1
|
Díaz-García C, Sánchez-Osuna M, Serra-Compte A, Karakatsanidou I, Gómez-Sánchez I, Fidalgo B, Barbuzana-Armas C, Fittipaldi M, Rosselli R, Vinyoles J, González S, Pich OQ, Espasa M, Yáñez MA. Mapping antimicrobial resistance landscape at a city scale sewage network. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 974:179127. [PMID: 40138908 DOI: 10.1016/j.scitotenv.2025.179127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025]
Abstract
Wastewater is a valuable source for monitoring contaminants of biotic or abiotic origin. Antimicrobial resistance (AMR) has emerged as a public health threat that consists of the ability of microorganisms to resist the effects of antimicrobial compounds, rendering them very difficult or impossible to eradicate in case of infection. Considering the dissemination of antimicrobial resistance genes (ARGs) to a wide number of ecosystems, there is a need for the identification of hotspots that concentrate antimicrobial resistance determinants. A comprehensive investigation conducted at a city-scale in Sabadell (Barcelona, Spain) has integrated both phenotypic and genotypic methodologies, including metagenomics and culture-based techniques coupled with whole-genome sequencing (WGS), to monitor ARG presence in seven different spots of the sewage system. Metagenomics approach identified 262 ARG variants across analyzed sampling sites, grouped into 15 resistance categories. The most prevalent ARGs were macrolides-lincosamides-class B streptogramins (MLSB) (35.1 %) and beta-lactams (28.7 %), including carbapenems (5.9 %) and cephalosporins (5.3 %). MLSB resistance featured dominant msr(E) and mph(E) genes, the most abundant ARGs in our study. ARGs conferring resistance to beta-lactam were dominated by blaOXA-464, blaOXA-491, and blaNPS. Key genes for carbapenem (blaOXA-372, blaKPC-2) and cephalosporin (blaOXA-10, blaOXA-1) resistance were identified. The hospital sector exhibited the highest relative abundance of ARGs, dominated by beta-lactams, MLSB, and aminoglycosides. Wastewater treatment plant (WWTP) entrance points and residential areas displayed similar ARG profiles, while WWTP effluent and industrial zones had the lowest ARG levels. WWTP significantly reduced ARG presence (93.3 %). The characterization of antibiotic-resistant bacterial isolates found that most abundant ARGs were predominantly plasmid-borne, favoring ARG spread across bacterial genera. This finding confirmed the significant role of plasmids in ARG dissemination, increasing both diversity and prevalence within waterborne bacterial communities. City-scale surveillance programs can play a pivotal role in guiding effective measures to reduce the dissemination of AMR and mitigate their environmental impact.
Collapse
Affiliation(s)
- Clara Díaz-García
- LABAQUA, S.A.U., c/ Dracma, 16-18, Polígono industrial Las Atalayas, 03114 Alicante, Spain
| | - Miquel Sánchez-Osuna
- Laboratori de Recerca en Microbiologia i Malalties Infeccioses, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain; Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Albert Serra-Compte
- Cetaqua, Water Technology Centre, Ctra. d'Esplugues, 75, 08940 Cornellà de Llobregat, Barcelona, Spain
| | - Ioanna Karakatsanidou
- Cetaqua, Water Technology Centre, Ctra. d'Esplugues, 75, 08940 Cornellà de Llobregat, Barcelona, Spain
| | - Inmaculada Gómez-Sánchez
- Laboratori de Recerca en Microbiologia i Malalties Infeccioses, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain; Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Berta Fidalgo
- Servei de Microbiologia, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - César Barbuzana-Armas
- LABAQUA, S.A.U., c/ Dracma, 16-18, Polígono industrial Las Atalayas, 03114 Alicante, Spain
| | - Mariana Fittipaldi
- LABAQUA, S.A.U., c/ Dracma, 16-18, Polígono industrial Las Atalayas, 03114 Alicante, Spain
| | - Riccardo Rosselli
- LABAQUA, S.A.U., c/ Dracma, 16-18, Polígono industrial Las Atalayas, 03114 Alicante, Spain; Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Jordi Vinyoles
- Aigües Sabadell, C. Concepció, 20, 08202 Sabadell, Spain
| | - Susana González
- Cetaqua, Water Technology Centre, Ctra. d'Esplugues, 75, 08940 Cornellà de Llobregat, Barcelona, Spain
| | - Oscar Q Pich
- Laboratori de Recerca en Microbiologia i Malalties Infeccioses, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain; Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mateu Espasa
- Servei de Microbiologia, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain.
| | - M Adela Yáñez
- LABAQUA, S.A.U., c/ Dracma, 16-18, Polígono industrial Las Atalayas, 03114 Alicante, Spain.
| |
Collapse
|
2
|
Calderón-Osorno M, Rojas-Villalta D, Lejzerowicz F, Cortés J, Arias-Andres M, Rojas-Jimenez K. The influence of depth on the global deep-sea plasmidome. Sci Rep 2025; 15:2959. [PMID: 39849009 PMCID: PMC11757743 DOI: 10.1038/s41598-025-86098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 01/08/2025] [Indexed: 01/25/2025] Open
Abstract
Plasmids play a crucial role in facilitating genetic exchange and enhancing the adaptability of microbial communities. Despite their importance, environmental plasmids remain understudied, particularly those in fragile and underexplored ecosystems such as the deep-sea. In this paper we implemented a bioinformatics pipeline to study the composition, diversity, and functional attributes of plasmid communities (plasmidome) in 81 deep-sea metagenomes from the Tara and Malaspina expeditions, sampled from the Pacific, Atlantic, and Indian Oceans at depths ranging from 270 to 4005 m. We observed an association between depth and plasmid traits, with the 270-1000 m range (mesopelagic samples) exhibiting the highest number of plasmids and the largest plasmid sizes. Plasmids of Alphaproteobacteria and Gammaproteobacteria were predominant across the oceans, particularly in this depth range, which also showed the highest species diversity and abundance of metabolic pathways, including aromatic compound degradation. Surprisingly, relatively few antibiotic resistance genes were found in the deep-sea ecosystem, with most being found in the mesopelagic layer. These included classes such as beta-lactamase, biocide resistance, and aminoglycosides. Our study also identified the MOBP and MOBQ relaxase families as prevalent across various taxonomic classes. This research underscores the importance of studying the plasmidome independently from the chromosomal context. Our limited understanding of the deep-sea's microbial ecology, especially its plasmidome, necessitates caution in human activities like mining. Such activities could have unforeseen impacts on this largely unexplored ecosystem.
Collapse
Affiliation(s)
- Melany Calderón-Osorno
- Costa Rica National High Technology Center (CeNAT), Pavas, San José, 10108, Costa Rica.
- Maestría académica en Biología con enfásis en genética y biología molecular, University of Costa Rica, San Pedro, San José, 11501-20260, Costa Rica.
| | - Dorian Rojas-Villalta
- Costa Rica National High Technology Center (CeNAT), Pavas, San José, 10108, Costa Rica
| | - Franck Lejzerowicz
- Section for Aquatic Biology and Toxicology, University of Oslo, Blindernveien 31, 0371, Oslo, Norway
| | - Jorge Cortés
- Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), University of Costa Rica, San Pedro, San José, 11501-20260, Costa Rica
- Biology School, University of Costa Rica, San Pedro, San José, 11501-20260, Costa Rica
| | - Maria Arias-Andres
- Central American Institute for Studies on Toxic Substances, Universidad Nacional, Campus Omar Dengo, Heredia, 86-3000, Costa Rica
| | - Keilor Rojas-Jimenez
- Biology School, University of Costa Rica, San Pedro, San José, 11501-20260, Costa Rica.
| |
Collapse
|
3
|
Song J, Zheng C, Qiu M, Zhan XP, Zhang Z, Zhang H, Shi N, Zhang L, Yu Y, Nicolaisen M, Xu L, Fang H. Mechanisms Underlying the Overlooked Chiral Fungicide-Driven Enantioselective Proliferation of Antibiotic Resistance in Earthworm Intestinal Microbiome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2931-2943. [PMID: 38306257 DOI: 10.1021/acs.est.3c07761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
From a "One Health" perspective, the global threat of antibiotic resistance genes (ARGs) is associated with modern agriculture practices including agrochemicals application. Chiral fungicides account for a considerable proportion of wildly used agrochemicals; however, whether and how their enantiomers lead to differential proliferation of antibiotic resistance in agricultural environments remain overlooked. Focused on the soil-earthworm ecosystem, we for the first time deciphered the mechanisms underlying the enantioselective proliferation of antibiotic resistance driven by the enantiomers of a typical chiral fungicide mandipropamid (i.e., R-MDP and S-MDP) utilizing a multiomic approach. Time-series metagenomic analysis revealed that R-MDP led to a significant enhancement of ARGs with potential mobility (particularly the plasmid-borne ARGs) in the earthworm intestinal microbiome. We further demonstrated that R-MDP induced a concentration-dependent facilitation of plasmid-mediated ARG transfer among microbes. In addition, transcriptomic analysis with verification identified the key aspects involved, where R-MDP enhanced cell membrane permeability, transfer ability, biofilm formation and quorum sensing, rebalanced energy production, and decreased cell mobility versus S-MDP. Overall, the findings provide novel insights into the enantioselective disruption of microbiome and resistome in earthworm gut by chiral fungicides and offer significant contributions to the comprehensive risk assessment of chiral agrochemicals in agroecosystems.
Collapse
Affiliation(s)
- Jiajin Song
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Conglai Zheng
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mengting Qiu
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiu-Ping Zhan
- Shanghai Agricultural Technology Extension and Service Center, Shanghai 201103, China
| | - Zihan Zhang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Houpu Zhang
- College of Resources and Environment, Anhui Agricultural University, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Hefei 230036, China
| | - Nan Shi
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697, United States
| | - Luqing Zhang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Yu
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mogens Nicolaisen
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse 4200, Denmark
| | - Lihui Xu
- Institute of Eco-Environmental Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Hua Fang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Sun X, Wang X, Han Q, Yu Q, Wanyan R, Li H. Bibliometric analysis of papers on antibiotic resistance genes in aquatic environments on a global scale from 2012 to 2022: Evidence from universality, development and harmfulness. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168597. [PMID: 37981129 DOI: 10.1016/j.scitotenv.2023.168597] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Antibiotic resistance genes (ARGs), emerging pollutants, are widely distributed in aquatic environments, and are tightly linked to human health. However, the research progress and trends in recent years on ARGs of aquatic environments are still unclear. This paper made a comprehensive understanding of the research advance, study trends and key topics of 1592 ARGs articles from 2012 to 2022 by bibliometrics. Publications on ARGs increased rapidly from 2012 to 2022, and scholars paid closer attention to the field of Environmental Sciences & Ecology. The most influential country and institution was mainly China and Chinese Academy of Sciences, respectively. The most articles (14.64 %) were published in the journal Science of the total environment. China and USA had the most cooperation, and USA was more inclined to international cooperation. PCR-based methods for water ARG research were the most widely used, followed by metagenomics. The most studied ARG types were sulfonamides, tetracyclines. Moreover, ARGs from wastewater and rivers were popularly concerned. Current topics mainly included pollution investigation, characteristics, transmission, reduction and risk identification of ARGs. Additionally, future research directions were proposed. Generally, by bibliometrics, this paper reviews the research hotspots and future directions of ARGs on a global scale, and summarizes the more important categories of ARGs, the pollution degree of ARGs in the relevant water environment and the research methods, which can provide a more comprehensive information for the future breakthrough of resistance mechanism, prevention and control standard formulation of ARGs.
Collapse
Affiliation(s)
- Xiaofang Sun
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xiaochen Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qian Han
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qiaoling Yu
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Ruijun Wanyan
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
5
|
Kläui A, Bütikofer U, Naskova J, Wagner E, Marti E. Fresh produce as a reservoir of antimicrobial resistance genes: A case study of Switzerland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167671. [PMID: 37813266 DOI: 10.1016/j.scitotenv.2023.167671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Antimicrobial resistance (AMR) can be transferred to humans through food and fresh produce can be an ideal vector as it is often consumed raw or minimally processed. The production environment of fresh produce and the agricultural practices and regulations can vary substantially worldwide, and consequently, the contamination sources of AMR. In this study, 75 imported and 75 non-imported fresh produce samples purchased from Swiss retailers were tested for the presence of antimicrobial resistant bacteria (ARB) and antimicrobial resistance genes (ARGs). Moreover, the plasmidome of 4 selected samples was sequenced to have an insight on the diversity of mobile resistome. In total, 91 ARB were isolated from fresh produce, mainly cephalosporin-resistant Enterobacterales (n = 64) and carbapenem-resistant P. aeruginosa (n = 13). All P. aeruginosa, as well as 16 Enterobacterales' isolates were multidrug-resistant. No differences between imported and Swiss fresh produce were found regarding the number of ARB. In 95 % of samples at least one ARG was detected, being the most frequent sul1, blaTEM, and ermB. Abundance of sul1 and intI1 correlated strongly with the total amount of ARGs, suggesting they could be good indicators for AMR in fresh produce. Furthermore, sul1 correlated with the fecal marker yccT, indicating that fecal contamination could be one of the sources of AMR. The gene sulI was significantly higher in most imported samples, suggesting higher anthropogenic contamination in the food production chain of imported produce. The analyses of the plasmidome of coriander and carrot samples revealed the presence of several ARGs as well as genes conferring resistance to antiseptics and disinfectants in mobile genetic elements. Overall, this study demonstrated that fresh produce contributes to the dissemination of ARGs and ARB.
