1
|
Wittenborn AK, Bauersachs T, Hassenrück C, Käding K, Wäge-Recchioni J, Jürgens K, Arz HW, Kaiser J. Nitrosopumilus as main source of isoprenoid glycerol dialkyl glycerol tetraether lipids in the central Baltic Sea. Front Microbiol 2023; 14:1216130. [PMID: 37840736 PMCID: PMC10575479 DOI: 10.3389/fmicb.2023.1216130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/07/2023] [Indexed: 10/17/2023] Open
Abstract
Nitrososphaeria in the phylum Crenarchaeota, is a widespread archaeal class in the oceanic realm, playing an important role in the marine carbon and nitrogen cycle. Nitrososphaeria-derived membrane lipids, i.e., isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs), are commonly employed to reconstruct past water temperatures using the TetraEther indeX of 86 carbon atoms (TEX86). This index is of particular importance for the brackish Baltic Sea as to date it appears to be the only applicable organic temperature proxy. In this study, we investigated the distribution of intact and core GDGTs and their potential source organisms in the water column of three deep basins located in the central Baltic Sea to evaluate the application of TEX86. A lipidomic approach on suspended particulate matter was combined with the molecular techniques 16S rRNA gene amplicon sequencing and CARD-FISH. The archaeal community was dominated by Nitrosopumilus (~83-100% of the total archaeal sequences). As other detected taxa known to produce GDGTs each represented less than 2% of the total archaeal sequences, Nitrosopumilus is likely the most dominant GDGT producer in the central Baltic Sea. However, the occurrence of phosphohexose (PH), instead of hexose-phosphohexose (HPH) headgroups, suggested that Nitrosopumilus in the Baltic Sea may differ physiologically from representatives of marine settings and other marginal seas, such as the Black Sea. In the Baltic Sea, Nitrosopumilus is most abundant in the suboxic zone, where intact cells peak according to both CARD-FISH data and intact polar lipid concentrations. The presented data therefore suggest that TEX86 reflects subsurface rather than surface temperature in the central Baltic Sea.
Collapse
Affiliation(s)
| | | | - Christiane Hassenrück
- Biological Oceanography, Leibniz Institute for Baltic Sea Research – Warnemünde (IOW), Warnemünde, Germany
| | - Katja Käding
- Biological Oceanography, Leibniz Institute for Baltic Sea Research – Warnemünde (IOW), Warnemünde, Germany
| | - Janine Wäge-Recchioni
- Biological Oceanography, Leibniz Institute for Baltic Sea Research – Warnemünde (IOW), Warnemünde, Germany
| | - Klaus Jürgens
- Biological Oceanography, Leibniz Institute for Baltic Sea Research – Warnemünde (IOW), Warnemünde, Germany
| | - Helge Wolfgang Arz
- Marine Geology, Leibniz Institute for Baltic Sea Research – Warnemünde (IOW), Warnemünde, Germany
| | - Jérôme Kaiser
- Marine Geology, Leibniz Institute for Baltic Sea Research – Warnemünde (IOW), Warnemünde, Germany
| |
Collapse
|
2
|
Jameson BD, Murdock SA, Ji Q, Stevens CJ, Grundle DS, Kim Juniper S. Network analysis of 16S rRNA sequences suggests microbial keystone taxa contribute to marine N 2O cycling. Commun Biol 2023; 6:212. [PMID: 36823449 PMCID: PMC9950131 DOI: 10.1038/s42003-023-04597-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
The mechanisms by which large-scale microbial community function emerges from complex ecological interactions between individual taxa and functional groups remain obscure. We leveraged network analyses of 16S rRNA amplicon sequences obtained over a seven-month timeseries in seasonally anoxic Saanich Inlet (Vancouver Island, Canada) to investigate relationships between microbial community structure and water column N2O cycling. Taxa separately broadly into three discrete subnetworks with contrasting environmental distributions. Oxycline subnetworks were structured around keystone aerobic heterotrophs that correlated with nitrification rates and N2O supersaturations, linking N2O production and accumulation to taxa involved in organic matter remineralization. Keystone taxa implicated in anaerobic carbon, nitrogen, and sulfur cycling in anoxic environments clustered together in a low-oxygen subnetwork that correlated positively with nitrification N2O yields and N2O production from denitrification. Close coupling between N2O producers and consumers in the anoxic basin is indicated by strong correlations between the low-oxygen subnetwork, PICRUSt2-predicted nitrous oxide reductase (nosZ) gene abundances, and N2O undersaturation. This study implicates keystone taxa affiliated with common ODZ groups as a potential control on water column N2O cycling and provides a theoretical basis for further investigations into marine microbial interaction networks.
Collapse
Affiliation(s)
- Brett D Jameson
- School of Earth & Ocean Sciences, University of Victoria, P.O. Box 1700 Station CSC, Victoria, BC, V8W 2Y2, Canada.
| | - Sheryl A Murdock
- Department of Biology, University of Victoria, P.O. Box 1700 CSC, Victoria, BC, V8W 2Y2, Canada
- Bermuda Institute of Ocean Sciences, 17 Biological Station, St. George's, GE01, Bermuda
| | - Qixing Ji
- Bermuda Institute of Ocean Sciences, 17 Biological Station, St. George's, GE01, Bermuda
- Thrust of Earth, Ocean & Atmospheric Sciences, Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, Guangdong, 511400, China
| | - Catherine J Stevens
- School of Earth & Ocean Sciences, University of Victoria, P.O. Box 1700 Station CSC, Victoria, BC, V8W 2Y2, Canada
| | - Damian S Grundle
- Bermuda Institute of Ocean Sciences, 17 Biological Station, St. George's, GE01, Bermuda
- School of Ocean Futures & School of Earth & Space Exploration, Arizona State University, Tempe, AZ, 85287-7904, USA
| | - S Kim Juniper
- School of Earth & Ocean Sciences, University of Victoria, P.O. Box 1700 Station CSC, Victoria, BC, V8W 2Y2, Canada
- Department of Biology, University of Victoria, P.O. Box 1700 CSC, Victoria, BC, V8W 2Y2, Canada
- Ocean Networks Canada, 2474 Arbutus Road, Victoria, BC, V8N 1V8, Canada
| |
Collapse
|
3
|
Leberecht KM, Ritter SM, Lapp CJ, Klose L, Eschenröder J, Scholz C, Kühnel S, Stinnesbeck W, Kletzin A, Isenbeck-Schröter M, Gescher J. Microbially promoted calcite precipitation in the pelagic redoxcline: Elucidating the formation of the turbid layer. GEOBIOLOGY 2022; 20:498-517. [PMID: 35514106 DOI: 10.1111/gbi.12492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Large bell-shaped calcite formations called "Hells Bells" were discovered underwater in the stratified cenote El Zapote on the Yucatán Peninsula, Mexico. Together with these extraordinary speleothems, divers found a white, cloudy turbid layer into which some Hells Bells partially extend. Here, we address the central question if the formation of the turbid layer could be based on microbial activity, more specifically, on microbially induced calcite precipitation. Metagenomic and metatranscriptomic profiling of the microbial community in the turbid layer, which overlaps with the pelagic redoxcline in the cenote, revealed chemolithoautotrophic Hydrogenophilales and unclassified β-Proteobacteria as the metabolic key players. Bioinformatic and hydrogeochemical data suggest chemolithoautotrophic oxidation of sulfide to zero-valent sulfur catalyzed by denitrifying organisms due to oxygen deficiency. Incomplete sulfide oxidation via nitrate reduction and chemolithoautotrophy are both proton-consuming processes, which increase the pH in the redoxcline favoring authigenic calcite precipitation and may contribute to Hells Bells growth. The observed mechanism of microbially induced calcite precipitation is potentially applicable to many other stagnant sulfate-rich water bodies.
Collapse
Affiliation(s)
- Kerstin M Leberecht
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, Germany
| | - Simon M Ritter
- Institute of Earth Sciences, Heidelberg University, Heidelberg, Germany
| | - Christian J Lapp
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, Germany
| | - Lukas Klose
- Department of Physics & Earth Sciences, Jacobs University Bremen, Bremen, Germany
| | | | - Christian Scholz
- Institute of Earth Sciences, Heidelberg University, Heidelberg, Germany
| | - Sebastian Kühnel
- Institute of Earth Sciences, Heidelberg University, Heidelberg, Germany
| | - Wolfgang Stinnesbeck
- Institute of Earth Sciences, Heidelberg University, Heidelberg, Germany
- Heidelberg Center for the Environment (HCE), Heidelberg University, Heidelberg, Germany
| | - Arnulf Kletzin
- Department of Biology, Microbiology; Sulfur Biochemistry and Microbial Bioenergetics, Technical University of Darmstadt, Darmstadt, Germany
| | - Margot Isenbeck-Schröter
- Institute of Earth Sciences, Heidelberg University, Heidelberg, Germany
- Heidelberg Center for the Environment (HCE), Heidelberg University, Heidelberg, Germany
| | - Johannes Gescher
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, Germany
| |
Collapse
|
4
|
Effects of Seasonal Anoxia on the Microbial Community Structure in Demosponges in a Marine Lake in Lough Hyne, Ireland. mSphere 2021; 6:6/1/e00991-20. [PMID: 33536324 PMCID: PMC7860989 DOI: 10.1128/msphere.00991-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Climate change is expanding marine oxygen minimum zones (OMZs), while anthropogenic nutrient input depletes oxygen concentrations locally. The effects of deoxygenation on animals are generally detrimental; however, some sponges (Porifera) exhibit hypoxic and anoxic tolerance through currently unknown mechanisms. Sponges harbor highly specific microbiomes, which can include microbes with anaerobic capabilities. Sponge-microbe symbioses must also have persisted through multiple anoxic/hypoxic periods throughout Earth's history. Since sponges lack key components of the hypoxia-inducible factor (HIF) pathway responsible for hypoxic responses in other animals, it was hypothesized that sponge tolerance to deoxygenation may be facilitated by its microbiome. To test this hypothesis, we determined the microbial composition of sponge species tolerating seasonal anoxia and hypoxia in situ in a semienclosed marine lake, using 16S rRNA amplicon sequencing. We discovered a high degree of cryptic diversity among sponge species tolerating seasonal deoxygenation, including at least nine encrusting species of the orders Axinellida and Poecilosclerida. Despite significant changes in microbial community structure in the water, sponge microbiomes were species specific and remarkably stable under varied oxygen conditions, which was further explored for Eurypon spp. 2 and Hymeraphia stellifera However, some symbiont sharing occurred under anoxia. At least three symbiont combinations, all including large populations of Thaumarchaeota, corresponded with deoxygenation tolerance, and some combinations were shared between some distantly related hosts. We propose hypothetical host-symbiont interactions following deoxygenation that could confer deoxygenation tolerance.IMPORTANCE The oceans have an uncertain future due to anthropogenic stressors and an uncertain past that is becoming clearer with advances in biogeochemistry. Both past and future oceans were, or will be, deoxygenated in comparison to present conditions. Studying how sponges and their associated microbes tolerate deoxygenation provides insights into future marine ecosystems. Moreover, sponges form the earliest branch of the animal evolutionary tree, and they likely resemble some of the first animals. We determined the effects of variable environmental oxygen concentrations on the microbial communities of several demosponge species during seasonal anoxia in the field. Our results indicate that anoxic tolerance in some sponges may depend on their symbionts, but anoxic tolerance was not universal in sponges. Therefore, some sponge species could likely outcompete benthic organisms like corals in future, reduced-oxygen ecosystems. Our results support the molecular evidence that sponges and other animals have a Neoproterozoic origin and that animal evolution was not limited by low-oxygen conditions.
Collapse
|
5
|
Sui Q, Di F, Zhang J, Gong H, Jiang L, Wei Y, Liu J, Lin J. Advanced nitrogen removal in a fixed-bed anaerobic ammonia oxidation reactor following an anoxic/oxic reactor: Nitrogen removal contributions and mechanisms. BIORESOURCE TECHNOLOGY 2021; 320:124297. [PMID: 33137641 DOI: 10.1016/j.biortech.2020.124297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/14/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
This study demonstrated the feasibility of anaerobic ammonia oxidation (anammox) served as tertiary nitrogen removal process. An upflow fixed-bed reactor (UFBR) pre-inoculated with anammox bacteria (AnAOB) followed an anoxic/oxic (A/O) reactor treating magnetic-coagulation pretreated municipal wastewater. When bypassing 15% of influent into UFBR, UFBR removed 5.37 mg-TN/L contributing to 23.4% on total TN removal, in which the combination of partial nitritation and partial denitrification with anammox was main nitrogen removal pathway. Relatively low concentrations of NH4+-N and anaerobic environment promoted the growth of ammonia oxidizing archaea (AOA) in the inner-layer of biofilm in UFBR. The cooperation of AOA and ammonia-oxidizing bacteria (AOB) with AnAOB was achieved, with AOA, AOB, and AnAOB abundances of 0.01-0.32%, 0.25-0.44%, and 0.77-2.18% on the biofilm, respectively. Metagenomic analysis found that although AOB was the main NH4+-N oxidizer, archaeal amo gene on biofilm increased threefold during 90 days' treatment.
