1
|
Liu J, Yang S, Mehta N, Deng H, Jiang Y, Ma L, Wang H, Liu D. Alkane degradation coupled to Fe(III) reduction mediated by Gram-positive bacteria. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136898. [PMID: 39724707 DOI: 10.1016/j.jhazmat.2024.136898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/16/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
Petroleum hydrocarbon contamination, such as n-alkanes, poses a significant global threat to ecosystems and human health. Microbial remediation emerges as a promising strategy for addressing this issue through both aerobic and anaerobic processes. Notably, the majority of anaerobic hydrocarbon degraders identified to date are Gram-negative bacteria. In this study, two electroactive Gram-positive strains, Lysinibacillus spp. strains SL-6A and SL-12A, were isolated from oil-contaminated soils in the Shengli Oilfield, China. Our experiments demonstrated that these strains effectively degraded n-hexadecane (n-C16) through extracellular Fe(III) reduction. When ferric citrate was used as the electron acceptor, strains SL-6A and SL-12A degraded 94.2 % and 87.4 % of n-C16, respectively, within 72 hours. This process was further confirmed using Fe(III)-containing minerals. Surface-enhanced Raman spectroscopy, UV-vis spectroscopy, and cyclic voltammetry data collectively indicated that surface-associated c-type cytochromes (c-Cyts) were crucial for extracellular electron transfer (EET), facilitating Fe(III) reduction. In addition, our strains were capable of producing flavin mononucleotide (FMN), a well-known redox-active organic molecule involved in EET processes, particularly in the presence of Fe(III). Whole-genome sequencing confirmed the pathways for n-alkane degradation and the synthesis of c-Cyts and FMN in our strains. This research highlights the potential of electroactive Gram-positive bacteria in hydrocarbon degradation in contaminated soils.
Collapse
Affiliation(s)
- Jianan Liu
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Shanshan Yang
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Neha Mehta
- Department of Geosciences, Environment and Society, Université Libre de Bruxelles, Brussels, Belgium
| | - Haipeng Deng
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Yongguang Jiang
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Liyuan Ma
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Deng Liu
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China.
| |
Collapse
|
2
|
Hidalgo KJ, Cueva LG, Giachini AJ, Schneider MR, Soriano AU, Baessa MP, Martins LF, Oliveira VM. Long-term microbial functional responses in soil contaminated with biofuel/fossil fuel blends triggered by different bioremediation treatments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125685. [PMID: 39826606 DOI: 10.1016/j.envpol.2025.125685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/25/2024] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
The use of biofuel blends with fossil fuels is widespread globally, raising concerns over novel contamination types in environments impacted by these mixtures. This study investigates the microbial functional in soils contaminated by biofuel and fossil fuel blends and subjected to various bioremediation treatments. Using metagenomic analysis, it was compared hydrocarbon degradation functional profiles across areas polluted with ethanol/gasoline and biodiesel/diesel blends. Results indicate that long-term natural attenuation areas exhibited distinct functional profiles compared to actively bioremediated areas. However, same hydrocarbon degradation genes were enriched across all areas, highlighting functional redundancy despite taxonomic variation in hydrocarbon-degrading microbes. Finally, several of the keystone species found were hydrocarbon degraders, such as members of the families Clostridiaceae and Comamonadaceae, representing potential targets for biostimulation in future remediation efforts. This long-term, field-scale study uniquely focuses on the functional profiles of microbial communities, offering new insights into the bioremediation of complex biofuel/fossil fuel contaminants in situ.
Collapse
Affiliation(s)
- K J Hidalgo
- Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), Universidade Estadual de Campinas (UNICAMP), CEP 13148-218, Paulínia, SP, Brazil; Programa de pós-graduação de Genética e Biologia Molecular, Instituto de Biologia. Universidade Estadual de Campinas (UNICAMP), CEP 13083-970, Campinas, SP, Brazil.
| | - L G Cueva
- Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), Universidade Estadual de Campinas (UNICAMP), CEP 13148-218, Paulínia, SP, Brazil; Programa de pós-graduação de Genética e Biologia Molecular, Instituto de Biologia. Universidade Estadual de Campinas (UNICAMP), CEP 13083-970, Campinas, SP, Brazil
| | - A J Giachini
- Núcleo Ressacada de Pesquisas Em Meio Ambiente (REMA) - Department of Microbiology, Federal University of Santa Catarina (UFSC), Campus Universitário Sul da Ilha - Rua José Olímpio da Silva, 1326 - Bairro Tapera, 88049-500 Florianópolis, SC, Brazil
| | - M R Schneider
- Núcleo Ressacada de Pesquisas Em Meio Ambiente (REMA) - Department of Microbiology, Federal University of Santa Catarina (UFSC), Campus Universitário Sul da Ilha - Rua José Olímpio da Silva, 1326 - Bairro Tapera, 88049-500 Florianópolis, SC, Brazil
| | - A U Soriano
- PETROBRAS R&D Center (CENPES), CENPES Expansão, Av. Horácio Macedo, s/ número, Cidade Universitária, Ilha do Fundão, ZIP 21941-915, Rio de Janeiro, Brazil
| | - M P Baessa
- PETROBRAS R&D Center (CENPES), CENPES Expansão, Av. Horácio Macedo, s/ número, Cidade Universitária, Ilha do Fundão, ZIP 21941-915, Rio de Janeiro, Brazil
| | - L F Martins
- PETROBRAS R&D Center (CENPES), CENPES Expansão, Av. Horácio Macedo, s/ número, Cidade Universitária, Ilha do Fundão, ZIP 21941-915, Rio de Janeiro, Brazil
| | - V M Oliveira
- Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), Universidade Estadual de Campinas (UNICAMP), CEP 13148-218, Paulínia, SP, Brazil
| |
Collapse
|
3
|
Hidalgo KJ, Centurion VB, Lemos LN, Soriano AU, Valoni E, Baessa MP, Richnow HH, Vogt C, Oliveira VM. Disentangling the microbial genomic traits associated with aromatic hydrocarbon degradation in a jet fuel-contaminated aquifer. Biodegradation 2024; 36:7. [PMID: 39557683 DOI: 10.1007/s10532-024-10100-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/16/2024] [Indexed: 11/20/2024]
Abstract
Spills of petroleum or its derivatives in the environment lead to an enrichment of microorganisms able to degrade such compounds. The interactions taking place in such microbial communities are complex and poorly understood, since they depend on multiple factors, including diversity and metabolic potential of the microorganisms and a broad range of fluctuating environmental conditions. In our previous study, a complete characterization, based on high-throughput sequencing, was performed in a jet-fuel plume using soil samples and in in-situ microcosms amended with hydrocarbons and exposed for 120 days. Herein, we propose a metabolic model to describe the monoaromatic hydrocarbon degradation process that takes place in such jet-fuel-contaminated sites, by combining genome-centered analysis, functional predictions, and flux balance analysis (FBA). In total, twenty high/medium quality MAGs were recovered; three of them assigned to anaerobic bacteria (Thermincolales, Geobacter and Pelotomaculaceace) and one affiliated to the aerobic bacterium Acinetobacter radioresistens, potentially the main players of hydrocarbon degradation in jet-fuel plumes. Taxonomic assignment of the genes indicated that a putative new species of Geobacteria has the potential for anaerobic degradation pathway, while the Pelotomaculaceae and Thermincolales members probably act via syntrophy oxidizing acetate and hydrogen (fermentation products of oil degradation) via sulfate and/or nitrate reduction.
Collapse
Affiliation(s)
- K J Hidalgo
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas - UNICAMP, Av. Alexandre Cazellato, 999, Paulínia, SP, 13148-218, Brazil.
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato 255, Cidade Universitária, Campinas, SP, 13083-862, Brazil.
| | - V B Centurion
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121, Padua, Italy
| | - L N Lemos
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas - UNICAMP, Av. Alexandre Cazellato, 999, Paulínia, SP, 13148-218, Brazil
- Ilum School of Science, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - A U Soriano
- PETROBRAS/ R&D Center (CENPES), Cidade Universitária, Ilha do Fundão, Av. Horácio Macedo, 950, Rio de Janeiro, 21941-915, Brazil
| | - E Valoni
- PETROBRAS/ R&D Center (CENPES), Cidade Universitária, Ilha do Fundão, Av. Horácio Macedo, 950, Rio de Janeiro, 21941-915, Brazil
| | - M P Baessa
- PETROBRAS/ R&D Center (CENPES), Cidade Universitária, Ilha do Fundão, Av. Horácio Macedo, 950, Rio de Janeiro, 21941-915, Brazil
| | - H H Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research (UFZ), Permoserstrasse 15, 04318, Leipzig, Germany
- Isodetect GmbH, Deutscher Platz 5B, 04103, Leipzig, Germany
| | - C Vogt
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research (UFZ), Permoserstrasse 15, 04318, Leipzig, Germany
| | - V M Oliveira
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas - UNICAMP, Av. Alexandre Cazellato, 999, Paulínia, SP, 13148-218, Brazil
| |
Collapse
|
4
|
Táncsics A, Bedics A, Banerjee S, Soares A, Baka E, Probst AJ, Kriszt B. Stable-isotope probing combined with amplicon sequencing and metagenomics identifies key bacterial benzene degraders under microaerobic conditions. Biol Futur 2024; 75:301-311. [PMID: 39044043 DOI: 10.1007/s42977-024-00232-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/14/2024] [Indexed: 07/25/2024]
Abstract
The primary aim of the present study was to reveal the major differences between benzene-degrading bacterial communities evolve under aerobic versus microaerobic conditions and to reveal the diversity of those bacteria, which can relatively quickly degrade benzene even under microaerobic conditions. For this, parallel aerobic and microaerobic microcosms were set up by using groundwater sediment of a BTEX-contaminated site and 13C labelled benzene. The evolved total bacterial communities were first investigated by 16S rRNA gene Illumina amplicon sequencing, followed by a density gradient fractionation of DNA and a separate investigation of "heavy" and "light" DNA fractions. Results shed light on the fact that the availability of oxygen strongly determined the structure of the degrading bacterial communities. While members of the genus Pseudomonas were overwhelmingly dominant under clear aerobic conditions, they were almost completely replaced by members of genera Malikia and Azovibrio in the microaerobic microcosms. Investigation of the density resolved DNA fractions further confirmed the key role of these two latter genera in the microaerobic degradation of benzene. Moreover, analysis of a previously acquired metagenome-assembled Azovibrio genome suggested that benzene was degraded through the meta-cleavage pathway by this bacterium, with the help of a subfamily I.2.I-type catechol 2,3-dioxygenase. Overall, results of the present study implicate that under limited oxygen availability, some potentially microaerophilic bacteria play crucial role in the aerobic degradation of aromatic hydrocarbons.
Collapse
Affiliation(s)
- András Táncsics
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. U. 1., 2100, Gödöllö, Hungary.
| | - Anna Bedics
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. U. 1., 2100, Gödöllö, Hungary
| | - Sinchan Banerjee
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - André Soares
- Department of Chemistry, Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Erzsébet Baka
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. U. 1., 2100, Gödöllö, Hungary
| | - Alexander J Probst
- Department of Chemistry, Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Balázs Kriszt
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. U. 1., 2100, Gödöllö, Hungary
| |
Collapse
|
5
|
Chen C, Zhang Z, Xu P, Hu H, Tang H. Anaerobic biodegradation of polycyclic aromatic hydrocarbons. ENVIRONMENTAL RESEARCH 2023; 223:115472. [PMID: 36773640 DOI: 10.1016/j.envres.2023.115472] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Although many anaerobic microorganisms that can degrade PAHs have been harnessed, there is still a large gap between laboratory achievements and practical applications. Here, we review the recent advances in the biodegradation of PAHs under anoxic conditions and highlight the mechanistic insights into the metabolic pathways and functional genes. Achievements of practical application and enhancing strategies of anaerobic PAHs bioremediation in soil were summarized. Based on the concerned issues during research, perspectives of further development were proposed including time-consuming enrichment, byproducts with unknown toxicity, and activity inhibition with low temperatures. In addition, meta-omics, synthetic biology and engineering microbiome of developing microbial inoculum for anaerobic bioremediation applications are discussed. We anticipate that integrating the theoretical research on PAHs anaerobic biodegradation and its successful application will advance the development of anaerobic bioremediation.
Collapse
Affiliation(s)
- Chao Chen
- College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China; State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhan Zhang
- China Tobacco Henan Industrial Co. Ltd., Zhengzhou, 450000, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyang Hu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
6
|
Kong G, Yang Y, Luo Y, Liu F, Song D, Sun G, Li D, Guo J, Dong M, Xu M. Cysteine-Mediated Extracellular Electron Transfer of Lysinibacillus varians GY32. Microbiol Spectr 2022; 10:e0279822. [PMID: 36318024 PMCID: PMC9769522 DOI: 10.1128/spectrum.02798-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Microbial extracellular electron transfer (EET) is essential in many natural and engineering processes. Compared with the versatile EET pathways of Gram-negative bacteria, the EET of Gram-positive bacteria has been studied much less and is mainly limited to the flavin-mediated pathway. Here, we investigate the EET pathway of a Gram-positive filamentous bacterium Lysinibacillus varians GY32. Strain GY32 has a wide electron donor spectrum (including lactate, acetate, formate, and some amino acids) in electrode respiration. Transcriptomic, proteomic, and electrochemical analyses show that the electrode respiration of GY32 mainly depends on electron mediators, and c-type cytochromes may be involved in its respiration. Fluorescent sensor and electrochemical analyses demonstrate that strain GY32 can secrete cysteine and flavins. Cysteine added shortly after inoculation into microbial fuel cells accelerated EET, showing cysteine is a new endogenous electron mediator of Gram-positive bacteria, which provides novel information to understand the EET networks in natural environments. IMPORTANCE Extracellular electron transport (EET) is a key driving force in biogeochemical element cycles and microbial chemical-electrical-optical energy conversion on the Earth. Gram-positive bacteria are ubiquitous and even dominant in EET-enriched environments. However, attention and knowledge of their EET pathways are largely lacking. Gram-positive bacterium Lysinibacillus varians GY32 has extremely long cells (>1 mm) and conductive nanowires, promising a unique and enormous role in the microenvironments where it lives. Its capability to secrete cysteine renders it not only an EET pathway to respire and survive, but also an electrochemical strategy to connect and shape the ambient microbial community at a millimeter scale. Moreover, its incapability of using flavins as an electron mediator suggests that the common electron mediator is species-dependent. Therefore, our results are important to understanding the EET networks in natural and engineering processes.