Collapse
Affiliation(s)
- Anita Kläui
- Food Microbial Systems, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
| | - Ueli Bütikofer
- Food Microbial Systems, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
| | - Javorka Naskova
- Food Microbial Systems, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
| | - Elvira Wagner
- Food Microbial Systems, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
| | - Elisabet Marti
- Food Microbial Systems, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland.
| |
Collapse
|
6
|
Androsiuk L, Shay T, Tal S. Characterization of the Environmental Plasmidome of the Red Sea. Microbiol Spectr 2023; 11:e0040023. [PMID: 37395658 PMCID: PMC10434023 DOI: 10.1128/spectrum.00400-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/13/2023] [Indexed: 07/04/2023] Open
Abstract
Plasmids contribute to microbial diversity and adaptation, providing microorganisms with the ability to thrive in a wide range of conditions in extreme environments. However, while the number of marine microbiome studies is constantly increasing, very little is known about marine plasmids, and they are very poorly represented in public databases. To extend the repertoire of environmental marine plasmids, we established a pipeline for the de novo assembly of plasmids in the marine environment by analyzing available microbiome metagenomic sequencing data. By applying the pipeline to data from the Red Sea, we identified 362 plasmid candidates. We showed that the distribution of plasmids corresponds to environmental conditions, particularly, depth, temperature, and physical location. At least 7 of the 362 candidates are most probably real plasmids, based on a functional analysis of their open reading frames (ORFs). Only one of the seven has been described previously. Three plasmids were identified in other public marine metagenomic data from different locations all over the world; these plasmids contained different cassettes of functional genes at each location. Analysis of antibiotic and metal resistance genes revealed that the same positions that were enriched with genes encoding resistance to antibiotics were also enriched with resistance to metals, suggesting that plasmids contribute site-dependent phenotypic modules to their ecological niches. Finally, half of the ORFs (50.8%) could not be assigned to a function, emphasizing the untapped potential of the unique marine plasmids to provide proteins with multiple novel functions. IMPORTANCE Marine plasmids are understudied and hence underrepresented in databases. Plasmid functional annotation and characterization is complicated but, if successful, may provide a pool of novel genes and unknown functions. Newly discovered plasmids and their functional repertoire are potentially valuable tools for predicting the dissemination of antimicrobial resistance, providing vectors for molecular cloning and an understanding of plasmid-bacterial interactions in various environments.
Collapse
Affiliation(s)
- Lucy Androsiuk
- Israel Oceanographic & Limnological Research Ltd., National Center for Mariculture, Eilat, Israel
- Marine Biology and Biotechnology Program, Department of Life Sciences, Ben-Gurion University of the Negev, Eilat, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tal Shay
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shay Tal
- Israel Oceanographic & Limnological Research Ltd., National Center for Mariculture, Eilat, Israel
| |
Collapse
|
7
|
Liu Y, Feng M, Johansen A, Cheng D, Xue J, Feng Y, Fan S, Li Z. Composting reduces the risks of antibiotic resistance genes in maize seeds posed by gentamicin fermentation waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161785. [PMID: 36736399 DOI: 10.1016/j.scitotenv.2023.161785] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Using high-throughput quantitative PCR and next generation sequencing, the impact of land application of raw and composted gentamicin fermentation waste (GFW) on antibiotic resistance genes (ARGs) in maize seeds was studied in a three-year field trial. The raw and composted GFW changed both the bacterial community composition and the ARGs diversity in the maize seeds compared to non-amended controls and chemical fertilizer. The abundance of ARGs after raw GFW amendment was significantly higher than other treatments because of a high abundance of aadA1, qacEdeltal and aph(2')-Id-02; probably induced by gentamicin selection pressure in maize tissues. Meanwhile, the potential host of these three ARGs, pathogenic bacteria Tenacibaculum, also increased significantly in maize seeds after the application of raw GFW. But our result proved that composting could weaken the risk posed by GFW. We further reveal that the key biotic driver for shaping the ARG profiles in maize seeds is bacterial community followed by heavy metal resistance genes, and ARGs are more likely located on bacterial chromosomes. Our findings provide new insight into ARGs dispersal mechanism in maize seeds after long-term GFW application, demonstrate the potential benefits of composting the GFW to reduce risks as well as the potential efficient management method to GFW.
Collapse
Affiliation(s)
- Yuanwang Liu
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Minmin Feng
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Anders Johansen
- Department of Environmental Science, Faculty of Technical Sciences, Aarhus University, Roskilde 4000, Denmark
| | - Dengmiao Cheng
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Jianming Xue
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; Scion, Private Bag 29237, Christchurch 8440, New Zealand
| | - Yao Feng
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuanghu Fan
- College of Life Science, Langfang Normal University, Langfang 065000, China
| | - Zhaojun Li
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
8
|
Abstract
Plasmids are key mobile genetic elements in bacterial evolution and ecology as they allow the rapid adaptation of bacteria under selective environmental changes. However, the genetic information associated with plasmids is usually considered separately from information about their environmental origin. To broadly understand what kinds of traits may become mobilized by plasmids in different environments, we analyzed the properties and accessory traits of 9,725 unique plasmid sequences from a publicly available database with known bacterial hosts and isolation sources. Although most plasmid research focuses on resistance traits, such genes made up <1% of the total genetic information carried by plasmids. Similar to traits encoded on the bacterial chromosome, plasmid accessory trait compositions (including general Clusters of Orthologous Genes [COG] functions, resistance genes, and carbon and nitrogen genes) varied across seven broadly defined environment types (human, animal, wastewater, plant, soil, marine, and freshwater). Despite their potential for horizontal gene transfer, plasmid traits strongly varied with their host's taxonomic assignment. However, the trait differences across environments of broad COG categories could not be entirely explained by plasmid host taxonomy, suggesting that environmental selection acts on the plasmid traits themselves. Finally, some plasmid traits and environments (e.g., resistance genes in human-related environments) were more often associated with mobilizable plasmids (those having at least one detected relaxase) than others. Overall, these findings underscore the high level of diversity of traits encoded by plasmids and provide a baseline to investigate the potential of plasmids to serve as reservoirs of adaptive traits for microbial communities. IMPORTANCE Plasmids are well known for their role in the transmission of antibiotic resistance-conferring genes. Beyond human and clinical settings, however, they disseminate many other types of genes, including those that contribute to microbially driven ecosystem processes. In this study, we identified the distribution of traits genetically encoded by plasmids isolated from seven broadly categorized environments. We find that plasmid trait content varied with both bacterial host taxonomy and environment and that, on average, half of the plasmids were potentially mobilizable. As anthropogenic activities impact ecosystems and the climate, investigating and identifying the mechanisms of how microbial communities can adapt will be imperative for predicting the impacts on ecosystem functioning.
Collapse
|
9
|
Zhu L, Huang H, Avellán‐Llaguno RD, Qin Y, An X, Su J, Huang Q, Zhu Y. Diverse functional genes harboured in extracellular vesicles from environmental and human microbiota. J Extracell Vesicles 2022; 11:e12292. [PMID: 36463395 PMCID: PMC9719567 DOI: 10.1002/jev2.12292] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 12/07/2022] Open
Abstract
Exchange of mobile functional genes within microbiota benefits the microbial community. However, the status of the mobile gene pool in environment is still largely unclear, impeding the understanding on the process of gene transfer in natural microbial communities. The release of extracellular vesicles (EVs) by diverse organisms has been proposed to be a vital way in the complex networks of interactions between microbes and their habitats. In this study, we hypothesized that microbial EVs encapsulating functional DNA are widely distributed in the environmental matrix. The prevalence, source and DNA cargoes of EVs in three types of typical microbial habitats were studied. High abundance of EVs comparable to the bacterial concentration was found in human faeces, wastewater and soil. Metagenomic analysis showed the diverse and differential taxonomy of EVs-associated DNA compared to source microbiome. An array of efficient EVs producing species was identified. A wide variety of mobile genes including glycoside hydrolase family 25 were enriched. Antibiotic resistance genes co-localizing with mobile genetic elements were abundant in the EVs. This study provides novel insights into the prevalent EVs as a reservoir for the mobile functional genes in the natural environment.
Collapse
Affiliation(s)
- Li‐Ting Zhu
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina
| | - Hai‐Ning Huang
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
| | - Ricardo David Avellán‐Llaguno
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
| | - Yifei Qin
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina
| | - Xin‐Li An
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
| | - Jian‐Qiang Su
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
| | - Qiansheng Huang
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- National Basic Science Data CenterBeijingChina
| | - Yong‐Guan Zhu
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
| |
Collapse
|
10
|
Wu X, Liu Z, Li M, Bartlam M, Wang Y. Integrated metagenomic and metatranscriptomic analysis reveals actively expressed antibiotic resistomes in the plastisphere. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128418. [PMID: 35144012 DOI: 10.1016/j.jhazmat.2022.128418] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/03/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
The plastisphere is viewed as a reservoir for the antibiotic resistome in water environments and may pose health concerns. However, the expression profiles of the resistome in the plastisphere are largely unknown. Here, we profiled the occurrence, abundance, and transcriptional level of antibiotic resistance genes (ARGs), plasmid associated ARGs, microbial composition and ARG bacterial hosts in the plastisphere and urban river water using 16S rRNA gene sequencing, metagenomic sequencing, and metatranscriptomic sequencing methods. A total of 173 ARGs conferring resistance to 24 major classes of antibiotics commonly prescribed to humans and animals were detected in the plastisphere. Of these, 75 genes were observed with transcriptional activity, indicating that the antibiotic resistome in the plastisphere was not only present, but also actively expressed. Human pathogens belonging to family Enterobacteriaceae were identified as bacterial hosts of ARGs in the plastisphere. The opportunistic and multidrug resistant human pathogen Enterobacter cloacae was found to actively express tetG and confer tetracycline resistance to the plastisphere. Furthermore, 39 genes were identified as "plasmid associated ARGs" in the plastisphere, displaying a higher proportion of transcript abundance compared with water. The above results suggest that the plastisphere is a hotspot for antibiotic resistome acquisition, expression, and dissemination.
Collapse
Affiliation(s)
- Xiaojian Wu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300350, China
| | - Zongbao Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Meng Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Mark Bartlam
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300071, China.
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300350, China.
| |
Collapse
|
11
|
Hossain MS, Ali S, Hossain M, Uddin SZ, Moniruzzaman M, Islam MR, Shohael AM, Islam MS, Ananya TH, Rahman MM, Rahman MA, Worth M, Mondal D, Mahmud ZH. ESBL Producing Escherichia coli in Faecal Sludge Treatment Plants: An Invisible Threat to Public Health in Rohingya Camps, Cox's Bazar, Bangladesh. Front Public Health 2022; 9:783019. [PMID: 34976932 PMCID: PMC8714839 DOI: 10.3389/fpubh.2021.783019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/22/2021] [Indexed: 12/29/2022] Open
Abstract
Introduction: Human faecal sludge contains diverse harmful microorganisms, making it hazardous to the environment and public health if it is discharged untreated. Faecal sludge is one of the major sources of E. coli that can produce extended-spectrum β-lactamases (ESBLs). Objective: This study aimed to investigate the prevalence and molecular characterization of ESBL-producing E. coli in faecal sludge samples collected from faecal sludge treatment plants (FSTPs) in Rohingya camps, Bangladesh. Methods: ESBL producing E. coli were screened by cultural as well as molecular methods and further characterized for their major ESBL genes, plasmid profiles, pathotypes, antibiotic resistance patterns, conjugation ability, and genetic similarity. Results: Of 296 isolates, 180 were phenotypically positive for ESBL. All the isolates, except one, contained at least one ESBL gene that was tested (blaCTX−M−1, blaCTX−M−2, blaCTX−M−8, blaCTX−M−9, blaCTX−M−15, blaCTX−M−25, blaTEM, and blaSHV). From plasmid profiling, it was observed that plasmids of 1–211 MDa were found in 84% (151/180) of the isolates. Besides, 13% (24/180) of the isolates possessed diarrhoeagenic virulence genes. From the remaining isolates, around 51% (79/156) harbored at least one virulence gene that is associated with the extraintestinal pathogenicity of E. coli. Moreover, 4% (3/156) of the isolates were detected to be potential extraintestinal pathogenic E. coli (ExPEC) strains. Additionally, all the diarrhoeagenic and ExPEC strains showed resistance to three or more antibiotic groups which indicate their multidrug-resistant potential. ERIC-PCR differentiated these pathogenic isolates into seven clusters. In addition to this, 16 out of 35 tested isolates transferred plasmids of 32–112 MDa to E. coli J53 recipient strain. Conclusion: The present study implies that the faecal sludge samples examined here could be a potential origin for spreading MDR pathogenic ESBL-producing E. coli. The exposure of Rohingya individuals, living in overcrowded camps, to these organisms poses a severe threat to their health.