Collapse
Affiliation(s)
- Qianwen Sui
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Fei Di
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China
| | - Junya Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hui Gong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Li'an Jiang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jie Liu
- Beijing Capital Company Limited, Beijing 100044, China
| | - Jia Lin
- Beijing Capital Company Limited, Beijing 100044, China
| |
Collapse
|
6
|
Köstner N, Jürgens K, Labrenz M, Herndl GJ, Winter C. Uneven host cell growth causes lysogenic virus induction in the Baltic Sea. PLoS One 2019; 14:e0220716. [PMID: 31386696 PMCID: PMC6684075 DOI: 10.1371/journal.pone.0220716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/22/2019] [Indexed: 12/04/2022] Open
Abstract
In the Baltic Sea redoxcline, lysogenic viruses infecting prokaryotes have rarely been detected using the commonly used inducing agent mitomycin C. However, it is well known that not all viruses are induceable by mitomycin C and growing evidence suggests that changes in trophic conditions may trigger the induction of lysogenic viruses. We hypothesized that using antibiotics to simulate a strong change in trophic conditions for antibiotica-resistant cells due to reduced competition for resources might lead to the induction of lysogenic viruses into the lytic cycle within these cells. This hypothesis was tested by incubating prokaryotes obtained throughout the Baltic Sea redoxcline in seawater with substantially reduced numbers of viruses. We used a mixture of the protein synthesis-inhibiting antibiotics streptomycin and erythromycin to induce the desired changes in trophic conditions for resistant cells and at the same time ensuring that no progeny viruses were formed in sensitive cells. No inducible lysogenic viruses could be detected in incubations amended with mitomycin C. Yet, the presence of streptomycin and erythromycin increased virus-induced mortality of prokaryotes by 56-930% compared to controls, resulting in the induction of lysogenic viruses equivalent to 2-14% of in situ prokaryotic abundance. The results indicate the existence of a previously unrecognized induction mechanism for lysogenic viruses in the Baltic Sea redoxcline, as the mode of action distinctly differs between the used antibiotics (no virus production within affected cells) and mitomycin C (lysogenic viruses are produced within affected cells). Obtaining accurate experimental data on levels of lysogeny in prokaryotic host cells remains challenging, as relying on mitomycin C alone may severely underestimate lysogeny.
Collapse
Affiliation(s)
- Nicole Köstner
- Department of Limnology and Bio-Oceanography, Center of Functional Ecology, University of Vienna, Vienna, Austria
| | - Klaus Jürgens
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research (IOW), Rostock-Warnemünde, Germany
| | - Matthias Labrenz
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research (IOW), Rostock-Warnemünde, Germany
| | - Gerhard J. Herndl
- Department of Limnology and Bio-Oceanography, Center of Functional Ecology, University of Vienna, Vienna, Austria
- NIOZ, Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Utrecht University, AB Den Burg, The Netherlands
| | - Christian Winter
- Department of Limnology and Bio-Oceanography, Center of Functional Ecology, University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Miller JI, Techtmann S, Fortney J, Mahmoudi N, Joyner D, Liu J, Olesen S, Alm E, Fernandez A, Gardinali P, GaraJayeva N, Askerov FS, Hazen TC. Oil Hydrocarbon Degradation by Caspian Sea Microbial Communities. Front Microbiol 2019; 10:995. [PMID: 31143165 PMCID: PMC6521576 DOI: 10.3389/fmicb.2019.00995] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 04/18/2019] [Indexed: 12/03/2022] Open
Abstract
The Caspian Sea, which is the largest landlocked body of water on the planet, receives substantial annual hydrocarbon input from anthropogenic sources (e.g., industry, agriculture, oil exploration, and extraction) and natural sources (e.g., mud volcanoes and oil seeps). The Caspian Sea also receives substantial amounts of runoff from agricultural and municipal sources, containing nutrients that have caused eutrophication and subsequent hypoxia in the deep, cold waters. The effect of decreasing oxygen saturation and cold temperatures on oil hydrocarbon biodegradation by a microbial community is not well characterized. The purpose of this study was to investigate the effect of oxic and anoxic conditions on oil hydrocarbon biodegradation at cold temperatures by microbial communities derived from the Caspian Sea. Water samples were collected from the Caspian Sea for study in experimental microcosms. Major taxonomic orders observed in the ambient water samples included Flavobacteriales, Actinomycetales, and Oceanospirillales. Microcosms were inoculated with microbial communities from the deepest waters and amended with oil hydrocarbons for 17 days. Hydrocarbon degradation and shifts in microbial community structure were measured. Surprisingly, oil hydrocarbon biodegradation under anoxic conditions exceeded that under oxic conditions; this was particularly evident in the degradation of aromatic hydrocarbons. Important microbial taxa associated with the anoxic microcosms included known oil degraders such as Oceanospirillaceae. This study provides knowledge about the ambient community structure of the Caspian Sea, which serves as an important reference point for future studies. Furthermore, this may be the first report in which anaerobic biodegradation of oil hydrocarbons exceeds aerobic biodegradation.
Collapse
Affiliation(s)
- John I Miller
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, Knoxville, TN, United States.,Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Stephen Techtmann
- Biosciences Division, Michigan Technological University, Houghton, MI, United States
| | - Julian Fortney
- Department of Earth System Science, Stanford University, Stanford, CA, United States
| | - Nagissa Mahmoudi
- Department of Earth and Planetary Sciences, McGill University, Montreal, QC, Canada
| | - Dominique Joyner
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Jiang Liu
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Scott Olesen
- Harvard School of Public Health, Cambridge, MA, United States
| | - Eric Alm
- Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Adolfo Fernandez
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| | - Piero Gardinali
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| | | | | | - Terry C Hazen
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, Knoxville, TN, United States.,Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
8
|
Abstract
Archaea are ubiquitous and abundant members of the marine plankton. Once thought of as rare organisms found in exotic extremes of temperature, pressure, or salinity, archaea are now known in nearly every marine environment. Though frequently referred to collectively, the planktonic archaea actually comprise four major phylogenetic groups, each with its own distinct physiology and ecology. Only one group-the marine Thaumarchaeota-has cultivated representatives, making marine archaea an attractive focus point for the latest developments in cultivation-independent molecular methods. Here, we review the ecology, physiology, and biogeochemical impact of the four archaeal groups using recent insights from cultures and large-scale environmental sequencing studies. We highlight key gaps in our knowledge about the ecological roles of marine archaea in carbon flow and food web interactions. We emphasize the incredible uncultivated diversity within each of the four groups, suggesting there is much more to be done.
Collapse
Affiliation(s)
- Alyson E Santoro
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California 93106, USA;
| | | | | |
Collapse
|
9
|
Holmes DE, Dang Y, Smith JA. Nitrogen cycling during wastewater treatment. ADVANCES IN APPLIED MICROBIOLOGY 2019; 106:113-192. [PMID: 30798802 DOI: 10.1016/bs.aambs.2018.10.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many wastewater treatment plants in the world do not remove reactive nitrogen from wastewater prior to release into the environment. Excess reactive nitrogen not only has a negative impact on human health, it also contributes to air and water pollution, and can cause complex ecosystems to collapse. In order to avoid the deleterious effects of excess reactive nitrogen in the environment, tertiary wastewater treatment practices that ensure the removal of reactive nitrogen species need to be implemented. Many wastewater treatment facilities rely on chemicals for tertiary treatment, however, biological nitrogen removal practices are much more environmentally friendly and cost effective. Therefore, interest in biological treatment is increasing. Biological approaches take advantage of specific groups of microorganisms involved in nitrogen cycling to remove reactive nitrogen from reactor systems by converting ammonia to nitrogen gas. Organisms known to be involved in this process include autotrophic ammonia-oxidizing bacteria, heterotrophic ammonia-oxidizing bacteria, ammonia-oxidizing archaea, anaerobic ammonia oxidizing bacteria (anammox), nitrite-oxidizing bacteria, complete ammonia oxidizers, and dissimilatory nitrate reducing microorganisms. For example, in nitrifying-denitrifying reactors, ammonia- and nitrite-oxidizing bacteria convert ammonia to nitrate and then denitrifying microorganisms reduce nitrate to nonreactive dinitrogen gas. Other nitrogen removal systems (anammox reactors) take advantage of anammox bacteria to convert ammonia to nitrogen gas using NO as an oxidant. A number of promising new biological treatment technologies are emerging and it is hoped that as the cost of these practices goes down more wastewater treatment plants will start to include a tertiary treatment step.
Collapse
|
10
|
Sollai M, Villanueva L, Hopmans EC, Reichart G, Sinninghe Damsté JS. A combined lipidomic and 16S rRNA gene amplicon sequencing approach reveals archaeal sources of intact polar lipids in the stratified Black Sea water column. GEOBIOLOGY 2019; 17:91-109. [PMID: 30281902 PMCID: PMC6586073 DOI: 10.1111/gbi.12316] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/02/2018] [Accepted: 08/21/2018] [Indexed: 05/25/2023]
Abstract
Archaea are important players in marine biogeochemical cycles, and their membrane lipids are useful biomarkers in environmental and geobiological studies. However, many archaeal groups remain uncultured and their lipid composition unknown. Here, we aim to expand the knowledge on archaeal lipid biomarkers and determine the potential sources of those lipids in the water column of the euxinic Black Sea. The archaeal community was evaluated by 16S rRNA gene amplicon sequencing and by quantitative PCR. The archaeal intact polar lipids (IPLs) were investigated by ultra-high-pressure liquid chromatography coupled to high-resolution mass spectrometry. Our study revealed both a complex archaeal community and large changes with water depth in the IPL assemblages. In the oxic/upper suboxic waters (<105 m), the archaeal community was dominated by marine group (MG) I Thaumarchaeota, coinciding with a higher relative abundance of hexose phosphohexose crenarchaeol, a known marker for Thaumarchaeota. In the suboxic waters (80-110 m), MGI Nitrosopumilus sp. dominated and produced predominantly monohexose glycerol dibiphytanyl glycerol tetraethers (GDGTs) and hydroxy-GDGTs. Two clades of MGII Euryarchaeota were present in the oxic and upper suboxic zones in much lower abundances, preventing the detection of their specific IPLs. In the deep sulfidic waters (>110 m), archaea belonging to the DPANN Woesearchaeota, Bathyarchaeota, and ANME-1b clades dominated. Correlation analyses suggest that the IPLs GDGT-0, GDGT-1, and GDGT-2 with two phosphatidylglycerol (PG) head groups and archaeol with a PG, phosphatidylethanolamine, and phosphatidylserine head groups were produced by ANME-1b archaea. Bathyarchaeota represented 55% of the archaea in the deeper part of the euxinic zone and likely produces archaeol with phospho-dihexose and hexose-glucuronic acid head groups.
Collapse
Affiliation(s)
- Martina Sollai
- Departments of Marine Microbiology and Biogeochemistry and Ocean SystemsNIOZ Royal Netherlands Institute for Sea Researchand Utrecht UniversityDen BurgThe Netherlands
| | - Laura Villanueva
- Departments of Marine Microbiology and Biogeochemistry and Ocean SystemsNIOZ Royal Netherlands Institute for Sea Researchand Utrecht UniversityDen BurgThe Netherlands
| | - Ellen C. Hopmans
- Departments of Marine Microbiology and Biogeochemistry and Ocean SystemsNIOZ Royal Netherlands Institute for Sea Researchand Utrecht UniversityDen BurgThe Netherlands
| | - Gert‐Jan Reichart
- Departments of Marine Microbiology and Biogeochemistry and Ocean SystemsNIOZ Royal Netherlands Institute for Sea Researchand Utrecht UniversityDen BurgThe Netherlands
- Department of Earth SciencesFaculty of GeosciencesUniversity of UtrechtUtrechtThe Netherlands
| | - Jaap S. Sinninghe Damsté
- Departments of Marine Microbiology and Biogeochemistry and Ocean SystemsNIOZ Royal Netherlands Institute for Sea Researchand Utrecht UniversityDen BurgThe Netherlands
- Department of Earth SciencesFaculty of GeosciencesUniversity of UtrechtUtrechtThe Netherlands
| |
Collapse
|
11
|
Happel E, Bartl I, Voss M, Riemann L. Extensive nitrification and active ammonia oxidizers in two contrasting coastal systems of the Baltic Sea. Environ Microbiol 2018; 20:2913-2926. [PMID: 29921003 DOI: 10.1111/1462-2920.14293] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 04/30/2018] [Accepted: 05/16/2018] [Indexed: 11/27/2022]
Abstract
Nitrification is important in nitrogen (N) cycling of aquatic environments, but knowledge about its regulation and importance is sparse. Here we examined nitrification and ammonia oxidizers in the Baltic Sea. We investigated two sites with different catchment characteristics (agricultural and forest), the Bay of Gdánsk (south) and the Öre Estuary (north), and measured pelagic nitrification rates and abundance, composition and expression of ammonia monooxygenase (amoA) genes. Highest nitrification rates were found in the nutrient rich Bay of Gdańsk. Interestingly, abundances of ammonia-oxidizing archaea (AOA) and bacteria (AOB) were orders of magnitude lower than reported from other sites. Although AOA were most abundant at both sites, the highest expression levels were from AOB. Interestingly, few AOA and AOB taxa dominated amoA gene expression, with a Nitrosomarinus related phylotype showing widespread expression. AOA and AOB communities differed between sites and depths, respectively, with the composition in rivers being distinct. A storm event, causing an even depth distribution of nitrification and particles in the Bay of Gdańsk, indicated that the presence of particles stimulate nitrification. The study highlights coastal regions as dynamic sites of extensive pelagic nitrification, which may affect local food web dynamics and loss of N mediated by denitrification.