Collapse
Affiliation(s)
- Guannan Kong
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yonggang Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yeshen Luo
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Fei Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Da Song
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Guoping Sun
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Daobo Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jun Guo
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Meijun Dong
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
7
|
Chen Y, Li X, Liu T, Li F, Sun W, Young LY, Huang W. Metagenomic analysis of Fe(II)-oxidizing bacteria for Fe(III) mineral formation and carbon assimilation under microoxic conditions in paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158068. [PMID: 35987227 DOI: 10.1016/j.scitotenv.2022.158068] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Microbially mediated Fe(II) oxidation is prevalent and thought to be central to many biogeochemical processes in paddy soils. However, we have limited insights into the Fe(II) oxidation process in paddy fields, considered the world's largest engineered wetland, where microoxic conditions are ubiquitous. In this study, microaerophilic Fe(II) oxidizing bacteria (FeOB) from paddy soil were enriched in gradient tubes with FeS, FeCO3, and Fe3(PO4)2 as iron sources to investigate their capacity for Fe(II) oxidation and carbon assimilation. Results showed that the highest rate of Fe(II) oxidation (k = 0.836 mM d-1) was obtained in the FeCO3 tubes, and cells grown in the Fe3(PO4)2 tubes yielded maximum assimilation amounts of 13C-NaHCO3 of 1.74% on Day 15. Amorphous Fe(III) oxides were found in all the cell bands with iron substrates as a result of microbial Fe(II) oxidation. Metagenomics analysis of the enriched microbes targeted genes encoding iron oxidase Cyc2, oxygen-reducing terminal oxidase, and ribulose-bisphosphate carboxylase, with results indicated that the potential Fe(II) oxidizers include nitrate-reducing FeOB (Dechloromonas and Thiobacillus), Curvibacter, and Magnetospirillum. By combining cultivation-dependent and metagenomic approaches, our results found a number of FeOB from paddy soil under microoxic conditions, which provide insight into the complex biogeochemical interactions of iron and carbon within paddy fields. The contribution of the FeOB to the element cycling in rice-growing regions deserves further investigation.
Collapse
Affiliation(s)
- Yating Chen
- Institute for Disaster Management and Reconstruction, Sichuan University-Hong Kong Polytechnic University, Chengdu 610207, China
| | - Xiaomin Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Tongxu Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Lily Y Young
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Weilin Huang
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
8
|
Wu Z, Liu G, Ji Y, Li P, Yu X, Qiao W, Wang B, Shi K, Liu W, Liang B, Wang D, Yanuka-Golub K, Freilich S, Jiang J. Electron acceptors determine the BTEX degradation capacity of anaerobic microbiota via regulating the microbial community. ENVIRONMENTAL RESEARCH 2022; 215:114420. [PMID: 36167116 DOI: 10.1016/j.envres.2022.114420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/06/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic degradation is the major pathway for microbial degradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) under electron acceptor lacking conditions. However, how exogenous electron acceptors modulate BTEX degradation through shaping the microbial community structure remains poorly understood. Here, we investigated the effect of various exogenous electron acceptors on BTEX degradation as well as methane production in anaerobic microbiota, which were enriched from the same contaminated soil. It was found that the BTEX degradation capacities of the anaerobic microbiota gradually increased along with the increasing redox potentials of the exogenous electron acceptors supplemented (WE: Without exogenous electron acceptors < SS: Sulfate supplement < FS: Ferric iron supplement < NS: Nitrate supplement), while the complexity of the co-occurring networks (e.g., avgK and links) of the microbiota gradually decreased, showing that microbiota supplemented with higher redox potential electron acceptors were less dependent on the formation of complex microbial interactions to perform BTEX degradation. Microbiota NS showed the highest degrading capacity and the broadest substrate-spectrum for BTEX, and it could metabolize BTEX through multiple modules which not only contained fewer species but also different key microbial taxa (eg. Petrimonas, Achromobacter and Comamonas). Microbiota WE and FS, with the highest methanogenic capacities, shared common core species such as Sedimentibacter, Acetobacterium, Methanobacterium and Smithella/Syntrophus, which cooperated with Geobacter (microbiota WE) or Desulfoprunum (microbiota FS) to perform BTEX degradation and methane production. This study demonstrates that electron acceptors may alter microbial function by reshaping microbial community structure and regulating microbial interactions and provides guidelines for electron acceptor selection for bioremediation of aromatic pollutant-contaminated anaerobic sites.
Collapse
Affiliation(s)
- Zhiming Wu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Guiping Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Yanhan Ji
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Pengfa Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Xin Yu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Wenjing Qiao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Baozhan Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Ke Shi
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Wenzhong Liu
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Dong Wang
- Jiangsu Academy of Environmental Science and Technology Co., Ltd, Nanjing, 210095, China
| | - Keren Yanuka-Golub
- The Galilee Society Institute of Applied Research, Shefa-Amr, 20200, Israel
| | - Shiri Freilich
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel.
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China.
| |
Collapse
|
9
|
Castro AR, Martins G, Salvador AF, Cavaleiro AJ. Iron Compounds in Anaerobic Degradation of Petroleum Hydrocarbons: A Review. Microorganisms 2022; 10:2142. [PMID: 36363734 PMCID: PMC9695802 DOI: 10.3390/microorganisms10112142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 09/22/2023] Open
Abstract
Waste and wastewater containing hydrocarbons are produced worldwide by various oil-based industries, whose activities also contribute to the occurrence of oil spills throughout the globe, causing severe environmental contamination. Anaerobic microorganisms with the ability to biodegrade petroleum hydrocarbons are important in the treatment of contaminated matrices, both in situ in deep subsurfaces, or ex situ in bioreactors. In the latter, part of the energetic value of these compounds can be recovered in the form of biogas. Anaerobic degradation of petroleum hydrocarbons can be improved by various iron compounds, but different iron species exert distinct effects. For example, Fe(III) can be used as an electron acceptor in microbial hydrocarbon degradation, zero-valent iron can donate electrons for enhanced methanogenesis, and conductive iron oxides may facilitate electron transfers in methanogenic processes. Iron compounds can also act as hydrocarbon adsorbents, or be involved in secondary abiotic reactions, overall promoting hydrocarbon biodegradation. These multiple roles of iron are comprehensively reviewed in this paper and linked to key functional microorganisms involved in these processes, to the underlying mechanisms, and to the main influential factors. Recent research progress, future perspectives, and remaining challenges on the application of iron-assisted anaerobic hydrocarbon degradation are highlighted.
Collapse
Affiliation(s)
- Ana R. Castro
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4704-553 Braga/Guimarães, Portugal
| | - Gilberto Martins
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4704-553 Braga/Guimarães, Portugal
| | - Andreia F. Salvador
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4704-553 Braga/Guimarães, Portugal
| | - Ana J. Cavaleiro
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4704-553 Braga/Guimarães, Portugal
| |
Collapse
|
10
|
Natural Source Zone Depletion (NSZD) Quantification Techniques: Innovations and Future Directions. SUSTAINABILITY 2022. [DOI: 10.3390/su14127027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Natural source zone depletion (NSZD) is an emerging technique for sustainable and cost-effective bioremediation of light non-aqueous phase liquid (LNAPL) in oil spill sites. Depending on regulatory objectives, NSZD has the potential to be used as either the primary or sole LNAPL management technique. To achieve this goal, NSZD rate (i.e., rate of bulk LNAPL mass depletion) should be quantified accurately and precisely. NSZD has certain characteristic features that have been used as surrogates to quantify the NSZD rates. This review highlights the most recent trends in technology development for NSZD data collection and rate estimation, with a focus on the operational and technical advantages and limitations of the associated techniques. So far, four principal techniques are developed, including concentration gradient (CG), dynamic closed chamber (DCC), CO2 trap and thermal monitoring. Discussions revolving around two techniques, “CO2 trap” and “thermal monitoring”, are expanded due to the particular attention to them in the current industry. The gaps of knowledge relevant to the NSZD monitoring techniques are identified and the issues which merit further research are outlined. It is hoped that this review can provide researchers and practitioners with sufficient information to opt the best practice for the research and application of NSZD for the management of LNAPL impacted sites.
Collapse
|
11
|
Chen X, Sheng Y, Wang G, Guo L, Zhang H, Zhang F, Yang T, Huang D, Han X, Zhou L. Microbial compositional and functional traits of BTEX and salinity co-contaminated shallow groundwater by produced water. WATER RESEARCH 2022; 215:118277. [PMID: 35305487 DOI: 10.1016/j.watres.2022.118277] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Intrusion of salinity and petroleum hydrocarbons (e.g., benzene, toluene, ethylbenzene, and xylenes, BTEX) into shallow groundwater by so-called 'produced water' (the water associated with oil and gas production) has recently drawn much attention. However, how this co-contamination affects the groundwater microbial community remains unknown. Herein, geochemical methods (e.g., ion ratios) and high-throughput sequencing (amplicon and shotgun metagenomic) were used to study the contaminant source, hydrogeochemical conditions, microbial community and function in salinity and BTEX co-contaminated shallow groundwater in an oil field, northwest China. The desulfurization coefficient (100rSO42-/rCl-), coefficient of sodium and chloride (rNa+/rCl-), and coefficient of magnesium and chloride (rMg2+/rCl-) revealed an intrusion of produced water into groundwater, resulting in elevated levels of salinity and BTEX. The consumption of terminal electron acceptors (e.g., NO3-, Fe3+, and SO42-) was likely coupled with BTEX degradation. Relative to the bacteria, decreased archaeal diversity and enriched community in produced water-contaminated groundwater suggested that archaea were more susceptible to elevated BTEX and salinity. Relative to the nitrate and sulfate reduction genes, the abundance of marker genes encoding fermentation (acetate and hydrogen production) and methanogenesis (aceticlastic and methylotrophic) was more proportional to BTEX concentration. The produced water intrusion significantly enriched the salt-tolerant anaerobic fermentative heterotroph Woesearchaeia in shallow groundwater, and its co-occurrence with BTEX-degrading bacteria and methanogen Methanomicrobia suggested mutualistic interactions among the archaeal and bacterial communities to couple BTEX degradation with fermentation and methanogenesis. This study offers a first insight into the microbial community and function in groundwater contaminated by produced water.
Collapse
Affiliation(s)
- Xianglong Chen
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, No.29, Xueyuan Road, Haidian District, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Yizhi Sheng
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, No.29, Xueyuan Road, Haidian District, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China; Department of Geology and Environmental Earth Science, Miami University, OH 45056, USA.
| | - Guangcai Wang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, No.29, Xueyuan Road, Haidian District, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China.
| | - Liang Guo
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, PR China
| | - Hongyu Zhang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, No.29, Xueyuan Road, Haidian District, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Fan Zhang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, No.29, Xueyuan Road, Haidian District, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Tao Yang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, No.29, Xueyuan Road, Haidian District, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Dandan Huang
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang 330013, PR China
| | - Xu Han
- Geology Institute of China Chemical Geology and Mine Bureau, Beijing, PR China
| | - Ling Zhou
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| |
Collapse
|
12
|
Shrestha R, Cerna K, Spanek R, Bartak D, Cernousek T, Sevcu A. The effect of low-pH concrete on microbial community development in bentonite suspensions as a model for microbial activity prediction in future nuclear waste repository. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:151861. [PMID: 34838551 DOI: 10.1016/j.scitotenv.2021.151861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Concrete as an important component of an engineered barrier system in deep geological repositories (DGR) for radioactive waste may come into contact with bentonite, or other clays, rich in indigenous microorganisms, with potentially harmful impacts on barrier integrity. Our study aimed to assess the effect of a concrete environment on indigenous bentonite and groundwater microbial communities as these particular conditions will select for the potentially harmful microorganisms to the concrete in the future DGR. The two-month experiment under anoxic conditions consisted of crushed, aged, low-pH concrete, Czech Ca-Mg bentonite, and anoxic groundwater, with control samples without concrete or with sterile groundwater. The microbial diversity and proliferation were estimated by qPCR and 16S rRNA gene amplicon sequencing. The presence of concrete had a strong effect on microbial diversity and reduced the increase in total microbial biomass, though low-pH concrete harbored indigenous bacteria. The growth of sulfate reducers was also limited in concrete samples. Several genera, such as Massilia, Citrifermentans, and Lacunisphaera, dominant in bentonite controls, were suppressed in concrete-containing samples. In contrast, genera such as Bacillus, Dethiobacter and Anaerosolibacter specifically proliferated in the presence of concrete. Genera such as Thermincola or Pseudomonas exhibited high versatility and proliferated well under both conditions. Because several of the detected bacterial genera are known to affect concrete integrity, further long-term studies are needed to estimate the effect of bentonite and groundwater microorganisms on concrete stability in future DGR.
