1
|
Wu M, Li G. Mycoviruses and their ecological impacts on fungi. Virology 2025; 610:110562. [PMID: 40413833 DOI: 10.1016/j.virol.2025.110562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/29/2025] [Accepted: 05/05/2025] [Indexed: 05/27/2025]
Abstract
Mycoviruses, as components of the endohyphal microbiome, have been extensively identified in major fungal and oomycetous groups. While most mycoviral infections are asymptomatic, quite a few mycoviruses significantly affect biological characteristics of their hosts. This review emphasizes the roles of mycoviruses in the ecological adaptation of host fungi and oomycetes. Traditional views suggest that mycoviruses are primarily transmitted vertically through spores or horizontally among different individuals via hyphal fusion or anastomosis. However, recent studies have documented instances of mycoviral transmission between species, even across different kingdoms, as well as through specific vectors, suggesting the presence of additional transmission pathways. Although the majority of mycoviruses exert little to no influence on host phenotypes, certain mycoviral infections can significantly impact host fitness. Notably, recent research indicates that mycoviruses can alter interactions between fungi and plants. These findings may offer innovative strategies for the application of mycoviruses in management of plant diseases caused by fungi and oomycetes.
Collapse
Affiliation(s)
- Mingde Wu
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Guoqing Li
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
2
|
Yang J, Wang Y, Li Z, Han S, Li B, Wu Y. Mycoviral Diversity of Fusarium oxysporum f. sp. niveum in Three Major Watermelon-Production Areas in China. Microorganisms 2025; 13:906. [PMID: 40284742 PMCID: PMC12029418 DOI: 10.3390/microorganisms13040906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
Watermelon is one of the most important fruits in China, accounting for more than 70% of the world's total output. Fusarium wilt of watermelon is the most common and serious disease in the cultivation of watermelon. It is mainly caused by Fusarium oxysporum f. sp. niveum (FoN), which has caused serious damage to the watermelon-planting industry. Some mycoviruses can reduce the pathogenicity of host pathogens and have the potential for biocontrol, so their application potential in the biological control of plant fungal diseases has attracted much attention. In this study, high-throughput sequencing was performed on 150 FoN strains isolated from three major watermelon-production areas (northern semi-arid area, northwestern arid area, and southern humid area) to detect the diversity of mycoviruses and to uncover new mycoviruses. The analysis identified 25 partial or complete genome segments representing eight previously undescribed mycoviruses. The existence of six mycoviruses was verified via RT-PCR. The southern humid area had the highest diversity of mycoviruses, with 15 species identified. Among these, 40% are dsRNA viruses and 33.3% belong to the family Chrysoviridae, representing the predominant viral type and family. In the northern semi-arid area, a total of 12 viral species were identified, among these 41.7% were +ssRNA viruses and 25% belonged to the family Mymonaviridae, constituting the main viral types and family. The northwestern arid area showed relatively low viral diversity, only containing three species. Two of these were +ssRNA viruses classified under the Mitoviridae and Potyviridae families. Notably, only one virus, Fusarium oxysporum f. sp. niveum Potyvirus 1 (FoNPTV1), was shared across all three areas. These findings reveal significant regional differences in the mycoviral species composition and distribution, highlighting the complex interactions between mycoviruses and FoN in different environments. By uncovering new mycoviruses associated with FoN, this study provides valuable resources for the potential biocontrol of Fusarium wilt in watermelon, contributing to sustainable disease management and improving the quality and safety of watermelon production in China.
Collapse
Affiliation(s)
- Jiawang Yang
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China; (J.Y.); (Y.W.); (S.H.)
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China;
| | - Yajiao Wang
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China; (J.Y.); (Y.W.); (S.H.)
| | - Zihao Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China;
| | - Sen Han
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China; (J.Y.); (Y.W.); (S.H.)
| | - Bo Li
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China; (J.Y.); (Y.W.); (S.H.)