Collapse
Affiliation(s)
- Elisabeth Happel
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Ines Bartl
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research (IOW), Rostock, Germany
| | - Maren Voss
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research (IOW), Rostock, Germany
| | - Lasse Riemann
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| |
Collapse
|
12
|
Marshall A, Phillips L, Longmore A, Tang C, Heidelberg K, Mele P. Primer selection influences abundance estimates of ammonia oxidizing archaea in coastal marine sediments. MARINE ENVIRONMENTAL RESEARCH 2018; 140:90-95. [PMID: 29891388 DOI: 10.1016/j.marenvres.2018.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 06/01/2018] [Accepted: 06/03/2018] [Indexed: 06/08/2023]
Abstract
Quantification of the α-subunit of ammonia monooxygenase (amoA) through PCR is an established technique for estimating the abundance of ammonia oxidizing archaea (AOA) in environmental samples. This study quantified AOA with two established primer sets in 1 cm increments from the sediment surface (0-1 cm) to a depth of 10 cm at two locations within Port Phillip Bay (PPB), Australia. Primer choice had a significant effect on within sample estimates of AOA with copy numbers ranging from 102 to 104 copies per ng DNA. Variation in AOA abundance patterns with increasing sediment depth were site and primer specific. Sequence mismatches between the primer binding region of the isolated amoA sequences from PPB and Nitrosopumilus maritimus SCM1 were identified and may explain the high variation identified between primer estimates. Our results highlight the need for testing multiple primer pairs that target different regions of the AOA amoA sequence prior to large-scale marine sediment environmental studies.
Collapse
Affiliation(s)
- Alexis Marshall
- La Trobe University, AgriBio Centre for AgriBiosciences, 5 Ring Road, Bundoora, Australia; Department of Economic Development, Jobs, Transport and Resources, AgriBio, Centre for AgriBiosciences, 5 Ring Road, Bundoora, Australia.
| | - Lori Phillips
- Agriculture and AgriFood Canada, Harrow Research and Development Centre, Harrow, Ontario, Canada
| | - Andrew Longmore
- Centre for Aquatic Pollution Identification and Management, Melbourne University, Parkville, Australia
| | - Caixian Tang
- La Trobe University, AgriBio Centre for AgriBiosciences, 5 Ring Road, Bundoora, Australia
| | - Karla Heidelberg
- The University of Southern California, Department of Biology, Los Angeles, CA, 90089, USA
| | - Pauline Mele
- La Trobe University, AgriBio Centre for AgriBiosciences, 5 Ring Road, Bundoora, Australia; Department of Economic Development, Jobs, Transport and Resources, AgriBio, Centre for AgriBiosciences, 5 Ring Road, Bundoora, Australia
| |
Collapse
|
13
|
Markussen T, Happel EM, Teikari JE, Huchaiah V, Alneberg J, Andersson AF, Sivonen K, Riemann L, Middelboe M, Kisand V. Coupling biogeochemical process rates and metagenomic blueprints of coastal bacterial assemblages in the context of environmental change. Environ Microbiol 2018; 20:3083-3099. [PMID: 30084235 DOI: 10.1111/1462-2920.14371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 11/28/2022]
Abstract
Bacteria are major drivers of biogeochemical nutrient cycles and energy fluxes in marine environments, yet how bacterial communities respond to environmental change is not well known. Metagenomes allow examination of genetic responses of the entire microbial community to environmental change. However, it is challenging to link metagenomes directly to biogeochemical process rates. Here, we investigate metagenomic responses in natural bacterioplankton communities to simulated environmental stressors in the Baltic Sea, including increased river water input, increased nutrient concentration, and reduced oxygen level. This allowed us to identify informative prokaryotic gene markers, responding to environmental perturbation. Our results demonstrate that metagenomic and metabolic changes in bacterial communities in response to environmental stressors are influenced both by the initial community composition and by the biogeochemical factors shaping the functional response. Furthermore, the different sources of dissolved organic matter (DOM) had the largest impact on metagenomic blueprint. Most prominently, changes in DOM loads influenced specific transporter types reflecting the substrate availability and DOC assimilation and consumption pathways. The results provide new knowledge for developing models of ecosystem structure and biogeochemical cycling in future climate change scenarios and advance our exploration of the potential use of marine microorganisms as markers for environmental conditions.
Collapse
Affiliation(s)
- Trine Markussen
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Elisabeth M Happel
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Jonna E Teikari
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Vimala Huchaiah
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Johannes Alneberg
- KTH Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, Stockholm, Sweden
| | - Anders F Andersson
- KTH Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, Stockholm, Sweden
| | - Kaarina Sivonen
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Lasse Riemann
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Mathias Middelboe
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Veljo Kisand
- Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
14
|
Eglite E, Wodarg D, Dutz J, Wasmund N, Nausch G, Liskow I, Schulz-Bull D, Loick-Wilde N. Strategies of amino acid supply in mesozooplankton during cyanobacteria blooms: a stable nitrogen isotope approach. Ecosphere 2018. [DOI: 10.1002/ecs2.2135] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Elvita Eglite
- Leibniz-Institute for Baltic Sea Research; Seestr. 15 Rostock 18119 Germany
| | - Dirk Wodarg
- Leibniz-Institute for Baltic Sea Research; Seestr. 15 Rostock 18119 Germany
| | - Jörg Dutz
- Leibniz-Institute for Baltic Sea Research; Seestr. 15 Rostock 18119 Germany
| | - Norbert Wasmund
- Leibniz-Institute for Baltic Sea Research; Seestr. 15 Rostock 18119 Germany
| | - Günther Nausch
- Leibniz-Institute for Baltic Sea Research; Seestr. 15 Rostock 18119 Germany
| | - Iris Liskow
- Leibniz-Institute for Baltic Sea Research; Seestr. 15 Rostock 18119 Germany
| | - Detlef Schulz-Bull
- Leibniz-Institute for Baltic Sea Research; Seestr. 15 Rostock 18119 Germany
| | | |
Collapse
|
15
|
Techtman SM, Mahmoudi N, Whitt KT, Campa MF, Fortney JL, Joyner DC, Hazen TC. Comparison of Thaumarchaeotal populations from four deep sea basins. FEMS Microbiol Ecol 2018; 93:4331633. [PMID: 29029137 PMCID: PMC5812500 DOI: 10.1093/femsec/fix128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 09/29/2017] [Indexed: 11/13/2022] Open
Abstract
The nitrogen cycle in the marine environment is strongly affected by ammonia-oxidizing Thaumarchaeota. In some marine settings, Thaumarchaeotes can comprise a large percentage of the prokaryotic population. To better understand the biogeographic patterns of Thaumarchaeotes, we sought to investigate differences in their abundance and phylogenetic diversity between geographically distinct basins. Samples were collected from four marine basins (The Caspian Sea, the Great Australian Bight, and the Central and Eastern Mediterranean). The concentration of bacterial and archaeal 16S rRNA genes and archaeal amoA genes were assessed using qPCR. Minimum entropy decomposition was used to elucidate the fine-scale diversity of Thaumarchaeotes. We demonstrated that there were significant differences in the abundance and diversity of Thaumarchaeotes between these four basins. The diversity of Thaumarchaeotal oligotypes differed between basins with many oligotypes only present in one of the four basins, which suggests that their distribution showed biogeographic patterning. There were also significant differences in Thaumarchaeotal community structure between these basins. This would suggest that geographically distant, yet geochemically similar basins may house distinct Thaumarchaeaotal populations. These findings suggest that Thaumarchaeota are very diverse and that biogeography in part contributes in determining the diversity and distribution of Thaumarchaeotes.
Collapse
Affiliation(s)
- Stephen M Techtman
- Department of Biological Sciences, Michigan Technological University, Houghton MI 49931-1295, USA
| | - Nagissa Mahmoudi
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Kendall T Whitt
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Maria Fernanda Campa
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996, USA.,Bredesen Center, University of Tennessee, Knoxville, TN 37996, USA
| | - Julian L Fortney
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, USA.,Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996, USA
| | - Dominique C Joyner
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, USA.,Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996, USA
| | - Terry C Hazen
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, USA.,Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996, USA.,Bredesen Center, University of Tennessee, Knoxville, TN 37996, USA.,Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996, USA.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.,Department of Microbiology, University of Tennessee, Knoxville, TN 37916, USA.,Institute for a Secure and Sustainable Environment, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
16
|
Suter EA, Pachiadaki M, Taylor GT, Astor Y, Edgcomb VP. Free‐living chemoautotrophic and particle‐attached heterotrophic prokaryotes dominate microbial assemblages along a pelagic redox gradient. Environ Microbiol 2017; 20:693-712. [DOI: 10.1111/1462-2920.13997] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/09/2017] [Accepted: 11/13/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Elizabeth A. Suter
- School of Marine and Atmospheric SciencesStony Brook UniversityStony Brook NY USA
- Department of Biological SciencesWagner CollegeStaten Island NY 10301 USA
| | - Maria Pachiadaki
- Woods Hole Oceanographic InstitutionWoods Hole MA USA
- Bigelow Laboratory for Ocean SciencesEast Boothbay ME USA
| | - Gordon T. Taylor
- School of Marine and Atmospheric SciencesStony Brook UniversityStony Brook NY USA
| | - Yrene Astor
- Fundación La Salle de Ciencias Naturales, EDIMARPorlamar Nueva Esparta Venezuela
| | | |
Collapse
|
17
|
Rogge A, Vogts A, Voss M, Jürgens K, Jost G, Labrenz M. Success of chemolithoautotrophic SUP05 and Sulfurimonas GD17 cells in pelagic Baltic Sea redox zones is facilitated by their lifestyles as K- and r-strategists. Environ Microbiol 2017; 19:2495-2506. [PMID: 28464419 DOI: 10.1111/1462-2920.13783] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/25/2017] [Accepted: 04/25/2017] [Indexed: 11/27/2022]
Abstract
Chemolithoautotrophic sulfur-oxidizing and denitrifying Gamma- (particularly the SUP05 cluster) and Epsilonproteobacteria (predominantly Sulfurimonas subgroup GD17) are assumed to compete for substrates (electron donors and acceptors) in marine pelagic redox gradients. To elucidate their ecological niche separation we performed 34 S0 , 15 NO3- and H13 CO3- stable-isotope incubations with water samples from Baltic Sea suboxic, chemocline and sulfidic zones followed by combined phylogenetic staining and high-resolution secondary ion mass spectrometry of single cells. SUP05 cells were small-sized (0.06-0.09 µm3 ) and most abundant in low-sulfidic to suboxic zones, whereas Sulfurimonas GD17 cells were significantly larger (0.26-0.61 µm3 ) and most abundant at the chemocline and below. Together, SUP05 and GD17 cells accumulated up to 48% of the labelled substrates but calculation of cell volume-specific rates revealed that GD17 cells incorporated labelled substrates significantly faster throughout the redox zone, thereby potentially outcompeting SUP05 especially at high substrate concentrations. Thus, in synopsis with earlier described features of SUP05/GD17 we conclude that their spatially overlapping association in stratified sulfidic zones is facilitated by their different lifestyles: whereas SUP05 cells are streamlined, non-motile K-strategists adapted to low substrate concentrations, GD17 cells are motile r-strategists well adapted to fluctuating substrate and redox conditions.
Collapse
Affiliation(s)
- Andreas Rogge
- Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock-Warnemünde, Germany
| | - Angela Vogts
- Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock-Warnemünde, Germany
| | - Maren Voss
- Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock-Warnemünde, Germany
| | - Klaus Jürgens
- Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock-Warnemünde, Germany
| | - Günter Jost
- Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock-Warnemünde, Germany
| | - Matthias Labrenz
- Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock-Warnemünde, Germany
| |
Collapse
|
18
|
Hong X, Chen Z, Zhao C, Yang S. Nitrogen transformation under different dissolved oxygen levels by the anoxygenic phototrophic bacterium Marichromatium gracile. World J Microbiol Biotechnol 2017; 33:113. [PMID: 28470424 DOI: 10.1007/s11274-017-2280-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/26/2017] [Indexed: 10/19/2022]
Abstract
Marichromatium gracile: YL28 (M. gracile YL28) is an anoxygenic phototrophic bacterial strain that utilizes ammonia, nitrate, or nitrite as its sole nitrogen source during growth. In this study, we investigated the removal and transformation of ammonium, nitrate, and nitrite by M. gracile YL28 grown in a combinatorial culture system of sodium acetate-ammonium, sodium acetate-nitrate and sodium acetate-nitrite in response to different initial dissolved oxygen (DO) levels. In the sodium acetate-ammonium system under aerobic conditions (initial DO = 7.20-7.25 mg/L), we detected a continuous accumulation of nitrate and nitrite. However, under semi-anaerobic conditions (initial DO = 4.08-4.26 mg/L), we observed a temporary accumulation of nitrate and nitrite. Interestingly, under anaerobic conditions (initial DO = 0.36-0.67 mg/L), there was little accumulation of nitrate and nitrite, but an increase in nitrous oxide production. In the sodium acetate-nitrite system, nitrite levels declined slightly under aerobic conditions, and nitrite was completely removed under semi-anaerobic and anaerobic conditions. In addition, M. gracile YL28 was able to grow using nitrite as the sole nitrogen source in situations when nitrogen gas produced by denitrification was eliminated. Taken together, the data indicate that M. gracile YL28 performs simultaneous heterotrophic nitrification and denitrification at low-DO levels and uses nitrite as the sole nitrogen source for growth. Our study is the first to demonstrate that anoxygenic phototrophic bacteria perform heterotrophic ammonia-oxidization and denitrification under anaerobic conditions.