Collapse
Affiliation(s)
- Rojina Shrestha
- Technical University of Liberec, Institute for Nanomaterials, Advanced Technologies and Innovations, Bendlova 1407/7, 461 17 Liberec 1, Czech Republic
| | - Katerina Cerna
- Technical University of Liberec, Institute for Nanomaterials, Advanced Technologies and Innovations, Bendlova 1407/7, 461 17 Liberec 1, Czech Republic.
| | - Roman Spanek
- Technical University of Liberec, Institute for Nanomaterials, Advanced Technologies and Innovations, Bendlova 1407/7, 461 17 Liberec 1, Czech Republic
| | - Deepa Bartak
- Technical University of Liberec, Institute for Nanomaterials, Advanced Technologies and Innovations, Bendlova 1407/7, 461 17 Liberec 1, Czech Republic
| | - Tomas Cernousek
- Research Centre Rez, Department of Nuclear Fuel Cycle, Husinec-Rez 130, 25068, Czech Republic
| | - Alena Sevcu
- Technical University of Liberec, Institute for Nanomaterials, Advanced Technologies and Innovations, Bendlova 1407/7, 461 17 Liberec 1, Czech Republic
| |
Collapse
|
13
|
Eziuzor SC, Corrêa FB, Peng S, Schultz J, Kleinsteuber S, da Rocha UN, Adrian L, Vogt C. Structure and functional capacity of a benzene-mineralizing, nitrate-reducing microbial community. J Appl Microbiol 2022; 132:2795-2811. [PMID: 34995421 DOI: 10.1111/jam.15443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/16/2021] [Accepted: 01/04/2022] [Indexed: 11/26/2022]
Abstract
AIMS How benzene is metabolized by microbes under anoxic conditions is not fully understood. Here, we studied the degradation pathways in a benzene-mineralizing, nitrate-reducing enrichment culture. METHODS AND RESULTS Benzene mineralization was dependent on the presence of nitrate and correlated to the enrichment of a Peptococcaceae phylotype only distantly related to known anaerobic benzene degraders of this family. Its relative abundance decreased after benzene mineralization had terminated, while other abundant taxa-Ignavibacteriaceae, Rhodanobacteraceae and Brocadiaceae-slightly increased. Generally, the microbial community remained diverse despite the amendment of benzene as single organic carbon source, suggesting complex trophic interactions between different functional groups. A subunit of the putative anaerobic benzene carboxylase previously detected in Peptococcaceae was identified by metaproteomic analysis suggesting that benzene was activated by carboxylation. Detection of proteins involved in anaerobic ammonium oxidation (anammox) indicates that benzene mineralization was accompanied by anammox, facilitated by nitrite accumulation and the presence of ammonium in the growth medium. CONCLUSIONS The results suggest that benzene was activated by carboxylation and further assimilated by a novel Peptococcaceae phylotype. SIGNIFICANCE AND IMPACT OF THE STUDY The results confirm the hypothesis that Peptococcaceae are important anaerobic benzene degraders.
Collapse
Affiliation(s)
- Samuel C Eziuzor
- Department of Isotope Biogeochemistry, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Felipe B Corrêa
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Shuchan Peng
- Department of Isotope Biogeochemistry, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany.,Department of Environmental Science, Chongqing University, Chongqing, China
| | - Júnia Schultz
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany.,Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.,Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sabine Kleinsteuber
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Ulisses N da Rocha
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Lorenz Adrian
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Geobiotechnology, Technische Universität Berlin, Berlin, Germany
| | - Carsten Vogt
- Department of Isotope Biogeochemistry, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| |
Collapse
|
14
|
Zhou Z, Wang Y, Wang M, Zhou Z. Co-metabolic Effect of Glucose on Methane Production and Phenanthrene Removal in an Enriched Phenanthrene-Degrading Consortium Under Methanogenesis. Front Microbiol 2021; 12:749967. [PMID: 34712215 PMCID: PMC8546250 DOI: 10.3389/fmicb.2021.749967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
Anaerobic digestion is used to treat diverse waste classes, and polycyclic aromatic hydrocarbons (PAHs) are a class of refractory compounds that common in wastes treated using anaerobic digestion. In this study, a microbial consortium with the ability to degrade phenanthrene under methanogenesis was enriched from paddy soil to investigate the cometabolic effect of glucose on methane (CH4) production and phenanthrene (a representative PAH) degradation under methanogenic conditions. The addition of glucose enhanced the CH4 production rate (from 0.37 to 2.25mg⋅L-1⋅d-1) but had no influence on the degradation rate of phenanthrene. Moreover, glucose addition significantly decreased the microbial α-diversity (from 2.59 to 1.30) of the enriched consortium but showed no significant effect on the microbial community (R 2=0.39, p=0.10), archaeal community (R 2=0.48, p=0.10), or functional profile (R 2=0.48, p=0.10). The relative abundance of genes involved in the degradation of aromatic compounds showed a decreasing tendency with the addition of glucose, whereas that of genes related to CH4 synthesis was not affected. Additionally, the abundance of genes related to the acetate pathway was the highest among the four types of CH4 synthesis pathways detected in the enriched consortium, which averagely accounted for 48.24% of the total CH4 synthesis pathway, indicating that the acetate pathway is dominant in this phenanthrene-degrading system during methanogenesis. Our results reveal that achieving an ideal effect is diffcult via co-metabolism in a single-stage digestion system of PAH under methanogenesis; thus, other anaerobic systems with higher PAH removal efficiency should be combined with methanogenic digestion, assembling a multistage pattern to enhance the PAH removal rate and CH4 production in anaerobic digestion.
Collapse
Affiliation(s)
- Ziyan Zhou
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Yanqin Wang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Mingxia Wang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Zhifeng Zhou
- College of Resources and Environment, Southwest University, Chongqing, China
| |
Collapse
|
15
|
Ranchou-Peyruse M, Guignard M, Casteran F, Abadie M, Defois C, Peyret P, Dequidt D, Caumette G, Chiquet P, Cézac P, Ranchou-Peyruse A. Microbial Diversity Under the Influence of Natural Gas Storage in a Deep Aquifer. Front Microbiol 2021; 12:688929. [PMID: 34721313 PMCID: PMC8549729 DOI: 10.3389/fmicb.2021.688929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/08/2021] [Indexed: 11/30/2022] Open
Abstract
Deep aquifers (up to 2km deep) contain massive volumes of water harboring large and diverse microbial communities at high pressure. Aquifers are home to microbial ecosystems that participate in physicochemical balances. These microorganisms can positively or negatively interfere with subsurface (i) energy storage (CH4 and H2), (ii) CO2 sequestration; and (iii) resource (water, rare metals) exploitation. The aquifer studied here (720m deep, 37°C, 88bar) is naturally oligotrophic, with a total organic carbon content of <1mg.L-1 and a phosphate content of 0.02mg.L-1. The influence of natural gas storage locally generates different pressures and formation water displacements, but it also releases organic molecules such as monoaromatic hydrocarbons at the gas/water interface. The hydrocarbon biodegradation ability of the indigenous microbial community was evaluated in this work. The in situ microbial community was dominated by sulfate-reducing (e.g., Sva0485 lineage, Thermodesulfovibriona, Desulfotomaculum, Desulfomonile, and Desulfovibrio), fermentative (e.g., Peptococcaceae SCADC1_2_3, Anaerolineae lineage and Pelotomaculum), and homoacetogenic bacteria ("Candidatus Acetothermia") with a few archaeal representatives (e.g., Methanomassiliicoccaceae, Methanobacteriaceae, and members of the Bathyarcheia class), suggesting a role of H2 in microenvironment functioning. Monoaromatic hydrocarbon biodegradation is carried out by sulfate reducers and favored by concentrated biomass and slightly acidic conditions, which suggests that biodegradation should preferably occur in biofilms present on the surfaces of aquifer rock, rather than by planktonic bacteria. A simplified bacterial community, which was able to degrade monoaromatic hydrocarbons at atmospheric pressure over several months, was selected for incubation experiments at in situ pressure (i.e., 90bar). These showed that the abundance of various bacterial genera was altered, while taxonomic diversity was mostly unchanged. The candidate phylum Acetothermia was characteristic of the community incubated at 90bar. This work suggests that even if pressures on the order of 90bar do not seem to select for obligate piezophilic organisms, modifications of the thermodynamic equilibria could favor different microbial assemblages from those observed at atmospheric pressure.
Collapse
Affiliation(s)
- Magali Ranchou-Peyruse
- IPREM, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, Université de Pau & Pays Adour/E2S-UPPA, Pau, France
- Laboratoire de thermique, énergétique et procédés IPRA, EA1932, Université de Pau & Pays Adour/E2S-UPPA, Pau, France
- Joint Laboratory SEnGA, UPPA-E2S-Teréga, Pau, France
| | - Marion Guignard
- IPREM, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, Université de Pau & Pays Adour/E2S-UPPA, Pau, France
| | - Franck Casteran
- Laboratoire de thermique, énergétique et procédés IPRA, EA1932, Université de Pau & Pays Adour/E2S-UPPA, Pau, France
| | - Maïder Abadie
- IPREM, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, Université de Pau & Pays Adour/E2S-UPPA, Pau, France
| | - Clémence Defois
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, Clermont-Ferrand, France
| | - Pierre Peyret
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, Clermont-Ferrand, France
| | - David Dequidt
- STORENGY – Geosciences Department, Bois-Colombes, France
| | - Guilhem Caumette
- Joint Laboratory SEnGA, UPPA-E2S-Teréga, Pau, France
- Teréga, Pau, France
| | - Pierre Chiquet
- Joint Laboratory SEnGA, UPPA-E2S-Teréga, Pau, France
- Teréga, Pau, France
| | - Pierre Cézac
- Laboratoire de thermique, énergétique et procédés IPRA, EA1932, Université de Pau & Pays Adour/E2S-UPPA, Pau, France
- Joint Laboratory SEnGA, UPPA-E2S-Teréga, Pau, France
| | - Anthony Ranchou-Peyruse
- IPREM, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, Université de Pau & Pays Adour/E2S-UPPA, Pau, France
- Joint Laboratory SEnGA, UPPA-E2S-Teréga, Pau, France
| |
Collapse
|
16
|
Feng T, Su W, Zhu J, Yang J, Wang Y, Zhou R, Yu Q, Li H. Corpse decomposition increases the diversity and abundance of antibiotic resistance genes in different soil types in a fish model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117560. [PMID: 34438490 DOI: 10.1016/j.envpol.2021.117560] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 05/05/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
As a common natural phenomenon, corpse decomposition may lead to serious environmental pollution such as nitrogen pollution. However, less is known about antibiotic resistance genes (ARGs), an emerging contaminant, during corpse degradation. Here, ARGs and microbiome in three soil types (black, red and yellow soil) have been investigated between experimental and control groups based on next-generation sequencing and high-throughput quantitative PCR techniques. We found that the absolute abundance of total ARGs and mobile genetic elements (MGEs) in the experimental groups were respectively enriched 536.96 and 240.60 times in different soil types, and the number of ARGs in experimental groups was 7-25 more than that in control groups. For experimental groups, the distribution of ARGs was distinct in different soil types, but sulfonamide resistance genes were always enriched. Corpse decomposition was a primary determinant for ARGs profiles. Microbiome, NH4+ concentrates and pH also significantly affected ARGs profiles. Nevertheless, soil types had few effects on ARGs. For soil microbiome, some genera were elevated in experimental groups such as the Ignatzschineria and Myroides. The alpha diversity is decreased in experimental groups and microbial community structures are different between treatments. Additionally, the Escherichia and Neisseria were potential pathogens elevated in experimental groups. Network analysis indicated that most of ARGs like sulfonamide and multidrug resistance genes presented strong positively correlations with NH4+ concentrates and pH, and some genera like Ignatzschineria and Dysgonomonas were positively correlated with several ARGs such as aminoglycoside and sulfonamide resistance genes. Our study reveals a law of ARGs' enrichment markedly during corpse decomposing in different soil types, and these ARGs contaminant maintaining in environment may pose a potential threat to environmental safety and human health.
Collapse
Affiliation(s)
- Tianshu Feng
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Wanghong Su
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Jianxiao Zhu
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral, Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Jiawei Yang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Yijie Wang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Rui Zhou
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Qiaoling Yu
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou, 730000, China; Center for Grassland Microbiome, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
17
|
Saha A, Mohapatra B, Kazy SK, Sar P. Variable response of arsenic contaminated groundwater microbial community to electron acceptor regime revealed by microcosm based high-throughput sequencing approach. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:804-817. [PMID: 34284694 DOI: 10.1080/10934529.2021.1930448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) mobilization in alluvial aquifers is facilitated by microbially catalyzed redox transformations that depend on the availability of electron acceptors (EAs). In this study, the response of an As-contaminated groundwater microbial community from West Bengal, India towards varied EAs was elucidated through microcosm based 16S rRNA gene amplicon sequencing. Acinetobacter, Deinococcus, Nocardioides, etc., and several unclassified bacteria (Ignavibacteria) and archaea (Bathyarchaeia, Micrarchaeia) previously not reported from As-contaminated groundwater of West Bengal, characterized the groundwater community. Distinct shifts in community composition were observed in response to various EAs. Enrichment of operational taxonomic units (OTUs) affiliated to Denitratisoma (NO3-), Spirochaetaceae (Mn4+), Deinococcus (As5+), Ruminiclostridium (Fe3+), Macellibacteroides (SO42-), Holophagae-Subgroup 7 (HCO3-), Dechloromonas and Geobacter (EA mixture) was noted. Alternatively, As3+ amendment as electron donor allowed predominance of Rhizobium. Taxonomy based functional profiling highlighted the role of chemoorganoheterotrophs capable of concurrent reduction of NO3-, Fe3+, SO42-, and As biotransformation in As-contaminated groundwater of West Bengal. Our analysis revealed two major aspects of the community, (a) taxa selective toward responding to the EAs, and (b) multifaceted nature of taxa appearing in abundance in response to multiple substrates. Thus, the results emphasized the potential of microbial community members to influence the biogeochemical cycling of As and other dominant anions/cations.