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China;
| | - Yuxing Wu
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China; (J.Y.); (Y.W.); (S.H.)
| |
Collapse
|
3
|
Salvatori G, Giampaoli O, Marchetti A, Miccheli A, Virdis B, Sciubba F, Villano M. 13C-Labelled Glucose Reveals Shifts in Fermentation Pathway During Cathodic Electro-Fermentation with Mixed Microbial Culture. CHEMSUSCHEM 2025; 18:e202401033. [PMID: 39222403 PMCID: PMC11739826 DOI: 10.1002/cssc.202401033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/02/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Cathodic Electro-Fermentation (CEF) is an innovative approach to manage the spectrum of products deriving from anaerobic fermentation. Herein, mixed microbial culture fermentation using a ternary mixture containing labelled 13C glucose and non-labelled acetate and ethanol was studied to identify the role of polarization on the metabolic pathways of glucose fermentation. CEF at an applied potential of -700 mV (vs. SHE, Standard Hydrogen Electrode) enhanced the production yield of acetate, propionate, and butyrate (0.90±0.10, 0.22±0.03, and 0.34±0.05 mol/mol; respectively) compared to control tests performed at open circuit potential (OCP) (0.54±0.09, 0.15±0.04, and 0.20±0.001 mol/mol, respectively). Results indicate that CEF affected the 13C labelled fermented product levels and their fractional 13C enrichments, allowing to establish metabolic pathway models. This work demonstrates that, under cathodic polarization, the abundance of both fully 13C labelled propionate and butyrate isotopomers increased compared to control tests. The effect of CEF is mainly due to intermediates initially produced from the glucose metabolic transformation in the presence of non-labelled acetate and ethanol as external substrates. These findings represent a significant advancement in current knowledge of CEF, which offers a promising tool to control mixed cultures bioprocesses.
Collapse
Affiliation(s)
- Gaia Salvatori
- Department of ChemistrySapienza University of RomeP.le Aldo Moro 500185RomeItaly
| | - Ottavia Giampaoli
- NMR-Based Metabolomics LaboratorySapienza University of RomeP.le Aldo Moro 500185RomeItaly
- Department of Environmental BiologySapienza University of RomeP.le Aldo Moro 500185RomeItaly
| | - Angela Marchetti
- Department of ChemistrySapienza University of RomeP.le Aldo Moro 500185RomeItaly
| | - Alfredo Miccheli
- NMR-Based Metabolomics LaboratorySapienza University of RomeP.le Aldo Moro 500185RomeItaly
| | - Bernardino Virdis
- Australian Centre for Water and Environmental BiotechnologyThe University of QueenslandBrisbaneQLD 4072Australia
| | - Fabio Sciubba
- NMR-Based Metabolomics LaboratorySapienza University of RomeP.le Aldo Moro 500185RomeItaly
- Department of Environmental BiologySapienza University of RomeP.le Aldo Moro 500185RomeItaly
| | - Marianna Villano
- Department of ChemistrySapienza University of RomeP.le Aldo Moro 500185RomeItaly
| |
Collapse
|
4
|
Trifković M, Hejna O, Kuznetsova A, Mullett M, Jankovský L, Botella L. Dothistroma septosporum and Dothistroma pini, the causal agents of Dothistroma needle blight, are infected by multiple viruses. Virus Res 2024; 350:199476. [PMID: 39353468 PMCID: PMC11490729 DOI: 10.1016/j.virusres.2024.199476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/22/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Dothistroma septosporum and Dothistroma pini are severe foliar pathogens of conifers. They infect a broad spectrum of hosts (mainly Pinus spp.), causing chlorosis, defoliation of needles, and eventually the death of pine trees in extreme cases. Mycoviruses represent a novel and innovative avenue for controlling pathogens. To search for possible viruses hosted by Dothistroma spp. we screened a subset of isolates (20 strains of D. septosporum and one D. pini) originating from the Czech Republic, Slovenia, Italy, Austria and Ireland for viral dsRNA segments. Only five of them showed the presence of dsRNA segments. A total of 21 fungal isolates were prepared for total RNA extractions. RNA samples were pooled, and two separate RNA libraries were constructed for stranded total RNA sequencing. RNA-Seq data processing, pairwise sequence comparisons (PASC) and phylogenetic analyses revealed the presence of thirteen novel putative viruses with varying genome types: seven negative-sense single-stranded RNA viruses, including six bunya-like viruses and one new member of the order Mononegavirales; three positive-sense single-stranded RNA viruses, two of which are similar to those of the family Narnaviridae, while the genome of the third correspond to those of the family Gammaflexiviridae; and three double-stranded RNA viruses, comprising two novel members of the family Chrysoviridae and a potentially new species of gammapartitivirus. The results were confirmed with RT-PCR screening that the fungal pathogens hosted all the viruses and showed that particular fungal strains harbour multiple virus infections and that they are transmitted vertically. In this study, we described the narnavirus infecting D. pini. To our knowledge, this is the first virus discovered in D. pini.