Collapse
Affiliation(s)
- Xuan Hong
- Department of Bioengineering and Biotechnology, Huaqiao University, No. 668 Jimei Ave, Xiamen, 361021, People's Republic of China.,Xiamen Key Laboratory of Marine Medicinal Natural Products and Cell Engineering, Xiamen Medical College, Xiamen, 361008, People's Republic of China
| | - Zhongwei Chen
- Xiamen Key Laboratory of Marine Medicinal Natural Products and Cell Engineering, Xiamen Medical College, Xiamen, 361008, People's Republic of China
| | - Chungui Zhao
- Department of Bioengineering and Biotechnology, Huaqiao University, No. 668 Jimei Ave, Xiamen, 361021, People's Republic of China.
| | - Suping Yang
- Department of Bioengineering and Biotechnology, Huaqiao University, No. 668 Jimei Ave, Xiamen, 361021, People's Republic of China.
| |
Collapse
|
19
|
Reyes C, Schneider D, Lipka M, Thürmer A, Böttcher ME, Friedrich MW. Nitrogen Metabolism Genes from Temperate Marine Sediments. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2017; 19:175-190. [PMID: 28283802 PMCID: PMC5405112 DOI: 10.1007/s10126-017-9741-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 02/05/2017] [Indexed: 05/26/2023]
Abstract
In this study, we analysed metagenomes along with biogeochemical profiles from Skagerrak (SK) and Bothnian Bay (BB) sediments, to trace the prevailing nitrogen pathways. NO3- was present in the top 5 cm below the sediment-water interface at both sites. NH4+ increased with depth below 5 cm where it overlapped with the NO3- zone. Steady-state modelling of NO3- and NH4+ porewater profiles indicates zones of net nitrogen species transformations. Bacterial protease and hydratase genes appeared to make up the bulk of total ammonification genes. Genes involved in ammonia oxidation (amo, hao), denitrification (nir, nor), dissimilatory NO3- reduction to NH4+ (nfr and otr) and in both of the latter two pathways (nar, nap) were also present. Results show ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) are similarly abundant in both sediments. Also, denitrification genes appeared more abundant than DNRA genes. 16S rRNA gene analysis showed that the relative abundance of the nitrifying group Nitrosopumilales and other groups involved in nitrification and denitrification (Nitrobacter, Nitrosomonas, Nitrospira, Nitrosococcus and Nitrosomonas) appeared less abundant in SK sediments compared to BB sediments. Beggiatoa and Thiothrix 16S rRNA genes were also present, suggesting chemolithoautotrophic NO3- reduction to NO2- or NH4+ as a possible pathway. Our results show the metabolic potential for ammonification, nitrification, DNRA and denitrification activities in North Sea and Baltic Sea sediments.
Collapse
Affiliation(s)
- Carolina Reyes
- Microbial Ecophysiology, University of Bremen, Leobener Strasse, D-28359, Bremen, Germany.
- Department of Environmental Geosciences, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
| | - Dominik Schneider
- Department of Genomic and Applied Microbiology, University of Göttingen, Grisebachstrasse 8, D-37077, Göttingen, Germany
| | - Marko Lipka
- Geochemistry and Stable Isotope Biogeochemistry Group, Leibniz Institute for Baltic Sea Research (IOW), Seestrasse 15, D-18119, Warnemünde, Germany
| | - Andrea Thürmer
- Department of Genomic and Applied Microbiology, University of Göttingen, Grisebachstrasse 8, D-37077, Göttingen, Germany
| | - Michael E Böttcher
- Geochemistry and Stable Isotope Biogeochemistry Group, Leibniz Institute for Baltic Sea Research (IOW), Seestrasse 15, D-18119, Warnemünde, Germany
| | - Michael W Friedrich
- Microbial Ecophysiology, University of Bremen, Leobener Strasse, D-28359, Bremen, Germany
| |
Collapse
|
20
|
Hosseinzadeh P, Tian S, Marshall NM, Hemp J, Mullen T, Nilges MJ, Gao YG, Robinson H, Stahl DA, Gennis RB, Lu Y. A Purple Cupredoxin from Nitrosopumilus maritimus Containing a Mononuclear Type 1 Copper Center with an Open Binding Site. J Am Chem Soc 2016; 138:6324-7. [DOI: 10.1021/jacs.5b13128] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Howard Robinson
- Biology
Department, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - David A. Stahl
- Department
of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
| | | | | |
Collapse
|
21
|
Learman DR, Henson MW, Thrash JC, Temperton B, Brannock PM, Santos SR, Mahon AR, Halanych KM. Biogeochemical and Microbial Variation across 5500 km of Antarctic Surface Sediment Implicates Organic Matter as a Driver of Benthic Community Structure. Front Microbiol 2016; 7:284. [PMID: 27047451 PMCID: PMC4803750 DOI: 10.3389/fmicb.2016.00284] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/22/2016] [Indexed: 02/01/2023] Open
Abstract
Western Antarctica, one of the fastest warming locations on Earth, is a unique environment that is underexplored with regards to biodiversity. Although pelagic microbial communities in the Southern Ocean and coastal Antarctic waters have been well-studied, there are fewer investigations of benthic communities and most have a focused geographic range. We sampled surface sediment from 24 sites across a 5500 km region of Western Antarctica (covering the Ross Sea to the Weddell Sea) to examine relationships between microbial communities and sediment geochemistry. Sequencing of the 16S and 18S rRNA genes showed microbial communities in sediments from the Antarctic Peninsula (AP) and Western Antarctica (WA), including the Ross, Amundsen, and Bellingshausen Seas, could be distinguished by correlations with organic matter concentrations and stable isotope fractionation (total organic carbon; TOC, total nitrogen; TN, and δ13C). Overall, samples from the AP were higher in nutrient content (TOC, TN, and NH4+) and communities in these samples had higher relative abundances of operational taxonomic units (OTUs) classified as the diatom, Chaetoceros, a marine cercozoan, and four OTUs classified as Flammeovirgaceae or Flavobacteria. As these OTUs were strongly correlated with TOC, the data suggests the diatoms could be a source of organic matter and the Bacteroidetes and cercozoan are grazers that consume the organic matter. Additionally, samples from WA have lower nutrients and were dominated by Thaumarchaeota, which could be related to their known ability to thrive as lithotrophs. This study documents the largest analysis of benthic microbial communities to date in the Southern Ocean, representing almost half the continental shoreline of Antarctica, and documents trophic interactions and coupling of pelagic and benthic communities. Our results indicate potential modifications in carbon sequestration processes related to change in community composition, identifying a prospective mechanism that links climate change to carbon availability.
Collapse
Affiliation(s)
- Deric R Learman
- Department of Biology, Institute for Great Lakes Research, Central Michigan University Mt. Pleasant, MI, USA
| | - Michael W Henson
- Department of Biological Sciences, Louisiana State University Baton Rouge, LA, USA
| | - J Cameron Thrash
- Department of Biological Sciences, Louisiana State University Baton Rouge, LA, USA
| | - Ben Temperton
- Department of Biosciences, University of Exeter Exeter, UK
| | - Pamela M Brannock
- Department of Biological Sciences, Auburn University Auburn, AL, USA
| | - Scott R Santos
- Department of Biological Sciences, Auburn University Auburn, AL, USA
| | - Andrew R Mahon
- Department of Biology, Institute for Great Lakes Research, Central Michigan University Mt. Pleasant, MI, USA
| | | |
Collapse
|
22
|
Vetterli A, Hietanen S, Leskinen E. Spatial and temporal dynamics of ammonia oxidizers in the sediments of the Gulf of Finland, Baltic Sea. MARINE ENVIRONMENTAL RESEARCH 2016; 113:153-63. [PMID: 26722795 DOI: 10.1016/j.marenvres.2015.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 05/03/2023]
Abstract
The diversity and dynamics of ammonia-oxidizing bacteria (AOB) and archaea (AOA) nitrifying communities in the sediments of the eutrophic Gulf of Finland (GoF) were investigated. Using clone libraries of ammonia monooxygenase (amoA) gene fragments and terminal restriction fragment length polymorphism (TRFLP), we found a low richness of both AOB and AOA. The AOB amoA phylogeny matched that of AOB 16S ribosomal genes from the same samples. AOA communities were characterized by strong spatial variation while AOB communities showed notable temporal patterns. At open sea sites, where transient anoxic conditions prevail, richness of both AOA and AOB was lowest and communities were dominated by organisms with gene signatures unique to the GoF. Given the importance of nitrification as a link between the fixation of nitrogen and its removal from aquatic environments, the low diversity of ammonia-oxidizing microbes across the GoF could be of relevance for ecosystem resilience in the face of rapid global environmental changes.
Collapse
Affiliation(s)
- Adrien Vetterli
- Department of Environmental Sciences, University of Helsinki, P.O. Box 65, 00014, Finland; Tvärminne Zoological Station, J.A. Palménin Tie 260, 10900, Hanko, Finland.
| | - Susanna Hietanen
- Department of Environmental Sciences, University of Helsinki, P.O. Box 65, 00014, Finland; Tvärminne Zoological Station, J.A. Palménin Tie 260, 10900, Hanko, Finland
| | - Elina Leskinen
- Department of Environmental Sciences, University of Helsinki, P.O. Box 65, 00014, Finland; Tvärminne Zoological Station, J.A. Palménin Tie 260, 10900, Hanko, Finland
| |
Collapse
|
23
|
Microbial Community Composition, Functions, and Activities in the Gulf of Mexico 1 Year after the Deepwater Horizon Accident. Appl Environ Microbiol 2015; 81:5855-66. [PMID: 26092461 DOI: 10.1128/aem.01470-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/14/2015] [Indexed: 11/20/2022] Open
Abstract
Several studies have assessed the effects of the released oil on microbes, either during or immediately after the Deepwater Horizon accident. However, little is known about the potential longer-term persistent effects on microbial communities and their functions. In this study, one water column station near the wellhead (3.78 km southwest of the wellhead), one water column reference station outside the affected area (37.77 km southeast of the wellhead), and deep-sea sediments near the wellhead (3.66 km southeast of the wellhead) were sampled 1 year after the capping of the well. In order to analyze microbial community composition, function, and activity, we used metagenomics, metatranscriptomics, and mineralization assays. Mineralization of hexadecane was significantly higher at the wellhead station at a depth of ∼1,200 m than at the reference station. Community composition based on taxonomical or functional data showed that the samples taken at a depth of ∼1,200 m were significantly more dissimilar between the stations than at other depths (surface, 100 m, 750 m, and >1,500 m). Both Bacteria and Archaea showed reduced activity at depths of ∼1,200 m when the wellhead station was compared to the reference station, and their activity was significantly higher in surficial sediments than in 10-cm sediments. Surficial sediments also harbored significantly different active genera than did 5- and 10-cm sediments. For the remaining microbial parameters assessed, no significant differences could be observed between the wellhead and reference stations and between surface and 5- to 10-cm-deep sediments.
Collapse
|
24
|
Ininbergs K, Bergman B, Larsson J, Ekman M. Microbial metagenomics in the Baltic Sea: Recent advancements and prospects for environmental monitoring. AMBIO 2015; 44 Suppl 3:439-50. [PMID: 26022326 PMCID: PMC4447691 DOI: 10.1007/s13280-015-0663-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Metagenomics refers to the analysis of DNA from a whole community. Metagenomic sequencing of environmental DNA has greatly improved our knowledge of the identity and function of microorganisms in aquatic, terrestrial, and human biomes. Although open oceans have been the primary focus of studies on aquatic microbes, coastal and brackish ecosystems are now being surveyed. Here, we review so far published studies on microbes in the Baltic Sea, one of the world's largest brackish water bodies, using high throughput sequencing of environmental DNA and RNA. Collectively the data illustrate that Baltic Sea microbes are unique and highly diverse, and well adapted to this brackish-water ecosystem, findings that represent a novel base-line knowledge necessary for monitoring purposes and a sustainable management. More specifically, the data relate to environmental drivers for microbial community composition and function, assessments of the microbial biodiversity, adaptations and role of microbes in the nitrogen cycle, and microbial genome assembly from metagenomic sequences. With these discoveries as background, prospects of using metagenomics for Baltic Sea environmental monitoring are discussed.