Collapse
Affiliation(s)
- Anumeha Saha
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Balaram Mohapatra
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Sufia Khannam Kazy
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India
| | - Pinaki Sar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
18
|
Toth CRA, Luo F, Bawa N, Webb J, Guo S, Dworatzek S, Edwards EA. Anaerobic Benzene Biodegradation Linked to the Growth of Highly Specific Bacterial Clades. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7970-7980. [PMID: 34041904 DOI: 10.1021/acs.est.1c00508] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Reliance on bioremediation to remove benzene from anoxic environments has proven risky for decades but for unknown reasons. Research has revealed a strong link between anaerobic benzene biodegradation and the enrichment of highly specific microbes, including Thermincola in the family Peptococcaceae and the deltaproteobacterial Candidate Sva0485 clade. Using aquifer materials from Canadian Forces Base Borden, we compared five bioremediation approaches in batch microcosms. Under conditions simulating natural attenuation or sulfate biostimulation, benzene was not degraded after 1-2 years of incubation and no enrichment of known benzene-degrading microbes occurred. In contrast, nitrate-amended microcosms reported benzene biodegradation coincident with significant growth of Thermincola spp., along with a functional gene presumed to catalyze anaerobic benzene carboxylation (abcA). Inoculation with 2.5% of a methanogenic benzene-degrading consortium containing Sva0485 (Deltaproteobacteria ORM2) resulted in benzene biodegradation in the presence of sulfate or under methanogenic conditions. The presence of other hydrocarbon co-contaminants decreased the rates of benzene degradation by a factor of 2 to 4. Tracking the abundance of the abcA gene and 16S rRNA genes specific for benzene-degrading Thermincola and Sva0485 is recommended to monitor benzene bioremediation in anoxic groundwater systems to further uncover growth-rate-limiting conditions for these two intriguing phylotypes.
Collapse
Affiliation(s)
- Courtney R A Toth
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Fei Luo
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Nancy Bawa
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Jennifer Webb
- SiREM, 130 Stone Road West, Guelph, Ontario N1G 3Z2, Canada
| | - Shen Guo
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | | | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
19
|
Melkonian C, Fillinger L, Atashgahi S, da Rocha UN, Kuiper E, Olivier B, Braster M, Gottstein W, Helmus R, Parsons JR, Smidt H, van der Waals M, Gerritse J, Brandt BW, Röling WFM, Molenaar D, van Spanning RJM. High biodiversity in a benzene-degrading nitrate-reducing culture is sustained by a few primary consumers. Commun Biol 2021; 4:530. [PMID: 33953314 PMCID: PMC8099898 DOI: 10.1038/s42003-021-01948-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/03/2021] [Indexed: 01/04/2023] Open
Abstract
A key question in microbial ecology is what the driving forces behind the persistence of large biodiversity in natural environments are. We studied a microbial community with more than 100 different types of species which evolved in a 15-years old bioreactor with benzene as the main carbon and energy source and nitrate as the electron acceptor. Using genome-centric metagenomics plus metatranscriptomics, we demonstrate that most of the community members likely feed on metabolic left-overs or on necromass while only a few of them, from families Rhodocyclaceae and Peptococcaceae, are candidates to degrade benzene. We verify with an additional succession experiment using metabolomics and metabarcoding that these few community members are the actual drivers of benzene degradation. As such, we hypothesize that high species richness is maintained and the complexity of a natural community is stabilized in a controlled environment by the interdependencies between the few benzene degraders and the rest of the community members, ultimately resulting in a food web with different trophic levels.
Collapse
Affiliation(s)
- Chrats Melkonian
- Department of Molecular Cell Biology, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Lucas Fillinger
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Siavash Atashgahi
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Ulisses Nunes da Rocha
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Esther Kuiper
- Department of Molecular Cell Biology, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Brett Olivier
- Department of Molecular Cell Biology, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Martin Braster
- Department of Molecular Cell Biology, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Willi Gottstein
- Department of Molecular Cell Biology, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rick Helmus
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - John R Parsons
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | | | - Jan Gerritse
- Unit Subsurface and Groundwater Systems, Deltares, Utrecht, The Netherlands
| | - Bernd W Brandt
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Wilfred F M Röling
- Department of Molecular Cell Biology, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Douwe Molenaar
- Department of Molecular Cell Biology, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rob J M van Spanning
- Department of Molecular Cell Biology, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
20
|
Zhou R, Yu Q, Li T, Long M, Wang Y, Feng T, Su W, Yang J, Li H. Carcass decomposition influences the metabolic profiles and enriches noxious metabolites in different water types by widely targeted metabolomics. CHEMOSPHERE 2021; 269:129400. [PMID: 33383254 DOI: 10.1016/j.chemosphere.2020.129400] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Carcass decomposition could be considered as a common phenomenon in nature. However, during degradation processes, animal carcasses produce many toxic and harmful metabolites, posing potential ecological risks to water safety, thereby threatening human health. However, the metabolites produced by decomposition of animal corpses are not well understood. In this study, building on our previous baseline study of microbial community between the experimental groups (with animal carcasses) and control groups (without carcasses), the samples at the ultimate stage (19th day) of carcass decomposition were chosen to investigate the metabolic profiles and uncover the relationships between water quality, microbes and noxious metabolites in two types of water (Yellow River water and tap water) using fish as animal model by widely targeted metabolomics. Our results showed amino acid metabolomics, indole and its derivatives, and pyridine and pyridine derivatives mainly occurred in the corpse groups, suggesting that these metabolites are markers of carcass decomposition. And some noxious metabolites (e.g., polyamine, amines, and benzene and substituted derivatives) highly associated with carcass decomposition, which revealed new insights into how to investigate the hazard materials in water. And these noxious metabolites in the corpse groups were even increased 214543-fold in average compared with the control groups. Meanwhile, treatment was the most important factor affecting the water metabolites while microbiome contributed a small proportion to the metabolic profiles. Several opportunistic pathogenic genera Comamonas, Bacteriodes and Alcaligenes co-occurred most frequently with several kinds of polyamines and amines while some dominant genera Rhodoferax, Delftia and Brevundimonas had significant positive relationships with specific benzene and substituted derivatives. This work demonstrates that carcass decomposition causes water quality deterioration by producing various toxic metabolites, thus providing new insights into noxious metabolites when exposed to animal carcasses in aquatic environment.
Collapse
Affiliation(s)
- Rui Zhou
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Qiaoling Yu
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Tongtong Li
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Meng Long
- Shenzhen Institute of Guangdong Ocean University, Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China; Shenzhen Dapeng New District Science and Technology Innovation Service Center, Shenzhen, 518120, China; Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yijie Wang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Tianshu Feng
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Wanghong Su
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Jiawei Yang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou, 730000, China; Center for Grassland Microbiome, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
21
|
Lee K, Ulrich A. Indigenous microbial communities in Albertan sediments are capable of anaerobic benzene biodegradation under methanogenic, sulfate-reducing, nitrate-reducing, and iron-reducing redox conditions. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:524-534. [PMID: 32892398 DOI: 10.1002/wer.1454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/13/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
Alberta is a major center for oil and gas production, and correspondingly harbors hundreds of unresolved contamination sites by environmental hazards such as benzene (C6 H6 ). Due to its cost-effectiveness, bioremediation has become a promising strategy for C6 H6 removal. Contamination sites typically take on an anaerobic context, which complicates the energetics of contamination sites and is a subject that is scarcely broached in studies of Albertan sediments. This study examines the innate potential for indigenous microbial communities in Albertan sediments to remove C6 H6 in a multitude of reduced conditions. Community profiles of these sediments were analyzed by 16S rRNA gene amplicon sequencing, and removal rates and reaction stoichiometries were observed by gas chromatography and ion chromatography. Organisms belonging to known primary degrader taxa were identified, including Geobacter (iron-reducing), and Peptococcaceae (nitrate-reducing). Furthermore, benzene removal patterns of the cultures were similar to those observed in previously reported microcosms, with lag times between 70 and 168 days and removal rates between 3.27 and 12.70 µM/day. Such information could support a more comprehensive survey of Albertan sediment consortia, which may eventually be utilized in informing future remediation efforts in the province. PRACTITIONER POINTS: ●Clay and sand sediments originating from Northern Alberta could remove benzene under methanogenic, sulfate-reducing, iron-reducing, and nitrate-reducing conditions. ●Degradation profiles were broadly comparable to those of reported cultures from other geographical locales. ●Key degrader taxa observed included Geobacter (Fe3+ -reducing) and Peptococcaceae ( NO 3 - -reducing). ●Knowledge gained can be the start of a more extensive survey of Albertan sediments. Eventually, this collection of information can be used to generate robust C6 H6 -degrading cultures that can be implemented for bioaugmentation and be implemented in informing remediation strategies in soil and water matrices for priority contamination cases such as leaking underground storage tanks and orphan wells.
Collapse
Affiliation(s)
- Korris Lee
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Ania Ulrich
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
22
|
Unravelling Microbial Communities Associated with Different Light Non-Aqueous Phase Liquid Types Undergoing Natural Source Zone Depletion Processes at a Legacy Petroleum Site. WATER 2021. [DOI: 10.3390/w13070898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Petroleum contaminants are exposed to weathering when released into environment, resulting in the alteration of their chemical composition. Here, we investigated microbial communities through the soil profile at an industrial site, which was exposed to various petroleum products for over 50 years. The petroleum is present as light non-aqueous phase liquid (LNAPL) and is undergoing natural source zone depletion (NSZD). Microbial community composition was compared to the contaminant type, concentration, and its depth of obtained soil cores. A large population of Archaea, particularly Methanomicrobia and Methanobacteria and indication of complex syntrophic relationships of methanogens, methanotrophs and bacteria were found in the contaminated cores. Different families were enriched across the LNAPL types. Results indicate methanogenic or anoxic conditions in the deeper and highly contaminated sections of the soil cores investigated. The contaminant was highly weathered, likely resulting in the formation of recalcitrant polar compounds. This research provides insight into the microorganisms fundamentally associated with LNAPL, throughout a soil depth profile above and below the water table, undergoing NSZD processes at a legacy petroleum site. It advances the potential for integration of microbial community effects on bioremediation and in response to physicochemical partitioning of LNAPL components from different petroleum types.
Collapse
|
23
|
Long-distance electron transfer in a filamentous Gram-positive bacterium. Nat Commun 2021; 12:1709. [PMID: 33731718 PMCID: PMC7969598 DOI: 10.1038/s41467-021-21709-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/05/2021] [Indexed: 01/31/2023] Open
Abstract
Long-distance extracellular electron transfer has been observed in Gram-negative bacteria and plays roles in both natural and engineering processes. The electron transfer can be mediated by conductive protein appendages (in short unicellular bacteria such as Geobacter species) or by conductive cell envelopes (in filamentous multicellular cable bacteria). Here we show that Lysinibacillus varians GY32, a filamentous unicellular Gram-positive bacterium, is capable of bidirectional extracellular electron transfer. In microbial fuel cells, L. varians can form centimetre-range conductive cellular networks and, when grown on graphite electrodes, the cells can reach a remarkable length of 1.08 mm. Atomic force microscopy and microelectrode analyses suggest that the conductivity is linked to pili-like protein appendages. Our results show that long-distance electron transfer is not limited to Gram-negative bacteria.
Collapse
|
24
|
Singh A, Schnürer A, Westerholm M. Enrichment and description of novel bacteria performing syntrophic propionate oxidation at high ammonia level. Environ Microbiol 2021; 23:1620-1637. [PMID: 33400377 DOI: 10.1111/1462-2920.15388] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/15/2020] [Accepted: 01/02/2021] [Indexed: 01/04/2023]
Abstract
Inefficient syntrophic propionate degradation causes severe operating disturbances and reduces biogas productivity in many high-ammonia anaerobic digesters, but propionate-degrading microorganisms in these systems remain unknown. Here, we identified candidate ammonia-tolerant syntrophic propionate-oxidising bacteria using propionate enrichment at high ammonia levels (0.7-0.8 g NH3 L-1 ) in continuously-fed reactors. We reconstructed 30 high-quality metagenome-assembled genomes (MAGs) from the propionate-fed reactors, which revealed two novel species from the families Peptococcaceae and Desulfobulbaceae as syntrophic propionate-oxidising candidates. Both MAGs possess genomic potential for the propionate oxidation and electron transfer required for syntrophic energy conservation and, similar to ammonia-tolerant acetate degrading syntrophs, both MAGs contain genes predicted to link to ammonia and pH tolerance. Based on relative abundance, a Peptococcaceae sp. appeared to be the main propionate degrader and has been given the provisional name "Candidatus Syntrophopropionicum ammoniitolerans". This bacterium was also found in high-ammonia biogas digesters, using quantitative PCR. Acetate was degraded by syntrophic acetate-oxidising bacteria and the hydrogenotrophic methanogenic community consisted of Methanoculleus bourgensis and a yet to be characterised Methanoculleus sp. This work provides knowledge of cooperating syntrophic species in high-ammonia systems and reveals that ammonia-tolerant syntrophic propionate-degrading populations share common features, but diverge genomically and taxonomically from known species.
