1
|
Liu Z, Zhou Y, Wang H, Liu C, Wang L. Recent advances in understanding the fitness and survival mechanisms of Vibrio parahaemolyticus. Int J Food Microbiol 2024; 417:110691. [PMID: 38631283 DOI: 10.1016/j.ijfoodmicro.2024.110691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024]
Abstract
The presence of Vibrio parahaemolyticus (Vp) in different production stages of seafood has generated negative impacts on both public health and the sustainability of the industry. To further better investigate the fitness of Vp at the phenotypical level, a great number of studies have been conducted in recent years using plate counting methods. In the meantime, with the increasing accessibility of the next generation sequencing and the advances in analytical chemistry techniques, omics-oriented biotechnologies have further advanced our knowledge in the survival and virulence mechanisms of Vp at various molecular levels. These observations provide insights to guide the development of novel prevention and control strategies and benefit the monitoring and mitigation of food safety risks associated with Vp contamination. To timely capture these recent advances, this review firstly summarizes the most recent phenotypical level studies and provide insights about the survival of Vp under important in vitro stresses and on aquatic products. After that, molecular survival mechanisms of Vp at transcriptomic and proteomic levels are summarized and discussed. Looking forward, other newer omics-biotechnology such as metabolomics and secretomics show great potential to be used for confirming the cellular responses of Vp. Powerful data mining tools from the field of machine learning and artificial intelligence, that can better utilize the omics data and solve complex problems in the processing, analysis, and interpretation of omics data, will further improve our mechanistic understanding of Vp.
Collapse
Affiliation(s)
- Zhuosheng Liu
- Department of Food Science and Technology, University of California Davis, Davis, CA 95618, USA
| | - Yi Zhou
- Department of Food Science and Technology, University of California Davis, Davis, CA 95618, USA
| | - Hongye Wang
- Department of Food Science and Technology, University of California Davis, Davis, CA 95618, USA
| | - Chengchu Liu
- University of Maryland Sea Grant Extension Program, UMES Center for Food Science and Technology, Princess Anne, MD, United States
| | - Luxin Wang
- Department of Food Science and Technology, University of California Davis, Davis, CA 95618, USA.
| |
Collapse
|
2
|
Debnath A, Miyoshi SI. Effect of physicochemical and microbiological factors on the development of viable but non-culturable and resuscitation states of Vibrio cholerae. Arch Microbiol 2024; 206:224. [PMID: 38642319 DOI: 10.1007/s00203-024-03956-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Vibrio cholerae can endure harsh environmental conditions by transitioning into viable but non-culturable (VBNC) form and resuscitate upon return of appropriate conditions. METHOD In this study, we assessed the impact of physicochemical and microbiological factors, on the development of low temperature-induced VBNC state and subsequent recovery by temperature upshift. RESULTS In estuarine water, Vibrio cholerae exhibits a slower decline in culturability over a period of 77 days as compared to 10 days in fresh water. When variable cell numbers from different growth phases were used for VBNC induction, it was observed that the higher inoculum size (106-107 cfu ml-1) from the late log phase culture appears to be crucial for entering the VBNC state. Conversely, starved cells could enter the VBNC state with an initial inoculum of 104-105 cfu ml-1, followed by resuscitation as well. The addition of glucose, GlcNAc and mannitol differentially affects progression into VBNC, while the addition of tryptone, yeast extract and casamino acid facilitated early entry into the VBNC state and shortened the length of the recovery period. CONCLUSION Altogether these findings demonstrated that the ionic strength of water, inoculum size and the availability of nutrients played distinct roles during VBNC induction and resuscitation.
Collapse
Affiliation(s)
- Anusuya Debnath
- Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushimanaka, Kita-ku, 700-8530, Japan.
- Department of Biotechnology, Brainware University, Kolkata, India.
| | - Shin-Ichi Miyoshi
- Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushimanaka, Kita-ku, 700-8530, Japan
| |
Collapse
|
3
|
Waidner LA, Potdukhe TV. Tools to Enumerate and Predict Distribution Patterns of Environmental Vibrio vulnificus and Vibrio parahaemolyticus. Microorganisms 2023; 11:2502. [PMID: 37894160 PMCID: PMC10609196 DOI: 10.3390/microorganisms11102502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Vibrio vulnificus (Vv) and Vibrio parahaemolyticus (Vp) are water- and foodborne bacteria that can cause several distinct human diseases, collectively called vibriosis. The success of oyster aquaculture is negatively impacted by high Vibrio abundances. Myriad environmental factors affect the distribution of pathogenic Vibrio, including temperature, salinity, eutrophication, extreme weather events, and plankton loads, including harmful algal blooms. In this paper, we synthesize the current understanding of ecological drivers of Vv and Vp and provide a summary of various tools used to enumerate Vv and Vp in a variety of environments and environmental samples. We also highlight the limitations and benefits of each of the measurement tools and propose example alternative tools for more specific enumeration of pathogenic Vv and Vp. Improvement of molecular methods can tighten better predictive models that are potentially important for mitigation in more controlled environments such as aquaculture.
Collapse
Affiliation(s)
- Lisa A. Waidner
- Hal Marcus College of Science and Engineering, University of West Florida, 11000 University Pkwy, Building 58, Room 108, Pensacola, FL 32514, USA
| | - Trupti V. Potdukhe
- GEMS Program, College of Medicine, University of Illinois Chicago, 1853 W. Polk St., Chicago, IL 60612, USA;
| |
Collapse
|
4
|
Faulds N, Williams J, Evans K, Hughes A, Leak D, Crabtree D, Prentice N, Sohier D, Heikkinen P, Hurskainen E, Mcmahon W, Cuthbert N, Matthews B, Ruben L, Sturghill L, Godawski F. Validation of the Thermo Scientific™ SureTect™ Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus PCR Assay for the Detection of Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus in Seafood Matrixes: AOAC Performance Tested MethodsSM 022301. J AOAC Int 2023; 106:1254-1277. [PMID: 37243669 PMCID: PMC10472736 DOI: 10.1093/jaoacint/qsad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND The Thermo Scientific™ SureTect™ Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus PCR Assay method is a real-time PCR method for the multiplex detection of Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus in seafood. OBJECTIVE The Thermo Scientific SureTect Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus Assay was evaluated for AOAC Performance Tested MethodsSM certification. METHOD Inclusivity/exclusivity, matrix, product consistency/stability, and robustness studies were conducted to assess the method's performance. For the matrix study, the method was validated using the Applied Biosystems™ QuantStudio™ 5 Real-Time PCR Food Safety Instrument and the Applied Biosystems™ 7500 Fast Real-Time PCR Food Safety Instrument against the U.S. Food and Drug Administration Bacteriological Analytical Manual, Chapter 9 (2004), Vibrio and ISO 21872-1:2017 Microbiology of the food chain-Horizontal method for the determination of Vibrio spp.-Part 1: Detection of potentially enteropathogenic Vibrio parahaemolyticus, Vibrio cholerae, and Vibrio vulnificus reference methods. RESULTS Matrix studies showed equivalent or superior performance of the candidate method compared to the reference method and, overall, no difference between presumptive and confirmed results, except for one matrix due to high background flora. The inclusivity/exclusivity study correctly identified/excluded all strains analyzed. Robustness testing showed no statistically significant differences in assay performance under varied test conditions. Product consistency and stability studies demonstrated no statistically significant differences between assay lots with different expiration dates. CONCLUSIONS The data presented show that the assay constitutes a rapid and reliable workflow for the detection of V. cholerae, V. parahaemolyticus, and V. vulnificus in seafood matrixes. HIGHLIGHTS The SureTect PCR Assay method allows for fast, reliable detection of stipulated strains in seafood matrixes with results obtained in as little as 80 min post-enrichment.