Collapse
Affiliation(s)
- Karolina Ininbergs
- Science for Life Laboratory, Department of Ecology, Environment and Plant Sciences, Stockholm University, Box 1031, 171 21, Solna, Sweden,
| | | | | | | |
Collapse
|
25
|
La Cono V, Smedile F, La Spada G, Arcadi E, Genovese M, Ruggeri G, Genovese L, Giuliano L, Yakimov MM. Shifts in the meso- and bathypelagic archaea communities composition during recovery and short-term handling of decompressed deep-sea samples. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:450-459. [PMID: 25682761 DOI: 10.1111/1758-2229.12272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 02/10/2015] [Indexed: 06/04/2023]
Abstract
Dark ocean microbial communities are actively involved in chemoautotrophic and anaplerotic fixation of bicarbonate. Thus, aphotic pelagic realm of the ocean might represent a significant sink of CO2 and source of primary production. However, the estimated metabolic activities in the dark ocean are fraught with uncertainties. Typically, deep-sea samples are recovered to the sea surface for downstream processing on deck. Shifts in ambient settings, associated with such treatments, can likely change the metabolic activity and community structure of deep-sea adapted autochthonous microbial populations. To estimate influence of recovery and short-term handling of deep-sea samples, we monitored the succession of bathypelagic microbial community during its 3 days long on deck incubation. We demonstrated that at the end of exposition, the deep-sea archaeal population decreased threefold, whereas the bacterial fraction doubled in size. As revealed by phylogenetic analyses of amoA gene transcripts, dominance of the active ammonium-oxidizing bathypelagic Thaumarchaeota groups shifted over time very fast. These findings demonstrated the simultaneous existence of various 'deep-sea ecotypes', differentially reacting to the sampling and downstream handling. Our study supports the hypothesis that metabolically active members of meso- and bathypelagic Thaumarchaeota possess the habitat-specific distribution, metabolic complexity and genetic divergence at subpopulation level.
Collapse
Affiliation(s)
- Violetta La Cono
- Institute for Coastal Marine Environment, CNR, Spianata S. Raineri 86, 98122, Messina, Italy
| | - Francesco Smedile
- Institute for Coastal Marine Environment, CNR, Spianata S. Raineri 86, 98122, Messina, Italy
| | - Gina La Spada
- Institute for Coastal Marine Environment, CNR, Spianata S. Raineri 86, 98122, Messina, Italy
| | - Erika Arcadi
- Institute for Coastal Marine Environment, CNR, Spianata S. Raineri 86, 98122, Messina, Italy
| | - Maria Genovese
- Institute for Coastal Marine Environment, CNR, Spianata S. Raineri 86, 98122, Messina, Italy
| | - Gioacchino Ruggeri
- Institute for Coastal Marine Environment, CNR, Spianata S. Raineri 86, 98122, Messina, Italy
| | - Lucrezia Genovese
- Institute for Coastal Marine Environment, CNR, Spianata S. Raineri 86, 98122, Messina, Italy
| | - Laura Giuliano
- Institute for Coastal Marine Environment, CNR, Spianata S. Raineri 86, 98122, Messina, Italy
- Mediterranean Science Commission (CIESM), 16 bd de Suisse, Monte Carlo, 98000, Monaco
| | - Michail M Yakimov
- Institute for Coastal Marine Environment, CNR, Spianata S. Raineri 86, 98122, Messina, Italy
| |
Collapse
|
26
|
Fitzgerald CM, Camejo P, Oshlag JZ, Noguera DR. Ammonia-oxidizing microbial communities in reactors with efficient nitrification at low-dissolved oxygen. WATER RESEARCH 2015; 70:38-51. [PMID: 25506762 PMCID: PMC4564296 DOI: 10.1016/j.watres.2014.11.041] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 11/14/2014] [Accepted: 11/17/2014] [Indexed: 05/05/2023]
Abstract
Ammonia-oxidizing microbial communities involved in ammonia oxidation under low dissolved oxygen (DO) conditions (<0.3 mg/L) were investigated using chemostat reactors. One lab-scale reactor (NS_LowDO) was seeded with sludge from a full-scale wastewater treatment plant (WWTP) not adapted to low-DO nitrification, while a second reactor (JP_LowDO) was seeded with sludge from a full-scale WWTP already achieving low-DO nitrifiaction. The experimental evidence from quantitative PCR, rDNA tag pyrosequencing, and fluorescence in situ hybridization (FISH) suggested that ammonia-oxidizing bacteria (AOB) in the Nitrosomonas genus were responsible for low-DO nitrification in the NS_LowDO reactor, whereas in the JP_LowDO reactor nitrification was not associated with any known ammonia-oxidizing prokaryote. Neither reactor had a significant population of ammonia-oxidizing archaea (AOA) or anaerobic ammonium oxidation (anammox) organisms. Organisms isolated from JP_LowDO were capable of autotrophic and heterotrophic ammonia utilization, albeit without stoichiometric accumulation of nitrite or nitrate. Based on the experimental evidence we propose that Pseudomonas, Xanthomonadaceae, Rhodococcus, and Sphingomonas are involved in nitrification under low-DO conditions.
Collapse
Affiliation(s)
- Colin M Fitzgerald
- Department of Civil and Environmental Engineering, University of Wisconsin - Madison, 1415 Engineering Drive, Madison, WI 53706, USA.
| | - Pamela Camejo
- Department of Civil and Environmental Engineering, University of Wisconsin - Madison, 1415 Engineering Drive, Madison, WI 53706, USA.
| | - J Zachary Oshlag
- Department of Civil and Environmental Engineering, University of Wisconsin - Madison, 1415 Engineering Drive, Madison, WI 53706, USA.
| | - Daniel R Noguera
- Department of Civil and Environmental Engineering, University of Wisconsin - Madison, 1415 Engineering Drive, Madison, WI 53706, USA.
| |
Collapse
|
27
|
Lindh MV, Sjöstedt J, Andersson AF, Baltar F, Hugerth LW, Lundin D, Muthusamy S, Legrand C, Pinhassi J. Disentangling seasonal bacterioplankton population dynamics by high-frequency sampling. Environ Microbiol 2015; 17:2459-76. [PMID: 25403576 DOI: 10.1111/1462-2920.12720] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 11/11/2014] [Accepted: 11/11/2014] [Indexed: 01/08/2023]
Abstract
Multiyear comparisons of bacterioplankton succession reveal that environmental conditions drive community shifts with repeatable patterns between years. However, corresponding insight into bacterioplankton dynamics at a temporal resolution relevant for detailed examination of variation and characteristics of specific populations within years is essentially lacking. During 1 year, we collected 46 samples in the Baltic Sea for assessing bacterial community composition by 16S rRNA gene pyrosequencing (nearly twice weekly during productive season). Beta-diversity analysis showed distinct clustering of samples, attributable to seemingly synchronous temporal transitions among populations (populations defined by 97% 16S rRNA gene sequence identity). A wide spectrum of bacterioplankton dynamics was evident, where divergent temporal patterns resulted both from pronounced differences in relative abundance and presence/absence of populations. Rates of change in relative abundance calculated for individual populations ranged from 0.23 to 1.79 day(-1) . Populations that were persistently dominant, transiently abundant or generally rare were found in several major bacterial groups, implying evolution has favoured a similar variety of life strategies within these groups. These findings suggest that high temporal resolution sampling allows constraining the timescales and frequencies at which distinct populations transition between being abundant or rare, thus potentially providing clues about physical, chemical or biological forcing on bacterioplankton community structure.
Collapse
Affiliation(s)
- Markus V Lindh
- Centre for Ecology and Evolution in Microbial model Systems - EEMiS, Linnaeus University, Kalmar, SE-39182, Sweden
| | - Johanna Sjöstedt
- Centre for Ecology and Evolution in Microbial model Systems - EEMiS, Linnaeus University, Kalmar, SE-39182, Sweden
| | - Anders F Andersson
- Science for Life Laboratory, KTH Royal Institute of Technology, School of Biotechnology, Stockholm, SE-10691, Sweden
| | - Federico Baltar
- Centre for Ecology and Evolution in Microbial model Systems - EEMiS, Linnaeus University, Kalmar, SE-39182, Sweden.,Department of Marine Sciences, University of Otago, PO Box 56, Dunedin, NZ-9054, New Zealand
| | - Luisa W Hugerth
- Science for Life Laboratory, KTH Royal Institute of Technology, School of Biotechnology, Stockholm, SE-10691, Sweden
| | - Daniel Lundin
- Centre for Ecology and Evolution in Microbial model Systems - EEMiS, Linnaeus University, Kalmar, SE-39182, Sweden
| | - Saraladevi Muthusamy
- Centre for Ecology and Evolution in Microbial model Systems - EEMiS, Linnaeus University, Kalmar, SE-39182, Sweden
| | - Catherine Legrand
- Centre for Ecology and Evolution in Microbial model Systems - EEMiS, Linnaeus University, Kalmar, SE-39182, Sweden
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial model Systems - EEMiS, Linnaeus University, Kalmar, SE-39182, Sweden
| |
Collapse
|
28
|
Berg C, Listmann L, Vandieken V, Vogts A, Jürgens K. Chemoautotrophic growth of ammonia-oxidizing Thaumarchaeota enriched from a pelagic redox gradient in the Baltic Sea. Front Microbiol 2015; 5:786. [PMID: 25642221 PMCID: PMC4295551 DOI: 10.3389/fmicb.2014.00786] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/21/2014] [Indexed: 11/15/2022] Open
Abstract
Ammonia-oxidizing archaea (AOA) are an important component of the planktonic community in aquatic habitats, linking nitrogen and carbon cycles through nitrification and carbon fixation. Therefore, measurements of these processes in culture-based experiments can provide insights into their contributions to energy conservation and biomass production by specific AOA. In this study, by enriching AOA from a brackish, oxygen-depleted water-column in the Landsort Deep, central Baltic Sea, we were able to investigate ammonium oxidation, chemoautotrophy, and growth in seawater batch experiments. The highly enriched culture consisted of up to 97% archaea, with maximal archaeal numbers of 2.9 × 107 cells mL−1. Phylogenetic analysis of the 16S rRNA and ammonia monooxygenase subunit A (amoA) gene sequences revealed an affiliation with assemblages from low-salinity and freshwater habitats, with Candidatus Nitrosoarchaeum limnia as the closest relative. Growth correlated significantly with nitrite production, ammonium consumption, and CO2 fixation, which occurred at a ratio of 10 atoms N oxidized per 1 atom C fixed. According to the carbon balance, AOA biomass production can be entirely explained by chemoautotrophy. The cellular carbon content was estimated to be 9 fg C per cell. Single-cell-based 13C and 15N labeling experiments and analysis by nano-scale secondary ion mass spectrometry provided further evidence that cellular carbon was derived from bicarbonate and that ammonium was taken up by the cells. Our study therefore revealed that growth by an AOA belonging to the genus Nitrosoarchaeum can be sustained largely by chemoautotrophy.
Collapse
Affiliation(s)
- Carlo Berg
- Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW) Rostock, Germany
| | - Luisa Listmann
- Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW) Rostock, Germany
| | - Verona Vandieken
- Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW) Rostock, Germany ; Paleomicrobiology Group, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg Oldenburg, Germany
| | - Angela Vogts
- Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW) Rostock, Germany
| | - Klaus Jürgens
- Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW) Rostock, Germany
| |
Collapse
|
29
|
Berg C, Vandieken V, Thamdrup B, Jürgens K. Significance of archaeal nitrification in hypoxic waters of the Baltic Sea. ISME JOURNAL 2014; 9:1319-32. [PMID: 25423026 DOI: 10.1038/ismej.2014.218] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/25/2014] [Accepted: 10/03/2014] [Indexed: 11/09/2022]
Abstract
Ammonia-oxidizing archaea (AOA) of the phylum Thaumarchaeota are widespread, and their abundance in many terrestrial and aquatic ecosystems suggests a prominent role in nitrification. AOA also occur in high numbers in oxygen-deficient marine environments, such as the pelagic redox gradients of the central Baltic Sea; however, data on archaeal nitrification rates are scarce and little is known about the factors, for example sulfide, that regulate nitrification in this system. In the present work, we assessed the contribution of AOA to ammonia oxidation rates in Baltic deep basins and elucidated the impact of sulfide on this process. Rate measurements with (15)N-labeled ammonium, CO(2) dark fixation measurements and quantification of AOA by catalyzed reporter deposition-fluorescence in situ hybridization revealed that among the three investigated sites the highest potential nitrification rates (122-884 nmol l(-1)per day) were measured within gradients of decreasing oxygen, where thaumarchaeotal abundance was maximal (2.5-6.9 × 10(5) cells per ml) and CO(2) fixation elevated. In the presence of the archaeal-specific inhibitor GC(7), nitrification was reduced by 86-100%, confirming the assumed dominance of AOA in this process. In samples spiked with sulfide at concentrations similar to those of in situ conditions, nitrification activity was inhibited but persisted at reduced rates. This result together with the substantial nitrification potential detected in sulfidic waters suggests the tolerance of AOA to periodic mixing of anoxic and sulfidic waters. It begs the question of whether the globally distributed Thaumarchaeota respond similarly in other stratified water columns or whether the observed robustness against sulfide is a specific feature of the thaumarchaeotal subcluster present in the Baltic Deeps.