Collapse
Affiliation(s)
- Md Sakib Hossain
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Sobur Ali
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Monir Hossain
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | | | - M Moniruzzaman
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | | | | | - Md Shafiqul Islam
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | | | - Md Mominur Rahman
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh
| | | | - Martin Worth
- WASH Section, United Nations Children's Fund, Dhaka, Bangladesh
| | - Dinesh Mondal
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | | |
Collapse
|
12
|
Shalon N, Relman DA, Yaffe E. Precise genotyping of circular mobile elements from metagenomic data uncovers human-associated plasmids with recent common ancestors. Genome Res 2022; 32:986-1003. [PMID: 35414589 PMCID: PMC9104695 DOI: 10.1101/gr.275894.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 04/01/2022] [Indexed: 11/25/2022]
Abstract
Mobile genetic elements with circular genomes play a key role in the evolution of microbial communities. Their circular genomes correspond to circular walks in metagenome graphs, and yet, assemblies derived from natural microbial communities produce graphs riddled with spurious cycles, complicating the accurate reconstruction of circular genomes. We present DomCycle, an algorithm that reconstructs likely circular genomes based on the identification of so-called 'dominant' graph cycles. In the implementation we leverage paired reads to bridge assembly gaps and scrutinize cycles through a nucleotide-level analysis, making the approach robust to misassembly artifacts. We validated the approach using simulated and real sequencing data. Application of DomCycle to 32 publicly available DNA shotgun sequence data sets from diverse natural environments led to the reconstruction of hundreds of circular mobile genomes. Clustering revealed 20 highly prevalent and cryptic plasmids that have clonal population structures with recent common ancestors. This method facilitates the study of microbial communities that evolve through horizontal gene transfer.
Collapse
|
13
|
Adler A, Poirier S, Pagni M, Maillard J, Holliger C. Disentangle genus microdiversity within a complex microbial community by using a multi-distance long-read binning method: example of Candidatus Accumulibacter. Environ Microbiol 2022; 24:2136-2156. [PMID: 35315560 PMCID: PMC9311429 DOI: 10.1111/1462-2920.15947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/19/2022] [Indexed: 11/26/2022]
Abstract
Complete genomes can be recovered from metagenomes by assembling and binning DNA sequences into metagenome assembled genomes (MAGs). Yet, the presence of microdiversity can hamper the assembly and binning processes, possibly yielding chimeric, highly fragmented and incomplete genomes. Here, the metagenomes of four samples of aerobic granular sludge bioreactors containing Candidatus (Ca.) Accumulibacter, a phosphate-accumulating organism of interest for wastewater treatment, were sequenced with both PacBio and Illumina. Different strategies of genome assembly and binning were investigated, including published protocols and a binning procedure adapted to the binning of long contigs (MuLoBiSC). Multiple criteria were considered to select the best strategy for Ca. Accumulibacter, whose multiple strains in every sample represent a challenging microdiversity. In this case, the best strategy relies on long-read only assembly and a custom binning procedure including MuLoBiSC in metaWRAP. Several high-quality Ca. Accumulibacter MAGs, including a novel species, were obtained independently from different samples. Comparative genomic analysis showed that MAGs retrieved in different samples harbour genomic rearrangements in addition to accumulation of point mutations. The microdiversity of Ca. Accumulibacter, likely driven by mobile genetic elements, causes major difficulties in recovering MAGs, but it is also a hallmark of the panmictic lifestyle of these bacteria.
Collapse
Affiliation(s)
- Aline Adler
- Laboratory for Environmental Biotechnology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Simon Poirier
- Laboratory for Environmental Biotechnology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Marco Pagni
- Laboratory for Environmental Biotechnology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Julien Maillard
- Laboratory for Environmental Biotechnology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,IFP Energie nouvelles, 1 et 4 avenue de Bois-Préau, 92852, Rueil-Malmaison Cedex, France
| | - Christof Holliger
- Laboratory for Environmental Biotechnology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
14
|
Bacterial Hosts and Genetic Characteristics of Antibiotic Resistance Genes in Wastewater Treatment Plants of Xinjiang (China) Revealed by Metagenomics. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063100] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antibiotic resistance genes (ARGs) pose a widespread concern for human health and wastewater treatment plants (WWTPs) are considered to be a major source of ARG transmission. In this paper, the potential hosts and genetic characteristics of ARGs in the influent, activated sludge and effluent of WWTPs in Xinjiang were studied by metagenomics. Bacitracin resistance gene (bacA), beta-lactamase gene (class A beta-lactamase), multidrug resistance genes (mexD, qacEdelta1), and sulfonamide resistance genes (sul1, and sul2) are persistent antibiotic resistance genes (PARGs). The potential hosts of ARGs were mainly pathogens, with Escherichia coli (12.9%), Acinetobacter johnsonii (8.94%), and Klebsiella pneumoniae (5.30%) accounting for the highest proportions. Chromosomal sequences and plasmid sequences accounted for 42.0% and 22.6% of ARG-carrying contigs (ACCs) in the influent, respectively. Meanwhile, the effluent contained 58.3% of ACCs in plasmids and 8.30% in chromosomes. Bacitracin resistance genes and multidrug resistance genes were mainly carried by chromosomes, while resistance genes for macrolide–lincosamide–streptogramin (MLS), vancomycin, sulfonamide, beta-lactam, tetracycline, chloramphenicol, and aminoglycoside were mainly carried by plasmids. ICEPae690-sul1-qacEdelta1 and ICEPmiChn3-sul2 were stable coexistence structures and heighten the transfer potential of ARGs in the environment. This study provided a clearer picture of host bacterial sources and genetic context of ARGs in the environment.
Collapse
|
15
|
Liu Y, Cheng D, Xue J, Feng Y, Wakelin SA, Weaver L, Shehata E, Li Z. Fate of bacterial community, antibiotic resistance genes and gentamicin residues in soil after three-year amendment using gentamicin fermentation waste. CHEMOSPHERE 2022; 291:132734. [PMID: 34743798 DOI: 10.1016/j.chemosphere.2021.132734] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/15/2021] [Accepted: 10/27/2021] [Indexed: 05/20/2023]
Abstract
Over a three-year field trial, the impacts of composted and raw gentamicin fermentation waste (GFW) application to land on residual soil gentamicin levels, physicochemical properties, bacterial community composition, and antibiotic resistance genes (ARGs) were assessed. In the saline-alkali soil tested, GFW application decreased electrical conductivity (EC) and pH. Importantly, there was no measurable long-term accumulation of gentamicin as a result of GFW addition. Changes in the abundance of Bacillus was primarily associated with degradation of gentamicin in soil, whereas wider (i.e. more general) shifts in bacterial communities over the treatments was linked to alteration of soil physicochemical properties, particularly pH, total nitrogen, dissolved organic carbon, EC, NO3--N and NH4+-N. Compared with other treatments, soils receiving composted GFW harbored more types of ARGs and significantly higher (P < 0.05) abundances of mobile genes elements (MGEs) (especially IncQ and Int1) and aminoglycoside ARGs (especially aminoglycoside phosphotransferases genes, APH). Finally, the abundances of ARGs in soils receiving raw and composted GFW were 59.60% and 50.26% higher than that in soils only receiving chemical fertilizer, respectively. Specifically, the abundances of APH, especially strB, were significantly higher than other kinds of ARGs (P < 0.05). The results of linear regression and partial least squares path model showed that MGEs, including plasmids, integrons, and transposons, along with soil properties (EC and NH4+-N) were the main factors associated with change in ARGs. Furthermore, different MGEs were involved in different transfer mechanisms of specific ARGs. Our findings demonstrated the potential risks of using raw and composted GFW as fertilizer, and suggest potential solutions to this problem.
Collapse
Affiliation(s)
- Yuanwang Liu
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China; Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Dengmiao Cheng
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Jianming Xue
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China; Scion, Private Bag, 29237, Christchurch, New Zealand
| | - Yao Feng
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | | | - Louise Weaver
- Institute of Environmental Science and Research Ltd, Christchurch, 8041, New Zealand
| | - Ebrahim Shehata
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Zhaojun Li
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; Institute of Animal science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China.
| |
Collapse
|
16
|
Ma X, Zhang X, Xia J, Sun H, Zhang X, Ye L. Phenolic compounds promote the horizontal transfer of antibiotic resistance genes in activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149549. [PMID: 34392203 DOI: 10.1016/j.scitotenv.2021.149549] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Phenolic compounds are common organic pollutants in wastewater. During the wastewater treatment process, these compounds may influence the microbial community structure and functions. However, the impact of the phenolic compounds in the wastewater treatment plants on the horizontal transfer of antibiotic resistance genes (ARGs) has not been well assessed. In this study, we investigated the horizontal transfer of ARGs under the stress of phenolic compounds. The results showed that in pure culture bacteria system, p-nitrophenol (PNP), p-aminophenol (PAP) and phenol (PhOH) (10-100 mg/L) can significantly increase the horizontal transfer frequency of ARGs by 2.2-4.6, 3.6-9.4 and 1.9-9.0 fold, respectively. And, the RP4 plasmid transfer from Escherichia coli HB101 (E. coli HB101) to the bacteria in activated sludge increased obviously under the stress of phenolic compounds. Further investigation revealed that the PNP and PhOH at the concentration of 10-100 mg/L increased the production of reactive oxygen species and the permeability of cell membrane in the donor and recipient, which could be the causes of horizontal transfer of RP4 plasmid. In addition, it was also found that PNP, PAP and PhOH stress inhibit the expression of the global regulatory genes korB and trbA in the RP4 plasmid, and increase the expression level of the traF gene, thereby promoting the conjugative transfer of the RP4 plasmid. Taken together, these results improved our understanding of the horizontal transfer of ARGs under the stress of phenolic compounds and provided basic information for management of the systems that treat wastewater containing phenolic compounds.
Collapse
Affiliation(s)
- Xueyan Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Xiuwen Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Juntao Xia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Haohao Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
| |
Collapse
|
17
|
Long range PCR reveals the genetic cargo of IncP-1 plasmids in the complex microbial community of an on-farm biopurification system treating pesticide contaminated wastewater. Appl Environ Microbiol 2021; 88:e0164821. [PMID: 34878814 DOI: 10.1128/aem.01648-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Promiscuous plasmids like IncP-1 plasmids play an important role in the bacterial adaptation to pollution by acquiring and distributing xenobiotic catabolic genes. However, most information comes from isolates and the role of plasmids in governing community-wide bacterial adaptation to xenobiotics and other adaptive forces is not fully understood. Current information on the contribution of IncP-1 plasmids in community adaptation is limited because methods are lacking that directly isolate and identify the plasmid borne adaptive functions in whole-community DNA. In this study, we optimized long range PCR to directly access and identify the cargo carried by IncP-1 plasmids in environmental DNA. The DNA between the IncP-1 backbone genes trbP and traC, a main insertion site of adaptive trait determinants, is amplified and its content analysed by high-throughput sequencing. The method was applied to DNA of an on-farm biopurification system (BPS), treating pesticide contaminated wastewater, to examine whether horizontal gene exchange of catabolic functions by IncP-1 plasmids is a main driver of community adaptation in BPS. The cargo recovered from BPS community DNA, encoded catabolic but also resistance traits and various other (un)known functions. Unexpectedly, catabolic traits composed only a minor fraction of the cargo, indicating that the IncP-1 region between trbP and traC is not a major contributor to catabolic adaptation of the BPS microbiome. Instead, it contains a functionally diverse set of genes which either may assist biodegradation functions, be remnants of random gene recruitment, or confer other crucial functions for proliferation in the BPS environment. IMPORTANCE This study presents a long range PCR for direct and cultivation-independent access to the identity of the cargo of a major insertion hot spot of adaptive genes in IncP-1 plasmids and hence a new mobilome tool for understanding the role of IncP-1 plasmids in complex communities. The method was applied to DNA of an on-farm biopurification system (BPS) treating pesticide-contaminated wastewater, aiming at new insights on whether horizontal exchange of catabolic functions by IncP-1 plasmids is a main driver of community adaptation in BPS. Unexpectedly, catabolic functions represented a small fraction of the cargo genes while multiple other gene functions were recovered. These results show that the cargo of the target insertion hot spot in IncP-1 plasmids in a community, not necessarily relates to the main selective trait imposed on that community. Instead these functions might contribute to adaptation to unknown selective forces or represent remnants of random gene recruitment.