Collapse
Affiliation(s)
- Nikki Faulds
- Oxoid Ltd, Thermo Fisher Scientific, Wade Road, Basingstoke, Hampshire RG24 8PW, UK
| | - Jessica Williams
- Oxoid Ltd, Thermo Fisher Scientific, Wade Road, Basingstoke, Hampshire RG24 8PW, UK
| | - Katharine Evans
- Oxoid Ltd, Thermo Fisher Scientific, Wade Road, Basingstoke, Hampshire RG24 8PW, UK
| | - Annette Hughes
- Oxoid Ltd, Thermo Fisher Scientific, Wade Road, Basingstoke, Hampshire RG24 8PW, UK
| | - Dean Leak
- Oxoid Ltd, Thermo Fisher Scientific, Wade Road, Basingstoke, Hampshire RG24 8PW, UK
| | - David Crabtree
- Oxoid Ltd, Thermo Fisher Scientific, Wade Road, Basingstoke, Hampshire RG24 8PW, UK
| | - Nicole Prentice
- Oxoid Ltd, Thermo Fisher Scientific, Wade Road, Basingstoke, Hampshire RG24 8PW, UK
| | - Daniele Sohier
- Oxoid Ltd, Thermo Fisher Scientific, Wade Road, Basingstoke, Hampshire RG24 8PW, UK
| | - Pauliina Heikkinen
- Oxoid Ltd, Thermo Fisher Scientific, Wade Road, Basingstoke, Hampshire RG24 8PW, UK
| | - Emmi Hurskainen
- Oxoid Ltd, Thermo Fisher Scientific, Wade Road, Basingstoke, Hampshire RG24 8PW, UK
| | - Wendy Mcmahon
- Mérieux NutriSciences, Silliker Food Science Center, 3600 Eagle Nest Drive, Crete, IL 60417, USA
| | - Nicole Cuthbert
- Mérieux NutriSciences, Silliker Food Science Center, 3600 Eagle Nest Drive, Crete, IL 60417, USA
| | - Bailey Matthews
- Mérieux NutriSciences, Silliker Food Science Center, 3600 Eagle Nest Drive, Crete, IL 60417, USA
| | - Lydia Ruben
- Mérieux NutriSciences, Silliker Food Science Center, 3600 Eagle Nest Drive, Crete, IL 60417, USA
| | - Luvie Sturghill
- Mérieux NutriSciences, Silliker Food Science Center, 3600 Eagle Nest Drive, Crete, IL 60417, USA
| | - Frank Godawski
- Mérieux NutriSciences, Silliker Food Science Center, 3600 Eagle Nest Drive, Crete, IL 60417, USA
| |
Collapse
|
5
|
Santos LS, Rossi DA, Braz RF, Fonseca BB, Guidotti–Takeuchi M, Alves RN, Beletti ME, Almeida-Souza HO, Maia LP, Santos PDS, de Souza JB, de Melo RT. Roles of viable but non-culturable state in the survival of Campylobacter jejuni. Front Cell Infect Microbiol 2023; 13:1122450. [PMID: 37056707 PMCID: PMC10086134 DOI: 10.3389/fcimb.2023.1122450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/09/2023] [Indexed: 03/30/2023] Open
Abstract
Despite being considered fragile and fastidious, Campylobacter jejuni is the most prevalent cause of foodborne bacterial gastroenteritis, and chicken meat is considered the main vehicle of transmission to humans. This agent can survive adverse conditions in the form of biofilms, but extreme stress (nutritional, oxidative and thermal) promotes the acquisition of a state called viable but not culturable (VBNC). The emergence of this pathogen worldwide and the recent international requirements in its control instigated us to qualitatively and quantitatively estimate the time required for the acquisition of the VBNC form in 27 strains of C. jejuni, characterize morphological aspects, determine its adaptive and invasive potential and perform comparative metabolomic evaluation. Extreme stress promoted the complete acquisition of the VBNC form in a mean time of 26 days. Starting from an average initial count of 7.8 log CFU/mL, the first four days determined the greatest average reduction of the culturable form of 3.2 log CFU/mL. The scanning and transmission image analyses showed a transition from the typical viable form (VT) to the VBNC form, with initial acquisition of the straight rod shape, followed by loss of the flagella and subdivision into two to 11 imperfect cocci arranged in a chain and rich in cellular content, until their individual release. RT-PCR identified the presence of ciaB and p19 transcripts in the 27 cultivable C. jejuni strains, a character maintained in the VBNC form only for p19 and in 59.3% (16/27) of the VBNC strains for the ciaB gene. The average inoculation of 1.8 log CFU/mL of C. jejuni VBNC into primary chicken embryo hepatocyte cells promoted the occurrence of apoptosis processes significantly after 24 hours of contact by one of the strains tested. In C. jejuni VBNC, we detected higher expression of metabolites linked to protective and adaptation mechanisms and of volatile organic precursor compounds indicative of metabolism interruption. The oscillations in the time of acquisition of the VBNC form together with the presence of transcripts for ciaB and p19, the identification of cell lysis and metabolites that ensure the maintenance of the pathogen alert to the fact that C. jejuni VBNC remains virulent and adapted to stress, which makes evident the potential danger of this latent form, which is not detectable by official methodologies.
Collapse
Affiliation(s)
- Leticia Silva Santos
- Laboratory of Molecular Epidemiology, Federal University of Uberlandia, Uberlandia, Brazil
| | - Daise Aparecida Rossi
- Laboratory of Molecular Epidemiology, Federal University of Uberlandia, Uberlandia, Brazil
| | | | | | | | | | | | | | - Larissa Prado Maia
- Biotechnology Institute, Federal University of Uberlandia, Uberlandia, Brazil
| | | | | | - Roberta Torres de Melo
- Laboratory of Molecular Epidemiology, Federal University of Uberlandia, Uberlandia, Brazil
- *Correspondence: Roberta Torres de Melo,
| |
Collapse
|
6
|
Wagley S. The Viable but Non-Culturable (VBNC) State in Vibrio Species: Why Studying the VBNC State Now Is More Exciting than Ever. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:253-268. [PMID: 36792880 DOI: 10.1007/978-3-031-22997-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
During periods that are not conducive for growth or when facing stressful conditions, Vibrios enter a dormant state called the Viable But Non-Culturable (VBNC) state. In this chapter, I will analyse the role of the VBNC state in Vibrio species survival and pathogenesis and the molecular mechanisms regulating this complex phenomenon. I will emphasise some of the novel findings that make studying the VBNC state now more exciting than ever and its significance in the epidemiology of these pathogens and critical role in food safety.
Collapse
Affiliation(s)
- Sariqa Wagley
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon, UK.
| |
Collapse
|
7
|
Liang S, Zhang T, Liu Z, Wang J, Zhu C, Kong Q, Fu X, Mou H. Response mechanism of Vibrio parahaemolyticus at high pressure revealed by transcriptomic analysis. Appl Microbiol Biotechnol 2022; 106:5615-5628. [DOI: 10.1007/s00253-022-12082-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 11/02/2022]
|
8
|
Debnath A, Miyoshi SI. The Impact of Protease during Recovery from Viable but Non-Culturable (VBNC) State in Vibrio cholerae. Microorganisms 2021; 9:microorganisms9122618. [PMID: 34946219 PMCID: PMC8707003 DOI: 10.3390/microorganisms9122618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Vibrio cholerae can survive cold stress by entering into a viable but non-culturable (VBNC) state, and resuscitation can be induced either by temperature upshift only or the addition of an anti-dormancy stimulant such as resuscitation-promoting factors (Rpfs) at suitable temperature. In this study, the role of proteinase K was analyzed as an Rpf in V. cholerae. A VBNC state was induced in V. cholerae AN59 in artificial seawater (ASW) media at 4 °C, and recovery could be achieved in filtered VBNC microcosm, called spent ASW media, merely by a temperature upshift to 37 °C. The resuscitation ability of spent ASW was further enhanced by the addition of proteinase K. The mode of action of proteinase K was investigated by comparing its effect on the growth of the VBNC and culturable state of V. cholerae in ASW and spent ASW media. The presence of proteinase K allowed culturable cells to grow faster in ASW by reducing the generation time. However, this effect of proteinase K was more pronounced in stressed VBNC cells. Moreover, proteinase K-supplemented spent ASW could also accelerate the transition of VBNC into recovered cells followed by rapid growth. Additionally, we found that dead bacterial cells were the substrate on which proteinase K acts to support high growth in spent ASW. So, the conclusion is that the proteinase K could efficiently promote the recovery and growth of dormant VBNC cells at higher temperatures by decreasing the duration of the initial lag phase required for transitioning from the VBNC to recovery state and increasing the growth rate of these recovered cells.
Collapse
|
9
|
Predictive models for the effect of environmental factors on the abundance of Vibrio parahaemolyticus in oyster farms in Taiwan using extreme gradient boosting. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Fu Y, Peng H, Liu J, Nguyen TH, Hashmi MZ, Shen C. Occurrence and quantification of culturable and viable but non-culturable (VBNC) pathogens in biofilm on different pipes from a metropolitan drinking water distribution system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142851. [PMID: 33097267 DOI: 10.1016/j.scitotenv.2020.142851] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Waterborne pathogens have been found in biofilms grown in drinking water distribution system (DWDS). However, there is a lack of quantitative study on the culturability of pathogens in biofilms from metropolitan DWDS. In this study, we quantified culturable and viable but non-culturable (VBNC) Escherichia coli, Salmonella enterica, Pseudomonas aeruginosa and Vibrio cholerae in biofilms collected from five kinds of pipes (galvanized steel pipe, steel pipe, stainless steel clad pipe, ductile cast iron pipe and polyethylene pipe) and associated drinking water at an actual chlorinated DWDS in use from China. The results of these comprehensive analyses revealed that pipe material is a significant factor influencing the culturability of pathogen and microbial communities. Network analysis of the culturable pathogens and 16S rRNA gene inferred potential interactions between microbiome and culturability of pathogens. Although the water quality met the Chinese national standard of drinking water, however, VBNC pathogens were detected in both biofilms and water from the DWDS. This investigation suggests that stainless steel clad pipe (SSCP) was a better choice for pathogen control compared with other metal pipes. To our knowledge, this is the first study on culturable and VBNC pathogens in biofilms of different pipe materials in metropolitan DWDS.
Collapse
Affiliation(s)
- Yulong Fu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Hongxi Peng
- Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jingqing Liu
- Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | | | - Chaofeng Shen
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
11
|
Furusawa G, Diyana T, Lau NS. Metabolic strategies of dormancy of a marine bacterium Microbulbifer aggregans CCB-MM1: Its alternative electron transfer chain and sulfate-reducing pathway. Genomics 2021; 114:443-455. [PMID: 33689784 DOI: 10.1016/j.ygeno.2021.02.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/26/2021] [Accepted: 02/28/2021] [Indexed: 12/26/2022]
Abstract
Bacterial dormancy plays a crucial role in maintaining the functioning and diversity of microbial communities in natural environments. However, the metabolic regulations of the dormancy of bacteria in natural habitats, especially marine habitats, have remained largely unknown. A marine bacterium, Microbulbifer aggregans CCB-MM1 exhibits rod-to-coccus cell shape change during the dormant state. Therefore, to clarify the metabolic regulation of the dormancy, differential gene expression analysis based on RNA-Seq was performed between rod- (vegetative), intermediate, and coccus-shaped cells (dormancy). The RNA-Seq data revealed that one of two distinct electron transfer chains was upregulated in the dormancy. Dissimilatory sulfite reductase and soluble hydrogenase were also highly upregulated in the dormancy. In addition, induction of the dormancy of MM1 in the absence of MgSO4 was slower than that in the presence of MgSO4. These results indicate that the sulfate-reducing pathway plays an important role in entering the dormancy of MM1.
