words
- ALAT, alanine aminotransferase
- BMI, body mass index
- CRP, C-reactive protein
- Cross-sectional
- ELISA, electrochemiluminescence immunoassay
- Galectin-1
- HDL, high-density lipoprotein
- HOMA, homeostasis model assessment
- IFN-γ, interferon gamma
- IL, interleukin
- LDL, low-density lipoprotein
- MSD, Meso Scale Diagnostics
- Metabolic syndrome
- Obesity
- SCAPIS, Swedish CArdioPulmonary bioImage Study
- SEM, standard error of the mean
- Sex
- T2D, type 2 diabetes
- TNF-α, tumor necrosis factor-α
- Type 2 diabetes
Collapse
Affiliation(s)
- Emanuel Fryk
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg and the Sahlgrenska University Hospital, Gothenburg, Sweden
- Corresponding author. Wallenberg Laboratory Department of Molecular and Clinical Medicine Institute of Medicine, The Sahlgrenska Academy University of Gothenburg, Gothenburg, Sweden.
| | - Lena Strindberg
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg and the Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Annika Lundqvist
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg and the Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mikael Sandstedt
- Department of Clinical Chemistry, Sahlgrenska University Hospital and Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lennart Bergfeldt
- Department of Molecular and Clinical Medicine/Cardiology, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, and Region Västra Götaland, Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lillemor Mattsson Hultén
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg and the Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Clinical Chemistry, Sahlgrenska University Hospital and Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Göran Bergström
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg and the Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Per-Anders Jansson
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg and the Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
22
|
van Baak MA, Vink RG, Roumans NJT, Cheng CC, Adams AC, Mariman ECM. Adipose tissue contribution to plasma fibroblast growth factor 21 and fibroblast activation protein in obesity. Int J Obes (Lond) 2019; 44:544-547. [PMID: 31455871 DOI: 10.1038/s41366-019-0433-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 06/21/2019] [Accepted: 06/30/2019] [Indexed: 01/10/2023]
Abstract
Fibroblast growth factor 21 (FGF21) is an important regulator of energy metabolism. FGF21 is inactivated by fibroblast activation protein (FAP). We investigated whether FGF21 and/or FAP are secreted from human white adipose tissue of individuals with obesity by measuring total FGF21, active FGF21, and FAP concentrations in arterialized blood and venous blood draining the subcutaneous abdominal adipose tissue (scAT). Measurements were performed under fasting conditions and after a high fat meal before and after diet-induced weight loss in 16 adults with BMI 27-35 kg/m2. FGF21 was not released from scAT, neither before nor after weight loss in agreement with an undetectable gene expression of FGF21 in this tissue. Although scAT showed significant gene expression of FAP, no release of FAP from the tissue could be detected. The high fat meal increased postprandial circulating FGF21 but not FAP. Circulating levels of FAP but not FGF21 were significantly reduced after weight loss. On the other hand, FAP expression in scAT was increased. In conclusion, release from scAT does not appear to contribute to circulating concentrations of FGF21 and FAP and their responses to ingestion of a high fat meal or weight loss, respectively, in individuals with obesity.
Collapse
Affiliation(s)
- Marleen A van Baak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands.
| | - Roel G Vink
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Nadia J T Roumans
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | | | - Andrew C Adams
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, USA
| | - Edwin C M Mariman
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
23
|
Abstract
One of the biggest challenges in the management of obesity is the prevention of weight regain after successful weight loss. Weight regain after weight loss has large interindividual variation. Although many factors probably contribute to this variation, we hypothesize that variability in biological responses associated with weight loss-induced shrinking of subcutaneous adipocytes has an important role. In this Review, we show that weight loss-induced variations in cellular stress, extracellular matrix remodelling, inflammatory responses, adipokine secretion and lipolysis seem to be associated with the amount of weight that is regained after successful weight loss. Weight regain could therefore, at least in part, depend on a combination of these factors. Further research on the causality of these associations could aid the development of effective strategies to prevent weight regain after successful weight loss.
Collapse
Affiliation(s)
- Marleen A van Baak
- NUTRIM School for Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University, Maastricht, Netherlands.
| | - Edwin C M Mariman
- NUTRIM School for Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
24
|
Vogel MAA, Wang P, Bouwman FG, Hoebers N, Blaak EE, Renes J, Mariman EC, Goossens GH. A comparison between the abdominal and femoral adipose tissue proteome of overweight and obese women. Sci Rep 2019; 9:4202. [PMID: 30862933 PMCID: PMC6414508 DOI: 10.1038/s41598-019-40992-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/20/2019] [Indexed: 12/20/2022] Open
Abstract
Body fat distribution is an important determinant of cardiometabolic health. Lower-body adipose tissue (AT) has protective characteristics as compared to upper-body fat, but the underlying depot-differences remain to be elucidated. Here, we compared the proteome and morphology of abdominal and femoral AT. Paired biopsies from abdominal and femoral subcutaneous AT were taken from eight overweight/obese (BMI ≥ 28 kg/m2) women with impaired glucose metabolism after an overnight fast. Proteins were isolated and quantified using liquid chromatography-mass spectrometry, and protein expression in abdominal and femoral subcutaneous AT was compared. Moreover, correlations between fat cell size and the proteome of both AT depots were determined. In total, 651 proteins were identified, of which 22 proteins tended to be differentially expressed between abdominal and femoral AT after removal of blood protein signals (p < 0.05). Proteins involved in cell structure organization and energy metabolism were differently expressed between AT depots. Fat cell size, which was higher in femoral AT, was significantly correlated with ADH1B, POSTN and LCP1. These findings suggest that there are only slight differences in protein expression between abdominal and femoral subcutaneous AT. It remains to be determined whether these differences, as well as differences in protein activity, contribute to functional and/or morphological differences between these fat depots.