Collapse
|
18
|
Douglas GM, Shapiro BJ. Genic Selection Within Prokaryotic Pangenomes. Genome Biol Evol 2021; 13:6402011. [PMID: 34665261 PMCID: PMC8598171 DOI: 10.1093/gbe/evab234] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
Understanding the evolutionary forces shaping prokaryotic pangenome structure is a major goal of microbial evolution research. Recent work has highlighted that a substantial proportion of accessory genes appear to confer niche-specific adaptations. This work has primarily focused on selection acting at the level of individual cells. Herein, we discuss a lower level of selection that also contributes to pangenome variation: genic selection. This refers to cases where genetic elements, rather than individual cells, are the entities under selection. The clearest examples of this form of selection are selfish mobile genetic elements, which are those that have either a neutral or a deleterious effect on host fitness. We review the major classes of these and other mobile elements and discuss the characteristic features of such elements that could be under genic selection. We also discuss how genetic elements that are beneficial to hosts can also be under genic selection, a scenario that may be more prevalent but not widely appreciated, because disentangling the effects of selection at different levels (i.e., organisms vs. genes) is challenging. Nonetheless, an appreciation for the potential action and implications of genic selection is important to better understand the evolution of prokaryotic pangenomes.
Collapse
Affiliation(s)
- Gavin M Douglas
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - B Jesse Shapiro
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| |
Collapse
|
19
|
Perez MF, Saona LA, Farías ME, Poehlein A, Meinhardt F, Daniel R, Dib JR. Assessment of the plasmidome of an extremophilic microbial community from the Diamante Lake, Argentina. Sci Rep 2021; 11:21459. [PMID: 34728656 PMCID: PMC8563766 DOI: 10.1038/s41598-021-00753-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/15/2021] [Indexed: 12/02/2022] Open
Abstract
Diamante Lake located at 4589 m.a.s.l. in the Andean Puna constitutes an extreme environment. It is exposed to multiple extreme conditions such as an unusually high concentration of arsenic (over 300 mg L-1) and low oxygen pressure. Microorganisms thriving in the lake display specific genotypes that facilitate survival, which include at least a multitude of plasmid-encoded resistance traits. Hence, the genetic information provided by the plasmids essentially contributes to understand adaptation to different stressors. Though plasmids from cultivable organisms have already been analyzed to the sequence level, the impact of the entire plasmid-borne genetic information on such microbial ecosystem is not known. This study aims at assessing the plasmidome from Diamante Lake, which facilitates the identification of potential hosts and prediction of gene functions as well as the ecological impact of mobile genetic elements. The deep-sequencing analysis revealed a large fraction of previously unknown DNA sequences of which the majority encoded putative proteins of unknown function. Remarkably, functions related to the oxidative stress response, DNA repair, as well as arsenic- and antibiotic resistances were annotated. Additionally, all necessary capacities related to plasmid replication, mobilization and maintenance were detected. Sequences characteristic for megaplasmids and other already known plasmid-associated genes were identified as well. The study highlights the potential of the deep-sequencing approach specifically targeting plasmid populations as it allows to evaluate the ecological impact of plasmids from (cultivable and non-cultivable) microorganisms, thereby contributing to the understanding of the distribution of resistance factors within an extremophilic microbial community.
Collapse
Affiliation(s)
- María Florencia Perez
- grid.423606.50000 0001 1945 2152Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Tucumán Argentina
| | - Luis Alberto Saona
- grid.423606.50000 0001 1945 2152Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Tucumán Argentina
| | - María Eugenia Farías
- grid.423606.50000 0001 1945 2152Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Tucumán Argentina
| | - Anja Poehlein
- grid.7450.60000 0001 2364 4210Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Friedhelm Meinhardt
- grid.5949.10000 0001 2172 9288Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms Universität Münster, Münster, Germany
| | - Rolf Daniel
- grid.7450.60000 0001 2364 4210Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Julián Rafael Dib
- grid.423606.50000 0001 1945 2152Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Tucumán Argentina ,grid.108162.c0000000121496664Instituto de Microbiología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán Argentina
| |
Collapse
|
20
|
Hall JPJ, Wright RCT, Harrison E, Muddiman KJ, Wood AJ, Paterson S, Brockhurst MA. Plasmid fitness costs are caused by specific genetic conflicts enabling resolution by compensatory mutation. PLoS Biol 2021; 19:e3001225. [PMID: 34644303 PMCID: PMC8544851 DOI: 10.1371/journal.pbio.3001225] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 10/25/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022] Open
Abstract
Plasmids play an important role in bacterial genome evolution by transferring genes between lineages. Fitness costs associated with plasmid carriage are expected to be a barrier to gene exchange, but the causes of plasmid fitness costs are poorly understood. Single compensatory mutations are often sufficient to completely ameliorate plasmid fitness costs, suggesting that such costs are caused by specific genetic conflicts rather than generic properties of plasmids, such as their size, metabolic burden, or gene expression level. By combining the results of experimental evolution with genetics and transcriptomics, we show here that fitness costs of 2 divergent large plasmids in Pseudomonas fluorescens are caused by inducing maladaptive expression of a chromosomal tailocin toxin operon. Mutations in single genes unrelated to the toxin operon, and located on either the chromosome or the plasmid, ameliorated the disruption associated with plasmid carriage. We identify one of these compensatory loci, the chromosomal gene PFLU4242, as the key mediator of the fitness costs of both plasmids, with the other compensatory loci either reducing expression of this gene or mitigating its deleterious effects by up-regulating a putative plasmid-borne ParAB operon. The chromosomal mobile genetic element Tn6291, which uses plasmids for transmission, remained up-regulated even in compensated strains, suggesting that mobile genetic elements communicate through pathways independent of general physiological disruption. Plasmid fitness costs caused by specific genetic conflicts are unlikely to act as a long-term barrier to horizontal gene transfer (HGT) due to their propensity for amelioration by single compensatory mutations, helping to explain why plasmids are so common in bacterial genomes.
Collapse
Affiliation(s)
- James P. J. Hall
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Rosanna C. T. Wright
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| | - Ellie Harrison
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Katie J. Muddiman
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - A. Jamie Wood
- Department of Biology, University of York, York, United Kingdom
- Department of Mathematics, University of York, York, United Kingdom
| | - Steve Paterson
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Michael A. Brockhurst
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
21
|
Zuzolo D, Sciarrillo R, Postiglione A, Guarino C. The remediation potential for PAHs of Verbascum sinuatum L. combined with an enhanced rhizosphere landscape: A full-scale mesocosm experiment. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 31:e00657. [PMID: 34277366 PMCID: PMC8264111 DOI: 10.1016/j.btre.2021.e00657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/20/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
A full-scale mesocosm study was conducted to depict how integrated biological systems interact to adapt to contaminant stress and improve remediation of polycyclic aromatic hydrocarbons (PAHs)contaminated soils. The combination of Verbascum sinuatum L. and microbial consortium (fungi and bacteria) was employed along with three differently contaminated soils. After 240 days the highest PAHs removal (up to 68 %) and 6-rings compounds decrease was found in soil with lower pollution and cation exchange capacity. V. sinuatum showed a significant adaptability over time in terms of redox biology. Soil enzyme activities and microscopic evidences proved a rising plant-microorganisms association and a successful mycorrhization, arising from the inoculation of our consortia. In addition, an enhanced richness of PAHs degrading genes was achieved. Microbial co-metabolism, helped by the establishment of complex relationships with hosting plant, demonstrated to be suitable for the degradation of high molecular weight PAHs and represents a biotechnology with great prospects.
Collapse
|
22
|
Abstract
Soil contamination with petroleum hydrocarbons (PHCs) has become a global concern and has resulted from the intensification of industrial activities. This has created a serious environmental issue; therefore, there is a need to find solutions, including application of efficient remediation technologies or improvement of current techniques. Rhizoremediation is a green technology that has received global attention as a cost-effective and possibly efficient remediation technique for PHC-polluted soil. Rhizoremediation refers to the use of plants and their associated microbiota to clean up contaminated soils, where plant roots stimulate soil microbes to mineralize organic contaminants to H2O and CO2. However, this multipartite interaction is complicated because many biotic and abiotic factors can influence microbial processes in the soil, making the efficiency of rhizoremediation unpredictable. This review reports the current knowledge of rhizoremediation approaches that can accelerate the remediation of PHC-contaminated soil. Recent approaches discussed in this review include (1) selecting plants with desired characteristics suitable for rhizoremediation; (2) exploiting and manipulating the plant microbiome by using inoculants containing plant growth-promoting rhizobacteria (PGPR) or hydrocarbon-degrading microbes, or a combination of both types of organisms; (3) enhancing the understanding of how the host–plant assembles a beneficial microbiome, and how it functions, under pollutant stress. A better understanding of plant–microbiome interactions could lead to successful use of rhizoremediation for PHC-contaminated soil in the future.
Collapse
|
23
|
Abstract
Bacteria acquire novel DNA through horizontal gene transfer (HGT), a process that enables an organism to rapidly adapt to changing environmental conditions, provides a competitive edge and potentially alters its relationship with its host. Although the HGT process is routinely exploited in laboratories, there is a surprising disconnect between what we know from laboratory experiments and what we know from natural environments, such as the human gut microbiome. Owing to a suite of newly available computational algorithms and experimental approaches, we have a broader understanding of the genes that are being transferred and are starting to understand the ecology of HGT in natural microbial communities. This Review focuses on these new technologies, the questions they can address and their limitations. As these methods are applied more broadly, we are beginning to recognize the full extent of HGT possible within a microbiome and the punctuated dynamics of HGT, specifically in response to external stimuli. Furthermore, we are better characterizing the complex selective pressures on mobile genetic elements and the mechanisms by which they interact with the bacterial host genome.
Collapse
Affiliation(s)
- Ilana Lauren Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
24
|
Pradier L, Tissot T, Fiston-Lavier AS, Bedhomme S. PlasForest: a homology-based random forest classifier for plasmid detection in genomic datasets. BMC Bioinformatics 2021; 22:349. [PMID: 34174810 PMCID: PMC8236179 DOI: 10.1186/s12859-021-04270-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 06/14/2021] [Indexed: 11/10/2022] Open
Abstract
Background Plasmids are mobile genetic elements that often carry accessory genes, and are vectors for horizontal transfer between bacterial genomes. Plasmid detection in large genomic datasets is crucial to analyze their spread and quantify their role in bacteria adaptation and particularly in antibiotic resistance propagation. Bioinformatics methods have been developed to detect plasmids. However, they suffer from low sensitivity (i.e., most plasmids remain undetected) or low precision (i.e., these methods identify chromosomes as plasmids), and are overall not adapted to identify plasmids in whole genomes that are not fully assembled (contigs and scaffolds). Results We developed PlasForest, a homology-based random forest classifier identifying bacterial plasmid sequences in partially assembled genomes. Without knowing the taxonomical origin of the samples, PlasForest identifies contigs as plasmids or chromosomes with a F1 score of 0.950. Notably, it can detect 77.4% of plasmid contigs below 1 kb with 2.8% of false positives and 99.9% of plasmid contigs over 50 kb with 2.2% of false positives. Conclusions PlasForest outperforms other currently available tools on genomic datasets by being both sensitive and precise. The performance of PlasForest on metagenomic assemblies are currently well below those of other k-mer-based methods, and we discuss how homology-based approaches could improve plasmid detection in such datasets. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04270-w.