Collapse
Affiliation(s)
- Miloš Trifković
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Czech Republic.
| | - Ondřej Hejna
- Department of Genetics and Agricultural Biotechnology. Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Czech Republic
| | - Anna Kuznetsova
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Czech Republic
| | - Martin Mullett
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Czech Republic
| | - Libor Jankovský
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Czech Republic
| | - Leticia Botella
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Czech Republic
| |
Collapse
|
5
|
Xie J, Jiang D. Understanding the Diversity, Evolution, Ecology, and Applications of Mycoviruses. Annu Rev Microbiol 2024; 78:595-620. [PMID: 39348839 DOI: 10.1146/annurev-micro-041522-105358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Mycoviruses are widely distributed among various kinds of fungi. Over the past 10 years, more novel mycoviruses have been discovered with the use of high-throughput sequencing techniques, and research on mycoviruses has made fantastic progress, promoting our understanding of the diversity, classification, evolution, and ecology of the entire virosphere. Mycoviruses affect the biological and ecological functions of their hosts, for example, by suppressing or improving hosts' virulence and reproduction ability, and subsequently affect the microbiological community where their hosts live; hence, we may develop mycoviruses to regulate the health of environments, plants, animals, and human beings. In this review, we introduce recently discovered mycoviruses from fungi of humans, animals, plants, and environments, and their diversity, evolution, and ecological characteristics. We also present the potential application of mycoviruses by describing the latest progress on using mycoviruses to control plant diseases. Finally, we discuss the main issues facing mycovirus research in the future.
Collapse
Affiliation(s)
- Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Hubei Hongshan Laboratory, Wuhan, China; ,
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Hubei Hongshan Laboratory, Wuhan, China; ,
| |
Collapse
|
6
|
Dálya LB, Černý M, de la Peña M, Poimala A, Vainio EJ, Hantula J, Botella L. Diversity and impact of single-stranded RNA viruses in Czech Heterobasidion populations. mSystems 2024; 9:e0050624. [PMID: 39287383 PMCID: PMC11494978 DOI: 10.1128/msystems.00506-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 08/04/2024] [Indexed: 09/19/2024] Open
Abstract
Heterobasidion annosum sensu lato comprises some of the most devastating pathogens of conifers. Exploring virocontrol as a potential strategy to mitigate economic losses caused by these fungi holds promise for the future. In this study, we conducted a comprehensive screening for viruses in 98 H. annosum s.l. specimens from different regions of Czechia aiming to identify viruses inducing hypovirulence. Initial examination for dsRNA presence was followed by RNA-seq analyses using pooled RNA libraries constructed from H. annosum and Heterobasidion parviporum, with diverse bioinformatic pipelines employed for virus discovery. Our study uncovered 25 distinct ssRNA viruses, including two ourmia-like viruses, one mitovirus, one fusarivirus, one tobamo-like virus, one cogu-like virus, one bisegmented narna-like virus and one segment of another narna-like virus, and 17 ambi-like viruses, for which hairpin and hammerhead ribozymes were detected. Coinfections of up to 10 viruses were observed in six Heterobasidion isolates, whereas another six harbored a single virus. Seventy-three percent of the isolates analyzed by RNA-seq were virus-free. These findings show that the virome of Heterobasidion populations in Czechia is highly diverse and differs from that in the boreal region. We further investigated the host effects of certain identified viruses through comparisons of the mycelial growth rate and proteomic analyses and found that certain tested viruses caused growth reductions of up to 22% and significant alterations in the host proteome profile. Their intraspecific transmission rates ranged from 0% to 33%. Further studies are needed to fully understand the biocontrol potential of these viruses in planta.IMPORTANCEHeterobasidion annosum sensu lato is a major pathogen causing significant damage to conifer forests, resulting in substantial economic losses. This study is significant as it explores the potential of using viruses (virocontrol) to combat these fungal pathogens. By identifying and characterizing a diverse array of viruses in H. annosum populations from Czechia, the research opens new avenues for biocontrol strategies. The discovery of 25 distinct ssRNA viruses, some of which reduce fungal growth and alter proteome profiles, suggests that these viruses could be harnessed to mitigate the impact of Heterobasidion. Understanding the interactions between these viruses and their fungal hosts is crucial for developing effective, environmentally friendly methods to protect conifer forests and maintain ecosystem health. This study lays the groundwork for future research on the application of mycoviruses in forest disease management.