Collapse
Affiliation(s)
- Carlo Berg
- 1] Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany [2] Stockholm University, Science for Life Laboratory, Stockholm, Sweden
| | - Verona Vandieken
- 1] Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany [2] Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Oldenburg, Germany
| | - Bo Thamdrup
- Nordic Center for Earth Evolution (NordCEE) and Department of Biology, University of Southern Denmark (SDU), Odense, Denmark
| | - Klaus Jürgens
- Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
| |
Collapse
|
30
|
Thomas C, Ionescu D, Ariztegui D. Archaeal populations in two distinct sedimentary facies of the subsurface of the Dead Sea. Mar Genomics 2014; 17:53-62. [PMID: 25224966 DOI: 10.1016/j.margen.2014.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 09/02/2014] [Accepted: 09/02/2014] [Indexed: 11/24/2022]
Abstract
Archaeal metabolism was studied in aragonitic and gypsum facies of the Dead Sea subsurface using high-throughput DNA sequencing. We show that the communities are well adapted to the peculiar environment of the Dead Sea subsurface. They harbor the necessary genes to deal with osmotic pressure using high- and low-salt-in strategies, and to cope with unusually high concentrations of heavy metals. Methanogenesis was identified for the first time in the Dead Sea and appears to be an important metabolism in the aragonite sediment. Fermentation of residual organic matter, probably performed by some members of the Halobacteria class is common to both types of sediments. The latter group represents more than 95% of the taxonomically identifiable Archaea in the metagenome of the gypsum sediment. The potential for sulfur reduction has also been revealed and is associated in the sediment with EPS degradation and Fe-S mineralization as revealed by SEM imaging. Overall, we show that distinct communities of Archaea are associated with the two different facies of the Dead Sea, and are adapted to the harsh chemistry of its subsurface, in different ways.
Collapse
Affiliation(s)
- C Thomas
- Department of Earth Sciences, University of Geneva, Switzerland.
| | - D Ionescu
- Leibniz Institute for Freshwater Ecology and Inland Fisheries, Stechlin, Germany; Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - D Ariztegui
- Department of Earth Sciences, University of Geneva, Switzerland
| | | |
Collapse
|
31
|
Besaury L, Ghiglione JF, Quillet L. Abundance, activity, and diversity of archaeal and bacterial communities in both uncontaminated and highly copper-contaminated marine sediments. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:230-242. [PMID: 24072336 DOI: 10.1007/s10126-013-9542-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 09/10/2013] [Indexed: 06/02/2023]
Abstract
We analyzed the impact of copper mine tailing discharges on benthic Archaea and Bacteria around the city of Chanaral in northern Chile. Quantitative PCR (Q-PCR) showed that the bacteria dominated the prokaryotic community at both sites, but only the bacteria showed a decrease in abundance in the copper-contaminated site. Q-PCR on reverse transcripts indicated a higher activity of both bacterial and archaeal communities in the contaminated site, suggesting an adaptation of the two communities to copper. This hypothesis was reinforced by the concomitant augmentation of the copper-resistant copA gene coding for a P-type ATP-ase pump in the contaminated site. The metabolically active bacterial community of the contaminated site was dominated by Gammaproteobacteria related to Ectothiorhodospiraceae and Chromatiaceae and by Alphaproteobacteria phylum related to Rhodobacteraceae. The metabolically active archaeal community was dominated by one lineage belonging to unclassified Euryarchaeota and to methanogenic Archaea.
Collapse
Affiliation(s)
- Ludovic Besaury
- Faculté des Sciences, CNRS UMR 6143-M2C, Groupe de Microbiologie, Université de Rouen, Place Emile Blondel, 76821, Mont Saint Aignan Cedex, France,
| | | | | |
Collapse
|
32
|
Differential contributions of archaeal ammonia oxidizer ecotypes to nitrification in coastal surface waters. ISME JOURNAL 2014; 8:1704-14. [PMID: 24553472 DOI: 10.1038/ismej.2014.11] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 12/21/2013] [Accepted: 01/06/2014] [Indexed: 11/09/2022]
Abstract
The occurrence of nitrification in the oceanic water column has implications extending from local effects on the structure and activity of phytoplankton communities to broader impacts on the speciation of nitrogenous nutrients and production of nitrous oxide. The ammonia-oxidizing archaea, responsible for carrying out the majority of nitrification in the sea, are present in the marine water column as two taxonomically distinct groups. Water column group A (WCA) organisms are detected at all depths, whereas Water column group B (WCB) are present primarily below the photic zone. An open question in marine biogeochemistry is whether the taxonomic definition of WCA and WCB organisms and their observed distributions correspond to distinct ecological and biogeochemical niches. We used the natural gradients in physicochemical and biological properties that upwelling establishes in surface waters to study their roles in nitrification, and how their activity--ascertained from quantification of ecotype-specific ammonia monooxygenase (amoA) genes and transcripts--varies in response to environmental fluctuations. Our results indicate a role for both ecotypes in nitrification in Monterey Bay surface waters. However, their respective contributions vary, due to their different sensitivities to surface water conditions. WCA organisms exhibited a remarkably consistent level of activity and their contribution to nitrification appears to be related to community size. WCB activity was less consistent and primarily constrained to colder, high nutrient and low chlorophyll waters. Overall, the results of our characterization yielded a strong, potentially predictive, relationship between archaeal amoA gene abundance and the rate of nitrification.
Collapse
|
33
|
Kilias SP, Nomikou P, Papanikolaou D, Polymenakou PN, Godelitsas A, Argyraki A, Carey S, Gamaletsos P, Mertzimekis TJ, Stathopoulou E, Goettlicher J, Steininger R, Betzelou K, Livanos I, Christakis C, Bell KC, Scoullos M. New insights into hydrothermal vent processes in the unique shallow-submarine arc-volcano, Kolumbo (Santorini), Greece. Sci Rep 2014; 3:2421. [PMID: 23939372 PMCID: PMC3741630 DOI: 10.1038/srep02421] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 07/23/2013] [Indexed: 11/11/2022] Open
Abstract
We report on integrated geomorphological, mineralogical, geochemical and biological investigations of the hydrothermal vent field located on the floor of the density-stratified acidic (pH ~ 5) crater of the Kolumbo shallow-submarine arc-volcano, near Santorini. Kolumbo features rare geodynamic setting at convergent boundaries, where arc-volcanism and seafloor hydrothermal activity are occurring in thinned continental crust. Special focus is given to unique enrichments of polymetallic spires in Sb and Tl (±Hg, As, Au, Ag, Zn) indicating a new hybrid seafloor analogue of epithermal-to-volcanic-hosted-massive-sulphide deposits. Iron microbial-mat analyses reveal dominating ferrihydrite-type phases, and high-proportion of microbial sequences akin to "Nitrosopumilus maritimus", a mesophilic Thaumarchaeota strain capable of chemoautotrophic growth on hydrothermal ammonia and CO2. Our findings highlight that acidic shallow-submarine hydrothermal vents nourish marine ecosystems in which nitrifying Archaea are important and suggest ferrihydrite-type Fe3+-(hydrated)-oxyhydroxides in associated low-temperature iron mats are formed by anaerobic Fe2+-oxidation, dependent on microbially produced nitrate.
Collapse
Affiliation(s)
- Stephanos P Kilias
- National and Kapodistrian University of Athens, Faculty of Geology and Geoenvironment, Panepistimiopoli Zografou, Athens, Greece.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Enrichment and genome sequence of the group I.1a ammonia-oxidizing Archaeon "Ca. Nitrosotenuis uzonensis" representing a clade globally distributed in thermal habitats. PLoS One 2013; 8:e80835. [PMID: 24278328 PMCID: PMC3835317 DOI: 10.1371/journal.pone.0080835] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/14/2013] [Indexed: 11/19/2022] Open
Abstract
The discovery of ammonia-oxidizing archaea (AOA) of the phylum Thaumarchaeota and the high abundance of archaeal ammonia monooxygenase subunit A encoding gene sequences in many environments have extended our perception of nitrifying microbial communities. Moreover, AOA are the only aerobic ammonia oxidizers known to be active in geothermal environments. Molecular data indicate that in many globally distributed terrestrial high-temperature habits a thaumarchaeotal lineage within the Nitrosopumilus cluster (also called “marine” group I.1a) thrives, but these microbes have neither been isolated from these systems nor functionally characterized in situ yet. In this study, we report on the enrichment and genomic characterization of a representative of this lineage from a thermal spring in Kamchatka. This thaumarchaeote, provisionally classified as “Candidatus Nitrosotenuis uzonensis”, is a moderately thermophilic, non-halophilic, chemolithoautotrophic ammonia oxidizer. The nearly complete genome sequence (assembled into a single scaffold) of this AOA confirmed the presence of the typical thaumarchaeotal pathways for ammonia oxidation and carbon fixation, and indicated its ability to produce coenzyme F420 and to chemotactically react to its environment. Interestingly, like members of the genus Nitrosoarchaeum, “Candidatus N. uzonensis” also possesses a putative artubulin-encoding gene. Genome comparisons to related AOA with available genome sequences confirmed that the newly cultured AOA has an average nucleotide identity far below the species threshold and revealed a substantial degree of genomic plasticity with unique genomic regions in “Ca. N. uzonensis”, which potentially include genetic determinants of ecological niche differentiation.
Collapse
|
35
|
Thureborn P, Lundin D, Plathan J, Poole AM, Sjöberg BM, Sjöling S. A metagenomics transect into the deepest point of the Baltic Sea reveals clear stratification of microbial functional capacities. PLoS One 2013; 8:e74983. [PMID: 24086414 PMCID: PMC3781128 DOI: 10.1371/journal.pone.0074983] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/06/2013] [Indexed: 11/27/2022] Open
Abstract
The Baltic Sea is characterized by hyposaline surface waters, hypoxic and anoxic deep waters and sediments. These conditions, which in turn lead to a steep oxygen gradient, are particularly evident at Landsort Deep in the Baltic Proper. Given these substantial differences in environmental parameters at Landsort Deep, we performed a metagenomic census spanning surface to sediment to establish whether the microbial communities at this site are as stratified as the physical environment. We report strong stratification across a depth transect for both functional capacity and taxonomic affiliation, with functional capacity corresponding most closely to key environmental parameters of oxygen, salinity and temperature. We report similarities in functional capacity between the hypoxic community and hadal zone communities, underscoring the substantial degree of eutrophication in the Baltic Proper. Reconstruction of the nitrogen cycle at Landsort deep shows potential for syntrophy between archaeal ammonium oxidizers and bacterial denitrification at anoxic depths, while anaerobic ammonium oxidation genes are absent, despite substantial ammonium levels below the chemocline. Our census also reveals enrichment in genetic prerequisites for a copiotrophic lifestyle and resistance mechanisms reflecting adaptation to prevalent eutrophic conditions and the accumulation of environmental pollutants resulting from ongoing anthropogenic pressures in the Baltic Sea.
Collapse
Affiliation(s)
- Petter Thureborn
- School of Natural Sciences and Environmental Studies, Södertörn University, Huddinge, Sweden
- Department of Molecular Biology and Functional Genomics, Stockholm University, Stockholm, Sweden
- * E-mail:
| | - Daniel Lundin
- School of Natural Sciences and Environmental Studies, Södertörn University, Huddinge, Sweden
- Science for Life Laboratories, Royal Institute of Technology, Solna, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Josefin Plathan
- Department of Molecular Biology and Functional Genomics, Stockholm University, Stockholm, Sweden
| | - Anthony M. Poole
- Department of Molecular Biology and Functional Genomics, Stockholm University, Stockholm, Sweden
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Britt-Marie Sjöberg
- Department of Molecular Biology and Functional Genomics, Stockholm University, Stockholm, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Sara Sjöling
- School of Natural Sciences and Environmental Studies, Södertörn University, Huddinge, Sweden
| |
Collapse
|
36
|
Transcriptional response of the archaeal ammonia oxidizer Nitrosopumilus maritimus to low and environmentally relevant ammonia concentrations. Appl Environ Microbiol 2013; 79:6911-6. [PMID: 23995944 DOI: 10.1128/aem.02028-13] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of chemoautotrophic ammonia-oxidizing archaea to compete for ammonia among marine microorganisms at low ambient concentrations has been in part attributed to their extremely high affinity for ammonia, but as yet there is no mechanistic understanding of supporting metabolism. We examined transcription of selected genes for anabolic functions (CO2 fixation, ammonia transport, and cell wall synthesis) and a central catabolic function (ammonia oxidation) in the thaumarchaeon Nitrosopumilus maritimus SCM1 growing at two ammonia concentrations, as measured by combined ammonia and ammonium, one well above the Km for ammonia oxidation (∼500 μM) and the other well below the Km (<10 nM). Transcript levels were generally immediately and differentially repressed when cells transitioned from ammonia-replete to ammonia-limiting conditions. Transcript levels for ammonia oxidation, CO2 fixation, and one of the ammonia transport genes were approximately the same at high and low ammonia availability. Transcripts for all analyzed genes decreased with time in the complete absence of ammonia, but with various rates of decay. The new steady-state mRNA levels established are presumably more reflective of the natural physiological state of ammonia-oxidizing archaea and offer a reference for interpreting message abundance patterns in the natural environment.