Collapse
Affiliation(s)
- Léa Pradier
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, Université de Montpellier, Université Paul Valéry Montpellier 3, Ecole Pratique des Hautes Etudes, Institut de Recherche Pour le Développement, 34000, Montpellier, France.
| | - Tazzio Tissot
- Genomics, Bioinformatics and Evolution. Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain.,Centre de Recerca Matemàtica, 08193, Cerdanyola del Vallès, Spain
| | - Anna-Sophie Fiston-Lavier
- Institut des Sciences de l'Evolution de Montpellier (ISE-M), Equipe Evolution, Vecteurs, Adaptation et Symbiose, UMR 5554, CNRS-Université Montpellier, 34090, Montpellier Cedex 05, France
| | - Stéphanie Bedhomme
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, Université de Montpellier, Université Paul Valéry Montpellier 3, Ecole Pratique des Hautes Etudes, Institut de Recherche Pour le Développement, 34000, Montpellier, France.
| |
Collapse
|
25
|
Abstract
Plasmids can provide a selective advantage for microorganisms to survive and adapt to new environmental conditions. Plasmid-encoded traits, such as antimicrobial resistance (AMR) or virulence, impact the ecology and evolution of bacteria and can significantly influence the burden of infectious diseases. Insight about the identity and functions encoded on plasmids on the global scale are largely lacking. Here, we investigate the plasmidome of 24 samples (22 countries, 5 continents) from the global sewage surveillance project. We obtained 105-Gbp Oxford Nanopore and 167-Gbp Illumina NextSeq DNA sequences from plasmid DNA preparations and assembled 165,302 contigs (159,322 circular). Of these, 58,429 carried genes encoding for plasmid-related and 11,222 for virus/phage-related proteins. About 90% of the circular DNA elements did not have any similarity to known plasmids. Those that exhibited similarity had similarity to plasmids whose hosts were previously detected in these sewage samples (e.g., Acinetobacter, Escherichia, Moraxella, Enterobacter, Bacteroides, and Klebsiella). Some AMR classes were detected at a higher abundance in plasmidomes (e.g., macrolide-lincosamide-streptogramin B, macrolide, and quinolone) compared to the respective complex sewage samples. In addition to AMR genes, a range of functions were encoded on the candidate plasmids, including plasmid replication and maintenance, mobilization, and conjugation. In summary, we describe a laboratory and bioinformatics workflow for the recovery of plasmids and other potential extrachromosomal DNA elements from complex microbiomes. Moreover, the obtained data could provide further valuable insight into the ecology and evolution of microbiomes, knowledge about AMR transmission, and the discovery of novel functions. IMPORTANCE This is, to the best of our knowledge, the first study to investigate plasmidomes at a global scale using long read sequencing from complex untreated domestic sewage. Previous metagenomic surveys have detected AMR genes in a variety of environments, including sewage. However, it is unknown whether the AMR genes were present on the microbial chromosome or located on extrachromosomal elements, such as plasmids. Using our approach, we recovered a large number of plasmids, of which most appear novel. We identified distinct AMR genes that were preferentially located on plasmids, potentially contributing to their transmissibility. Overall, plasmids are of great importance for the biology of microorganisms in their natural environments (free-living and host-associated), as well as for molecular biology and biotechnology. Plasmidome collections may therefore be valuable resources for the discovery of fundamental biological mechanisms and novel functions useful in a variety of contexts.
Collapse
|
26
|
Sitter TL, Vaughan AL, Schoof M, Jackson SA, Glare TR, Cox MP, Fineran PC, Gardner PP, Hurst MRH. Evolution of virulence in a novel family of transmissible mega-plasmids. Environ Microbiol 2021; 23:5289-5304. [PMID: 33989447 DOI: 10.1111/1462-2920.15595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 11/27/2022]
Abstract
Some Serratia entomophila isolates have been successfully exploited in biopesticides due to their ability to cause amber disease in larvae of the Aotearoa (New Zealand) endemic pasture pest, Costelytra giveni. Anti-feeding prophage and ABC toxin complex virulence determinants are encoded by a 153-kb single-copy conjugative plasmid (pADAP; amber disease-associated plasmid). Despite growing understanding of the S. entomophila pADAP model plasmid, little is known about the wider plasmid family. Here, we sequence and analyse mega-plasmids from 50 Serratia isolates that induce variable disease phenotypes in the C. giveni insect host. Mega-plasmids are highly conserved within S. entomophila, but show considerable divergence in Serratia proteamaculans with other variants in S. liquefaciens and S. marcescens, likely reflecting niche adaption. In this study to reconstruct ancestral relationships for a complex mega-plasmid system, strong co-evolution between Serratia species and their plasmids were found. We identify 12 distinct mega-plasmid genotypes, all sharing a conserved gene backbone, but encoding highly variable accessory regions including virulence factors, secondary metabolite biosynthesis, Nitrogen fixation genes and toxin-antitoxin systems. We show that the variable pathogenicity of Serratia isolates is largely caused by presence/absence of virulence clusters on the mega-plasmids, but notably, is augmented by external chromosomally encoded factors.
Collapse
Affiliation(s)
- Thomas L Sitter
- Forage Science, AgResearch, Lincoln Research Centre, Christchurch, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| | - Amy L Vaughan
- Forage Science, AgResearch, Lincoln Research Centre, Christchurch, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| | - Marion Schoof
- Forage Science, AgResearch, Lincoln Research Centre, Christchurch, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| | - Simon A Jackson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | | - Murray P Cox
- Bio-Protection Research Centre, Lincoln, New Zealand.,Statistics and Bioinformatics Group, School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Peter C Fineran
- Bio-Protection Research Centre, Lincoln, New Zealand.,Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Paul P Gardner
- Bio-Protection Research Centre, Lincoln, New Zealand.,Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Mark R H Hurst
- Forage Science, AgResearch, Lincoln Research Centre, Christchurch, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| |
Collapse
|
27
|
Ma J, Wang P, Gu W, Su Y, Wei H, Xie B. Does lipid stress affect performance, fate of antibiotic resistance genes and microbial dynamics during anaerobic digestion of food waste? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143846. [PMID: 33250254 DOI: 10.1016/j.scitotenv.2020.143846] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 05/25/2023]
Abstract
The dissemination of antibiotic resistance genes (ARGs) in food waste (FW) disposal can pose severe threats to public health. Lipid is a primary composition in FW, while whether lipid stress can affect ARGs dynamics during anaerobic digestion (AD) process of FW is uncertain. This study focused on the impacts of lipid stress on methane production, fate of ARGs and its microbial mechanisms during AD of FW. Results showed that high lipid content increased methane yield but prolonged hydrolysis and lag time of methane production compared to AD of FW without oil. Moreover, variations of ARGs were more susceptible to lipid stress. Lipid stress could facilitate the reduction of total ARGs abundances compared to the group without oil, particularly restraining the proliferation of sul1, aadA1 and mefA in AD systems (P < 0.05). Mantel test suggested that integrons (intl1 and intl2) were significantly correlated with all detected ARGs (r: 0.33, P < 0.05), indicating that horizontal gene transfer mediated by integrons could be the driving force on ARGs dissemination. Network analysis suggested that Firmicutes, Bacteroidetes, Synergistetes and Proteobacteria were the main potential hosts of ARGs. In addition, under the lipid stress, the reduction of host bacteria was responsible for the elimination of several specific ARGs, thereby affecting ARGs profiles. These findings firstly deciphered ARGs dynamics and their driving factors responding to lipid stress during anaerobic biological treatment of FW.
Collapse
Affiliation(s)
- Jiaying Ma
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Panliang Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Wenchao Gu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Huawei Wei
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
28
|
Hemmat-Jou MH, Safari-Sinegani AA, Che R, Mirzaie-Asl A, Tahmourespour A, Tahmasbian I. Toxic trace element resistance genes and systems identified using the shotgun metagenomics approach in an Iranian mine soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4845-4856. [PMID: 32949366 DOI: 10.1007/s11356-020-10824-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 09/13/2020] [Indexed: 05/27/2023]
Abstract
This study aimed to identify the microbial communities, resistance genes, and resistance systems in an Iranian mine soil polluted with toxic trace elements (TTE). The polluted soil samples were collected from a mining area and compared against non-polluted (control) collected soils from the vicinity of the mine. The soil total DNA was extracted and sequenced, and bioinformatic analysis of the assembled metagenomes was conducted to identify soil microbial biodiversity, TTE resistance genes, and resistance systems. The results of the employed shotgun approach indicated that the relative abundance of Proteobacteria, Firmicutes, Bacteroidetes, and Deinococcus-Thermus was significantly higher in the TTE-polluted soils compared with those in the control soils, while the relative abundance of Actinobacteria and Acidobacteria was significantly lower in the polluted soils. The high concentration of TTE increased the ratio of archaea to bacteria and decreased the alpha diversity in the polluted soils compared with the control soils. Canonical correspondence analysis (CCA) demonstrated that heavy metal pollution was the major driving factor in shaping microbial communities compared with any other soil characteristics. In the identified heavy metal resistome (HV-resistome) of TTE-polluted soils, major functional pathways were carbohydrates metabolism, stress response, amino acid and derivative metabolism, clustering-based subsystems, iron acquisition and metabolism, cell wall synthesis and capsulation, and membrane transportation. Ten TTE resistance systems were identified in the HV-resistome of TTE-polluted soils, dominated by "P-type ATPases," "cation diffusion facilitators," and "heavy metal efflux-resistance nodulation cell division (HME-RND)." Most of the resistance genes (69%) involved in resistance systems are affiliated to cell wall, outer membrane, periplasm, and cytoplasmic membrane. The finding of this study provides insight into the microbial community in Iranian TTE-polluted soils and their resistance genes and systems.
Collapse
Affiliation(s)
| | | | - Rongxiao Che
- Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650091, China
| | - Asghar Mirzaie-Asl
- Department of Biotechnology, Bu-Ali Sina University, Hamedan, 6517838695, Iran
| | - Arezoo Tahmourespour
- Department of Basic Medical Sciences, Islamic Azad University (Isfahan Branch), Isfahan, Iran
| | - Iman Tahmasbian
- Department of Agriculture and Fisheries, Queensland Government, Toowoomba, QLD, 4350, Australia
| |
Collapse
|
29
|
Rios Miguel AB, Jetten MS, Welte CU. The role of mobile genetic elements in organic micropollutant degradation during biological wastewater treatment. WATER RESEARCH X 2020; 9:100065. [PMID: 32984801 PMCID: PMC7494797 DOI: 10.1016/j.wroa.2020.100065] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/19/2020] [Accepted: 08/28/2020] [Indexed: 05/24/2023]
Abstract
Wastewater treatment plants (WWTPs) are crucial for producing clean effluents from polluting sources such as hospitals, industries, and municipalities. In recent decades, many new organic compounds have ended up in surface waters in concentrations that, while very low, cause (chronic) toxicity to countless organisms. These organic micropollutants (OMPs) are usually quite recalcitrant and not sufficiently removed during wastewater treatment. Microbial degradation plays a pivotal role in OMP conversion. Microorganisms can adapt their metabolism to the use of novel molecules via mutations and rearrangements of existing genes in new clusters. Many catabolic genes have been found adjacent to mobile genetic elements (MGEs), which provide a stable scaffold to host new catabolic pathways and spread these genes in the microbial community. These mobile systems could be engineered to enhance OMP degradation in WWTPs, and this review aims to summarize and better understand the role that MGEs might play in the degradation and wastewater treatment process. Available data about the presence of catabolic MGEs in WWTPs are reviewed, and current methods used to identify and measure MGEs in environmental samples are critically evaluated. Finally, examples of how these MGEs could be used to improve micropollutant degradation in WWTPs are outlined. In the near future, advances in the use of MGEs will hopefully enable us to apply selective augmentation strategies to improve OMP conversion in WWTPs.
Collapse
Affiliation(s)
- Ana B. Rios Miguel
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
| | - Mike S.M. Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
| | - Cornelia U. Welte
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
| |
Collapse
|
30
|
Saak CC, Dinh CB, Dutton RJ. Experimental approaches to tracking mobile genetic elements in microbial communities. FEMS Microbiol Rev 2020; 44:606-630. [PMID: 32672812 PMCID: PMC7476777 DOI: 10.1093/femsre/fuaa025] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/29/2020] [Indexed: 12/19/2022] Open
Abstract
Horizontal gene transfer is an important mechanism of microbial evolution and is often driven by the movement of mobile genetic elements between cells. Due to the fact that microbes live within communities, various mechanisms of horizontal gene transfer and types of mobile elements can co-occur. However, the ways in which horizontal gene transfer impacts and is impacted by communities containing diverse mobile elements has been challenging to address. Thus, the field would benefit from incorporating community-level information and novel approaches alongside existing methods. Emerging technologies for tracking mobile elements and assigning them to host organisms provide promise for understanding the web of potential DNA transfers in diverse microbial communities more comprehensively. Compared to existing experimental approaches, chromosome conformation capture and methylome analyses have the potential to simultaneously study various types of mobile elements and their associated hosts. We also briefly discuss how fermented food microbiomes, given their experimental tractability and moderate species complexity, make ideal models to which to apply the techniques discussed herein and how they can be used to address outstanding questions in the field of horizontal gene transfer in microbial communities.