Collapse
Affiliation(s)
- László Benedek Dálya
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czechia
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Marcos de la Peña
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, Valencia, Spain
| | - Anna Poimala
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Eeva J. Vainio
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Jarkko Hantula
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Leticia Botella
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
7
|
Urayama SI, Zhao YJ, Kuroki M, Chiba Y, Ninomiya A, Hagiwara D. Greetings from virologists to mycologists: A review outlining viruses that live in fungi. MYCOSCIENCE 2024; 65:1-11. [PMID: 39239117 PMCID: PMC11371549 DOI: 10.47371/mycosci.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/25/2023] [Accepted: 11/26/2023] [Indexed: 09/07/2024]
Abstract
Viruses are genetic elements that parasitize self-replicating cells. Therefore, organisms parasitized by viruses are not limited to animals and plants but also include microorganisms. Among these, viruses that parasitize fungi are known as mycoviruses. Mycoviruses with an RNA genome persistently replicate inside fungal cells and coevolve with their host cells, similar to a cellular organelle. Within host cells, mycoviruses can modulate various fungal characteristics and activities, including pathogenicity and the production of enzymes and secondary metabolites. In this review, we provide an overview of the mycovirus research field as introduction to fungal researchers. Recognition of all genetic elements in fungi aids towards better understanding and control of fungi, and makes fungi a significant model system for studying microorganisms containing multiple genetic elements.
Collapse
Affiliation(s)
- Syun-Ichi Urayama
- a Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), University of Tsukuba
- b Microbiology Research Center for Sustainability (MiCS), University of Tsukuba
| | - Yan-Jie Zhao
- a Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), University of Tsukuba
| | - Misa Kuroki
- c Department of Biotechnology, Laboratory of Brewing Microbiology (donated by Kikkoman), The University of Tokyo
| | - Yuto Chiba
- d School of Agriculture, Meiji University
| | - Akihiro Ninomiya
- e Graduate School of Agricultural and Life Sciences, Laboratory of Aquatic Natural Products Chemistry, The University of Tokyo
| | - Daisuke Hagiwara
- a Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), University of Tsukuba
- b Microbiology Research Center for Sustainability (MiCS), University of Tsukuba
| |
Collapse
|
8
|
Celano G, Calabrese FM, Riezzo G, D’Attoma B, Ignazzi A, Di Chito M, Sila A, De Nucci S, Rinaldi R, Linsalata M, Vacca M, Apa CA, Angelis MD, Giannelli G, De Pergola G, Russo F. Effects of a Very-Low-Calorie Ketogenic Diet on the Fecal and Urinary Volatilome in an Obese Patient Cohort: A Preliminary Investigation. Nutrients 2023; 15:3752. [PMID: 37686784 PMCID: PMC10490432 DOI: 10.3390/nu15173752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Several recent studies deepened the strong connection between gut microbiota and obesity. The effectiveness of the very-low-calorie ketogenic diet (VLCKD) has been measured in terms of positive impact on the host homeostasis, but little is known of the modification exerted on the intestinal metabolome. To inspect this complex relationship, we analyzed both fecal and urinary metabolome in terms of volatile organic compounds (VOCs) by the GC-MS method in 25 obese patients that were under VLCKD for eight weeks. Partial least square discriminant analysis evidenced specific urinary and fecal metabolites whose profile can be considered a signature of a partial restore toward the host eubiosis. Specifically, among various keystone VOCs, the decreased concentration of four statistically significant fecal esters (i.e., propanoic acid pentyl ester, butanoic acid hexyl ester, butanoic acid pentyl ester, and pentanoic acid butyl ester) supports the positive effect of VLCKD treatment. Our pilot study results suggest a potential positive effect of VLCKD intervention affecting fecal and urinary volatilome profiles from obese patients. Meta-omics techniques including the study of genes and transcripts will help in developing new interventions useful in preventing or treating obesity and its associated health problems.