Collapse
Affiliation(s)
- Abhijeet Singh
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, SE-750 07, Sweden
| | - Anna Schnürer
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, SE-750 07, Sweden
| | - Maria Westerholm
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, SE-750 07, Sweden
| |
Collapse
|
25
|
Abstract
Freshwater iron mats are dynamic geochemical environments with broad ecological diversity, primarily formed by the iron-oxidizing bacteria. The community features functional groups involved in biogeochemical cycles for iron, sulfur, carbon, and nitrogen. Despite this complexity, iron mat communities provide an excellent model system for exploring microbial ecological interactions and ecological theories in situ Syntrophies and competition between the functional groups in iron mats, how they connect cycles, and the maintenance of these communities by taxons outside bacteria (the eukaryota, archaea, and viruses) have been largely unstudied. Here, we review what is currently known about freshwater iron mat communities, the taxa that reside there, and the interactions between these organisms, and we propose ways in which future studies may uncover exciting new discoveries. For example, the archaea in these mats may play a greater role than previously thought as they are diverse and widespread in iron mats based on 16S rRNA genes and include methanogenic taxa. Studies with a holistic view of the iron mat community members focusing on their diverse interactions will expand our understanding of community functions, such as those involved in pollution removal. To begin addressing questions regarding the fundamental interactions and to identify the conditions in which they occur, more laboratory culturing techniques and coculture studies, more network and keystone species analyses, and the expansion of studies to more freshwater iron mat systems are necessary. Increasingly accessible bioinformatic, geochemical, and culturing tools now open avenues to address the questions that we pose herein.
Collapse
Affiliation(s)
- Chequita N Brooks
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| | - Erin K Field
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
26
|
Anaerobic benzene mineralization by natural microbial communities from Niger Delta. Biodegradation 2020; 32:37-52. [PMID: 33269416 PMCID: PMC7940306 DOI: 10.1007/s10532-020-09922-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 11/19/2020] [Indexed: 11/17/2022]
Abstract
The Niger Delta is one of the most damaged ecosystems in the world, mainly due to petroleum contamination by oil exploration accidents. We investigated the natural attenuation potential of Niger Delta subsurface sediment samples for anaerobic hydrocarbon degradation using benzene as a model compound under iron-reducing, sulfate-reducing, and methanogenic conditions. Benzene was slowly mineralized under methanogenic and iron-reducing conditions using nitrilotriacetic acid (NTA)-Fe(III), or poorly crystalline Fe(III) oxyhydroxides as electron acceptors, analyzed by measurement of 13CO2 produced from added 13C-labelled benzene. Highest mineralization rates were observed in microcosms amended with Fe(III) oxyhydroxides. The microbial communities of benzene-mineralizing enrichment cultures were characterized by next-generation sequencing of the genes coding for 16S rRNA and methyl coenzyme M reductase A (mcrA). Abundant phylotypes were affiliated to Betaproteobacteriales, Ignavibacteriales, Desulfuromonadales, and Methanosarcinales of the genera Methanosarcina and Methanothrix, illustrating that the enriched benzene-mineralizing communities were diverse and may contain more than a single benzene degrader. The diversity of the microbial communities was furthermore confirmed by scanning helium-ion microscopy which revealed the presence of various rod-shaped as well as filamentous microbial morphotypes.
Collapse
|
27
|
Lv X, Ma B, Lee K, Ulrich A. Potential syntrophic associations in anaerobic naphthenic acids biodegrading consortia inferred with microbial interactome networks. JOURNAL OF HAZARDOUS MATERIALS 2020; 397:122678. [PMID: 32497975 DOI: 10.1016/j.jhazmat.2020.122678] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/18/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Naphthenic acids (NAs) can be syntrophically metabolized by indigenous microbial communities in pristine sediments beneath oil sands tailings ponds. Syntrophy is an essential determinant of the microbial interactome, however, the interactome network in anaerobic NAs-degrading consortia has not been previously addressed due to complexity and resistance of NAs. To evaluate the impact of electron acceptors on topology of interactome networks, we inferred two microbial interactome networks for anaerobic NAs-degrading consortia under nitrate- and sulfate-reducing conditions. The complexity of the network was higher under sulfate-reducing conditions than nitrate-reducing conditions. Differences in the taxonomic composition between the two modules implies that different potential syntrophic interactions exist in each network. We inferred the presence of the same syntrophic microorganisms, from genera Bellilinea, Longilinea, and Litorilinea, initiating the metabolism in both networks, but within each network, we predicted unique syntrophic associations that have not been reported. Electron acceptor has a large effect on the interactome networks for anaerobic NAs-degrading consortia, offers insight into an unrecognized dimension of these consortia. These results provide a novel approach for exploring potential syntrophic relationships in biodegrading processes to help cost-effectively remove NAs in oil sands tailings ponds.
Collapse
Affiliation(s)
- Xiaofei Lv
- Department of Environmental Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Bin Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Korris Lee
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 2W2, Canada
| | - Ania Ulrich
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 2W2, Canada
| |
Collapse
|
28
|
Liu YF, Chen J, Liu ZL, Shou LB, Lin DD, Zhou L, Yang SZ, Liu JF, Li W, Gu JD, Mu BZ. Anaerobic Degradation of Paraffins by Thermophilic Actinobacteria under Methanogenic Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10610-10620. [PMID: 32786606 DOI: 10.1021/acs.est.0c02071] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microbial anaerobic alkane degradation is a key process in subsurface oil reservoirs and anoxic environments contaminated with petroleum, with a major impact on global carbon cycling. However, the thermophiles capable of water-insoluble paraffins (>C17) degradation under methanogenic conditions has remained understudied. Here, we established thermophilic (55 °C) n-paraffins-degrading (C21-C30) cultures from an oil reservoir. After over 900 days of incubation, the even-numbered n-paraffins were biodegraded to methane. The bacterial communities are dominated by a novel class-level lineage of actinobacteria, 'Candidatus Syntraliphaticia'. These 'Ca. Syntraliphaticia'-like metagenome-assembled genomes (MAGs) encode a complete alkylsuccinate synthases (ASS) gene operon, as well as hydrogenases and formate dehydrogenase, and several enzymes potentially involved in alkyl-CoA oxidation and the Wood-Ljungdahl pathway. Metatranscriptomic analysis suggests that n-paraffins are activated via fumarate addition reaction, and oxidized into carbon dioxide, hydrogen/formate and acetate by 'Ca. Syntraliphaticia', that could be further converted to methane by the abundant hydrogenotrophic and acetoclastic methanogens. We also found a divergent methyl-CoM reductase-like complex (MCR) and a canonical MCR in two MAGs representing 'Ca. Methanosuratus' (within candidate phylum Verstraetearchaeota), indicating the capability of methane and short-chain alkane metabolism in the oil reservoir. Ultimately, this result offers new insights into the degradability and the mechanisms of n-paraffins under methanogenic conditions at high temperatures.
Collapse
Affiliation(s)
- Yi-Fan Liu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
- Engineering Research Center of MEOR, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| | - Jing Chen
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
- Engineering Research Center of MEOR, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Zhong-Lin Liu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
- Engineering Research Center of MEOR, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Li-Bin Shou
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
- Engineering Research Center of MEOR, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Dan-Dan Lin
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
- Engineering Research Center of MEOR, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Lei Zhou
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
- Engineering Research Center of MEOR, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Shi-Zhong Yang
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
- Engineering Research Center of MEOR, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jin-Feng Liu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
- Engineering Research Center of MEOR, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Wei Li
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| | - Ji-Dong Gu
- Environmental Engineering, Guangdong Technion Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, P.R. China
| | - Bo-Zhong Mu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
- Engineering Research Center of MEOR, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
29
|
Chen J, Liu YF, Zhou L, Irfan M, Hou ZW, Li W, Mbadinga SM, Liu JF, Yang SZ, Wu XL, Gu JD, Mu BZ. Long-chain n-alkane biodegradation coupling to methane production in an enriched culture from production water of a high-temperature oil reservoir. AMB Express 2020; 10:63. [PMID: 32266503 PMCID: PMC7138878 DOI: 10.1186/s13568-020-00998-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 03/21/2020] [Indexed: 11/18/2022] Open
Abstract
Paraffinic n-alkanes (C22–C30), crucial portions of residual oil, are generally considered to be difficult to be biodegraded owing to their general solidity at ambient temperatures and low water solubility, rendering relatively little known about metabolic processes in different methanogenic hydrocarbon-contaminated environments. Here, we established a methanogenic C22–C30 n-alkane-degrading enrichment culture derived from a high-temperature oil reservoir production water. During two-year incubation (736 days), unexpectedly significant methane production was observed. The measured maximum methane yield rate (164.40 μmol L−1 d−1) occurred during the incubation period from day 351 to 513. The nearly complete consumption (> 97%) of paraffinic n-alkanes and the detection of dicarboxylic acids in n-alkane-amended cultures indicated the biotransformation of paraffin to methane under anoxic condition. 16S rRNA gene analysis suggested that the dominant methanogen in n-alkane-degrading cultures shifted from Methanothermobacter on day 322 to Thermoplasmatales on day 736. Bacterial community analysis based on high-throughput sequencing revealed that members of Proteobacteria and Firmicutes exhibiting predominant in control cultures, while microorganisms affiliated with Actinobacteria turned into the most dominant phylum in n-alkane-dependent cultures. Additionally, the relative abundance of mcrA gene based on genomic DNA significantly increased over the incubation time, suggesting an important role of methanogens in these consortia. This work extends our understanding of methanogenic paraffinic n-alkanes conversion and has biotechnological implications for microbial enhanced recovery of residual hydrocarbons and effective bioremediation of hydrocarbon-containing biospheres.
Collapse
|
30
|
Hidalgo KJ, Teramoto EH, Soriano AU, Valoni E, Baessa MP, Richnow HH, Vogt C, Chang HK, Oliveira VM. Taxonomic and functional diversity of the microbiome in a jet fuel contaminated site as revealed by combined application of in situ microcosms with metagenomic analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:135152. [PMID: 31812384 DOI: 10.1016/j.scitotenv.2019.135152] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Natural attenuation represents all processes that govern contaminant mass removal, which mainly occurs via microbial degradation in the environment. Although this process is intrinsic its rate and efficiency depend on multiple factors. This study aimed to characterize the microbial taxonomic and functional diversity in different aquifer sediments collected in the saturated zone and in situ microcosms (BACTRAP®s) amended with hydrocarbons (13C-labeled and non-labeled benzene, toluene and naphthalene) using 16S rRNA gene and "shotgun" Illumina high throughput sequencing at a jet-fuel contaminated site. The BACTRAP®s were installed to assess hydrocarbon metabolism by native bacteria. Results indicated that Proteobacteria, Actinobacteria and Firmicutes were the most dominant phyla (~98%) in the aquifer sediment samples. Meanwhile, in the benzene- and toluene-amended BACTRAP®s the phyla Firmicutes and Proteobacteria accounted for about 90% of total community. In the naphthalene-amended BACTRAP®, members of the SR-FBR-L83 family (Order Ignavibacteriales) accounted for almost 80% of bacterial community. Functional annotation of metagenomes showed that only the sediment sample located at the source zone border and with the lowest BTEX concentration, has metabolic potential to degrade hydrocarbons aerobically. On the other hand, in situ BACTRAP®s allowed enrichment of hydrocarbon-degrading bacteria. Metagenomic data suggest that fumarate addition is the main mechanism for hydrocarbon activation of toluene. Also, indications for methylation, hydroxylation and carboxylation as activation mechanisms for benzene anaerobic conversion were found. After 120 days of exposure in the contaminated groundwater, the isotopic analysis of fatty acids extracted from BACTRAP®s demonstrated the assimilation of isotopic labeled compounds in the cells of microbes expressed by strong isotopic enrichment. We propose that the microbiota in this jet-fuel contaminated site has metabolic potential to degrade benzene and toluene by a syntrophic process, between members of the families Geobacteraceae and Peptococcaceae (genus Pelotomaculum), coupled to nitrate, iron and/or sulfate reduction.