Collapse
Affiliation(s)
- Christina C Saak
- Division of Biological Sciences, Section of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Cong B Dinh
- Division of Biological Sciences, Section of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Rachel J Dutton
- Division of Biological Sciences, Section of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
31
|
Perez MF, Kurth D, Farías ME, Soria MN, Castillo Villamizar GA, Poehlein A, Daniel R, Dib JR. First Report on the Plasmidome From a High-Altitude Lake of the Andean Puna. Front Microbiol 2020; 11:1343. [PMID: 32655530 PMCID: PMC7324554 DOI: 10.3389/fmicb.2020.01343] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Mobile genetic elements, including plasmids, drive the evolution of prokaryotic genomes through the horizontal transfer of genes allowing genetic exchange between bacteria. Moreover, plasmids carry accessory genes, which encode functions that may offer an advantage to the host. Thus, it is expected that in a certain ecological niche, plasmids are enriched in accessory functions, which are important for their hosts to proliferate in that niche. Puquio de Campo Naranja is a high-altitude lake from the Andean Puna exposed to multiple extreme conditions, including high UV radiation, alkalinity, high concentrations of arsenic, heavy metals, dissolved salts, high thermal amplitude and low O2 pressure. Microorganisms living in this lake need to develop efficient mechanisms and strategies to cope under these conditions. The aim of this study was to characterize the plasmidome of microbialites from Puquio de Campo Naranja, and identify potential hosts and encoded functions using a deep-sequencing approach. The potential ecological impact of the plasmidome, including plasmids from cultivable and non-cultivable microorganisms, is described for the first time in a lake representing an extreme environment of the Puna. This study showed that the recovered genetic information for the plasmidome was novel in comparison to the metagenome derived from the same environment. The study of the total plasmid population allowed the identification of genetic features typically encoded by plasmids, such as resistance and virulence factors. The resistance genes comprised resistances to heavy metals, antibiotics and stress factors. These results highlight the key role of plasmids for their hosts and impact of extrachromosomal elements to thrive in a certain ecological niche.
Collapse
Affiliation(s)
- María Florencia Perez
- Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Argentina
| | - Daniel Kurth
- Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Argentina
| | - María Eugenia Farías
- Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Argentina
| | - Mariana Noelia Soria
- Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Argentina
| | - Genis Andrés Castillo Villamizar
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany.,Línea Tecnológica Biocorrosión, Corporación para la Investigación de la Corrosión C.I.C., Piedecuesta, Colombia
| | - Anja Poehlein
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Julián Rafael Dib
- Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Argentina.,Facultad de Bioquímica, Química y Farmacia, Instituto de Microbiología, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| |
Collapse
|
32
|
Shityakov S, Bencurova E, Förster C, Dandekar T. Modeling of shotgun sequencing of DNA plasmids using experimental and theoretical approaches. BMC Bioinformatics 2020; 21:132. [PMID: 32245400 PMCID: PMC7126183 DOI: 10.1186/s12859-020-3461-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 03/19/2020] [Indexed: 01/02/2023] Open
Abstract
Background Processing and analysis of DNA sequences obtained from next-generation sequencing (NGS) face some difficulties in terms of the correct prediction of DNA sequencing outcomes without the implementation of bioinformatics approaches. However, algorithms based on NGS perform inefficiently due to the generation of long DNA fragments, the difficulty of assembling them and the complexity of the used genomes. On the other hand, the Sanger DNA sequencing method is still considered to be the most reliable; it is a reliable choice for virtual modeling to build all possible consensus sequences from smaller DNA fragments. Results In silico and in vitro experiments were conducted: (1) to implement and test our novel sequencing algorithm, using the standard cloning vectors of different length and (2) to validate experimentally virtual shotgun sequencing using the PCR technique with the number of cycles from 1 to 9 for each reaction. Conclusions We applied a novel algorithm based on Sanger methodology to correctly predict and emphasize the performance of DNA sequencing techniques as well as in de novo DNA sequencing and its further application in synthetic biology. We demonstrate the statistical significance of our results. Graphical abstract ![]()
Collapse
Affiliation(s)
- Sergey Shityakov
- Department of Bioinformatics, University of Würzburg, 97074, Würzburg, Germany. .,Department of Psychiatry, China Medical University Hospital, 404, Taichung, Taiwan.
| | - Elena Bencurova
- Department of Bioinformatics, University of Würzburg, 97074, Würzburg, Germany
| | - Carola Förster
- Department of Anesthesia and Critical Care, Würzburg University Hospital, 97080, Würzburg, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, University of Würzburg, 97074, Würzburg, Germany.
| |
Collapse
|
33
|
Wei H, Ma J, Su Y, Xie B. Effect of nutritional energy regulation on the fate of antibiotic resistance genes during composting of sewage sludge. BIORESOURCE TECHNOLOGY 2020; 297:122513. [PMID: 31821955 DOI: 10.1016/j.biortech.2019.122513] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
Sludge composting is increasingly adopted due to its end product for application as a soil nourishment amendment. Although the ratio of C/N is significant in the quality and process of composting, little information has been obtained from the effects of nutritional energy (carbon and nitrogen) on the fate of antibiotic resistance genes (ARGs) during sludge composting. Dynamic variations of ARGs, microbial community as well as functional characteristics during composting of sludge were investigated in this study. Three levels of carbon to nitrogen (20:1, 25:1 and 30:1) were developed for the composting of sludge with fermented straw plus a control which was just sewage sludge (C/N = 9.5:1). A novel finding of this work is that the highest initial C/N ratio (30:1) could prolong the thermophilic period, which was helpful to reduce some target ARGs. Some ARGs (sul1, sul2, and aadA1) had negative correlation with multiple metabolic pathways, which were difficult to remove.
Collapse
Affiliation(s)
- Huawei Wei
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jiaying Ma
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yinglong Su
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Bing Xie
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
34
|
Bougnom BP, Thiele-Bruhn S, Ricci V, Zongo C, Piddock LJV. Raw wastewater irrigation for urban agriculture in three African cities increases the abundance of transferable antibiotic resistance genes in soil, including those encoding extended spectrum β-lactamases (ESBLs). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134201. [PMID: 31505362 DOI: 10.1016/j.scitotenv.2019.134201] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
A study was conducted to investigate the impact of raw wastewater use for irrigation on dissemination of bacterial resistance in urban agriculture in African cities. The pollution of agricultural fields by selected antibiotic residues was assessed. The structure and functions of the soil microbial communities, presence of antibiotic resistance genes of human clinical importance and Enterobacteriaceae plasmid replicons were analysed using high throughput metagenomic sequencing. In irrigated fields, the richness of Bacteroidetes and Firmicutes phyla increased by 65% and 15.7%, respectively; functions allocated to microbial communities' adaptation and development increased by 3%. Abundance of antibiotic resistance genes of medical interest was 27% greater in irrigated fields. Extended spectrum β-lactamase genes identified in irrigated fields included blaCARB-3, blaOXA-347, blaOXA-5 and blaRm3. The presence of ARGs encoding resistance to amphenicols, β-lactams, and tetracyclines were associated with the higher concentrations of ciprofloxacin, enrofloxacin and sulfamethoxazole in irrigated fields. Ten Enterobacteriaceae plasmid amplicon groups involved in the wide distribution of ARGs were identified in the fields. IncQ2, ColE, IncFIC, IncQ1, and IncFII were found in both farming systems; IncW and IncP1 in irrigated fields; and IncY, IncFIB and IncFIA in non-irrigated fields. In conclusion, raw wastewater irrigated soils in African cities could represent a vector for the spread of antibiotic resistance, thus threatening human and animal health. Consumers of products from these farms and farmers could be at risk of acquiring infections due to drug-resistant bacteria.
Collapse
Affiliation(s)
- B P Bougnom
- Institute of Microbiology and Infection, University of Birmingham, B15 2TT, UK; Department of Microbiology, Faculty of Science, University of Yaounde 1, P.O. Box 812, Yaounde, Cameroon
| | - S Thiele-Bruhn
- Department of Soil Science, University of Trier, D-54286 Trier, Germany
| | - V Ricci
- Institute of Microbiology and Infection, University of Birmingham, B15 2TT, UK
| | - C Zongo
- Department of Biochemistry and Microbiology, University Ouaga, I Pr Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso
| | - L J V Piddock
- Institute of Microbiology and Infection, University of Birmingham, B15 2TT, UK.
| |
Collapse
|
35
|
Brown Kav A, Rozov R, Bogumil D, Sørensen SJ, Hansen LH, Benhar I, Halperin E, Shamir R, Mizrahi I. Unravelling plasmidome distribution and interaction with its hosting microbiome. Environ Microbiol 2019; 22:32-44. [DOI: 10.1111/1462-2920.14813] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/24/2019] [Accepted: 09/28/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Aya Brown Kav
- Faculty of Natural Sciences, Department of Life Sciences, The National Institute for Biotechnology in the NegevBen‐Gurion University of the Negev, P.O.B. 653 Beer‐Sheva, Building 41, Room 228 Beer‐Sheva Israel
- School of Molecular Cell Biology and BiotechnologyTel Aviv University Tel Aviv Israel
| | - Roye Rozov
- Blavatnik School of Computer ScienceTel Aviv University Tel Aviv Israel
| | - David Bogumil
- Faculty of Natural Sciences, Department of Life Sciences, The National Institute for Biotechnology in the NegevBen‐Gurion University of the Negev, P.O.B. 653 Beer‐Sheva, Building 41, Room 228 Beer‐Sheva Israel
| | | | - Lars Hestbjerg Hansen
- Department of Plant and Environmental SciencesUniversity of Copenhagen Frederiksberg Denmark
| | - Itai Benhar
- School of Molecular Cell Biology and BiotechnologyTel Aviv University Tel Aviv Israel
| | - Eran Halperin
- School of Molecular Cell Biology and BiotechnologyTel Aviv University Tel Aviv Israel
- Blavatnik School of Computer ScienceTel Aviv University Tel Aviv Israel
- Departments of Computer Science, Computational MedicineHuman Genetics, Anesthesiology and Perioperative Medicine, University of California Los Angeles California
| | - Ron Shamir
- Blavatnik School of Computer ScienceTel Aviv University Tel Aviv Israel
| | - Itzhak Mizrahi
- Faculty of Natural Sciences, Department of Life Sciences, The National Institute for Biotechnology in the NegevBen‐Gurion University of the Negev, P.O.B. 653 Beer‐Sheva, Building 41, Room 228 Beer‐Sheva Israel
| |
Collapse
|
36
|
Bougnom BP, Thiele-Bruhn S, Ricci V, Zongo C, Piddock LJV. High-throughput sequencing data and antibiotic resistance mechanisms of soil microbial communities in non-irrigated and irrigated soils with raw sewage in African cities. Data Brief 2019; 27:104638. [PMID: 31700955 PMCID: PMC6831714 DOI: 10.1016/j.dib.2019.104638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022] Open
Abstract
High-throughput sequencing data of soil microbial communities in non-irrigated and irrigated soils with raw sewage in African cities are presented in this report. These data were collected to study the potential of wastewater use in urban agriculture to disseminate bacterial resistance in soil. Soil samples were collected in three cities in two African countries. Each city had two sectors (irrigated and non-irrigated). After collection, biomass samples were purified, DNA from soil was extracted, quantified and sequenced using multiplex Illumina high-throughput sequencing. The sequence count of the six metagenome datasets ranges from 3,258,523,350 bp to 4,120,454,250 bp; the mean sequence length post quality control average was 149 ± 3 bp. The mechanisms of resistance encoded by the identified antibiotic resistance genes (ARGs) in the metagenomic data were dominated by antibiotic inactivation enzymes (64.7% and 71.9%), followed by antibiotic target replacement (14.7% and 12.5%), antibiotic target protection (11.8% and 9.4%) and efflux pumps (6.3% and 8.8%) in bacterial DNA isolated from irrigated and non-irrigated fields, respectively. The datasets will be useful for the scientific community working in the area of bacterial resistance dissemination from the environment. They can be used for further understanding of bacterial drug-resistance gene prevalence and acquisition in wastewater irrigated soils. The data reported herein was used for the article, titled "Raw wastewater irrigation for urban agriculture in three African cities increases the abundance of transferable antibiotic resistance genes in soil, including those encoding Extended spectrum β-lactamase (ESBLs)" Bougnom et al. (2020) [1].