Collapse
Affiliation(s)
- Giuseppe Celano
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (M.V.); (C.A.A.); (M.D.A.)
| | - Francesco Maria Calabrese
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (M.V.); (C.A.A.); (M.D.A.)
| | - Giuseppe Riezzo
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “S. de Bellis”, 70013 Castellana Grotte, Italy; (G.R.); (B.D.); (A.I.); (M.L.)
| | - Benedetta D’Attoma
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “S. de Bellis”, 70013 Castellana Grotte, Italy; (G.R.); (B.D.); (A.I.); (M.L.)
| | - Antonia Ignazzi
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “S. de Bellis”, 70013 Castellana Grotte, Italy; (G.R.); (B.D.); (A.I.); (M.L.)
| | - Martina Di Chito
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “S. de Bellis”, 70013 Castellana Grotte, Italy; (M.D.C.); (A.S.); (S.D.N.); (R.R.); (G.D.P.)
| | - Annamaria Sila
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “S. de Bellis”, 70013 Castellana Grotte, Italy; (M.D.C.); (A.S.); (S.D.N.); (R.R.); (G.D.P.)
| | - Sara De Nucci
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “S. de Bellis”, 70013 Castellana Grotte, Italy; (M.D.C.); (A.S.); (S.D.N.); (R.R.); (G.D.P.)
| | - Roberta Rinaldi
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “S. de Bellis”, 70013 Castellana Grotte, Italy; (M.D.C.); (A.S.); (S.D.N.); (R.R.); (G.D.P.)
| | - Michele Linsalata
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “S. de Bellis”, 70013 Castellana Grotte, Italy; (G.R.); (B.D.); (A.I.); (M.L.)
| | - Mirco Vacca
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (M.V.); (C.A.A.); (M.D.A.)
| | - Carmen Aurora Apa
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (M.V.); (C.A.A.); (M.D.A.)
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (M.V.); (C.A.A.); (M.D.A.)
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology IRCCS “S. de Bellis”, 70013 Castellana Grotte, Italy;
| | - Giovanni De Pergola
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “S. de Bellis”, 70013 Castellana Grotte, Italy; (M.D.C.); (A.S.); (S.D.N.); (R.R.); (G.D.P.)
| | - Francesco Russo
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “S. de Bellis”, 70013 Castellana Grotte, Italy; (G.R.); (B.D.); (A.I.); (M.L.)
| |
Collapse
|
9
|
Khan HA, Nerva L, Bhatti MF. The good, the bad and the cryptic: The multifaceted roles of mycoviruses and their potential applications for a sustainable agriculture. Virology 2023; 585:259-269. [PMID: 37453341 DOI: 10.1016/j.virol.2023.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Mycoviruses are natural inhabitants of fungi and have been identified in almost all fungal taxonomic groups. Mycoviruses that infect phytopathogenic fungi are now becoming a hot research area due to their potential for the biocontrol of important plant pathogens. But, before considering a mycovirus for biocontrol, we should be fully aware of the effects it induces in a fungal host and its interactions with other viruses, fungal strains and even the host plants. Mycoviral infections are generally associated with different effects, ranging from hypovirulence to hypervirulence, but they can often be cryptic (latent infections). The cryptic lifestyle has been associated to many mycoviruses, but thanks to growing knowledge we are now aware that it is often associated to axenic conditions while the real effects can be observed only in nature. Other mycoviruses either promote (hypervirulence) or (hypovirulence) fungal pathogenicity by a strong impact on the fungal physiology or by blocking the production of toxins or effectors. Finally, indirect effects of mycoviral infections can also be provided to the plant that hosts the fungal isolate, highlighting not only their potential as direct biocontrol agents but also as priming agents for plant resilience to biotic and abiotic stresses. This review provides a broad overview of mycoviral interactions both with their hosts and with other mycoviruses, highlighting the most interesting examples. In contrast to what has been observed to date, we believe that the collective availability of these data will not only improve our understanding of mycoviruses, but also increase our confidence in considering them as alternative measures against fungal diseases to improve the sustainable production of food and feed commodities.