Collapse
Affiliation(s)
- Go Furusawa
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia.
| | - Tarmizi Diyana
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - Nyok-Sean Lau
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| |
Collapse
|
12
|
Yoon JH, Bae YM, Jo S, Moon SK, Oh SW, Lee SY. Optimization of resuscitation-promoting broths for the revival of Vibrio parahaemolyticus from a viable but nonculturable state. Food Sci Biotechnol 2021; 30:159-169. [PMID: 33552627 DOI: 10.1007/s10068-020-00843-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/19/2020] [Accepted: 10/23/2020] [Indexed: 12/19/2022] Open
Abstract
This study was conducted to examine the effect of formulated resuscitation-promoting broths on the revival of viable but nonculturable Vibrio parahaemolyticus induced by cold and starvation stresses. Vibrio parahaemolyticus was incubated in artificial sea water at 4 °C for more than 8 months until this bacterium became undetectable, while retaining its intact cell count of more than 105 CFU/field over time. On day 250, V. parahaemolyticus was collected and enriched in tryptic soy broth supplemented with 3% NaCl, 10,000 U/mg catalase, 2% sodium pyruvate, 20 mM MgSO4, 5 mM EDTA, and a cell-free supernatant taken from V. parahaemolyticus ATCC 17802 in the stationary phase (pH 8). V. parahaemolyticus returned partially to a culturable state with a maximal cell density of 7.91 log CFU/mL in this formulated medium following 7 days of enrichment at 25 °C. In contrast, no V. parahaemolyticus was resuscitated when enriched in alkaline peptone water and tryptic soy broth.
Collapse
Affiliation(s)
- Jae-Hyun Yoon
- Department of Food and Nutrition, Chung-Ang University, 4726, Seodong-daero, Anseong-si, Gyeonggi-do Republic of Korea
| | - Young-Min Bae
- Department of Food and Nutrition, Chung-Ang University, 4726, Seodong-daero, Anseong-si, Gyeonggi-do Republic of Korea
| | - Suyoung Jo
- Department of Food and Nutrition, Chung-Ang University, 4726, Seodong-daero, Anseong-si, Gyeonggi-do Republic of Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, 4726, Seodong-daero, Anseong-si, Gyeonggi-do Republic of Korea
| | - Se-Wook Oh
- Department of Food and Nutrition, Kookmin University, 77, Jeongneung-ro, Seongbuk-gu, Seoul, Republic of Korea
| | - Sun-Young Lee
- Department of Food and Nutrition, Chung-Ang University, 4726, Seodong-daero, Anseong-si, Gyeonggi-do Republic of Korea
| |
Collapse
|
13
|
Bacterial dormancy: A subpopulation of viable but non-culturable cells demonstrates better fitness for revival. PLoS Pathog 2021; 17:e1009194. [PMID: 33439894 PMCID: PMC7837498 DOI: 10.1371/journal.ppat.1009194] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/26/2021] [Accepted: 11/27/2020] [Indexed: 01/08/2023] Open
Abstract
The viable but non culturable (VBNC) state is a condition in which bacterial cells are viable and metabolically active, but resistant to cultivation using a routine growth medium. We investigated the ability of V. parahaemolyticus to form VBNC cells, and to subsequently become resuscitated. The ability to control VBNC cell formation in the laboratory allowed us to selectively isolate VBNC cells using fluorescence activated cell sorting, and to differentiate subpopulations based on their metabolic activity, cell shape and the ability to cause disease in Galleria mellonella. Our results showed that two subpopulations (P1 and P2) of V. parahaemolyticus VBNC cells exist and can remain dormant in the VBNC state for long periods. VBNC subpopulation P2, had a better fitness for survival under stressful conditions and showed 100% revival under favourable conditions. Proteomic analysis of these subpopulations (at two different time points: 12 days (T12) and 50 days (T50) post VBNC) revealed that the proteome of P2 was more similar to that of the starting microcosm culture (T0) than the proteome of P1. Proteins that were significantly up or down-regulated between the different VBNC populations were identified and differentially regulated proteins were assigned into 23 functional groups, the majority being assigned to metabolism functional categories. A lactate dehydrogenase (lldD) protein, responsible for converting lactate to pyruvate, was significantly upregulated in all subpopulations of VBNC cells. Deletion of the lactate dehydrogenase (RIMD2210633:ΔlldD) gene caused cells to enter the VBNC state significantly more quickly compared to the wild-type, and adding lactate to VBNC cells aided their resuscitation and extended the resuscitation window. Addition of pyruvate to the RIMD2210633:ΔlldD strain restored the wild-type VBNC formation profile. This study suggests that lactate dehydrogenase may play a role in regulating the VBNC state.
Collapse
|
14
|
Culot A, Grosset N, Bruey Q, Auzou M, Giard JC, Favard B, Wakatsuki A, Baron S, Frouel S, Techer C, Gautier M. Isolation of Harveyi clade Vibrio spp. collected in aquaculture farms: How can the identification issue be addressed? J Microbiol Methods 2020; 180:106106. [PMID: 33248180 DOI: 10.1016/j.mimet.2020.106106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/14/2020] [Accepted: 11/14/2020] [Indexed: 10/22/2022]
Abstract
Aquaculture is a fast growing industry with its development hampered by bacterial diseases. Vibriosis caused by Harveyi clade strains is known for causing heavy loss especially in shrimp aquaculture farms. For farm treatment and pathogen spread management, veterinarians and researchers need reliable bacterial identification tools. A range of identification methods have been presented for Vibrio spp. in recent literature but little feedback on their performance have been made available to this day. This study aims at comparing Vibrio spp. identification methods and providing guidance on their use. Fifty farms were sampled and bacterial colonies were isolated using specific culture media before microscopic analysis and genomic profiling using ERIC-PCR. A preliminary identification step was carried out using MALDI-ToF mass spectrometry. Four methods were compared for strain identification on 14 newly isolated Harveyi clade Vibrio spp. strains: whole genome sequencing (digital DNA DNA Hybridization (dDDH)), 5 MLSA schemes, ferric uptake regulation (fur) and lecithin-dependent haemolysin (ldh) single gene based identification methods. Apart from dDDH which is a reference method, no technique could identify all the isolates to the species level. The other tested techniques allowed a faster, cheaper but sub genus clade identification which can be interesting when absolute precision is not required. In this regard, MALDI-ToF and fur based identification seemed especially promising.
Collapse
Affiliation(s)
- Antoine Culot
- Microbiology Laboratory, Institut National de Recherche en Agriculture, Alimentation et Environnement, (INRAE), UMR 1253 Science and, Technology of Milk and Eggs (STLO), Rennes, France; Mixscience SAS, Bruz, France.
| | - Noel Grosset
- Microbiology Laboratory, Institut National de Recherche en Agriculture, Alimentation et Environnement, (INRAE), UMR 1253 Science and, Technology of Milk and Eggs (STLO), Rennes, France
| | | | - Michel Auzou
- Service Microbiologie, Centre Hospitalier Universitaire de Caen, Caen, France
| | | | | | | | - Sandrine Baron
- Laboratoire de Ploufragan-Plouzane-Niort, ANSES, Ploufragan, France
| | | | | | - Michel Gautier
- Microbiology Laboratory, Institut National de Recherche en Agriculture, Alimentation et Environnement, (INRAE), UMR 1253 Science and, Technology of Milk and Eggs (STLO), Rennes, France.
| |
Collapse
|
15
|
Ndraha N, Wong HC, Hsiao HI. Managing the risk of Vibrio parahaemolyticus infections associated with oyster consumption: A review. Compr Rev Food Sci Food Saf 2020; 19:1187-1217. [PMID: 33331689 DOI: 10.1111/1541-4337.12557] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/15/2020] [Accepted: 03/02/2020] [Indexed: 12/15/2022]
Abstract
Vibrio parahaemolyticus is a Gram-negative bacterium that is naturally present in the marine environment. Oysters, which are water filter feeders, may accumulate this pathogen in their soft tissues, thus increasing the risk of V. parahaemolyticus infection among people who consume oysters. In this review, factors affecting V. parahaemolyticus accumulation in oysters, the route of the pathogen from primary production to consumption, and the potential effects of climate change were discussed. In addition, intervention strategies for reducing accumulation of V. parahaemolyticus in oysters were presented. A literature review revealed the following information relevant to the present study: (a) managing the safety of oysters (for human consumption) from primary production to consumption remains a challenge, (b) there are multiple factors that influence the concentration of V. parahaemolyticus in oysters from primary production to consumption, (c) climate change could possibly affect the safety of oysters, both directly and indirectly, placing public health at risk, (d) many intervention strategies have been developed to control and/or reduce the concentration of V. parahaemolyticus in oysters to acceptable levels, but most of them are mainly focused on the downstream steps of the oyster supply chain, and (c) although available regulation and/or guidelines governing the safety of oyster consumption are mostly available in developed countries, limited food safety information is available in developing countries. The information provided in this review may serve as an early warning for managing the future effects of climate change on the safety of oyster consumption.