Collapse
Affiliation(s)
- B P Bougnom
- Institute of Microbiology and Infection, University of Birmingham, B15 2TT, UK.,Department of Microbiology, Faculty of Science, University of Yaounde 1, P.O. Box 812, Yaounde, Cameroon
| | - S Thiele-Bruhn
- Department of Soil Science, University of Trier, D-54286, Trier, Germany
| | - V Ricci
- Institute of Microbiology and Infection, University of Birmingham, B15 2TT, UK
| | - C Zongo
- Department of Biochemistry and Microbiology, University Ouaga I Pr Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso
| | - L J V Piddock
- Institute of Microbiology and Infection, University of Birmingham, B15 2TT, UK
| |
Collapse
|
37
|
Han Y, Zhou ZC, Zhu L, Wei YY, Feng WQ, Xu L, Liu Y, Lin ZJ, Shuai XY, Zhang ZJ, Chen H. The impact and mechanism of quaternary ammonium compounds on the transmission of antibiotic resistance genes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:28352-28360. [PMID: 31372954 DOI: 10.1007/s11356-019-05673-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/03/2019] [Indexed: 06/10/2023]
Abstract
The emergence of antibiotic resistance genes (ARGs) in microbes can be largely attributed to the abuse and misuse of antibiotics and biocides. Quaternary ammonium compounds (QACs) have been used worldwide as common disinfectants and detergents; however, their potential impact on the spread and diffusion of ARGs is still unknown. In this study, we detected the QAC resistance gene (qacEΔ1), the 1 integron gene (intI1), and 12 ARGs (sul1, sul2, cfr, cml, fexA, tetA, tetG, tetQ, tetX, ermB, blaTEM, and dfrA1) in 48 water samples from three watersheds by quantitative PCR (qPCR). We investigated the evolution of bacterial antibiotic resistance under QAC and antibiotic environmental pressures by long-term continuous culture. In addition, five QACs were selected to investigate the effect of QAC on the efficiency of conjugation transfer. The changes in bacterial cell membrane and production of reactive oxygen species (ROS) were detected by flow cytometry, revealing the mechanism by which QAC affects the spread of antibiotic resistance. Our results showed that the QAC resistance gene was ubiquitous in watersheds and it had significant correlation with intI1 and seven ARGs (r = 0.999, p < 0.01). QACs could increase the resistance of bacteria to multiple antibiotics. Furthermore, all five QACs promoted the conjugation transfer of the RP4 plasmid; the optimal concentration of QACs was about 10-1-10-2 mg/L and their transfer efficiencies were between 1.33 × 10-6 and 8.87 × 10-5. QACs enhanced membrane permeability of bacterial cells and stimulated bacteria to produce ROS, which potentially promoted the transfer of plasmids between bacteria. In conclusion, this study demonstrated that QACs may facilitate the evolution and gene transfer of antibiotic resistance gene among microbiome.
Collapse
Affiliation(s)
- Yue Han
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhen-Chao Zhou
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lin Zhu
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuan-Yuan Wei
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wan-Qiu Feng
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lan Xu
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yang Liu
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ze-Jun Lin
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xin-Yi Shuai
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhi-Jian Zhang
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hong Chen
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
38
|
Krawczyk PS, Lipinski L, Dziembowski A. PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Res 2019; 46:e35. [PMID: 29346586 PMCID: PMC5887522 DOI: 10.1093/nar/gkx1321] [Citation(s) in RCA: 345] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 12/28/2017] [Indexed: 12/14/2022] Open
Abstract
Plasmids are mobile genetics elements that play an important role in the environmental adaptation of microorganisms. Although plasmids are usually analyzed in cultured microorganisms, there is a need for methods that allow for the analysis of pools of plasmids (plasmidomes) in environmental samples. To that end, several molecular biology and bioinformatics methods have been developed; however, they are limited to environments with low diversity and cannot recover large plasmids. Here, we present PlasFlow, a novel tool based on genomic signatures that employs a neural network approach for identification of bacterial plasmid sequences in environmental samples. PlasFlow can recover plasmid sequences from assembled metagenomes without any prior knowledge of the taxonomical or functional composition of samples with an accuracy up to 96%. It can also recover sequences of both circular and linear plasmids and can perform initial taxonomical classification of sequences. Compared to other currently available tools, PlasFlow demonstrated significantly better performance on test datasets. Analysis of two samples from heavy metal-contaminated microbial mats revealed that plasmids may constitute an important fraction of their metagenomes and carry genes involved in heavy-metal homeostasis, proving the pivotal role of plasmids in microorganism adaptation to environmental conditions.
Collapse
Affiliation(s)
- Pawel S Krawczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.,Department of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Leszek Lipinski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Andrzej Dziembowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.,Department of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
39
|
Gupta SK, Raza S, Unno T. Comparison of de-novo assembly tools for plasmid metagenome analysis. Genes Genomics 2019; 41:1077-1083. [DOI: 10.1007/s13258-019-00839-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/04/2019] [Indexed: 11/30/2022]
|
40
|
Che Y, Xia Y, Liu L, Li AD, Yang Y, Zhang T. Mobile antibiotic resistome in wastewater treatment plants revealed by Nanopore metagenomic sequencing. MICROBIOME 2019; 7:44. [PMID: 30898140 PMCID: PMC6429696 DOI: 10.1186/s40168-019-0663-0] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/11/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Wastewater treatment plants (WWTPs) are recognized as hotspots for horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs). Despite our understanding of the composition and distribution of ARGs in WWTPs, the genetic location, host, and fate of ARGs remain largely unknown. RESULTS In this study, we combined Oxford Nanopore and Illumina metagenomics sequencing to comprehensively uncover the resistome context of influent, activated sludge, and effluent of three WWTPs and simultaneously track the hosts of the ARGs. The results showed that most of the ARGs detected in all compartments of the WWTPs were carried by plasmids. Transposons and integrons also showed higher prevalence on plasmids than on the ARG-carrying chromosome. Notably, integrative and conjugative elements (ICEs) carrying five types of ARGs were detected, and they may play an important role in facilitating the transfer of ARGs, particularly for tetracycline and macrolide-lincosamide-streptogramin (MLS). A broad spectrum of ARGs carried by plasmids (29 subtypes) and ICEs (4 subtypes) was persistent across the WWTPs. Host tracking showed a variety of antibiotic-resistant bacteria in the effluent, suggesting the high potential for their dissemination into receiving environments. Importantly, phenotype-genotype analysis confirmed the significant role of conjugative plasmids in facilitating the survival and persistence of multidrug-resistant bacteria in the WWTPs. At last, the consistency in the quantitative results for major ARGs types revealed by Nanopore and Illumina sequencing platforms demonstrated the feasibility of Nanopore sequencing for resistome quantification. CONCLUSION Overall, these findings substantially expand our current knowledge of resistome in WWTPs, and help establish a baseline analysis framework to study ARGs in the environment.
Collapse
Affiliation(s)
- You Che
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yu Xia
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Lei Liu
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - An-Dong Li
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yu Yang
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Tong Zhang
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| |
Collapse
|
41
|
RefSoil+: a Reference Database for Genes and Traits of Soil Plasmids. mSystems 2019; 4:mSystems00349-18. [PMID: 30834332 PMCID: PMC6392096 DOI: 10.1128/msystems.00349-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/29/2019] [Indexed: 12/01/2022] Open
Abstract
Soil-associated plasmids have the potential to transfer antibiotic resistance genes from environmental to clinical microbial strains, which is a public health concern. A specific resource is needed to aggregate the knowledge of soil plasmid characteristics so that the content, host associations, and dynamics of antibiotic resistance genes can be assessed and then tracked between the environment and the clinic. Here, we present RefSoil+, a database of soil-associated plasmids. RefSoil+ presents a contemporary snapshot of antibiotic resistance genes in soil that can serve as a reference as novel plasmids and transferred antibiotic resistances are discovered. Our study broadens our understanding of plasmids in soil and provides a community resource of important plasmid-associated genes, including antibiotic resistance genes. Plasmids harbor transferable genes that contribute to the functional repertoire of microbial communities, yet their contributions to metagenomes are often overlooked. Environmental plasmids have the potential to spread antibiotic resistance to clinical microbial strains. In soils, high microbiome diversity and high variability in plasmid characteristics present a challenge for studying plasmids. To improve the understanding of soil plasmids, we present RefSoil+, a database containing plasmid sequences from 922 soil microorganisms. Soil plasmids were larger than other described plasmids, which is a trait associated with plasmid mobility. There was a weak relationship between chromosome size and plasmid size and no relationship between chromosome size and plasmid number, suggesting that these genomic traits are independent in soil. We used RefSoil+ to inform the distributions of antibiotic resistance genes among soil microorganisms compared to those among nonsoil microorganisms. Soil-associated plasmids, but not chromosomes, had fewer antibiotic resistance genes than other microorganisms. These data suggest that soils may offer limited opportunity for plasmid-mediated transfer of described antibiotic resistance genes. RefSoil+ can serve as a reference for the diversity, composition, and host associations of plasmid-borne functional genes in soil, a utility that will be enhanced as the database expands. Our study improves the understanding of soil plasmids and provides a resource for assessing the dynamics of the genes that they carry, especially genes conferring antibiotic resistances. IMPORTANCE Soil-associated plasmids have the potential to transfer antibiotic resistance genes from environmental to clinical microbial strains, which is a public health concern. A specific resource is needed to aggregate the knowledge of soil plasmid characteristics so that the content, host associations, and dynamics of antibiotic resistance genes can be assessed and then tracked between the environment and the clinic. Here, we present RefSoil+, a database of soil-associated plasmids. RefSoil+ presents a contemporary snapshot of antibiotic resistance genes in soil that can serve as a reference as novel plasmids and transferred antibiotic resistances are discovered. Our study broadens our understanding of plasmids in soil and provides a community resource of important plasmid-associated genes, including antibiotic resistance genes.
Collapse
|
42
|
Ghaly TM, Gillings MR. Mobile DNAs as Ecologically and Evolutionarily Independent Units of Life. Trends Microbiol 2018; 26:904-912. [DOI: 10.1016/j.tim.2018.05.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 10/14/2022]
|
43
|
Dunon V, Bers K, Lavigne R, Top EM, Springael D. Targeted metagenomics demonstrates the ecological role of IS1071in bacterial community adaptation to pesticide degradation. Environ Microbiol 2018; 20:4091-4111. [DOI: 10.1111/1462-2920.14404] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 08/09/2018] [Accepted: 09/06/2018] [Indexed: 11/26/2022]
Affiliation(s)
- Vincent Dunon
- Division of Soil and Water Management; KU Leuven; Kasteelpark Arenberg 20 Box 2459 3001 Heverlee Belgium
| | - Karolien Bers
- Division of Soil and Water Management; KU Leuven; Kasteelpark Arenberg 20 Box 2459 3001 Heverlee Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology; KU Leuven; Kasteelpark Arenberg 21 Box 2462 3001 Heverlee Belgium
| | - Eva M. Top
- Department of Biological Sciences; Institute for Bioinformatics and Evolutionary Studies, University of Idaho; Moscow Idaho USA
| | - Dirk Springael
- Division of Soil and Water Management; KU Leuven; Kasteelpark Arenberg 20 Box 2459 3001 Heverlee Belgium
| |
Collapse
|
44
|
Kang W, Zhang YJ, Shi X, He JZ, Hu HW. Short-term copper exposure as a selection pressure for antibiotic resistance and metal resistance in an agricultural soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:29314-29324. [PMID: 30121762 DOI: 10.1007/s11356-018-2978-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
Owing to the similar mechanisms of antibiotic and metal resistance, there is a growing concern that metal contamination may select for antibiotic resistance genes (ARGs) in the environment. Here, we constructed short-term laboratory microcosms to investigate the dynamics of a wide range of ARGs and two copper (Cu) resistance genes in an agricultural soil amended with a gradient of Cu concentrations (0~1000 mg kg-1). Mobile genetic elements (MGEs) were also quantified as a proxy for the horizontal gene transfer potential of ARGs. We detected 126 unique ARGs across all the soil samples using the high-capacity quantitative PCR array, and multidrug and β-lactam resistance were the most abundant ARG categories. The copper amendments significantly enhanced the absolute and relative abundances of ARGs and MGEs, which gradually increased along the gradient of increasing Cu concentrations. The two Cu resistance genes (copA and pcoR) were highly enriched in low-level Cu treatment (50 and 100 mg kg-1), and their abundances decreased with the increasing Cu concentrations. The level of metal and antibiotic resistance gradually declined over time in all Cu-amended treatments but was still considerably higher in contaminated soils than untreated soils after 56 days' incubation. Significant associations among ARGs and MGEs were revealed by the network analysis, suggesting the mobility potential of antibiotic resistance in Cu-amended soils. No significant positive correlations were found between ARGs and copper resistance genes, suggesting that these genes are not located in the same bacterial hosts. Taken together, our results provide empirical evidence that short-term copper stress can cause evolution of high-level antibiotic and metal resistance and significantly change the diversity, abundance, and horizontal transfer potential of soil ARGs.