Collapse
Affiliation(s)
- Haris Ahmed Khan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, 44000, Islamabad, Pakistan; Department of Biotechnology, University of Mianwali, Punjab, 42200, Pakistan
| | - Luca Nerva
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile, 31015, Conegliano, (TV), Italy.
| | - Muhammad Faraz Bhatti
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, 44000, Islamabad, Pakistan
| |
Collapse
|
10
|
Akata I, Edis G, Keskin E, Sahin E. Diverse partitiviruses hosted by the ectomycorrhizal agaric Hebeloma mesophaeum and the natural transmission of a partitivirus between phylogenetically distant, sympatric fungi. Virology 2023; 581:63-70. [PMID: 36913914 DOI: 10.1016/j.virol.2023.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Mycorrhizal fungi host diverse mycoviruses that contribute to our understanding of their diversity and evolution. Here we report on the identification and complete genome characterization of three novel partitiviruses naturally infecting the ectomycorrhizal fungus Hebeloma mesophaeum. During NGS derived viral sequence analyses, we identified a partitivirus that is conspecific with the previously reported partitivirus (LcPV1) described from a saprotrophic fungus Leucocybe candicans. The two distinct fungal specimens inhabited the same vicinity of a campus garden. RdRp sequences encoded by the LcPV1 isolates from both host fungi was found to be identical. Bio-tracking studies revealed that viral loads of LcPV1 drop significantly in L. candicans but not in H. mesophaeum within four years period. The physical proximity of the mycelial networks of both fungal specimens implied the occurrence of a virus transmission event with unknown mechanism. Nature of this virus transmission was discussed in relation to transient interspecific mycelial contact hypothesis.
Collapse
Affiliation(s)
- Ilgaz Akata
- Ankara University Faculty of Science Department of Biology, 06100, Tandogan, Ankara, Turkey
| | - Gulce Edis
- Ankara University Science Institute, 06110, Dışkapı, Ankara, Turkey
| | - Emre Keskin
- Evolutionary Genetics Laboratory (eGL), Faculty of Agriculture Department of Fisheries and Aquaculture, Ankara University, 06110, Dışkapı, Ankara, Turkey
| | - Ergin Sahin
- Dokuz Eylül University Faculty of Science Department of Biology, 35390, Buca, İzmir, Turkey; Dokuz Eylül University Fauna and Flora Research and Application Center, 35390, Buca, İzmir, Turkey.
| |
Collapse
|
11
|
Ayllón MA, Vainio EJ. Mycoviruses as a part of the global virome: Diversity, evolutionary links and lifestyle. Adv Virus Res 2023; 115:1-86. [PMID: 37173063 DOI: 10.1016/bs.aivir.2023.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Knowledge of mycovirus diversity, evolution, horizontal gene transfer and shared ancestry with viruses infecting distantly related hosts, such as plants and arthropods, has increased vastly during the last few years due to advances in the high throughput sequencing methodologies. This also has enabled the discovery of novel mycoviruses with previously unknown genome types, mainly new positive and negative single-stranded RNA mycoviruses ((+) ssRNA and (-) ssRNA) and single-stranded DNA mycoviruses (ssDNA), and has increased our knowledge of double-stranded RNA mycoviruses (dsRNA), which in the past were thought to be the most common viruses infecting fungi. Fungi and oomycetes (Stramenopila) share similar lifestyles and also have similar viromes. Hypothesis about the origin and cross-kingdom transmission events of viruses have been raised and are supported by phylogenetic analysis and by the discovery of natural exchange of viruses between different hosts during virus-fungus coinfection in planta. In this review we make a compilation of the current information on the genome organization, diversity and taxonomy of mycoviruses, discussing their possible origins. Our focus is in recent findings suggesting the expansion of the host range of many viral taxa previously considered to be exclusively fungal, but we also address factors affecting virus transmissibility and coexistence in single fungal or oomycete isolates, as well as the development of synthetic mycoviruses and their use in investigating mycovirus replication cycles and pathogenicity.
Collapse
Affiliation(s)
- María A Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain; Departamento Biotecnología-Biología Vegetal, E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain.