Collapse
|
37
|
Berg C, Beckmann S, Jost G, Labrenz M, Jürgens K. Acetate-utilizing bacteria at an oxic-anoxic interface in the Baltic Sea. FEMS Microbiol Ecol 2013; 85:251-61. [PMID: 23521397 DOI: 10.1111/1574-6941.12114] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 03/05/2013] [Accepted: 03/14/2013] [Indexed: 11/30/2022] Open
Abstract
Pelagic redoxclines represent chemical gradients of elevated microbial activities. While chemolithoautotrophic microorganisms in these systems are well known as catalysts of major biogeochemical cycles, comparable knowledge on heterotrophic organisms is scarce. Thus, in this study, identity and biogeochemical involvement of active heterotrophs were investigated in stimulation experiments and activity measurements based on samples collected from pelagic redoxclines of the central Baltic Sea in 2005 and 2009. In the 2009 samples, (13)C-acetate 16S rRNA stable isotope probing (16S rRNA-SIP) identified gammaproteobacteria affiliated with Colwellia sp. and Neptunomonas sp. in addition to epsilonproteobacteria related to Arcobacter spp. as active heterotrophs at the oxic-anoxic interface layer. Incubations from sulfidic waters were dominated by two phylogenetic subgroups of Arcobacter. In the 2005 samples, organics, manganese(IV), and iron(III) were added to the sulfidic waters, followed by the determination of metal reduction and identification of the stimulated organisms. Here, the same Arcobacter and Colwellia subgroups were stimulated as in 2009, with Arcobacter predominating in samples, in which manganese(IV) reduction was highest. Our results offer new insights into the heterotrophic bacterial assemblage of Baltic Sea pelagic redoxclines and suggest Arcobacter spp. as a heterotroph with presumed relevance also for manganese cycling.
Collapse
Affiliation(s)
- Carlo Berg
- Section Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | | | | | | | | |
Collapse
|
38
|
Tolar BB, King GM, Hollibaugh JT. An analysis of thaumarchaeota populations from the northern gulf of Mexico. Front Microbiol 2013; 4:72. [PMID: 23577005 PMCID: PMC3620491 DOI: 10.3389/fmicb.2013.00072] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 03/14/2013] [Indexed: 02/02/2023] Open
Abstract
We sampled Thaumarchaeota populations in the northern Gulf of Mexico, including shelf waters under the Mississippi River outflow plume that are subject to recurrent hypoxia. Data from this study allowed us to: (1) test the hypothesis that Thaumarchaeota would be abundant in this region; (2) assess phylogenetic composition of these populations for comparison with other regions; (3) compare the efficacy of quantitative PCR (qPCR) based on primers for 16S rRNA genes (rrs) with primers for genes in the ammonia oxidation (amoA) and carbon fixation (accA, hcd) pathways; (4) compare distributions obtained by qPCR with the relative abundance of Thaumarchaeota rrs in pyrosequenced libraries; (5) compare Thaumarchaeota distributions with environmental variables to help us elucidate the factors responsible for the distributions; (6) compare the distribution of Thaumarchaeota with Nitrite-Oxidizing Bacteria (NOB) to gain insight into the coupling between ammonia and nitrite oxidation. We found up to 108 copies L−1 of Thaumarchaeota rrs in our samples (up to 40% of prokaryotes) by qPCR, with maximum abundance in slope waters at 200–800 m. Thaumarchaeota rrs were also abundant in pyrosequenced libraries and their relative abundance correlated well with values determined by qPCR (r2 = 0.82). Thaumarchaeota populations were strongly stratified by depth. Canonical correspondence analysis using a suite of environmental variables explained 92% of the variance in qPCR-estimated gene abundances. Thaumarchaeota rrs abundance was correlated with salinity and depth, while accA abundance correlated with fluorescence and pH. Correlations of Archaeal amoA abundance with environmental variables were primer-dependent, suggesting differential responses of sub-populations to environmental variables. Bacterial amoA was at the limit of qPCR detection in most samples. NOB and Euryarchaeota rrs were found in the pyrosequenced libraries; NOB distribution was correlated with that of Thaumarchaeota (r2 = 0.49).
Collapse
Affiliation(s)
- Bradley B Tolar
- Department of Marine Sciences, University of Georgia Athens, GA, USA ; Department of Microbiology, University of Georgia Athens, GA, USA
| | | | | |
Collapse
|
39
|
Composition, diversity, and stability of microbial assemblages in seasonal lake ice, miquelon lake, central alberta. BIOLOGY 2013; 2:514-32. [PMID: 24832796 PMCID: PMC3960880 DOI: 10.3390/biology2020514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 03/05/2013] [Accepted: 03/06/2013] [Indexed: 11/17/2022]
Abstract
The most familiar icy environments, seasonal lake and stream ice, have received little microbiological study. Bacteria and Eukarya dominated the microbial assemblage within the seasonal ice of Miquelon Lake, a shallow saline lake in Alberta, Canada. The bacterial assemblages were moderately diverse and did not vary with either ice depth or time. The closest relatives of the bacterial sequences from the ice included Actinobacteria, Bacteroidetes, Proteobacteria, Verrucomicrobia, and Cyanobacteria. The eukaryotic assemblages were less conserved and had very low diversity. Green algae relatives dominated the eukaryotic gene sequences; however, a copepod and cercozoan were also identified, possibly indicating the presence of complete microbial loop. The persistence of a chlorophyll a peak at 25–30 cm below the ice surface, despite ice migration and brine flushing, indicated possible biological activity within the ice. This is the first study of the composition, diversity, and stability of seasonal lake ice.
Collapse
|
40
|
Cao H, Auguet JC, Gu JD. Global ecological pattern of ammonia-oxidizing archaea. PLoS One 2013; 8:e52853. [PMID: 23468838 PMCID: PMC3585293 DOI: 10.1371/journal.pone.0052853] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 11/22/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The global distribution of ammonia-oxidizing archaea (AOA), which play a pivotal role in the nitrification process, has been confirmed through numerous ecological studies. Though newly available amoA (ammonia monooxygenase subunit A) gene sequences from new environments are accumulating rapidly in public repositories, a lack of information on the ecological and evolutionary factors shaping community assembly of AOA on the global scale is apparent. METHODOLOGY AND RESULTS We conducted a meta-analysis on uncultured AOA using over ca. 6,200 archaeal amoA gene sequences, so as to reveal their community distribution patterns along a wide spectrum of physicochemical conditions and habitat types. The sequences were dereplicated at 95% identity level resulting in a dataset containing 1,476 archaeal amoA gene sequences from eight habitat types: namely soil, freshwater, freshwater sediment, estuarine sediment, marine water, marine sediment, geothermal system, and symbiosis. The updated comprehensive amoA phylogeny was composed of three major monophyletic clusters (i.e. Nitrosopumilus, Nitrosotalea, Nitrosocaldus) and a non-monophyletic cluster constituted mostly by soil and sediment sequences that we named Nitrososphaera. Diversity measurements indicated that marine and estuarine sediments as well as symbionts might be the largest reservoirs of AOA diversity. Phylogenetic analyses were further carried out using macroevolutionary analyses to explore the diversification pattern and rates of nitrifying archaea. In contrast to other habitats that displayed constant diversification rates, marine planktonic AOA interestingly exhibit a very recent and accelerating diversification rate congruent with the lowest phylogenetic diversity observed in their habitats. This result suggested the existence of AOA communities with different evolutionary history in the different habitats. CONCLUSION AND SIGNIFICANCE Based on an up-to-date amoA phylogeny, this analysis provided insights into the possible evolutionary mechanisms and environmental parameters that shape AOA community assembly at global scale.
Collapse
Affiliation(s)
- Huiluo Cao
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Jean-Christophe Auguet
- Equipe Environnement et Microbiologie, UMR CNRS-IPREM 5254, Université de Pau et des Pays de l'Adour, Pau, France
| | - Ji-Dong Gu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Hong Kong, China
- The Swire Institute of Marine Science, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
41
|
SUP05 dominates the Gammaproteobacterial sulfur oxidizer assemblages in pelagic redoxclines of the central Baltic and Black Seas. Appl Environ Microbiol 2013; 79:2767-76. [PMID: 23417000 DOI: 10.1128/aem.03777-12] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Gammaproteobacterial sulfur oxidizers (GSOs), particularly SUP05-related sequences, have been found worldwide in numerous oxygen-deficient marine environments. However, knowledge regarding their abundance, distribution, and ecological role is scarce. In this study, on the basis of phylogenetic analyses of 16S rRNA gene sequences originating from a Baltic Sea pelagic redoxcline, the in situ abundances of different GSO subgroups were quantified by CARD-FISH (catalyzed reporter fluorescence in situ hybridization) with oligonucleotide probes developed specifically for this purpose. Additionally, ribulose bisphosphate carboxylase/oxygenase form II (cbbM) gene transcript clone libraries were used to detect potential active chemolithoautotrophic GSOs in the Baltic Sea. Taken together, the results obtained by these two approaches demonstrated the existence of two major phylogenetic subclusters embedded within the GSO, one of them affiliated with sequences of the previously described SUP05 subgroup. CARD-FISH analyses revealed that only SUP05 occurred in relatively high numbers, reaching 10 to 30% of the total prokaryotes around the oxic-anoxic interface, where oxygen and sulfide concentrations are minimal. The applicability of the oligonucleotide probes was confirmed with samples from the Black Sea redoxcline, in which the SUP05 subgroup accounted for 10 to 13% of the total prokaryotic abundance. The cbbM transcripts presumably originating from SUP05 cells support previous evidence for the chemolithoautotrophic activity of this phylogenetic group. Our findings on the vertical distribution and high abundance of SUP05 suggest that this group plays an important role in marine redoxcline biogeochemistry, probably as anaerobic or aerobic sulfur oxidizers.
Collapse
|
42
|
Anderson R, Wylezich C, Glaubitz S, Labrenz M, Jürgens K. Impact of protist grazing on a key bacterial group for biogeochemical cycling in Baltic Sea pelagic oxic/anoxic interfaces. Environ Microbiol 2013; 15:1580-94. [PMID: 23368413 DOI: 10.1111/1462-2920.12078] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 12/17/2012] [Accepted: 12/20/2012] [Indexed: 11/27/2022]
Abstract
Barrier zones between oxic and anoxic water masses (redoxclines) host highly active prokaryotic communities with important roles in biogeochemical cycling. In Baltic Sea pelagic redoxclines, Epsilonproteobacteria of the genus Sulfurimonas (subgroup GD17) have been shown to dominate chemoautotrophic denitrification. However, little is known on the loss processes affecting this prokaryotic group. In the present study, the protist grazing impact on the Sulfurimonas subgroup GD17 was determined for suboxic and oxygen/hydrogen sulphide interface depths of Baltic Sea redoxclines, using predator exclusion assays and bacterial amendment with the cultured representative 'Sulfurimonas gotlandica' strain GD1. Additionally, the principal bacterivores were identified by RNA-Stable Isotope Probing (RNA-SIP). The natural Sulfurimonas subgroup GD17 population grew strongly under oxygen/hydrogen sulphide interface conditions (doubling time: 1-1.5 days), but protist grazing could consume the complete new cell production per day. In suboxic samples, little or no growth of Sulfurimonas subgroup GD17 was observed. RNA-SIP identified five active grazers, belonging to typical redoxcline ciliates (Oligohymenophorea, Prostomatea) and globally widespread marine flagellate groups (MAST-4, Chrysophyta, Cercozoa). Overall, we demonstrate for the first time that protist grazing can control the growth, and potentially the vertical distribution, of a chemolithoautotrophic key-player of oxic/anoxic interfaces.
Collapse
Affiliation(s)
- Ruth Anderson
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research, Seestrasse 15, 18119, Rostock-Warnemünde, Germany.
| | | | | | | | | |
Collapse
|
43
|
La Cono V, La Spada G, Arcadi E, Placenti F, Smedile F, Ruggeri G, Michaud L, Raffa C, De Domenico E, Sprovieri M, Mazzola S, Genovese L, Giuliano L, Slepak VZ, Yakimov MM. Partaking of Archaea to biogeochemical cycling in oxygen-deficient zones of meromictic saline Lake Faro (Messina, Italy). Environ Microbiol 2012; 15:1717-33. [PMID: 23253149 DOI: 10.1111/1462-2920.12060] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 11/22/2012] [Accepted: 11/23/2012] [Indexed: 11/29/2022]
Abstract
We used a combination of molecular and microbiological approaches to determine the activity, abundance and diversity of archaeal populations inhabiting meromictic saline Lake Faro (Messina, Italy). Analysis of archaeal 16S rRNA, amoA, accA and hbd genes and transcripts revealed that sub- and anoxic layers of Lake Faro are primarily inhabited by the organisms related to the clusters of Marine Group I.1a of Thaumarchaeota frequently recovered from oxygen-depleted marine ecosystems. These organisms dominated the metabolically active archaea down to the bottom of the lake, indicating their adaptation to recurrent changes in the levels of water column hypoxia. The upper microaerobic layer of Lake Faro redoxcline has the maximal rates of dark primary production much lower than those of other previously studied pelagic redoxclines, but comparable to the values of meso- and bathypelagic areas of Mediterranean Sea. Application of bacterial inhibitors, especially azide, significantly declined the CO2 fixation rates in the low interface and monimolimnion, whereas archaea-specific inhibitor had effect only in upper part of the redoxcline. Based on these findings, we hypothesize that dark bicarbonate fixation in suboxic zone of Lake Faro results mainly from archaeal activity which is affected by the predicted lack in oxygen in lower layers.