Collapse
Affiliation(s)
- K J Hidalgo
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato 255, Cidade Universitária, Campinas, SP. ZIP 13083-862, Brazil.
| | - E H Teramoto
- Laboratory of Basin Studies (LEBAC), São Paulo State University (UNESP), Rio Claro, Av. 24A, 1515 ZIP 13506-900, Brazil
| | - A U Soriano
- PETROBRAS/ R&D Center (CENPES), Av. Horácio Macedo, 950. ZIP 21941-915 Ilha do Fundão, Rio de Janeiro, Brazil
| | - E Valoni
- PETROBRAS/ R&D Center (CENPES), Av. Horácio Macedo, 950. ZIP 21941-915 Ilha do Fundão, Rio de Janeiro, Brazil
| | - M P Baessa
- PETROBRAS/ R&D Center (CENPES), Av. Horácio Macedo, 950. ZIP 21941-915 Ilha do Fundão, Rio de Janeiro, Brazil
| | - H H Richnow
- Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research (UFZ), Permoserstrasse 15 04318 Leipzig, Germany
| | - C Vogt
- Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research (UFZ), Permoserstrasse 15 04318 Leipzig, Germany
| | - H K Chang
- Laboratory of Basin Studies (LEBAC), São Paulo State University (UNESP), Rio Claro, Av. 24A, 1515 ZIP 13506-900, Brazil
| | - V M Oliveira
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas - UNICAMP, Paulínia, Brazil, Av. Alexandre Cazellato, 999, ZIP 13148-218, Brazil
| |
Collapse
|
31
|
Nitz H, Duarte M, Jauregui R, Pieper DH, Müller JA, Kästner M. Identification of benzene-degrading Proteobacteria in a constructed wetland by employing in situ microcosms and RNA-stable isotope probing. Appl Microbiol Biotechnol 2019; 104:1809-1820. [DOI: 10.1007/s00253-019-10323-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/30/2019] [Accepted: 12/15/2019] [Indexed: 11/24/2022]
|
32
|
Müller H, Marozava S, Probst AJ, Meckenstock RU. Groundwater cable bacteria conserve energy by sulfur disproportionation. ISME JOURNAL 2019; 14:623-634. [PMID: 31728021 PMCID: PMC6976610 DOI: 10.1038/s41396-019-0554-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 11/25/2022]
Abstract
Cable bacteria of the family Desulfobulbaceae couple spatially separated sulfur oxidation and oxygen or nitrate reduction by long-distance electron transfer, which can constitute the dominant sulfur oxidation process in shallow sediments. However, it remains unknown how cells in the anoxic part of the centimeter-long filaments conserve energy. We found 16S rRNA gene sequences similar to groundwater cable bacteria in a 1-methylnaphthalene-degrading culture (1MN). Cultivation with elemental sulfur and thiosulfate with ferrihydrite or nitrate as electron acceptors resulted in a first cable bacteria enrichment culture dominated >90% by 16S rRNA sequences belonging to the Desulfobulbaceae. Desulfobulbaceae-specific fluorescence in situ hybridization (FISH) unveiled single cells and filaments of up to several hundred micrometers length to belong to the same species. The Desulfobulbaceae filaments also showed the distinctive cable bacteria morphology with their continuous ridge pattern as revealed by atomic force microscopy. The cable bacteria grew with nitrate as electron acceptor and elemental sulfur and thiosulfate as electron donor, but also by sulfur disproportionation when Fe(Cl)2 or Fe(OH)3 were present as sulfide scavengers. Metabolic reconstruction based on the first nearly complete genome of groundwater cable bacteria revealed the potential for sulfur disproportionation and a chemo-litho-autotrophic metabolism. The presence of different types of hydrogenases in the genome suggests that they can utilize hydrogen as alternative electron donor. Our results imply that cable bacteria not only use sulfide oxidation coupled to oxygen or nitrate reduction by LDET for energy conservation, but sulfur disproportionation might constitute the energy metabolism for cells in large parts of the cable bacterial filaments.
Collapse
Affiliation(s)
- Hubert Müller
- Biofilm Center, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Sviatlana Marozava
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Alexander J Probst
- Biofilm Center, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Rainer U Meckenstock
- Biofilm Center, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany.
| |
Collapse
|
33
|
High-Level Abundances of Methanobacteriales and Syntrophobacterales May Help To Prevent Corrosion of Metal Sheet Piles. Appl Environ Microbiol 2019; 85:AEM.01369-19. [PMID: 31420342 DOI: 10.1128/aem.01369-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/11/2019] [Indexed: 11/20/2022] Open
Abstract
Iron sheet piles are widely used in flood protection, dike construction, and river bank reinforcement. Their corrosion leads to gradual deterioration and often makes replacement necessary. Natural deposit layers on these sheet piles can prevent degradation and significantly increase their life span. However, little is known about the mechanisms of natural protective layer formation. Here, we studied the microbially diverse populations of corrosion-protective deposit layers on iron sheet piles at the Gouderak pumping station in Zuid-Holland, the Netherlands. Deposit layers, surrounding sediment and top sediment samples were analyzed for soil physicochemical parameters, microbially diverse populations, and metabolic potential. Methanogens appeared to be enriched 18-fold in the deposit layers. After sequencing, metagenome assembly and binning, we obtained four nearly complete draft genomes of microorganisms (Methanobacteriales, two Coriobacteriales, and Syntrophobacterales) that were highly enriched in the deposit layers, strongly indicating a potential role in corrosion protection. Coriobacteriales and Syntrophobacterales could be part of a microbial food web degrading organic matter to supply methanogenic substrates. Methane-producing Methanobacteriales could metabolize iron, which may initially lead to mild corrosion but potentially stimulates the formation of a carbonate-rich protective deposit layer in the long term. In addition, Methanobacteriales and Coriobacteriales have the potential to interact with metal surfaces via direct interspecies or extracellular electron transfer. In conclusion, our study provides valuable insights into microbial populations involved in iron corrosion protection and potentially enables the development of novel strategies for in situ screening of iron sheet piles in order to reduce risks and develop more sustainable replacement practices.IMPORTANCE Iron sheet piles are widely used to reinforce dikes and river banks. Damage due to iron corrosion poses a significant safety risk and has significant economic impact. Different groups of microorganisms are known to either stimulate or inhibit the corrosion process. Recently, natural corrosion-protective deposit layers were found on sheet piles. Analyses of the microbial composition indicated a potential role for methane-producing archaea. However, the full metabolic potential of the microbial communities within these protective layers has not been determined. The significance of this work lies in the reconstruction of the microbial food web of natural corrosion-protective layers isolated from noncorroding metal sheet piles. With this work, we provide insights into the microbiological mechanisms that potentially promote corrosion protection in freshwater ecosystems. Our findings could support the development of screening protocols to assess the integrity of iron sheet piles to decide whether replacement is required.
Collapse
|
34
|
Shin B, Kim M, Zengler K, Chin KJ, Overholt WA, Gieg LM, Konstantinidis KT, Kostka JE. Anaerobic degradation of hexadecane and phenanthrene coupled to sulfate reduction by enriched consortia from northern Gulf of Mexico seafloor sediment. Sci Rep 2019; 9:1239. [PMID: 30718896 PMCID: PMC6361983 DOI: 10.1038/s41598-018-36567-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 11/12/2018] [Indexed: 11/16/2022] Open
Abstract
To advance understanding of the fate of hydrocarbons released from the Deepwater Horizon oil spill and deposited in marine sediments, this study characterized the microbial populations capable of anaerobic hydrocarbon degradation coupled with sulfate reduction in non-seep sediments of the northern Gulf of Mexico. Anaerobic, sediment-free enrichment cultures were obtained with either hexadecane or phenanthrene as sole carbon source and sulfate as a terminal electron acceptor. Phylogenetic analysis revealed that enriched microbial populations differed by hydrocarbon substrate, with abundant SSU rRNA gene amplicon sequences from hexadecane cultures showing high sequence identity (up to 98%) to Desulfatibacillum alkenivorans (family Desulfobacteraceae), while phenanthrene-enriched populations were most closely related to Desulfatiglans spp. (up to 95% sequence identity; family Desulfarculaceae). Assuming complete oxidation to CO2, observed stoichiometric ratios closely resembled the theoretical ratios of 12.25:1 for hexadecane and 8.25:1 for phenanthrene degradation coupled to sulfate reduction. Phenanthrene carboxylic acid was detected in the phenanthrene-degrading enrichment cultures, providing evidence to indicate carboxylation as an activation mechanism for phenanthrene degradation. Metagenome-assembled genomes (MAGs) revealed that phenanthrene degradation is likely mediated by novel genera or families of sulfate-reducing bacteria along with their fermentative syntrophic partners, and candidate genes linked to the degradation of aromatic hydrocarbons were detected for future study.
Collapse
Affiliation(s)
- Boryoung Shin
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, 30332, USA
| | - Minjae Kim
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, 30332, USA
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, 92093, USA
- Center for Microbiome Innovation, University of California, San Diego, 92093, USA
| | - Kuk-Jeong Chin
- Department of Biology, Georgia State University, Atlanta, 30302, USA
| | - Will A Overholt
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332, USA
| | - Lisa M Gieg
- Department of Biological Sciences, University of Calgary, Calgary, T2N 1N4, Canada
| | - Konstantinos T Konstantinidis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, 30332, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332, USA
| | - Joel E Kostka
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, 30332, USA.
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332, USA.
| |
Collapse
|
35
|
Himmelberg AM, Brüls T, Farmani Z, Weyrauch P, Barthel G, Schrader W, Meckenstock RU. Anaerobic degradation of phenanthrene by a sulfate-reducing enrichment culture. Environ Microbiol 2018; 20:3589-3600. [DOI: 10.1111/1462-2920.14335] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/21/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Anne M. Himmelberg
- Institute of Groundwater Ecology; Helmholtz Zentrum München; Neuherberg Germany
| | - Thomas Brüls
- CEA, DRF, Institut Jacob, Genoscope; Evry France
- CNRS-UMR8030; Université Paris-Saclay; Evry France
| | - Zahra Farmani
- Biofilm Centre; University of Duisburg-Essen; Essen Germany
- Max-Planck-Institut für Kohlenforschung; Mülheim Germany
| | | | - Gabriele Barthel
- Institute of Groundwater Ecology; Helmholtz Zentrum München; Neuherberg Germany
| | | | | |
Collapse
|
36
|
Tiralerdpanich P, Sonthiphand P, Luepromchai E, Pinyakong O, Pokethitiyook P. Potential microbial consortium involved in the biodegradation of diesel, hexadecane and phenanthrene in mangrove sediment explored by metagenomics analysis. MARINE POLLUTION BULLETIN 2018; 133:595-605. [PMID: 30041354 DOI: 10.1016/j.marpolbul.2018.06.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/22/2018] [Accepted: 06/05/2018] [Indexed: 06/08/2023]
Abstract
Hydrocarbon contamination is a serious problem that degrades the quality of mangrove ecosystems, and bioremediation using autochthonous bacteria is a promising technology to recover an impacted environment. This research investigates the biodegradation rates of diesel, hexadecane and phenanthrene, by conducting a microcosm study and survey of the autochthonous microbial community in contaminated mangrove sediment, using an Illumina MiSeq platform. The biodegradation rates of diesel, hexadecane and phenanthrene were 82, 86 and 8 mg kg-1 sediment day-1, respectively. The removal efficiencies of hexadecane and phenanthrene were >99%, whereas the removal efficiency of diesel was 88%. A 16S rRNA gene amplicon sequence analysis revealed that the major bacterial assemblages detected were Gammaproteobacteria, Deltaproteobacteria, Alphaproteobacteria. The bacterial compositions were relatively constant, while reductions of the supplemented hydrocarbons were observed. The results imply that the autochthonous microorganisms in the mangrove sediment were responsible for the degradation of the respective hydrocarbons. Diesel-, hexadecane- and phenanthrene-degrading bacteria, namely Bacillus sp., Pseudomonas sp., Acinetobacter sp. and Staphylococcus sp., were also isolated from the mangrove sediment. The mangrove sediment provides a potential resource of effective hydrocarbon-degrading bacteria that can be used as an inoculum or further developed as a ready-to-use microbial consortium for the purpose of bioremediation.
Collapse
Affiliation(s)
- Parichaya Tiralerdpanich
- International Postgraduate Program in Hazardous Substance and Environmental Management, Chulalongkorn University, 9th Floor, CU Research Building, Phayathai Road, Bangkok 10330, Thailand; Center of Excellence on Hazardous Substance Management, Chulalongkorn University, 8th Floor, CU Research Building, Phayathai Road, Bangkok 10330, Thailand
| | - Prinpida Sonthiphand
- Department of Biology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand.
| | - Ekawan Luepromchai
- Microbial Technology for Marine Pollution Treatment Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand; Center of Excellence on Hazardous Substance Management, Chulalongkorn University, 8th Floor, CU Research Building, Phayathai Road, Bangkok 10330, Thailand
| | - Onruthai Pinyakong
- Microbial Technology for Marine Pollution Treatment Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand; Center of Excellence on Hazardous Substance Management, Chulalongkorn University, 8th Floor, CU Research Building, Phayathai Road, Bangkok 10330, Thailand
| | - Prayad Pokethitiyook
- Department of Biology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| |
Collapse
|
37
|
Táncsics A, Szalay AR, Farkas M, Benedek T, Szoboszlay S, Szabó I, Lueders T. Stable isotope probing of hypoxic toluene degradation at the Siklós aquifer reveals prominent role of Rhodocyclaceae. FEMS Microbiol Ecol 2018; 94:4995907. [PMID: 29767715 PMCID: PMC5972620 DOI: 10.1093/femsec/fiy088] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 05/09/2018] [Indexed: 02/01/2023] Open
Abstract
The availability of oxygen is often a limiting factor for the degradation of aromatic hydrocarbons in subsurface environments. However, while both aerobic and anaerobic degraders have been intensively studied, degradation betwixt, under micro- or hypoxic conditions has rarely been addressed. It is speculated that in environments with limited, but sustained oxygen supply, such as in the vicinity of groundwater monitoring wells, hypoxic degradation may take place. A large diversity of subfamily I.2.C extradiol dioxygenase genes has been previously detected in a BTEX-contaminated aquifer in Hungary. Older literature suggests that such catabolic potentials could be associated to hypoxic degradation. Bacterial communities dominated by members of the Rhodocyclaceae were found, but the majority of the detected C23O genotypes could not be affiliated to any known bacterial degrader lineages. To address this, a stable isotope probing (SIP) incubation of site sediments with 13C7-toluene was performed under microoxic conditions. A combination of 16S rRNA gene amplicon sequencing and T-RFLP fingerprinting of C23O genes from SIP gradient fractions revealed the central role of degraders within the Rhodocyclaceae in hypoxic toluene degradation. The main assimilators of 13C were identified as members of the genera Quatrionicoccus and Zoogloea, and a yet uncultured group of the Rhodocyclaceae.