| | - Eeva J Vainio
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Helsinki, Finland
| |
Collapse
|
12
|
Viral cross-class transmission results in disease of a phytopathogenic fungus. THE ISME JOURNAL 2022; 16:2763-2774. [PMID: 36045287 PMCID: PMC9428384 DOI: 10.1038/s41396-022-01310-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 12/15/2022]
Abstract
Interspecies transmission of viruses is a well-known phenomenon in animals and plants whether via contacts or vectors. In fungi, interspecies transmission between distantly related fungi is often suspected but rarely experimentally documented and may have practical implications. A newly described double-strand RNA (dsRNA) virus found asymptomatic in the phytopathogenic fungus Leptosphaeria biglobosa of cruciferous crops was successfully transmitted to an evolutionarily distant, broad-host range pathogen Botrytis cinerea. Leptosphaeria biglobosa botybirnavirus 1 (LbBV1) was characterized in L. biglobosa strain GZJS-19. Its infection in L. biglobosa was asymptomatic, as no significant differences in radial mycelial growth and pathogenicity were observed between LbBV1-infected and LbBV1-free strains. However, cross-species transmission of LbBV1 from L. biglobosa to infection in B. cinerea resulted in the hypovirulence of the recipient B. cinerea strain t-459-V. The cross-species transmission was succeeded only by inoculation of mixed spores of L. biglobosa and B. cinerea on PDA or on stems of oilseed rape with the efficiency of 4.6% and 18.8%, respectively. To investigate viral cross-species transmission between L. biglobosa and B. cinerea in nature, RNA sequencing was carried out on L. biglobosa and B. cinerea isolates obtained from Brassica samples co-infected by these two pathogens and showed that at least two mycoviruses were detected in both fungal groups. These results indicate that cross-species transmission of mycoviruses may occur frequently in nature and result in the phenotypical changes of newly invaded phytopathogenic fungi. This study also provides new insights for using asymptomatic mycoviruses as biocontrol agent.
Collapse
|
13
|
Metatranscriptomic Analysis Reveals Rich Mycoviral Diversity in Three Major Fungal Pathogens of Rice. Int J Mol Sci 2022; 23:ijms23169192. [PMID: 36012458 PMCID: PMC9409214 DOI: 10.3390/ijms23169192] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years, three major fungal diseases of rice, i.e., rice blast, rice false smut, and rice-sheath blight, have caused serious worldwide rice-yield reductions and are threatening global food security. Mycoviruses are ubiquitous in almost all major groups of filamentous fungi, oomycetes, and yeasts. To reveal the mycoviral diversity in three major fungal pathogens of rice, we performed a metatranscriptomic analysis of 343 strains, representing the three major fungal pathogens of rice, Pyricularia oryzae, Ustilaginoidea virens, and Rhizoctonia solani, sampled in southern China. The analysis identified 682 contigs representing the partial or complete genomes of 68 mycoviruses, with 42 described for the first time. These mycoviruses showed affinity with eight distinct lineages: Botourmiaviridae, Partitiviridae, Totiviridae, Chrysoviridae, Hypoviridae, Mitoviridae, Narnaviridae, and Polymycoviridae. More than half (36/68, 52.9%) of the viral sequences were predicted to be members of the families Narnaviridae and Botourmiaviridae. The members of the family Polymycoviridae were also identified for the first time in the three major fungal pathogens of rice. These findings are of great significance for understanding the diversity, origin, and evolution of, as well as the relationship between, genome structures and functions of mycoviruses in three major fungal pathogens of rice.
Collapse
|
14
|
Raco M, Vainio EJ, Sutela S, Eichmeier A, Hakalová E, Jung T, Botella L. High Diversity of Novel Viruses in the Tree Pathogen Phytophthora castaneae Revealed by High-Throughput Sequencing of Total and Small RNA. Front Microbiol 2022; 13:911474. [PMID: 35783401 PMCID: PMC9244493 DOI: 10.3389/fmicb.2022.911474] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/21/2022] [Indexed: 12/11/2022] Open
Abstract
Phytophthora castaneae, an oomycete pathogen causing root and trunk rot of different tree species in Asia, was shown to harbor a rich diversity of novel viruses from different families. Four P. castaneae isolates collected from Chamaecyparis hodginsii in a semi-natural montane forest site in Vietnam were investigated for viral presence by traditional and next-generation sequencing (NGS) techniques, i.e., double-stranded RNA (dsRNA) extraction and high-throughput sequencing (HTS) of small RNAs (sRNAs) and total RNA. Genome organization, sequence similarity, and phylogenetic analyses indicated that the viruses were related to members of the order Bunyavirales and families Endornaviridae, Megabirnaviridae, Narnaviridae, Totiviridae, and the proposed family "Fusagraviridae." The study describes six novel viruses: Phytophthora castaneae RNA virus 1-5 (PcaRV1-5) and Phytophthora castaneae negative-stranded RNA virus 1 (PcaNSRV1). All six viruses were detected by sRNA sequencing, which demonstrates an active RNA interference (RNAi) system targeting viruses in P. castaneae. To our knowledge, this is the first report of viruses in P. castaneae and the whole Phytophthora major Clade 5, as well as of the activity of an RNAi mechanism targeting viral genomes among Clade 5 species. PcaRV1 is the first megabirnavirus described in oomycetes and the genus Phytophthora.