Collapse
Affiliation(s)
- Wei Kang
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC, 3010, Australia
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Yu-Jing Zhang
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Xiuzhen Shi
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, China
| | - Ji-Zheng He
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Hang-Wei Hu
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
45
|
Wastewater treatment plant resistomes are shaped by bacterial composition, genetic exchange, and upregulated expression in the effluent microbiomes. ISME JOURNAL 2018; 13:346-360. [PMID: 30250051 DOI: 10.1038/s41396-018-0277-8] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/19/2018] [Accepted: 08/26/2018] [Indexed: 01/22/2023]
Abstract
Wastewater treatment plants (WWTPs) are implicated as hotspots for the dissemination of antibacterial resistance into the environment. However, the in situ processes governing removal, persistence, and evolution of resistance genes during wastewater treatment remain poorly understood. Here, we used quantitative metagenomic and metatranscriptomic approaches to achieve a broad-spectrum view of the flow and expression of genes related to antibacterial resistance to over 20 classes of antibiotics, 65 biocides, and 22 metals. All compartments of 12 WWTPs share persistent resistance genes with detectable transcriptional activities that were comparatively higher in the secondary effluent, where mobility genes also show higher relative abundance and expression ratios. The richness and abundance of resistance genes vary greatly across metagenomes from different treatment compartments, and their relative and absolute abundances correlate with bacterial community composition and biomass concentration. No strong drivers of resistome composition could be identified among the chemical stressors analyzed, although the sub-inhibitory concentration (hundreds of ng/L) of macrolide antibiotics in wastewater correlates with macrolide and vancomycin resistance genes. Contig-based analysis shows considerable co-localization between resistance and mobility genes and implies a history of substantial horizontal resistance transfer involving human bacterial pathogens. Based on these findings, we propose future inclusion of mobility incidence (M%) and host pathogenicity of antibiotic resistance genes in their quantitative health risk ranking models with an ultimate goal to assess the biological significance of wastewater resistomes with regard to disease control in humans or domestic livestock.
Collapse
|
46
|
Correa‐García S, Pande P, Séguin A, St‐Arnaud M, Yergeau E. Rhizoremediation of petroleum hydrocarbons: a model system for plant microbiome manipulation. Microb Biotechnol 2018; 11:819-832. [PMID: 30066464 PMCID: PMC6116750 DOI: 10.1111/1751-7915.13303] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 12/18/2022] Open
Abstract
Phytoremediation is a green and sustainable alternative to physico-chemical methods for contaminated soil remediation. One of the flavours of phytoremediation is rhizoremediation, where plant roots stimulate soil microbes to degrade organic contaminants. This approach is particularly interesting as it takes advantage of naturally evolved interaction mechanisms between plant and microorganisms and often results in a complete mineralization of the contaminants (i.e. transformation to water and CO2 ). However, many biotic and abiotic factors influence the outcome of this interaction, resulting in variable efficiency of the remediation process. The difficulty to predict precisely the timeframe associated with rhizoremediation leads to low adoption rates of this green technology. Here, we review recent literature related to rhizoremediation, with a particular focus on soil organisms. We then expand on the potential of rhizoremediation to be a model plant-microbe interaction system for microbiome manipulation studies.
Collapse
Affiliation(s)
- Sara Correa‐García
- Centre INRS‐Institut Armand‐FrappierInstitut national de la recherche scientifiqueUniversité du QuébecLavalQCCanada
- Laurentian Forest CenterNatural Ressources CanadaQuébec CityQCCanada
| | - Pranav Pande
- Centre INRS‐Institut Armand‐FrappierInstitut national de la recherche scientifiqueUniversité du QuébecLavalQCCanada
- Institut de recherche en biologie végétaleUniversité de Montréal and Jardin Botanique de MontréalMontréalQCCanada
| | - Armand Séguin
- Laurentian Forest CenterNatural Ressources CanadaQuébec CityQCCanada
| | - Marc St‐Arnaud
- Institut de recherche en biologie végétaleUniversité de Montréal and Jardin Botanique de MontréalMontréalQCCanada
| | - Etienne Yergeau
- Centre INRS‐Institut Armand‐FrappierInstitut national de la recherche scientifiqueUniversité du QuébecLavalQCCanada
| |
Collapse
|
47
|
Delaney S, Murphy R, Walsh F. A Comparison of Methods for the Extraction of Plasmids Capable of Conferring Antibiotic Resistance in a Human Pathogen From Complex Broiler Cecal Samples. Front Microbiol 2018; 9:1731. [PMID: 30150971 PMCID: PMC6100392 DOI: 10.3389/fmicb.2018.01731] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/11/2018] [Indexed: 01/28/2023] Open
Abstract
The direct extraction of plasmid DNA containing antibiotic resistance genes from complex samples is imperative when studying plasmid-mediated antibiotic resistance from a One Health perspective, in order to obtain a wide representation of all the resistance plasmids present in these microbial communities. There are also relatively few bacterial species from natural environments which can be cultured in vitro. Extracting plasmids from the cultivable fraction of these complex microbiomes may only represent a fraction of the total antibiotic resistance plasmids present. We compared different methods of plasmid extraction from broiler cecal samples, whose resistance could be expressed in a human pathogen—Escherichia coli. We found that kits designed for DNA extraction from complex samples such as soil or feces did not extract intact plasmid DNA. Commercial kits specific for plasmid extraction were also generally unsuccessful, most likely due to the complexity of our sample and intended use of the kits with bacterial culture. An alkaline lysis method specific for plasmid extraction was ineffective, even with further optimization. Transposon-aided capture of plasmids (TRACA) allowed for the acquirement of a small range of resistance plasmids. Multiple displacement amplification provided the broadest range of resistance plasmids by amplifying all extracted circular plasmid DNA, but the results were not reproducible across all samples. Exogenous plasmid isolation enabled the extraction of resistance plasmids from the microbial fraction by relying on the mobility of the plasmids in the sample. This was the most consistent method from which we obtained a range of resistance plasmids from our samples. We therefore recommend the use of the exogenous plasmid isolation method in order to reliably obtain the greatest representation of the total antibiotic resistance plasmidome in complex samples. While this method has limitations, it is one which will vastly increase our current knowledge of antibiotic resistance plasmids present in complex environments and which are capable of transferring to a human and animal pathogen and environmental contaminant.
Collapse
Affiliation(s)
- Sarah Delaney
- Antimicrobial Resistance and Microbiome Research Group, Department of Biology, Maynooth University, Maynooth, Ireland.,Alltech European Bioscience Centre, Dunboyne, Ireland
| | | | - Fiona Walsh
- Antimicrobial Resistance and Microbiome Research Group, Department of Biology, Maynooth University, Maynooth, Ireland
| |
Collapse
|
48
|
Liu Y, Feng Y, Cheng D, Xue J, Wakelin S, Li Z. Dynamics of bacterial composition and the fate of antibiotic resistance genes and mobile genetic elements during the co-composting with gentamicin fermentation residue and lovastatin fermentation residue. BIORESOURCE TECHNOLOGY 2018; 261:249-256. [PMID: 29673993 DOI: 10.1016/j.biortech.2018.04.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 03/31/2018] [Accepted: 04/02/2018] [Indexed: 06/08/2023]
Abstract
Dynamics in bacterial community composition, along with 13 antibiotic resistance genes (ARGs) and eight mobile genetic elements (MGEs), were assessed during co-composting with gentamicin and lovastatin fermentation residue (GFR and LFR, respectively). Using next generation sequencing, the key bacterial taxa associated with the different stages of composting were identified. Most importantly, Bacillus, belonging to Phylum Firmicutes, was associated with enhanced degradation of gentamicin, decomposition of organic matter (OM) and dissolved organic carbon (DOC), and also extension of the thermophilic phase of the composting cycle. During the course of composting, the patterns of different ARGs/MGEs varied. However, the total and the normalized (to bacterial numbers) copies both remained high. The abundance of various ARGs was related to bacterial abundance and community composition, and the changing pattern of individual ARGs was influenced by the selectivity of MGEs and bacteria.
Collapse
Affiliation(s)
- Yuanwang Liu
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, China
| | - Yao Feng
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, China
| | - Dengmiao Cheng
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, China
| | - Jianming Xue
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; Scion, Private Bag 29237, Christchurch, New Zealand
| | | | - Zhaojun Li
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, China.
| |
Collapse
|
49
|
Chen B, Lin L, Fang L, Yang Y, Chen E, Yuan K, Zou S, Wang X, Luan T. Complex pollution of antibiotic resistance genes due to beta-lactam and aminoglycoside use in aquaculture farming. WATER RESEARCH 2018; 134:200-208. [PMID: 29427962 DOI: 10.1016/j.watres.2018.02.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 01/14/2018] [Accepted: 02/01/2018] [Indexed: 05/26/2023]
Abstract
The prevalence of antibiotic resistance in the modern world has raised global concerns for public health. Establishing relationships between antibiotic use and antibiotic resistance genes (ARGs) is essential to understanding the dissemination and accumulation of ARGs in a human-impacted environment. In this study, ARG profiles in the sediments from a bullfrog farm, where penicillin and amoxicillin (beta-lactams) and gentamicin (aminoglycoside) were used for prophylactic purposes, were analyzed using metagenomic approaches. Analysis of both extracellular and intracellular DNA (eDNA and iDNA) demonstrated that use of the above-mentioned antibiotics led to complex pollution of ARGs not only related to beta-lactams and aminoglycoside but also to sulfonamides, tetracyclines, and macrolides. Most of the ARGs in the sediments from the bullfrog farm were likely carried by plasmids. A significant correlation was observed between the total abundance of ARG-related plasmids and that of plasmid-carrying ARGs. Approximately 85% of the plasmids likely present in the sediment from the bullfrog farm possessed at least 3 ARG subtypes, which conferred the resistance of bacterial hosts to different antibiotic categories. Our results suggest that antibiotics could lead to complex pollution of ARGs unrelated to those administered due to the concurrence of ARGs in the plasmids.
Collapse
Affiliation(s)
- Baowei Chen
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lan Lin
- Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China
| | - Ling Fang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ying Yang
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Enzhong Chen
- Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China
| | - Ke Yuan
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shichun Zou
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiaowei Wang
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Tiangang Luan
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China; School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
50
|
Li X, Liu C, Chen Y, Huang H, Ren T. Antibiotic residues in liquid manure from swine feedlot and their effects on nearby groundwater in regions of North China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:11565-11575. [PMID: 29427277 DOI: 10.1007/s11356-018-1339-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 01/18/2018] [Indexed: 06/08/2023]
Abstract
A survey was conducted in regions of North China to better understand the effect of antibiotic residue pollution from swine feedlots to nearby groundwater environment. A total of nine experimental sites located in the regions of Beijing, Hebei, and Tianjin were selected to analyze the presence of residues of 11 most commonly used antibiotics, including tetracyclines (TCs), fluoroquinolones (FQNs), sulfonamides (SAs), macrolides, and fenicols, by using liquid chromatography spectrometry. The three most common antibiotics were TCs, FQNs, and SAs, with mean concentrations of 416.4, 228.8, and 442.4 μg L-1 in wastewater samples; 19.9, 11.8, and 0.3 μg L-1 in groundwater samples from swine feedlots; and 29.7, 14.0, and 0 μg L-1 in groundwater samples from villages. Ordination analysis revealed that the composition and distribution of antibiotics and antibiotic resistance genes (AGRs) were similar in groundwater samples from swine feedlots and villages. FQNs and TCs occurred along the path from wastewater to groundwater at high concentrations and showed correlations with ARGs, with a strong correlation between FQN resistance gene (qnrA) copy number. FQN concentration was also found (P < 0.01) in wastewater and groundwater in villages (P < 0.01). Therefore, antibiotics discharged from swine feedlots through wastewater could disseminate into surrounding groundwater environments together with ARG occurrence (i.e., qnrA, sulI, sulII, tetG, tetM, and tetO). Overall, this study suggests that the spread of veterinary antibiotics from swine feedlots to groundwater environments should be highly attended and controlled by restricting excess antibiotic usage or improving the technology of manure management.
Collapse
Affiliation(s)
- Xiaohua Li
- Agro-environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, China
- Rural Energy and Environment Agency, Ministry of Agriculture, Beijing, 100125, China
| | - Chong Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yongxing Chen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongkun Huang
- Rural Energy and Environment Agency, Ministry of Agriculture, Beijing, 100125, China
| | - Tianzhi Ren
- Agro-environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, China.
| |
Collapse
|