Collapse
Affiliation(s)
- András Táncsics
- Regional University Center of Excellence in Environmental Industry, Szent István University, Páter K. u. 1., 2100 Gödöllő, Hungary
| | - Anna Róza Szalay
- Institute of Groundwater Ecology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1., 85764 Neuherberg, Germany
| | - Milan Farkas
- Regional University Center of Excellence in Environmental Industry, Szent István University, Páter K. u. 1., 2100 Gödöllő, Hungary
| | - Tibor Benedek
- Regional University Center of Excellence in Environmental Industry, Szent István University, Páter K. u. 1., 2100 Gödöllő, Hungary
| | - Sándor Szoboszlay
- Department of Environmental Safety and Ecotoxicology, Szent István University, Páter K. u. 1., 2100 Gödöllő, Hungary
| | - István Szabó
- Department of Environmental Safety and Ecotoxicology, Szent István University, Páter K. u. 1., 2100 Gödöllő, Hungary
| | - Tillmann Lueders
- Institute of Groundwater Ecology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1., 85764 Neuherberg, Germany
| |
Collapse
|
38
|
Ren G, Ma A, Zhang Y, Deng Y, Zheng G, Zhuang X, Zhuang G, Fortin D. Electron acceptors for anaerobic oxidation of methane drive microbial community structure and diversity in mud volcanoes. Environ Microbiol 2018; 20:2370-2385. [DOI: 10.1111/1462-2920.14128] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/02/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Ge Ren
- Research Center for Eco‐Environmental Sciences, Chinese Academy of SciencesBeijing 100085 China
- University of Chinese Academy of SciencesBeijing 100049 China
| | - Anzhou Ma
- Research Center for Eco‐Environmental Sciences, Chinese Academy of SciencesBeijing 100085 China
- University of Chinese Academy of SciencesBeijing 100049 China
- University of California, Los Angeles (UCLA)Los Angeles CA 90095 USA
| | - Yanfen Zhang
- Research Center for Eco‐Environmental Sciences, Chinese Academy of SciencesBeijing 100085 China
- University of Chinese Academy of SciencesBeijing 100049 China
| | - Ye Deng
- Research Center for Eco‐Environmental Sciences, Chinese Academy of SciencesBeijing 100085 China
| | - Guodong Zheng
- Institute of Geology and Geophysics, Chinese Academy of SciencesBeijing 100029 China
| | - Xuliang Zhuang
- Research Center for Eco‐Environmental Sciences, Chinese Academy of SciencesBeijing 100085 China
- University of Chinese Academy of SciencesBeijing 100049 China
| | - Guoqiang Zhuang
- Research Center for Eco‐Environmental Sciences, Chinese Academy of SciencesBeijing 100085 China
- University of Chinese Academy of SciencesBeijing 100049 China
| | | |
Collapse
|
39
|
Zhu M, Zhang L, Zheng L, Zhuo Y, Xu J, He Y. Typical Soil Redox Processes in Pentachlorophenol Polluted Soil Following Biochar Addition. Front Microbiol 2018; 9:579. [PMID: 29636746 PMCID: PMC5880936 DOI: 10.3389/fmicb.2018.00579] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/13/2018] [Indexed: 11/28/2022] Open
Abstract
Reductive dechlorination is the primary pathway for environmental removal of pentachlorophenol (PCP) in soil under anaerobic condition. This process has been verified to be coupled with other soil redox processes of typical biogenic elements such as carbon, iron and sulfur. Meanwhile, biochar has received increasing interest in its potential for remediation of contaminated soil, with the effect seldom investigated under anaerobic environment. In this study, a 120-day anaerobic incubation experiment was conducted to investigate the effects of biochar on soil redox processes and thereby the reductive dechlorination of PCP under anaerobic condition. Biochar addition (1%, w/w) enhanced the dissimilatory iron reduction and sulfate reduction while simultaneously decreased the PCP reduction significantly. Instead, the production of methane was not affected by biochar. Interestingly, however, PCP reduction was promoted by biochar when microbial sulfate reduction was suppressed by addition of typical inhibitor molybdate. Together with Illumina sequencing data regarding analysis of soil bacteria and archaea responses, our results suggest that under anaerobic condition, the main competition mechanisms of these typical soil redox processes on the reductive dechlorination of PCP may be different in the presence of biochar. In particularly, the effect of biochar on sulfate reduction process is mainly through promoting the growth of sulfate reducer (Desulfobulbaceae and Desulfobacteraceae) but not as an electron shuttle. With the supplementary addition of molybdate, biochar application is suggested as an improved strategy for a better remediation results by coordinating the interaction between dechlorination and its coupled soil redox processes, with minimum production of toxic sulfur reducing substances and relatively small emission of greenhouse gas (CH4) while maximum removal of PCP.
Collapse
Affiliation(s)
- Min Zhu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, China
| | - Lujun Zhang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, China
| | - Liwei Zheng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, China
| | - Ying Zhuo
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, China
| | - Yan He
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, China
| |
Collapse
|
40
|
A benzene-degrading nitrate-reducing microbial consortium displays aerobic and anaerobic benzene degradation pathways. Sci Rep 2018. [PMID: 29540736 PMCID: PMC5852087 DOI: 10.1038/s41598-018-22617-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In this study, we report transcription of genes involved in aerobic and anaerobic benzene degradation pathways in a benzene-degrading denitrifying continuous culture. Transcripts associated with the family Peptococcaceae dominated all samples (21-36% relative abundance) indicating their key role in the community. We found a highly transcribed gene cluster encoding a presumed anaerobic benzene carboxylase (AbcA and AbcD) and a benzoate-coenzyme A ligase (BzlA). Predicted gene products showed >96% amino acid identity and similar gene order to the corresponding benzene degradation gene cluster described previously, providing further evidence for anaerobic benzene activation via carboxylation. For subsequent benzoyl-CoA dearomatization, bam-like genes analogous to the ones found in other strict anaerobes were transcribed, whereas gene transcripts involved in downstream benzoyl-CoA degradation were mostly analogous to the ones described in facultative anaerobes. The concurrent transcription of genes encoding enzymes involved in oxygenase-mediated aerobic benzene degradation suggested oxygen presence in the culture, possibly formed via a recently identified nitric oxide dismutase (Nod). Although we were unable to detect transcription of Nod-encoding genes, addition of nitrite and formate to the continuous culture showed indication for oxygen production. Such an oxygen production would enable aerobic microbes to thrive in oxygen-depleted and nitrate-containing subsurface environments contaminated with hydrocarbons.
Collapse
|
41
|
Mamet SD, Ma B, Ulrich A, Schryer A, Siciliano SD. Who Is the Rock Miner and Who Is the Hunter? The Use of Heavy-Oxygen Labeled Phosphate (P 18O 4) to Differentiate between C and P Fluxes in a Benzene-Degrading Consortium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1773-1786. [PMID: 29378402 DOI: 10.1021/acs.est.7b05773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Phosphorus availability and cycling in microbial communities is a key determinant of bacterial activity. However, identifying organisms critical to P cycling in complex biodegrading consortia has proven elusive. Here we assess a new DNA stable isotope probing (SIP) technique using heavy oxygen-labeled phosphate (P18O4) and its effectiveness in pure cultures and a nitrate-reducing benzene-degrading consortium. First, we successfully labeled pure cultures of Gram-positive Micrococcus luteus and Gram-negative Bradyrhizobium elkanii and separated isotopically light and heavy DNA in pure cultures using centrifugal analyses. Second, using high-throughput amplicon sequencing of 16S rRNA genes to characterize active bacterial taxa (13C-labeled), we found taxa like Betaproteobacteria were key in denitrifying benzene degradation and that other degrading (nonhydrocarbon) inactive taxa (P18O4-labeled) like Staphylococcus and Corynebacterium may promote degradation through production of secondary metabolites (i.e., "helper" or "rock miner" bacteria). Overall, we successfully separated active and inactive taxa in contaminated soils, demonstrating the utility of P18O4-DNA SIP for identifying actively growing bacterial taxa. We also identified potential "miner" bacteria that choreograph hydrocarbon degradation by other microbes (i.e., the "hunters") without directly degrading contaminants themselves. Thus, while several taxa degrade benzene under denitrifying conditions, microbial benzene degradation may be enhanced by both direct degraders and miner bacteria.
Collapse
Affiliation(s)
- Steven D Mamet
- Department of Soil Science, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Bin Ma
- Department of Civil and Environmental Engineering, University of Alberta , Edmonton, Alberta T6G 1H9, Canada
| | - Ania Ulrich
- Department of Civil and Environmental Engineering, University of Alberta , Edmonton, Alberta T6G 1H9, Canada
| | - Aimée Schryer
- Department of Soil Science, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Steven D Siciliano
- Department of Soil Science, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5A8, Canada
| |
Collapse
|
42
|
Kanissery RG, Welsh A, Gomez A, Connor L, Sims GK. Identification of metolachlor mineralizing bacteria in aerobic and anaerobic soils using DNA-stable isotope probing. Biodegradation 2017; 29:117-128. [PMID: 29285669 DOI: 10.1007/s10532-017-9817-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 12/21/2017] [Indexed: 10/18/2022]
Abstract
The influence of soil environmental factors such as aeration on the ecology of microorganisms involved in the mineralization and degradation of the popular soil-applied pre-emergent herbicide, metolachlor is unknown. To address this knowledge gap, we utilized DNA-based stable isotope probing (SIP) where soil microcosms were incubated aerobically or anaerobically and received herbicide treatments with unlabeled metolachlor or 13C-metolachlor. Mineralization of metolachlor was confirmed as noted from the evolution of 14CO2 from 14C-metolachlor-treated microcosms and clearly demonstrated the efficient utilization of the herbicide as a carbon source. Terminal restriction fragment length polymorphisms (T-RFLP) bacterial community profiling performed on soil DNA extracts indicated that fragment 307 bp from aerobic soil and 212 bp from anaerobic soil were detected only in the herbicide-treated (both unlabeled metolachlor and 13C-metolachlor) soils when compared to the untreated control microcosms. T-RFLP profiles from the ultracentrifugation fractions illustrated that these individual fragments experienced an increase in relative abundance at a higher buoyant density (BD) in the labeled fractions when compared to the unlabeled herbicide amendment fractions. The shift in BD of individual T-RFLP fragments in the density-resolved fractions suggested the incorporation of 13C from labeled herbicide into the bacterial DNA and enabled the identification of organisms responsible for metolachlor uptake from the soil. Subsequent cloning and 16S rRNA gene sequencing of the 13C-enriched fractions implicated the role of organisms closely related to Bacillus spp. in aerobic mineralization and members of Acidobacteria phylum in anaerobic mineralization of metolachlor in soil.
Collapse
Affiliation(s)
- Ramdas G Kanissery
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, 1102 S. Goodwin Ave, Urbana, IL, 61801, USA. .,Southwest Florida Research & Education Center, University of Florida, 2685 SR 29 North, Immokalee, FL, 34142, USA.
| | - Allana Welsh
- Agricen Sciences, 801 Highway 377S, Pilot Point, TX, 76258, USA
| | - Andres Gomez
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1102 S. Goodwin Ave, Urbana, IL, 61801, USA.,University of Minnesota, 495D AnSc/VetMed, 1988 Fitch Avenue, St. Paul, MN, 55108, USA
| | - Lynn Connor
- USDA Global Change and Photosynthesis Unit, 1102 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Gerald K Sims
- Department of Entomology, Plant Pathology and Weed Sciences, New Mexico State University, Skeen Hall, Room N141, 945 College Avenue, Las Cruces, NM, 88003, USA
| |
Collapse
|
43
|
Anaerobic degradation of 1-methylnaphthalene by a member of the Thermoanaerobacteraceae contained in an iron-reducing enrichment culture. Biodegradation 2017; 29:23-39. [PMID: 29177812 PMCID: PMC5773621 DOI: 10.1007/s10532-017-9811-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 11/02/2017] [Indexed: 11/13/2022]
Abstract
An anaerobic culture (1MN) was enriched with 1-methylnaphthalene as sole source of carbon and electrons and Fe(OH)3 as electron acceptor. 1-Naphthoic acid was produced as a metabolite during growth with 1-methylnaphthalene while 2-naphthoic acid was detected with naphthalene and 2-methylnaphthalene. This indicates that the degradation pathway of 1-methylnaphthalene might differ from naphthalene and 2-methylnaphthalene degradation in sulfate reducers. Terminal restriction fragment length polymorphism and pyrosequencing revealed that the culture is mainly composed of two bacteria related to uncultured Gram-positive Thermoanaerobacteraceae and uncultured gram-negative Desulfobulbaceae. Stable isotope probing showed that a 13C-carbon label from 13C10-naphthalene as growth substrate was mostly incorporated by the Thermoanaerobacteraceae. The presence of putative genes involved in naphthalene degradation in the genome of this organism was confirmed via assembly-based metagenomics and supports that it is the naphthalene-degrading bacterium in the culture. Thermoanaerobacteraceae have previously been detected in oil sludge under thermophilic conditions, but have not been shown to degrade hydrocarbons so far. The second member of the community belongs to the Desulfobulbaceae and has high sequence similarity to uncultured bacteria from contaminated sites including recently proposed groundwater cable bacteria. We suggest that the gram-positive Thermoanaerobacteraceae degrade polycyclic aromatic hydrocarbons while the Desulfobacterales are mainly responsible for Fe(III) reduction.