Collapse
Affiliation(s)
- Nodali Ndraha
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan (R.O.C.)
| | - Hin-Chung Wong
- Department of Microbiology, Soochow University, Taipei, Taiwan (R.O.C.)
| | - Hsin-I Hsiao
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan (R.O.C.).,Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung, Taiwan (R.O.C.)
| |
Collapse
|
16
|
Collin B, Hernroth B. Experimental evaluation of survival of Vibrio parahaemolyticus in fertilized cold-water sediment. J Appl Microbiol 2020; 129:75-84. [PMID: 32086873 DOI: 10.1111/jam.14618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/08/2020] [Accepted: 02/19/2020] [Indexed: 11/28/2022]
Abstract
AIMS This experimental study focuses on survival and consistence of Vibrio parahaemolyticus in cold-water sediments and how increasing temperature and nutritional availability can affect growth. METHODS AND RESULTS A pathogenic strain of V. parahaemolyticus was inoculated in seawater microcosms containing bottom sediment. Gradually, during 14 days, the temperature was upregulated from 8 to 21°C. Culturable V. parahaemolyticus was only found in the sediment but declined over time and did not recover even after another 2 days at 37°C. Numbers of culturable bacteria matched the amount found by q-PCR indicating that they did not enter a dormant state, contrary to those in the water layer. After adding decaying phytoplankton as fertilizer to the microcosms of 8 and 21°C for 7 and 14 days, the culturability of the bacteria increased significantly in the sediments at both temperatures and durations of exposure. CONCLUSION The study showed that V. parahaemolyticus can stay viable in cold-water sediment and growth was stimulated by fertilizers rather than by temperature. SIGNIFICANCE AND IMPACT OF THE STUDY Vibrio parahaemolyticus is a common cause of seafood-borne gastroenteritis and is today recognized in connection to increasing ocean temperature. The results indicate that this pathogen should be considered a risk in well-fertilized environments, such as aquacultures, even during cold periods.
Collapse
Affiliation(s)
- B Collin
- Department of Natural Science, Kristianstad University, Kristianstad, Sweden
| | - B Hernroth
- Department of Natural Science, Kristianstad University, Kristianstad, Sweden.,The Royal Swedish Academy of Sciences, Kristineberg Marine Research Station, Fiskebäckskil, Sweden
| |
Collapse
|
17
|
Debnath A, Mizuno T, Miyoshi SI. Comparative proteomic analysis to characterize temperature-induced viable but non-culturable and resuscitation states in Vibrio cholerae. MICROBIOLOGY-SGM 2019; 165:737-746. [PMID: 31124781 DOI: 10.1099/mic.0.000798] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Vibrio cholerae can survive environmental adversities by entering into a viable but non-culturable (VBNC) state and is able to resuscitate under favourable conditions. In this study, an environmental strain of V. cholerae (AN59) showed a decrease in culturability from 4×107 to ≤ 3 c.f.u. ml -1 in artificial seawater media at 4 °C within 35 days. During the course of VBNC progression, viability was confirmed by real-time RT-PCR which showed reduced but stable expression of molecular chaperones groEL and dnaK. Resuscitation was induced in VBNC microcosm by a temperature increase from 4 to 37 °C for 24 h. The results obtained from resuscitation and growth experiments suggest that 103-104 c.f.u. ml -1 of VBNC cells should recover upon temperature increase and grow to attain 107 c.f.u. ml -1. We used comparative proteomics to differentiate recovery from the VBNC state and selected 19 proteins whose expression was significantly variable between these two states. These proteins were mainly related to carbohydrate metabolism, phosphate utilization, stress response, transport and translation. The main difference in the proteome profile was higher protein expression in the recovery state compared to VBNC state. However, during recovery Pi-starvation led to expression of PhoX, PstB and Xds, which might help in utilization of extracellular DNA to promote growth after resuscitation. In addition, the expression of EctC suggests that osmotic adaptation is necessary to grow at high salinity. Detection of AhpC in the VBNC and recovery state indicates the significance of the oxidative stress response. A temperature-induced VBNC and recovery state is a combination of adaptive and survival responses under nutrient limitation.
Collapse
|
18
|
Zhong Q, Wang B, Wang J, Liu Y, Fang X, Liao Z. Global Proteomic Analysis of the Resuscitation State of Vibrio parahaemolyticus Compared With the Normal and Viable but Non-culturable State. Front Microbiol 2019; 10:1045. [PMID: 31134040 PMCID: PMC6517545 DOI: 10.3389/fmicb.2019.01045] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/25/2019] [Indexed: 11/24/2022] Open
Abstract
Vibrio parahaemolyticus is a common pathogen which has become a major concern of seafood products. The bacteria in the viable but non-culturable (VBNC) state are unable to form colonies on growth media, but under appropriate conditions they can regain culturability. In this study, V. parahaemolyticus was induced into VBNC state at low temperature and oligotrophic condition, and was resuscitated to culturable state. The aim of this study is to explore the comparative proteomic profiles of the resuscitation state compared with the VBNC state and the exponential phase of V. parahaemolyticus using isobaric tags for relative and absolute quantitation (iTRAQ) technique. The differentially expressed proteins (DEPs) were subjected to GO functional annotations and KEGG pathway analysis. The results indicated that a total of 429 proteins were identified as the significant DEPs in the resuscitation cells compared with the VBNC cells, including 330 up-regulated and 99 down-regulated DEPs. Meanwhile, the resuscitation cells displayed 25 up-regulated and 36 down-regulated DEPs (total of 61 DEPs) in comparison with the exponential phase cells. The remarkable DEPs including ribosomal proteins, ABC transporters, outer membrane proteins and flagellar proteins. GO annotation showed that the 429 DEPs were classified into 37 GO terms, of which 17 biological process (BP) terms, 9 cellular component (CC) terms and 11 molecular function (MF) terms. The up-regulated proteins presented in all GO terms except two terms of developmental process and reproduction. The 61 DEPs were assigned to 23 GO terms, the up- and down-regulated DEPs were both mainly involved in cellular process, establishment of localization, metabolic process and so on. KEGG pathway analysis revealed that the 429 DEPs were assigned to 35 KEGG pathways, and the pathways of ribosome, glyoxylate and dicarboxylate metabolism were significantly enriched. Moreover, the 61 DEPs located in 26 KEGG pathways, including the significantly enriched KEGG pathways of ABC transporters and two-component system. This study would contribute to a better understanding of the molecular mechanism underlying the resuscitation of the VBNC state of V. parahaemolyticus.
Collapse
Affiliation(s)
- Qingping Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China.,SCAU (Chaozhou) Food Institute Co. Ltd., Chaozhou, China
| | - Bin Wang
- Guangdong Scau Assets Management Co., Ltd., South China Agricultural University, Guangzhou, China
| | - Jie Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yufei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiang Fang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Zhenlin Liao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
19
|
Yoon JH, Lee SY. Characteristics of viable-but-nonculturable Vibrio parahaemolyticus induced by nutrient-deficiency at cold temperature. Crit Rev Food Sci Nutr 2019; 60:1302-1320. [DOI: 10.1080/10408398.2019.1570076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jae-Hyun Yoon
- Department of Food and Nutrition, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Sun-Young Lee
- Department of Food and Nutrition, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
20
|
Niu B, Hong B, Zhang Z, Mu L, Malakar PK, Liu H, Pan Y, Zhao Y. A Novel qPCR Method for Simultaneous Detection and Quantification of Viable Pathogenic and Non-pathogenic Vibrio parahaemolyticus ( tlh+ , tdh+ , and ureR + ). Front Microbiol 2018; 9:1747. [PMID: 30116230 PMCID: PMC6083054 DOI: 10.3389/fmicb.2018.01747] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/12/2018] [Indexed: 12/11/2022] Open
Abstract
Pathogenic and non-pathogenic Vibrio parahaemolyticus strains were simultaneously detected and quantified using a novel viable multiplex real-time PCR (novel qPCR). We used a new PCR primer and probe, ureR, as a surrogate for detection of the toxin trh gene as the primer was better at identifying variant V. parahaemolyticus trh strains. The specificity of all primers and probes used in this study were validated on three standard strains of V. parahaemolyticus, 42 clinical strains, 12 wild strains, 4 strains of Vibrio spp., and 4 strains of other bacteria. Then, propidium monoazide (PMA) was applied to inhibit DNA of dead cell, and the results of PMA optimized treatments were 15 μM concentration, 5 min incubation periods, 15 min light exposure periods and 30 RPM rotational speed, which resulted in time and cost savings. Pathogenic and non-pathogenic strains were quantified using a two-reaction tube method where the tlh, tdh, and ureR genes were amplified. Additionally, standard curves with a 7-log dynamic range were generated for quantifying viable V. parahaemolyticus and the amplification efficiencies were 108.68, 105.17, and 115.61% for tlh+, tdh+, and ureR+. This novel qPCR accurately monitored V. parahaemolyticus contamination rates in shrimps (Penaeus vannamei) and clams (Ruditapes philippinarum) sampled from retail stores located in a major district in Shanghai. In conclusion, our assay can prioritize the detection and quantification of viable pathogenic V. parahaemolyticus and can prove to be a more effective tool for reducing infection risks from consumption of seafood in Shanghai.