Collapse
Affiliation(s)
- M A A Vogel
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - P Wang
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands.,Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - F G Bouwman
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - N Hoebers
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - E E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - J Renes
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - E C Mariman
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - G H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands.
| |
Collapse
|
25
|
Roumans NJT, Wang P, Vink RG, van Baak MA, Mariman ECM. Combined Analysis of Stress- and ECM-Related Genes in Their Effect on Weight Regain. Obesity (Silver Spring) 2018; 26:492-498. [PMID: 29399976 DOI: 10.1002/oby.22093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/14/2017] [Accepted: 10/30/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVE During weight loss, the volume of adipocytes decreases, leading to stress because of the misfit between the cell contents and the surrounding extracellular matrix (ECM). This stress can be resolved by remodeling the ECM or the restorage of triglycerides within the adipocytes. The objective of this study was to investigate the existence of a connection between stress-related and ECM-related genes that is associated with weight regain. METHODS Thirty-one participants with overweight or obesity followed a 5-week very-low-calorie diet (500 kcal/d) with a subsequent 4-week weight-stable diet (WS), and then an uncontrolled 9-month follow-up. Adipose tissue biopsies were collected for microarray analysis. A correlation and interaction analysis was performed with the weight regain percentage (WR%) ([weight after follow-up - weight after WS] ÷ weight after WS × 100%) by using two gene sets that were previously defined as "stress-related" (n = 107) and "ECM-related" genes (n = 277). RESULTS During WS, a coexpression network of 8 stress-related genes and 15 ECM-related genes correlating with WR% could be constructed, with links to multiple biological processes. Interaction analysis between stress- and ECM-related genes revealed that several gene combinations were highly related to weight regain. CONCLUSIONS Our findings underscore the importance of the connection between stress- and ECM-related genes in the risk for weight regain.
Collapse
Affiliation(s)
- Nadia J T Roumans
- Department of Human Biology and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ping Wang
- Department of Human Biology and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Roel G Vink
- Department of Human Biology and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marleen A van Baak
- Department of Human Biology and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Edwin C M Mariman
- Department of Human Biology and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
26
|
Xu Q, Mariman ECM, Roumans NJT, Vink RG, Goossens GH, Blaak EE, Jocken JWE. Adipose tissue autophagy related gene expression is associated with glucometabolic status in human obesity. Adipocyte 2018; 7:12-19. [PMID: 29400609 DOI: 10.1080/21623945.2017.1394537] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adipose tissue autophagy (AT) is associated with human obesity and increased metabolic risk. Recent findings establish a role for autophagy in lipid metabolism. Here, we compared the expression of autophagy-related and lipolysis genes in human abdominal subcutaneous AT (SCAT) in overweight/obese subjects (n = 17) with or without impaired glucose tolerance in comparison with lean normal glucose tolerant individuals (n = 9), and investigated the association between AT autophagy and lipolysis. Human multipotent adipose-derived stem cells (hMADS) were used to investigate the effect of pharmacological HSL inhibition on changes in the autophagic flux. The expression of autophagy-related genes (ATG) 5, 7 and 12 in SCAT was significantly higher (p = 0.043, p = 0.015, p = 0.004, respectively) in overweight/obese compared to lean men, while expression of the classical lipases HSL (p = 0.092) and ATGL (p = 0.084) tended to be lower. ATG12 mRNA was positively correlated with BMI (r = 0.407, p = 0.039). ATG7 mRNA correlated positively with waist/hip ratio (WHR) (r = 0.420, p = 0.041), 2 h glucose concentration (r = 0.488, p = 0.011) and insulin (r = 0.419, p = 0.033). Multiple linear regressions revealed that ATG7 gene expression was positively related to 2 h glucose, independent of BMI, WHR and insulin. Gene expression interaction analysis showed that ATG7 mRNA negatively correlated with HSL (p<0.01) and ATGL mRNA expression (p<0.01). In line, treatment of differentiated hMADS with an HSL inhibitor increased LC3 accumulation, a marker of increased autophagic flux. Collectively, the present study demonstrated that a low expression of classical lipases in abdominal SCAT is accompanied by an increased expression of ATGs in overweight/obese subjects, which seems to be mainly related to glucose tolerance.
Collapse
Affiliation(s)
- Qing Xu
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Edwin C. M. Mariman
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Nadia J. T. Roumans
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Roel G. Vink
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Gijs H. Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ellen E. Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Johan W. E. Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|