Collapse
|
44
|
Michas A, Vestergaard G, Trautwein K, Avramidis P, Hatzinikolaou DG, Vorgias CE, Wilkes H, Rabus R, Schloter M, Schöler A. More than 2500 years of oil exposure shape sediment microbiomes with the potential for syntrophic degradation of hydrocarbons linked to methanogenesis. MICROBIOME 2017; 5:118. [PMID: 28893308 PMCID: PMC5594585 DOI: 10.1186/s40168-017-0337-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/03/2017] [Indexed: 05/25/2023]
Abstract
BACKGROUND Natural oil seeps offer the opportunity to study the adaptation of ecosystems and the associated microbiota to long-term oil exposure. In the current study, we investigated a land-to-sea transition ecosystem called "Keri Lake" in Zakynthos Island, Greece. This ecosystem is unique due to asphalt oil springs found at several sites, a phenomenon already reported 2500 years ago. Sediment microbiomes at Keri Lake were studied, and their structure and functional potential were compared to other ecosystems with oil exposure histories of various time periods. RESULTS Replicate sediment cores (up to 3-m depth) were retrieved from one site exposed to oil as well as a non-exposed control site. Samples from three different depths were subjected to chemical analysis and metagenomic shotgun sequencing. At the oil-exposed site, we observed high amounts of asphalt oil compounds and a depletion of sulfate compared to the non-exposed control site. The numbers of reads assigned to genes involved in the anaerobic degradation of hydrocarbons were similar between the two sites. The numbers of denitrifiers and sulfate reducers were clearly lower in the samples from the oil-exposed site, while a higher abundance of methanogens was detected compared to the non-exposed site. Higher abundances of the genes of methanogenesis were also observed in the metagenomes from other ecosystems with a long history of oil exposure, compared to short-term exposed environments. CONCLUSIONS The analysis of Keri Lake metagenomes revealed that microbiomes in the oil-exposed sediment have a higher potential for methanogenesis over denitrification/sulfate reduction, compared to those in the non-exposed site. Comparison with metagenomes from various oil-impacted environments suggests that syntrophic interactions of hydrocarbon degraders with methanogens are favored in the ecosystems with a long-term presence of oil.
Collapse
Affiliation(s)
- Antonios Michas
- Research Unit Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstaedter Landstraße 1, D-85764 Neuherberg, Germany
| | - Gisle Vestergaard
- Research Unit Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstaedter Landstraße 1, D-85764 Neuherberg, Germany
| | - Kathleen Trautwein
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111 Oldenburg, Germany
| | - Pavlos Avramidis
- Department of Geology, University of Patras, Panepistimioupoli Patron, 26504 Rio-Patras, Greece
| | - Dimitris G. Hatzinikolaou
- Department of Biology, National and Kapodistrian University of Athens, Zografou University Campus, 15784 Athens, Greece
| | - Constantinos E. Vorgias
- Department of Biology, National and Kapodistrian University of Athens, Zografou University Campus, 15784 Athens, Greece
| | - Heinz Wilkes
- Organic Geochemistry, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Ralf Rabus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111 Oldenburg, Germany
| | - Michael Schloter
- Research Unit Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstaedter Landstraße 1, D-85764 Neuherberg, Germany
| | - Anne Schöler
- Research Unit Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstaedter Landstraße 1, D-85764 Neuherberg, Germany
| |
Collapse
|
45
|
van der Waals MJ, Atashgahi S, da Rocha UN, van der Zaan BM, Smidt H, Gerritse J. Benzene degradation in a denitrifying biofilm reactor: activity and microbial community composition. Appl Microbiol Biotechnol 2017; 101:5175-5188. [PMID: 28321487 PMCID: PMC5486827 DOI: 10.1007/s00253-017-8214-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/27/2017] [Accepted: 03/04/2017] [Indexed: 11/26/2022]
Abstract
Benzene is an aromatic compound and harmful for the environment. Biodegradation of benzene can reduce the toxicological risk after accidental or controlled release of this chemical in the environment. In this study, we further characterized an anaerobic continuous biofilm culture grown for more than 14 years on benzene with nitrate as electron acceptor. We determined steady state degradation rates, microbial community composition dynamics in the biofilm, and the initial anaerobic benzene degradation reactions. Benzene was degraded at a rate of 0.15 μmol/mg protein/day and a first-order rate constant of 3.04/day which was fourfold higher than rates reported previously. Bacteria belonging to the Peptococcaceae were found to play an important role in this anaerobic benzene-degrading biofilm culture, but also members of the Anaerolineaceae were predicted to be involved in benzene degradation or benzene metabolite degradation based on Illumina MiSeq analysis of 16S ribosomal RNA genes. Biomass retention in the reactor using a filtration finger resulted in reduction of benzene degradation capacity. Detection of the benzene carboxylase encoding gene, abcA, and benzoic acid in the culture vessel indicated that benzene degradation proceeds through an initial carboxylation step.
Collapse
Affiliation(s)
- Marcelle J van der Waals
- Deltares, Subsurface and Groundwater Systems, Princetonlaan 6, 3584 CB, Utrecht, The Netherlands.
- Wageningen University & Research, Laboratory of Microbiology, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - Siavash Atashgahi
- Wageningen University & Research, Laboratory of Microbiology, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Ulisses Nunes da Rocha
- VU University of Amsterdam, Department of Molecular Cell Physiology, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Bas M van der Zaan
- Deltares, Subsurface and Groundwater Systems, Princetonlaan 6, 3584 CB, Utrecht, The Netherlands
| | - Hauke Smidt
- Wageningen University & Research, Laboratory of Microbiology, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Jan Gerritse
- Deltares, Subsurface and Groundwater Systems, Princetonlaan 6, 3584 CB, Utrecht, The Netherlands
| |
Collapse
|
46
|
Miao Y, Guo X, Jiang W, Zhang XX, Wu B. Mechanisms of microbial community structure and biofouling shifts under multivalent cations stress in membrane bioreactors. JOURNAL OF HAZARDOUS MATERIALS 2017; 327:89-96. [PMID: 28043046 DOI: 10.1016/j.jhazmat.2016.12.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/04/2016] [Accepted: 12/16/2016] [Indexed: 06/06/2023]
Abstract
Five lab-scale membrane bioreactors (MBRs) were continuously operated to investigate the mechanisms and linkages of the microbial community and membrane fouling with trivalent metal cations (Fe(III) and Al(III)) and bivalent metal cations (Ca(II) and Mg(II)) shock loads. COD and NH4+-N removals showed recovery trends along with treatment process in the presence of metals. Trivalent metal cations reduced trans-membrane pressure (TMP) as well as fouling rate (dTMP/dt) and extended membrane module replacement period by binding activated sludge extracellular polymeric substance (EPS) and effluent soluble microbial product (SMP) productions. Illunima sequencing of 16S rRNA gene showed that metal stress stimulated specific metal-tolerance bacteria in the MBRs. Canonical correspondence analysis indicated that EPS and SMP made different contributions to the distribution of microbial community structure in Fe(III) and Al (III) systems, respectively. Under bivalent metal conditions, microbial community shifts and Ca(II) binding bridge worked together to inhibit EPS and SMP, while filamentous bacteria stimulated by Mg(II) that mainly controlled membrane fouling. This study has shown that the comparison of tri- and bivalent metals for membrane fouling control with binding bridge and functional microorganisms can provide a strategy for practical membrane bioreactor applications.
Collapse
Affiliation(s)
- Yu Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Xuechao Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Wei Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
47
|
Martirani-Von Abercron SM, Pacheco D, Benito-Santano P, Marín P, Marqués S. Polycyclic Aromatic Hydrocarbon-Induced Changes in Bacterial Community Structure under Anoxic Nitrate Reducing Conditions. Front Microbiol 2016; 7:1775. [PMID: 27877167 PMCID: PMC5099901 DOI: 10.3389/fmicb.2016.01775] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/21/2016] [Indexed: 11/13/2022] Open
Abstract
Although bacterial anaerobic degradation of mono-aromatic compounds has been characterized in depth, the degradation of polycyclic aromatic hydrocarbons (PAHs) such as naphthalene has only started to be understood in sulfate reducing bacteria, and little is known about the anaerobic degradation of PAHs in nitrate reducing bacteria. Starting from a series of environments which had suffered different degrees of hydrocarbon pollution, we used most probable number (MPN) enumeration to detect and quantify the presence of bacterial communities able to degrade several PAHs using nitrate as electron acceptor. We detected the presence of a substantial nitrate reducing community able to degrade naphthalene, 2-methylnaphthalene (2MN), and anthracene in some of the sites. With the aim of isolating strains able to degrade PAHs under denitrifying conditions, we set up a series of enrichment cultures with nitrate as terminal electron acceptor and PAHs as the only carbon source and followed the changes in the bacterial communities throughout the process. Results evidenced changes attributable to the imposed nitrate respiration regime, which in several samples were exacerbated in the presence of the PAHs. The presence of naphthalene or 2MN enriched the community in groups of uncultured and poorly characterized organisms, and notably in the Acidobacteria uncultured group iii1-8, which in some cases was only a minor component of the initial samples. Other phylotypes selected by PAHs in these conditions included Bacilli, which were enriched in naphthalene enrichments. Several nitrate reducing strains showing the capacity to grow on PAHs could be isolated on solid media, although the phenotype could not be reproduced in liquid cultures. Analysis of known PAH anaerobic degradation genes in the original samples and enrichment cultures did not reveal the presence of PAH-related nmsA-like sequences but confirmed the presence of bssA-like genes related to anaerobic toluene degradation. Altogether, our results suggest that PAH degradation by nitrate reducing bacteria may require the contribution of different strains, under culture conditions that still need to be defined.
Collapse
Affiliation(s)
| | - Daniel Pacheco
- Estación Experimental del Zaidín, Department of Environmental Protection, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Patricia Benito-Santano
- Estación Experimental del Zaidín, Department of Environmental Protection, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Patricia Marín
- Estación Experimental del Zaidín, Department of Environmental Protection, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Silvia Marqués
- Estación Experimental del Zaidín, Department of Environmental Protection, Consejo Superior de Investigaciones Científicas Granada, Spain
| |
Collapse
|
48
|
Lueders T. The ecology of anaerobic degraders of BTEX hydrocarbons in aquifers. FEMS Microbiol Ecol 2016; 93:fiw220. [PMID: 27810873 PMCID: PMC5400083 DOI: 10.1093/femsec/fiw220] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/10/2016] [Indexed: 12/24/2022] Open
Abstract
The degradation of benzene, toluene, ethylbenzene and xylene (BTEX) contaminants in groundwater relies largely on anaerobic processes. While the physiology and biochemistry of selected relevant microbes have been intensively studied, research has now started to take the generated knowledge back to the field, in order to trace the populations truly responsible for the anaerobic degradation of BTEX hydrocarbons in situ and to unravel their ecology in contaminated aquifers. Here, recent advances in our knowledge of the identity, diversity and ecology of microbes involved in these important ecosystem services are discussed. At several sites, distinct lineages within the Desulfobulbaceae, the Rhodocyclaceae and the Gram-positive Peptococcaceae have been shown to dominate the degradation of different BTEX hydrocarbons. Especially for the functional guild of anaerobic toluene degraders, specific molecular detection systems have been developed, allowing researchers to trace their diversity and distribution in contaminated aquifers. Their populations appear enriched in hot spots of biodegradation in situ. 13C-labelling experiments have revealed unexpected pathways of carbon sharing and obligate syntrophic interactions to be relevant in degradation. Together with feedback mechanisms between abiotic and biotic habitat components, this promotes an enhanced ecological perspective of the anaerobic degradation of BTEX hydrocarbons, as well as its incorporation into updated concepts for site monitoring and bioremediation.
Collapse
Affiliation(s)
- Tillmann Lueders
- Institute of Groundwater Ecology, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany
| |
Collapse
|
49
|
Schwartz E, Hayer M, Hungate BA, Koch BJ, McHugh TA, Mercurio W, Morrissey EM, Soldanova K. Stable isotope probing with 18O-water to investigate microbial growth and death in environmental samples. Curr Opin Biotechnol 2016; 41:14-18. [DOI: 10.1016/j.copbio.2016.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/27/2016] [Accepted: 03/01/2016] [Indexed: 11/17/2022]
|
50
|
Tatti E, McKew BA, Whitby C, Smith CJ. Simultaneous DNA-RNA Extraction from Coastal Sediments and Quantification of 16S rRNA Genes and Transcripts by Real-time PCR. J Vis Exp 2016. [PMID: 27341629 PMCID: PMC4927785 DOI: 10.3791/54067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Real Time Polymerase Chain Reaction also known as quantitative PCR (q-PCR) is a widely used tool in microbial ecology to quantify gene abundances of taxonomic and functional groups in environmental samples. Used in combination with a reverse transcriptase reaction (RT-q-PCR), it can also be employed to quantify gene transcripts. q-PCR makes use of highly sensitive fluorescent detection chemistries that allow quantification of PCR amplicons during the exponential phase of the reaction. Therefore, the biases associated with 'end-point' PCR detected in the plateau phase of the PCR reaction are avoided. A protocol to quantify bacterial 16S rRNA genes and transcripts from coastal sediments via real-time PCR is provided. First, a method for the co-extraction of DNA and RNA from coastal sediments, including the additional steps required for the preparation of DNA-free RNA, is outlined. Second, a step-by-step guide for the quantification of 16S rRNA genes and transcripts from the extracted nucleic acids via q-PCR and RT-q-PCR is outlined. This includes details for the construction of DNA and RNA standard curves. Key considerations for the use of RT-q-PCR assays in microbial ecology are included.
Collapse
Affiliation(s)
- Enrico Tatti
- Microbiology, School of Natural Sciences, National University of Ireland Galway
| | - Boyd A McKew
- School of Biological Sciences, University of Essex
| | | | - Cindy J Smith
- Microbiology, School of Natural Sciences, National University of Ireland Galway;
| |
Collapse
|