Collapse
Affiliation(s)
- Ben Niu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Bin Hong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Zhaohuan Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Lili Mu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Pradeep K Malakar
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China.,Engineering Research Center of Food Thermal-processing Technology, Shanghai Ocean University, Shanghai, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China
| |
Collapse
|
21
|
Zhong Q, Tian J, Wang J, Fang X, Liao Z. iTRAQ-based proteomic analysis of the viable but nonculturable state of Vibrio parahaemolyticus ATCC 17802 induced by food preservative and low temperature. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Hernroth BE, Baden SP. Alteration of host-pathogen interactions in the wake of climate change - Increasing risk for shellfish associated infections? ENVIRONMENTAL RESEARCH 2018; 161:425-438. [PMID: 29202413 DOI: 10.1016/j.envres.2017.11.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 11/19/2017] [Accepted: 11/20/2017] [Indexed: 06/07/2023]
Abstract
The potential for climate-related spread of infectious diseases through marine systems has been highlighted in several reports. With this review we want to draw attention to less recognized mechanisms behind vector-borne transmission pathways to humans. We have focused on how the immune systems of edible marine shellfish, the blue mussels and Norway lobsters, are affected by climate related environmental stressors. Future ocean acidification (OA) and warming due to climate change constitute a gradually increasing persistent stress with negative trade-off for many organisms. In addition, the stress of recurrent hypoxia, inducing high levels of bioavailable manganese (Mn) is likely to increase in line with climate change. We summarized that OA, hypoxia and elevated levels of Mn did have an overall negative effect on immunity, in some cases also with synergistic effects. On the other hand, moderate increase in temperature seems to have a stimulating effect on antimicrobial activity and may in a future warming scenario counteract the negative effects. However, rising sea surface temperature and climate events causing high land run-off promote the abundance of naturally occurring pathogenic Vibrio and will in addition, bring enteric pathogens which are circulating in society into coastal waters. Moreover, the observed impairments of the immune defense enhance the persistence and occurrence of pathogens in shellfish. This may increase the risk for direct transmission of pathogens to consumers. It is thus essential that in the wake of climate change, sanitary control of coastal waters and seafood must recognize and adapt to the expected alteration of host-pathogen interactions.
Collapse
Affiliation(s)
- Bodil E Hernroth
- The Royal Swedish Academy of Sciences, Kristineberg 566, SE-451 78 Fiskebäckskil, Sweden; Dept. of Natural Science, Kristianstad University, SE-291 88 Kristianstad, Sweden.
| | - Susanne P Baden
- Dept. of Biological and Environmental Sciences, University of Gothenburg, Kristineberg 566, SE-451 78 Fiskebäckskil, Sweden
| |
Collapse
|
23
|
Orruño M, Kaberdin VR, Arana I. Survival strategies of Escherichia coli and Vibrio spp.: contribution of the viable but nonculturable phenotype to their stress-resistance and persistence in adverse environments. World J Microbiol Biotechnol 2017; 33:45. [PMID: 28161849 DOI: 10.1007/s11274-017-2218-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 01/23/2017] [Indexed: 12/11/2022]
Abstract
In their natural ecosystems, bacteria are continuously exposed to changing environmental factors including physicochemical parameters (e.g. temperature, pH, etc.), availability of nutrients as well as interaction(s) with other organisms. To increase their tolerance and survival under adverse conditions, bacteria trigger a number of adaptation mechanisms. One of the well-known adaptation responses of the non-spore-forming bacteria is the acquisition of the viable but non-culturable (VBNC) state. This phenotype is induced by different stress factors (e.g. low temperature) and is characterized by the temporal loss of culturability, which can potentially be restored. Moreover, this response can be combined with the bust and boom strategy, which implies the death of the main population of the stressed cells (or their entry into the VBNC state) upon stress, thus enabling the remaining cells (i.e. residual culturable population) to subsist at the expense of the dead or/and VBNC cells. In this review, we discuss the characteristics of the VBNC state, its biological significance and contribution to bacterial survival.
Collapse
Affiliation(s)
- M Orruño
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country (UPV/EHU), Barrio Sarriena S/n, 48940, Leioa, Spain
| | - V R Kaberdin
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country (UPV/EHU), Barrio Sarriena S/n, 48940, Leioa, Spain.,IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, 48013, Bilbao, Spain
| | - I Arana
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country (UPV/EHU), Barrio Sarriena S/n, 48940, Leioa, Spain.
| |
Collapse
|
24
|
Burlage RS, Tillmann J. Biosensors of bacterial cells. J Microbiol Methods 2016; 138:2-11. [PMID: 28040457 DOI: 10.1016/j.mimet.2016.12.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/24/2016] [Accepted: 12/24/2016] [Indexed: 10/20/2022]
Abstract
Biosensors are devices which utilize both an electrical component (transducer) and a biological component to study an environment. They are typically used to examine biological structures, organisms and processes. The field of biosensors has now become so large and varied that the technology can often seem impenetrable. Yet the principles which underlie the technology are uncomplicated, even if the details of the mechanisms are elusive. In this review we confine our analysis to relatively current advancements in biosensors for the detection of whole bacterial cells. This includes biosensors which rely on an added labeled component and biosensors which do not have a labeled component and instead detect the binding event or bound structure on the transducer. Methods to concentrate the bacteria prior to biosensor analysis are also described. The variety of biosensor types and their actual and potential uses are described.
Collapse
Affiliation(s)
- Robert S Burlage
- Department of Pharmaceutical and Administrative Science, Concordia University School of Pharmacy, 12800 N. Lake Shore Dr., Mequon, WI 53097, United States.
| | - Joshua Tillmann
- Department of Pharmaceutical and Administrative Science, Concordia University School of Pharmacy, 12800 N. Lake Shore Dr., Mequon, WI 53097, United States
| |
Collapse
|
25
|
Parada C, Orruño M, Kaberdin V, Bravo Z, Barcina I, Arana I. Changes in the Vibrio harveyi Cell Envelope Subproteome During Permanence in Cold Seawater. MICROBIAL ECOLOGY 2016; 72:549-558. [PMID: 27324654 DOI: 10.1007/s00248-016-0802-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 06/13/2016] [Indexed: 06/06/2023]
Abstract
Previous work demonstrated that physiological, morphological, and gene expression changes as well as the time-dependent entry into the viable but not culturable (VBNC) state are used by Vibrio species to survive and cope with diverse stress conditions including seasonal temperature downshifts and starvation. To learn more about the nature and specific contribution of membrane proteins to cell adaptation and survival, we analyzed variations in the protein composition of cell envelope and related them to morphological and physiological changes that were taking place during the long-term permanence of Vibrio harveyi in seawater microcosm at 4 °C. We found that after 21 days of permanence, nearly all population (ca. 99 %) of V. harveyi acquired the VBNC phenotype. Although the size of V. harveyi cells gradually decreased during the incubation time, we found that this morphological change was not directly related to their entry into the VBNC state. Our proteomic study revealed that the level of membrane proteins playing key roles in cellular transport, maintenance of cell structure, and in bioenergetics processes remained unchanged along starvation at low temperature, thus suggesting that V. harveyi might need these proteins for the long-term survival and/or for the resuscitation process. On a contrary, the level of two proteins, elongation factor Tu (EF-TU) and bacterioferritin, greatly increased reaching the maximal values by the end of the incubation period. We further discuss the above data with respect to the putative roles likely exerted by membrane proteins during transition to and maintaining of the VBNC state.
Collapse
Affiliation(s)
- Claudia Parada
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of Basque Country (UPV/EHU), Bilbao, Spain
| | - Maite Orruño
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of Basque Country (UPV/EHU), Bilbao, Spain
| | - Vladimir Kaberdin
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of Basque Country (UPV/EHU), Bilbao, Spain
- Department of Immunology, Microbiology and Parasitology, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Zaloa Bravo
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of Basque Country (UPV/EHU), Bilbao, Spain
| | - Isabel Barcina
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of Basque Country (UPV/EHU), Bilbao, Spain
| | - Inés Arana
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of Basque Country (UPV/EHU), Bilbao, Spain.
| |
Collapse
|
26
|
Zhong Q, Tian J, Wang B, Wang L. PMA based real-time fluorescent LAMP for detection of Vibrio parahaemolyticus in viable but nonculturable state. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.11.043] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
27
|
Lin YW, Li D, Gu AZ, Zeng SY, He M. Bacterial regrowth in water reclamation and distribution systems revealed by viable bacterial detection assays. CHEMOSPHERE 2016; 144:2165-74. [PMID: 26595310 DOI: 10.1016/j.chemosphere.2015.10.071] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 05/21/2023]
Abstract
Microbial regrowth needs to be managed during water reclamation and distribution. The aim of present study was to investigate the removal and regrowth of Escherichia coli (E. coli) and Salmonella in water reclamation and distribution system by using membrane integrity assay (PMA-qPCR), reverse transcriptional activity assay (Q-RT-PCR) and culture-based assay, and also to evaluate the relationships among bacterial regrowth, and environmental factors in the distribution system. The results showed that most of the water reclamation processes potentially induced bacteria into VBNC state. The culturable E. coli and Salmonella regrew 1.8 and 0.7 log10 in distribution system, which included reactivation of bacteria in the viable but non-culturable (VBNC) state and reproduction of culturable bacteria. The regrowth of culturable E. coli and Salmonella in the distribution system mainly depended on the residual chlorine levels, with correlations (R(2)) of -0.598 and -0.660. The abundances of membrane integrity and reverse transcriptional activity bacteria in reclamation effluents had significant correlations with the culturable bacteria at the end point of the distribution system, demonstrating that PMA-qPCR and Q-RT-PCR are sensitive and accurate tools to determine and predict bacterial regrowth in water distribution systems. This study has improved our understanding of microbial removal and regrowth in reclaimed water treatment and distribution systems. And the results also recommended that more processes should be equipped to remove viable bacteria in water reclamation plants for the sake of inhibition microbial regrowth during water distribution and usages.