Collapse
Affiliation(s)
- Violetta La Cono
- Institute for Coastal Marine Environment, CNR, Spianata S.Raineri 86, 98122 Messina, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Wylezich C, Karpov SA, Mylnikov AP, Anderson R, Jürgens K. Ecologically relevant choanoflagellates collected from hypoxic water masses of the Baltic Sea have untypical mitochondrial cristae. BMC Microbiol 2012; 12:271. [PMID: 23171165 PMCID: PMC3579758 DOI: 10.1186/1471-2180-12-271] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 11/08/2012] [Indexed: 11/17/2022] Open
Abstract
Background Protist communities inhabiting oxygen depleted waters have so far been characterized through both microscopical observations and sequence based techniques. However, the lack of cultures for abundant taxa severely hampers our knowledge on the morphology, ecology and energy metabolism of hypoxic protists. Cultivation of such protists has been unsuccessful in most cases, and has never yet succeeded for choanoflagellates, even though these small bacterivorous flagellates are known to be ecologically relevant components of aquatic protist communities. Results Quantitative data for choanoflagellates and the vertical distribution of Codosiga spp. at Gotland and Landsort Deep (Baltic Sea) indicate its preference for oxygen-depleted zones. Strains isolated and cultivated from these habitats revealed ultrastructural peculiarities such as mitochondria showing tubular cristae never seen before for choanoflagellates, and the first observation of intracellular prokaryotes in choanoflagellates. Analysis of their partial 28S rRNA gene sequence complements the description of two new species, Codosiga minima n. sp. and C. balthica n. sp. These are closely related with but well separated from C. gracilis (C. balthica and C. minima p-distance to C. gracilis 4.8% and 11.6%, respectively). In phylogenetic analyses the 18S rRNA gene sequences branch off together with environmental sequences from hypoxic habitats resulting in a wide cluster of hypoxic Codosiga relatives so far only known from environmental sequencing approaches. Conclusions Here, we establish the morphological and ultrastructural identity of an environmental choanoflagellate lineage. Data from microscopical observations, supplemented by findings from previous culture-independent methods, indicate that C. balthica is likely an ecologically relevant player of Baltic Sea hypoxic waters. The possession of derived mitochondria could be an adaptation to life in hypoxic environments periodically influenced by small-scale mixing events and changing oxygen content allowing the reduction of oxygen consuming components. In view of the intricacy of isolating and cultivating choanoflagellates, the two new cultured species represent an important advance to the understanding of the ecology of this group, and mechanisms of adaptations to hypoxia in protists in general.
Collapse
Affiliation(s)
- Claudia Wylezich
- IOW-Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany.
| | | | | | | | | |
Collapse
|
45
|
Bruckner CG, Mammitzsch K, Jost G, Wendt J, Labrenz M, Jürgens K. Chemolithoautotrophic denitrification of epsilonproteobacteria in marine pelagic redox gradients. Environ Microbiol 2012; 15:1505-13. [PMID: 23013279 DOI: 10.1111/j.1462-2920.2012.02880.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 07/13/2012] [Accepted: 08/23/2012] [Indexed: 11/29/2022]
Abstract
Pelagic marine oxygen-depleted zones often exhibit a redox gradient, caused by oxygen depletion due to biological demand exceeding ventilation, and the accumulation of reduced chemical species, such as hydrogen sulfide. These redox gradients harbour a distinct assemblage of epsilonproteobacteria capable of fixing carbon dioxide autotrophically in the dark and potentially of utilizing hydrogen sulfide chemolithotrophically by oxidation with nitrate. Together, these two processes are referred to as chemolithoautotrophic denitrification. The focus of this study was the recently isolated and cultivated representative strain of pelagic epsilonproteobacteria, 'Sulfurimonas gotlandica' strain GD1, specifically dark carbon dioxide fixation and its substrate turnovers during chemolithotrophic denitrification. By connecting these processes stoichiometrically and comparing the results with those obtained for dark carbon dioxide fixation and nutrient concentrations measured in pelagic redox gradients of the Baltic Sea, we were able to estimate the role of chemolithoautotrophic denitrification in the environment. Evidence is provided for a defined zone where chemolithoautotrophic denitrification of these epsilonproteobacteria allows the complete removal of nitrate and hydrogen sulfide from the water column. This water layer is roughly equivalent in thickness to the average overlapping region of the two substrates, but slightly larger. Such a difference may be explained by a variety of reasons, including, e.g. utilization of substrates present at concentrations below the detection limit, alternative usage of other substrates as thiosulfate or nitrous oxide, or comparable activities of other microbes. However, the combined results of in vitro and in situ studies strongly suggest that epsilonproteobacteria are primarily responsible for hydrogen sulfide and nitrate removal from pelagic Baltic Sea redox gradients.
Collapse
Affiliation(s)
- Christian G Bruckner
- Department of Biological Oceanography, Leibniz-Institute for Baltic Sea Research Warnemünde, Seestrasse 15, D-18119, Rostock, Germany.
| | | | | | | | | | | |
Collapse
|
46
|
Trimmer M, Grey J, Heppell CM, Hildrew AG, Lansdown K, Stahl H, Yvon-Durocher G. River bed carbon and nitrogen cycling: state of play and some new directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 434:143-158. [PMID: 22682557 DOI: 10.1016/j.scitotenv.2011.10.074] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 09/30/2011] [Accepted: 10/21/2011] [Indexed: 06/01/2023]
Abstract
The significance of freshwaters as key players in the global budget of both carbon dioxide and methane has recently been highlighted. In particular, rivers clearly do not act simply as inert conduits merely piping carbon from catchment to coast, but, on the whole, their metabolic activity transforms a considerable fraction of the carbon that they convey. In addition, nitrogen is cycled, sometimes in tight unison with carbon, with appreciable amounts being 'denitrified' between catchment and coast. However, shortfalls in our knowledge about the significance of exchange and interaction between rivers and their catchments, particularly the significance of interactions mediated through hyporheic sediments, are still apparent. From humble beginnings of quantifying the consumption of oxygen by small samples of gravel, to an integrated measurement of reach scale transformations of carbon and nitrogen, our understanding of the cycling of these two macro elements in rivers has improved markedly in the past few decades. However, recent discoveries of novel metabolic pathways in both the nitrogen and carbon cycle across a spectrum of aquatic ecosystems, highlights the need for new directions and a truly multidisciplinary approach to quantifying the flux of carbon and nitrogen through rivers.
Collapse
Affiliation(s)
- Mark Trimmer
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK.
| | | | | | | | | | | | | |
Collapse
|
47
|
Diversity, physiology, and niche differentiation of ammonia-oxidizing archaea. Appl Environ Microbiol 2012; 78:7501-10. [PMID: 22923400 DOI: 10.1128/aem.01960-12] [Citation(s) in RCA: 250] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, has been suggested to have been a central part of the global biogeochemical nitrogen cycle since the oxygenation of Earth. The cultivation of several ammonia-oxidizing archaea (AOA) as well as the discovery that archaeal ammonia monooxygenase (amo)-like gene sequences are nearly ubiquitously distributed in the environment and outnumber their bacterial counterparts in many habitats fundamentally revised our understanding of nitrification. Surprising insights into the physiological distinctiveness of AOA are mirrored by the recognition of the phylogenetic uniqueness of these microbes, which fall within a novel archaeal phylum now known as Thaumarchaeota. The relative importance of AOA in nitrification, compared to ammonia-oxidizing bacteria (AOB), is still under debate. This minireview provides a synopsis of our current knowledge of the diversity and physiology of AOA, the factors controlling their ecology, and their role in carbon cycling as well as their potential involvement in the production of the greenhouse gas nitrous oxide. It emphasizes the importance of activity-based analyses in AOA studies and formulates priorities for future research.
Collapse
|
48
|
Diversity, abundance and expression of nitrite reductase (nirK)-like genes in marine thaumarchaea. ISME JOURNAL 2012; 6:1966-77. [PMID: 22592819 DOI: 10.1038/ismej.2012.40] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Ammonia-oxidizing archaea (AOA) are widespread and abundant in aquatic and terrestrial habitats and appear to have a significant impact on the global nitrogen cycle. Like the ammonia-oxidizing bacteria, AOA encode a gene homologous to copper-containing nitrite reductases (nirK), which has been studied very little to date. In this study, the diversity, abundance and expression of thaumarchaeal nirK genes from coastal and marine environments were investigated using two mutually excluding primer pairs, which amplify the nirK variants designated as AnirKa and AnirKb. Only the AnirKa variant could be detected in sediment samples from San Francisco Bay and these sequences grouped with the nirK from Candidatus Nitrosopumilus maritimus and Candidatus Nitrosoarchaeum limnia. The two nirK variants had contrasting distributions in the water column in Monterey Bay and the California Current. AnirKa was more abundant in the epi- to mesopelagic Monterey Bay water column, whereas AnirKb was more abundant in the meso- to bathypelagic California Current water. The abundance and community composition of AnirKb, but not AnirKa, followed that of thaumarchaeal amoA, suggesting that either AnirKa is not exclusively associated with AOA or that commonly used amoA primers may be missing a significant fraction of AOA diversity in the epipelagic. Interestingly, thaumarchaeal nirK was expressed 10-100-fold more than amoA in Monterey Bay. Overall, this study provides valuable new insights into the distribution, diversity, abundance and expression of this alternative molecular marker for AOA in the ocean.
Collapse
|
49
|
Kubo K, Lloyd KG, F Biddle J, Amann R, Teske A, Knittel K. Archaea of the Miscellaneous Crenarchaeotal Group are abundant, diverse and widespread in marine sediments. ISME JOURNAL 2012; 6:1949-65. [PMID: 22551871 DOI: 10.1038/ismej.2012.37] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Members of the highly diverse Miscellaneous Crenarchaeotal Group (MCG) are globally distributed in various marine and continental habitats. In this study, we applied a polyphasic approach (rRNA slot blot hybridization, quantitative PCR (qPCR) and catalyzed reporter deposition FISH) using newly developed probes and primers for the in situ detection and quantification of MCG crenarchaeota in diverse types of marine sediments and microbial mats. In general, abundance of MCG (cocci, 0.4 μm) relative to other archaea was highest (12-100%) in anoxic, low-energy environments characterized by deeper sulfate depletion and lower microbial respiration rates (P=0.06 for slot blot and P=0.05 for qPCR). When studied in high depth resolution in the White Oak River estuary and Hydrate Ridge methane seeps, changes in MCG abundance relative to total archaea and MCG phylogenetic composition did not correlate with changes in sulfate reduction or methane oxidation with depth. In addition, MCG abundance did not vary significantly (P>0.1) between seep sites (with high rates of methanotrophy) and non-seep sites (with low rates of methanotrophy). This suggests that MCG are likely not methanotrophs. MCG crenarchaeota are highly diverse and contain 17 subgroups, with a range of intragroup similarity of 82 to 94%. This high diversity and widespread distribution in subsurface sediments indicates that this group is globally important in sedimentary processes.
Collapse
Affiliation(s)
- Kyoko Kubo
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Tully BJ, Nelson WC, Heidelberg JF. Metagenomic analysis of a complex marine planktonic thaumarchaeal community from the Gulf of Maine. Environ Microbiol 2011; 14:254-67. [PMID: 22050608 DOI: 10.1111/j.1462-2920.2011.02628.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Thaumarchaea, which represent as much as 20% of prokaryotic biomass in the open ocean, have been linked to environmentally relevant biogeochemical processes, such as ammonia oxidation (nitrification) and inorganic carbon fixation. We have used culture-independent methods to study this group because current cultivation limitations have proved a hindrance in studying these organisms. From a metagenomic data set obtained from surface waters from the Gulf of Maine, we have identified 36,111 sequence reads (containing 30 Mbp) likely derived from environmental planktonic Thaumarchaea. Metabolic analysis of the raw sequences and assemblies identified copies of the catalytic subunit required in aerobic ammonia oxidation. In addition, genes that comprise a nearly complete carbon assimilation pathway in the form of the 3-hyroxypropionate/4-hydroxybutyrate cycle were identified. Comparative genomics contrasting the putative environmental thaumarchaeal sequences and 'Candidatus Nitrosopumilus maritimus SCM1' revealed a number of genomic islands absent in the Gulf of Maine population. Analysis of these genomic islands revealed an integrase-associated island also found in distantly related microbial species, variations in the abundance of genes predicted to be important in thaumarchaeal respiratory chain, and the absence of a high-affinity phosphate uptake operon. Analysis of the underlying sequence diversity suggests the presence of at least two dominant environmental populations. Attempts to assemble complete environmental genomes were unsuccessful, but analysis of scaffolds revealed two diverging populations, including a thaumarchaeal-related scaffold with the full urease operon. Ultimately, the analysis revealed a number of insights into the metabolic potential of a predominantly uncultivated lineage of organisms. The predicted functions in the thaumarchaeal metagenomic sequences are directly supported by historic measurements of nutrient concentrations and provide new avenues of research in regards to understanding the role Thaumarchaea play in the environment.
Collapse
Affiliation(s)
- Benjamin J Tully
- Department of Biological Sciences, David and Dana Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089, USA.
| | | | | |
Collapse
|