Collapse
Affiliation(s)
- Yi-wen Lin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Dan Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - April Z Gu
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA
| | - Si-yu Zeng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Miao He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
28
|
Purification and Host Specificity of Predatory Halobacteriovorax Isolates from Seawater. Appl Environ Microbiol 2015; 82:922-7. [PMID: 26590288 DOI: 10.1128/aem.03136-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/17/2015] [Indexed: 11/20/2022] Open
Abstract
Halobacteriovorax (formerly Bacteriovorax) is a small predatory bacterium found in the marine environment and modulates bacterial pathogens in shellfish. Four strains of Halobacteriovorax originally isolated in Vibrio parahaemolyticus O3:K6 host cells were separated from their prey by an enrichment-filtration-dilution technique for specificity testing in other bacteria. This technique was essential, since 0.45-μm filtration alone was unable to remove infectious Vibrio minicells, as determined by scanning electron microscopy and cultural methods. Purified Halobacteriovorax strains were screened for predation against other V. parahaemolyticus strains and against Vibrio vulnificus, Vibrio alginolyticus, Escherichia coli O157:H7, and Salmonella enterica serovar Typhimurium DT104, all potential threats to seafood safety. They showed high host specificity and were predatory only against strains of V. parahaemolyticus. In addition, strains of Halobacteriovorax that were predatory for E. coli O157:H7 and S. Typhimurium DT104 were isolated from a tidal river at 5 ppt salinity. In a modified plaque assay agar, they killed their respective prey over a broad range of salinities (5 to 30 ppt). Plaques became smaller as the salinity levels rose, suggesting that the lower salinities were optimal for the predators' replication. These species also showed broader host specificity, infectious against each other's original hosts as well as against V. parahaemolyticus strains. In summary, this study characterized strains of Halobacteriovorax which may be considered for use in the development of broad-based biocontrol technologies to enhance the safety of commercially marketed shellfish and other foods.
Collapse
|
29
|
Fernández-Delgado M, García-Amado MA, Contreras M, Incani RN, Chirinos H, Rojas H, Suárez P. Survival, induction and resuscitation of Vibrio cholerae from the viable but non-culturable state in the Southern Caribbean Sea. Rev Inst Med Trop Sao Paulo 2015; 57:21-6. [PMID: 25651322 PMCID: PMC4325519 DOI: 10.1590/s0036-46652015000100003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 05/28/2014] [Indexed: 12/21/2022] Open
Abstract
The causative agent of cholera, Vibrio cholerae, can enter into a viable but non-culturable (VBNC) state in response to unfavorable conditions. The aim of this study was to evaluate the in situ survival of V. cholerae in an aquatic environment of the Southern Caribbean Sea, and its induction and resuscitation from the VBNC state. V. cholerae non-O1, non-O139 was inoculated into diffusion chambers placed at the Cuare Wildlife Refuge, Venezuela, and monitored for plate, total and viable cells counts. At 119 days of exposure to the environment, the colony count was < 10 CFU/mL and a portion of the bacterial population entered the VBNC state. Additionally, the viability decreased two orders of magnitude and morphological changes occurred from rod to coccoid cells. Among the aquatic environmental variables, the salinity had negative correlation with the colony counts in the dry season. Resuscitation studies showed significant recovery of cell cultivability with spent media addition (p < 0.05). These results suggest that V. cholerae can persist in the VBNC state in this Caribbean environment and revert to a cultivable form under favorable conditions. The VBNC state might represent a critical step in cholera transmission in susceptible areas.
Collapse
Affiliation(s)
| | - María Alexandra García-Amado
- Centro de Biofísica y Bioquímica, Laboratorio de Fisiología Gastrointestinal, Instituto Venezolano de Investigaciones Científicas, Altos de Pipe, Edo. Miranda, Venezuela
| | - Monica Contreras
- Centro de Biofísica y Bioquímica, Laboratorio de Fisiología Gastrointestinal, Instituto Venezolano de Investigaciones Científicas, Altos de Pipe, Edo. Miranda, Venezuela
| | - Renzo Nino Incani
- Departamento de Parasitología, Universidad de Carabobo, Valencia, Edo. Carabobo, Venezuela
| | | | - Héctor Rojas
- Instituto de Inmunología, Universidad Central de Venezuela, Caracas, Venezuela
| | - Paula Suárez
- Departamento de Biología de Organismos, Universidad Simón Bolívar, Caracas, Venezuela
| |
Collapse
|
30
|
Abstract
ABSTRACT
Vibrio
-related infections are increasing worldwide both in humans and aquatic animals. Rise in global sea surface temperature (SST), which is approximately 1°C higher now than 140 years ago and is one of the primary physical impacts of global warming, has been linked to such increases. In this chapter, major known effects of increasing SST on the biology and ecology of vibrios are described. They include the effects on bacterial growth rate, both in the field and in laboratory, culturability, expression of pathogenicity traits, and interactions with aquatic organisms and abiotic surfaces. Special emphasis is given to the effect of ocean warming on
Vibrio
interactions with zooplankters, which represent one of the most important aquatic reservoirs for these bacteria. The reported findings highlight the biocomplexity of the interactions between vibrios and their natural environment in a climate change scenario, posing the need for interdisciplinary studies to properly understand the connection between ocean warming and persistence and spread of vibrios in sea waters and the epidemiology of the diseases they cause.
Collapse
|
31
|
Enumeration of viable non-culturable Vibrio cholerae using propidium monoazide combined with quantitative PCR. J Microbiol Methods 2015; 115:147-52. [PMID: 26001818 DOI: 10.1016/j.mimet.2015.05.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/18/2015] [Accepted: 05/18/2015] [Indexed: 11/22/2022]
Abstract
The well-known human pathogenic bacterium, Vibrio cholerae, can enter a physiologically viable but non-culturable (VBNC) state under stress conditions. The differentiation of VBNC cells and nonviable cells is essential for both disease prevention and basic research. Among all the methods for detecting viability, propidium monoazide (PMA) combined with real-time PCR is popular because of its specificity, sensitivity, and speed. However, the effect of PMA treatment is not consistent and varies among different species and conditions. In this study, with an initial cell concentration of 1×10(8) CFU/ml, time and dose-effect relationships of different PMA treatments were evaluated via quantitative real-time PCR using live cell suspensions, dead cell suspensions and VBNC cell suspensions of V. cholerae O1 El Tor strain C6706. The results suggested that a PMA treatment of 20 μM PMA for 20 min was optimal under our conditions. This treatment maximized the suppression of the PCR signal from membrane-compromised dead cells but had little effect on the signal from membrane-intact live cells. In addition to the characteristics of PMA treatment itself, the initial concentration of the targeted bacteria showed a significant negative influence on the stability of PMA-PCR assay in this study. We developed a strategy that mimicked a 1×10(8) CFU/ml cell concentration with dead bacteria of a different bacterial species, the DNA of which cannot be amplified using the real time PCR primers. With this strategy, our optimal approach successfully overcame the impact of low cell density and generated stable and reliable results for counting viable cells of V. cholerae in the VBNC state.
Collapse
|
32
|
Puspita ID, Kitagawa W, Kamagata Y, Tanaka M, Nakatsu CH. Increase in Bacterial Colony Formation from a Permafrost Ice Wedge Dosed with a Tomitella biformata Recombinant Resuscitation-Promoting Factor Protein. Microbes Environ 2015; 30:151-6. [PMID: 25843055 PMCID: PMC4462925 DOI: 10.1264/jsme2.me14119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Resuscitation-promoting factor (Rpf) is a protein that has been found in a number of different Actinobacteria species and has been shown to promote the growth of active cells and resuscitate dormant (non-dividing) cells. We previously reported the biological activity of an Rpf protein in Tomitella biformata AHU 1821T, an Actinobacteria isolated from a permafrost ice wedge. This protein is excreted outside the cell; however, few studies have investigated its contribution in environmental samples to the growth or resuscitation of bacteria other than the original host. Therefore, the aim of the present study was to determine whether Rpf from T. biformata impacted the cultivation of other bacteria from the permafrost ice wedge from which it was originally isolated. All experiments used recombinant Rpf proteins produced using a Rhodococcus erythropolis expression system. Dilutions of melted surface sterilized ice wedge samples mixed with different doses of the purified recombinant Rpf (rRpf) protein indicated that the highest concentration tested, 1250 pM, had a significantly (p <0.05) higher number of CFUs on agar plates after 8 d, approximately 14-fold higher than that on control plates without rRpf. 16S rRNA gene sequences revealed that all the colonies on plates were mainly related to Brevibacterium antiquum strain VKM Ac-2118 (AY243344), with 98–99% sequence identity. This species is also a member of the phylum Actinobacteria and was originally isolated from Siberian permafrost sediments. The results of the present study demonstrated that rRpf not only promoted the growth of T. biformata from which it was isolated, but also enhanced colony formation by another Actinobacteria in an environmental sample.
Collapse
|
33
|
Kong HG, Bae JY, Lee HJ, Joo HJ, Jung EJ, Chung E, Lee SW. Induction of the viable but nonculturable state of Ralstonia solanacearum by low temperature in the soil microcosm and its resuscitation by catalase. PLoS One 2014; 9:e109792. [PMID: 25296177 PMCID: PMC4190316 DOI: 10.1371/journal.pone.0109792] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/09/2014] [Indexed: 11/20/2022] Open
Abstract
Ralstonia solanacearum is the causal agent of bacterial wilt on a wide variety of plants, and enters a viable but nonculturable (VBNC) state under stress conditions in soil and water. Here, we adopted an artificial soil microcosm (ASM) to investigate the VBNC state of R. solanacearum induced by low temperature. The culturability of R. solanacearum strains SL341 and GMI1000 rapidly decreased at 4°C in modified ASM (mASM), while it was stably maintained at 25°C in mASM. We hypothesized that bacterial cells at 4°C in mASM are viable but nonculturable. Total protein profiles of SL341 cells at 4°C in mASM did not differ from those of SL341 culturable cells at 25°C in mASM. Moreover, the VBNC cells maintained in the mASM retained respiration activity. Catalase treatment effectively restored the culturability of nonculturable cells in mASM, while temperature increase or other treatments used for resuscitation of other bacteria were not effective. The resuscitated R. solanacearum from VBNC state displayed normal level of bacterial virulence on tomato plants compared with its original culturable bacteria. Expression of omp, oxyR, rpoS, dps, and the 16S rRNA gene quantified by RT-qPCR did not differ significantly between the culturable and VBNC states of R. solanacearum. Our results suggested that the VBNC bacterial cells in mASM induced by low temperature exist in a physiologically unique state.
Collapse
Affiliation(s)
- Hyun Gi Kong
- Department of Applied Bioscience, Dong-A University, Busan, Republic of Korea
| | - Ju Young Bae
- Department of Applied Bioscience, Dong-A University, Busan, Republic of Korea
| | - Hyoung Ju Lee
- Department of Applied Bioscience, Dong-A University, Busan, Republic of Korea
| | - Hae Jin Joo
- Department of Applied Bioscience, Dong-A University, Busan, Republic of Korea
| | - Eun Joo Jung
- Department of Applied Bioscience, Dong-A University, Busan, Republic of Korea
| | - Eunsook Chung
- Department of Applied Bioscience, Dong-A University, Busan, Republic of Korea
| | - Seon-Woo Lee
- Department of Applied Bioscience, Dong-A University, Busan, Republic of Korea
| |
Collapse
|
34
|
Vezzulli L, Colwell RR, Pruzzo C. Ocean warming and spread of pathogenic vibrios in the aquatic environment. MICROBIAL ECOLOGY 2013; 65:817-25. [PMID: 23280498 DOI: 10.1007/s00248-012-0163-2] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/11/2012] [Indexed: 05/03/2023]
Abstract
Vibrios are among the most common bacteria that inhabit surface waters throughout the world and are responsible for a number of severe infections both in humans and animals. Several reports recently showed that human Vibrio illnesses are increasing worldwide including fatal acute diarrheal diseases, such as cholera, gastroenteritis, wound infections, and septicemia. Many scientists believe this increase may be associated with global warming and rise in sea surface temperature (SST), although not enough evidence is available to support a causal link between emergence of Vibrio infections and climate warming. The effect of increased SST in promoting spread of vibrios in coastal and brackish waters is considered a causal factor explaining this trend. Field and laboratory studies carried out over the past 40 years supported this hypothesis, clearly showing temperature promotes Vibrio growth and persistence in the aquatic environment. Most recently, a long-term retrospective microbiological study carried out in the coastal waters of the southern North Sea provided the first experimental evidence for a positive and significant relationship between SST and Vibrio occurrence over a multidecadal time scale. As a future challenge, macroecological studies of the effects of ocean warming on Vibrio persistence and spread in the aquatic environment over large spatial and temporal scales would conclusively support evidence acquired to date combined with studies of the impact of global warming on epidemiologically relevant variables, such as host susceptibility and exposure. Assessing a causal link between ongoing climate change and enhanced growth and spread of vibrios and related illness is expected to improve forecast and mitigate future outbreaks associated with these pathogens.
Collapse
Affiliation(s)
- Luigi Vezzulli
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Corso Europa, 26, Genoa, 16132, Italy
| | | | | |
Collapse
|
35
|
Frischkorn KR, Stojanovski A, Paranjpye R. Vibrio parahaemolyticus type IV pili mediate interactions with diatom-derived chitin and point to an unexplored mechanism of environmental persistence. Environ Microbiol 2013; 15:1416-27. [PMID: 23441888 DOI: 10.1111/1462-2920.12093] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/17/2013] [Accepted: 01/17/2013] [Indexed: 11/26/2022]
Abstract
Vibrio parahaemolyticus is a naturally occurring bacterium common in coastal waters where it concentrates in shellfish through filter feeding. The bacterium is a human pathogen and the leading cause of seafood-borne gastroenteritis. Presently there is little information regarding mechanisms of environmental persistence of V.parahaemolyticus or an accurate early warning system for outbreak prediction. Vibrios have been shown to adhere to several substrates in the environment, including chitin, one of the most abundant polymers in the ocean. Diatoms are abundant in estuarine waters and some species produce chitin as a component of the silica cell wall or as extracellular fibrils. We examined the role of specific surface structures on the bacterium, the type IV pilins PilA and MshA, in adherence to diatom-derived chitin. Biofilm formation and adherence of V.parahaemolyticus to chitin is mediated by the ability of the bacterium to express functional type IV pili. The amount of adherence to diatom-derived chitin is controlled by increased chitin production that occurs in later stages of diatom growth. The data presented here suggest late-stage diatom blooms may harbour high concentrations of V.parahaemolyticus and could serve as the foundation for a more accurate early warning system for outbreaks of this human pathogen.
Collapse
Affiliation(s)
- Kyle R Frischkorn
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard E, Seattle, WA 98112, USA
| | | | | |
Collapse
|
36
|
Desfossés-Foucault E, Dussault-Lepage V, Le Boucher C, Savard P, Lapointe G, Roy D. Assessment of Probiotic Viability during Cheddar Cheese Manufacture and Ripening Using Propidium Monoazide-PCR Quantification. Front Microbiol 2012; 3:350. [PMID: 23060868 PMCID: PMC3463833 DOI: 10.3389/fmicb.2012.00350] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 09/12/2012] [Indexed: 11/13/2022] Open
Abstract
The use of a suitable food carrier such as cheese could significantly enhance probiotic viability during storage. The main goal of this study was to assess viability of commercial probiotic strains during Cheddar cheesemaking and ripening (4–6 months) by comparing the efficiency of microbiological and molecular approaches. Molecular methods such as quantitative PCR (qPCR) allow bacterial quantification, and DNA-blocking molecules such as propidium monoazide (PMA) select only the living cells’ DNA. Cheese samples were manufactured with a lactococci starter and with one of three probiotic strains (Bifidobacterium animalis subsp. lactis BB-12, Lactobacillus rhamnosus RO011, or Lactobacillus helveticus RO052) or a mixed culture containing B. animalis subsp. lactis BB-12 and L. helveticus RO052 (MC1), both lactobacilli strains (MC2), or all three strains (MC3). DNA extractions were then carried out on PMA-treated and non-treated cell pellets in order to assess PMA treatment efficiency, followed by quantification using the 16S rRNA gene, the elongation factor Tu gene (tuf) or the transaldolase gene (tal). Results with intact/dead ratios of bacteria showed that PMA-treated cheese samples had a significantly lower bacterial count than non-treated DNA samples (P < 0.005), confirming that PMA did eliminate dead bacteria from PCR quantification. For both quantification methods, the addition of probiotic strains seemed to accelerate the loss of lactococci viability in comparison to control cheese samples, especially when L. helveticus RO052 was added. Viability of all three probiotic strains was also significantly reduced in mixed culture cheese samples (P < 0.0001), B. animalis subsp. lactis BB-12 being the most sensitive to the presence of other strains. However, all probiotic strains did retain their viability (log 9 cfu/g of cheese) throughout ripening. This study was successful in monitoring living probiotic species in Cheddar cheese samples through PMA-qPCR.
Collapse
Affiliation(s)
- Emilie Desfossés-Foucault
- Département des Sciences des aliments et de nutrition, Institut des nutraceutiques et des aliments fonctionnels, Université Laval Quebec, QC, Canada
| | | | | | | | | | | |
Collapse
|
37
|
Evidence of the adaptive response in Pseudomonas aeruginosa to 14 years of incubation in seawater. ANN MICROBIOL 2011. [DOI: 10.1007/s13213-011-0387-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
38
|
Brito-Echeverría J, Lucio M, López-López A, Antón J, Schmitt-Kopplin P, Rosselló-Móra R. Response to adverse conditions in two strains of the extremely halophilic species Salinibacter ruber. Extremophiles 2011; 15:379-89. [DOI: 10.1007/s00792-011-0366-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Accepted: 03/16/2011] [Indexed: 10/18/2022]
|
39
|
Cooper M, Fridman G, Fridman A, Joshi S. Biological responses of Bacillus stratosphericus to Floating Electrode-Dielectric Barrier Discharge Plasma Treatment. J Appl Microbiol 2010; 109:2039-48. [DOI: 10.1111/j.1365-2672.2010.04834.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Bouhdid S, Abrini J, Amensour M, Zhiri A, Espuny MJ, Manresa A. Functional and ultrastructural changes in Pseudomonas aeruginosa and Staphylococcus aureus cells induced by Cinnamomum verum essential oil. J Appl Microbiol 2010; 109:1139-49. [PMID: 20456525 DOI: 10.1111/j.1365-2672.2010.04740.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS To study cellular damage induced by Cinnamomum verum essential oil in Pseudomonas aeruginosa ATCC 27853 and Staphylococcus aureus ATCC 29213. METHODS AND RESULTS The effect of cinnamon bark essential oil on these two strains was evaluated by plate counts, potassium leakage, flow cytometry and transmission electron microscopy (TEM). Exposure to this oil induced alterations in the bacterial membrane of Ps. aeruginosa, which led to the collapse of membrane potential, as demonstrated by bis-oxonol staining, and loss of membrane-selective permeability, as indicated by efflux of K(+) and propidium iodide accumulation. Thus, respiratory activity was inhibited, leading to cell death. In Staph. aureus, cells treated with the oil entered a viable but noncultivable (VNC) state. The oil initially caused a considerable decrease in the metabolic activity and in the replication capacity of these bacterial cells. The loss of membrane integrity appeared later, as indicated by bis-oxonol and Propidium iodide (PI) staining. Data provided by TEM showed various structural effects in response to cinnamon essential oil. In Ps. aeruginosa cells, coagulated cytoplasmic material was observed, and intracellular material was seen in the surrounding environment, while oil-treated Staph. aureus showed fibres extending from the cell surface. CONCLUSIONS Cinnamon essential oil damages the cellular membrane of Ps. aeruginosa, which leads to cell death. There is evidence of VNC Staph. aureus after exposure to the oil. SIGNIFICANCE AND IMPACT OF THE STUDY Cinnamon essential oil shows effective antimicrobial activity and health benefits and is therefore considered a potential food additive. To use this oil as a natural food preservative, especially in combination with other preservation methods, a thorough understanding of the mechanism through which this oil exerts its antibacterial action is required.
Collapse
Affiliation(s)
- S Bouhdid
- Département de Biologie, Faculté des Sciences, Université Abdelmalek Essaâdi, Tétouan, Morocco
| | | | | | | | | | | |
Collapse
|
41
|
Zhu K, Kaprelyants AS, Salina EG, Markx GH. Separation by dielectrophoresis of dormant and nondormant bacterial cells of Mycobacterium smegmatis. BIOMICROFLUIDICS 2010; 4:022809. [PMID: 20697591 PMCID: PMC2917864 DOI: 10.1063/1.3435335] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 05/04/2010] [Indexed: 05/05/2023]
Abstract
The dielectrophoretic behavior of active, dead, and dormant Mycobacterium smegmatis bacterial cells was studied. It was found that the 72-h-old dormant cells had a much higher effective particle conductivity (812+/-10 muS cm(-1)), almost double that of active cells (560+/-20 muS cm(-1)), while that of dead (autoclaved) M. smegmatis cells was the highest (950+/-15 muS cm(-1)) overall. It was also found that at 80 kHz, 900 muS cm(-1) dead cells were attracted at the edges of interdigitated castellated electrodes by positive dielectrophoresis, but dormant cells were not. Similarly, at 120 kHz, 2 muS cm(-1) active cells were attracted and dormant cells were not. Using these findings a dielectrophoresis-based microfluidic separation system was developed in which dead and active cells were collected from a given cell suspension, while dormant cells were eluted.
Collapse
|
42
|
Navarro Llorens JM, Tormo A, Martínez-García E. Stationary phase in gram-negative bacteria. FEMS Microbiol Rev 2010; 34:476-95. [PMID: 20236330 DOI: 10.1111/j.1574-6976.2010.00213.x] [Citation(s) in RCA: 330] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Conditions that sustain constant bacterial growth are seldom found in nature. Oligotrophic environments and competition among microorganisms force bacteria to be able to adapt quickly to rough and changing situations. A particular lifestyle composed of continuous cycles of growth and starvation is commonly referred to as feast and famine. Bacteria have developed many different mechanisms to survive in nutrient-depleted and harsh environments, varying from producing a more resistant vegetative cell to complex developmental programmes. As a consequence of prolonged starvation, certain bacterial species enter a dynamic nonproliferative state in which continuous cycles of growth and death occur until 'better times' come (restoration of favourable growth conditions). In the laboratory, microbiologists approach famine situations using batch culture conditions. The entrance to the stationary phase is a very regulated process governed by the alternative sigma factor RpoS. Induction of RpoS changes the gene expression pattern, aiming to produce a more resistant cell. The study of stationary phase revealed very interesting phenomena such as the growth advantage in stationary phase phenotype. This review focuses on some of the interesting responses of gram-negative bacteria when they enter the fascinating world of stationary phase.
Collapse
|
43
|
Sharon G, Rosenberg E. Healthy corals maintain Vibrio in the VBNC state. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:116-119. [PMID: 23766005 DOI: 10.1111/j.1758-2229.2009.00113.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Vibrio species play an important role in the health and disease of corals. To gain a better understanding of the interactions between Vibrio and coral holobionts we examined the growth of Vibrio in the mucus of the coral Oculina patagonica while the mucus was attached and detached from the coral. Fresh mucus contained ca. 10(2) Vibrio cfu ml(-1) , representing c. 1% of the total viable count. Incubation of detached mucus resulted in a 50 000-fold increase in Vibrio cfu from 1 to 4 h, corresponding to 60% of the total viable counts. This large increase in Vibrio would require an unreasonable doubling time of 11 min. Furthermore, the total microscopic bacterial count increased only 17-fold during the 1-4 h incubation period. These data led to the conclusion that Vibrio species in the mucus were largely in the VBNC state when attached to the coral and 'resuscitated' when the mucus was detached from the coral. We suggest that the coral signal for maintaining Vibrio in the VBNC state is diffusible and unstable. Maintenance of Vibrio in the VBNC state did not require photosynthetic products of the coral holobiont. Vibrio species in the VBNC state may contribute to the health of corals by preventing infections by pathogens.
Collapse
Affiliation(s)
- Gil Sharon
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel 69978
| | | |
Collapse
|
44
|
Hayes CS, Low DA. Signals of growth regulation in bacteria. Curr Opin Microbiol 2009; 12:667-73. [PMID: 19854099 DOI: 10.1016/j.mib.2009.09.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 08/15/2009] [Accepted: 09/20/2009] [Indexed: 10/20/2022]
Abstract
A fundamental characteristic of cells is their ability to regulate growth in response to changing environmental conditions. This review focuses on recent progress toward understanding the mechanisms by which bacterial growth is regulated. These phenomena include the 'viable but not culturable' (VBNC) state, in which bacterial growth becomes conditional, and 'persistence', which confers antibiotic resistance to a small fraction of bacteria in a population. Notably, at least one form of persistence appears to involve the generation of nongrowing phenotypic variants after transition through stationary phase. The possible roles of toxin-antitoxin modules in growth control are explored, as well as other mechanisms including contact-dependent growth inhibition, which regulates cellular metabolism and growth through binding to an outer membrane protein receptor.
Collapse
Affiliation(s)
- Christopher S Hayes
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | | |
Collapse
|
45
|
Chen SY, Jane WN, Chen YS, Wong HC. Morphological changes of Vibrio parahaemolyticus under cold and starvation stresses. Int J Food Microbiol 2009; 129:157-65. [DOI: 10.1016/j.ijfoodmicro.2008.11.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 10/30/2008] [Accepted: 11/09/2008] [Indexed: 10/21/2022]
|
46
|
Sachidanandham R, Yew-Hoong Gin K. A dormancy state in nonspore-forming bacteria. Appl Microbiol Biotechnol 2008; 81:927-41. [PMID: 18815783 PMCID: PMC7419491 DOI: 10.1007/s00253-008-1712-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Revised: 07/13/2008] [Accepted: 09/08/2008] [Indexed: 10/29/2022]
Abstract
While cultivation is a convenient way of proliferating and understanding bacteria, studies have shown the formation of nonculturable cells in nonspore-forming bacteria in response to environmental stress and thus in turn have generated immense interest. Whether these cells are in a state of dormancy or in a stage preceding cell death has been considered of paramount importance for the past couple of decades. In this study, osmotic-stress-induced dormant bacterial cells were separated by cell sorting and revived by osmotic down-shift in the absence of nutrients, source(s) that potentially could supply nutrients, and/or the external addition of resuscitation factor(s). Reversal of dormancy followed a definite pattern akin to population asynchrony of dormant cells, and the phenomenon was observed across three species, namely, Enterobacter sp. strain mcp11b, Klebsiella pneumonia strain mcp11d and Escherichia coli. In addition, our study precisely forecasted the presence of multiple subpopulations in dormant cells, which is explained by an emerging theory of survival mechanisms in stressful environments. These observations reveal that the state of dormancy induced by environmental stress in these nonspore-forming bacteria is "reversible" and also implies that it is an orderly and spontaneous adaptation to circumvent adverse conditions.
Collapse
Affiliation(s)
- Ramaiah Sachidanandham
- School of Civil and Environmental Engineering, Nanyang Technological University, Block N1, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | | |
Collapse
|