Collapse
Affiliation(s)
- Milica Raco
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czechia
| | - Eeva J. Vainio
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Suvi Sutela
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Aleš Eichmeier
- Mendeleum-Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Brno, Czechia
| | - Eliška Hakalová
- Mendeleum-Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Brno, Czechia
| | - Thomas Jung
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czechia
| | - Leticia Botella
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
15
|
Kashif M, Jurvansuu J, Hyder R, Vainio EJ, Hantula J. Phenotypic Recovery of a Heterobasidion Isolate Infected by a Debilitation-Associated Virus Is Related to Altered Host Gene Expression and Reduced Virus Titer. Front Microbiol 2022; 12:661554. [PMID: 35310390 PMCID: PMC8930199 DOI: 10.3389/fmicb.2021.661554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
The fungal genus Heterobasidion includes forest pathogenic species hosting a diverse group of partitiviruses. They include the host debilitating Heterobasidion partitivirus 13 strain an1 (HetPV13-an1), which was originally observed in a slowly growing H. annosum strain 94233. In this study, a relatively fast-growing sector strain 94233-RC3 was isolated from a highly debilitated mycelial culture of 94233, and its gene expression and virus transcript quantities as well as the genomic sequence of HetPV13-an1 were examined. The sequence of HetPV13-an1 genome in 94233-RC3 was identical to that in the original 94233, and thus not the reason for the partial phenotypic recovery. According to RNA-seq analysis, the HetPV13-an1 infected 94233-RC3 transcribed eight genes differently from the partitivirus-free 94233-32D. Three of these genes were downregulated and five upregulated. The number of differentially expressed genes was considerably lower and the changes in their expression were small compared to those of the highly debilitated original strain 94233 with the exception of the most highly upregulated ones, and therefore viral effects on the host transcriptome correlated with the degree of the virus-caused debilitation. The amounts of RdRp and CP transcripts of HetPV13-an1 were considerably lower in 94233-RC3 and also in 94233 strain infected by a closely related mildly debilitating virus HetPV13-an2, suggesting that the virus titer would have a role in determining the effect of HetPV13 viruses on their hosts.
Collapse
Affiliation(s)
| | | | - Rafiqul Hyder
- Natural Resources Institute Finland, Helsinki, Finland
| | - Eeva J Vainio
- Natural Resources Institute Finland, Helsinki, Finland
| | | |
Collapse
|
16
|
Sutela S, Piri T, Vainio EJ. Discovery and Community Dynamics of Novel ssRNA Mycoviruses in the Conifer Pathogen Heterobasidion parviporum. Front Microbiol 2021; 12:770787. [PMID: 34899655 PMCID: PMC8652122 DOI: 10.3389/fmicb.2021.770787] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/11/2021] [Indexed: 11/24/2022] Open
Abstract
Heterobasidion species are highly destructive basidiomycetous conifer pathogens of the Boreal forest region. Earlier studies have revealed dsRNA virus infections of families Curvulaviridae and Partitiviridae in Heterobasidion strains, and small RNA deep sequencing has also identified infections of Mitoviridae members in these fungi. In this study, the virome of Heterobasidion parviporum was examined for the first time by RNA-Seq using total RNA depleted of rRNA. This method successfully revealed new viruses representing two established (+)ssRNA virus families not found earlier in Heterobasidion: Narnaviridae and Botourmiaviridae. In addition, we identified the presence of a recently described virus group tentatively named “ambiviruses” in H. parviporum. The H. parviporum isolates included in the study originated from experimental forest sites located within 0.7 km range from each other, and a population analysis including 43 isolates was conducted at one of the experimental plots to establish the prevalence of the newly identified viruses in clonally spreading H. parviporum individuals. Our results indicate that viral infections are considerably more diverse and common among Heterobasidion isolates than known earlier and include ssRNA viruses with high prevalence and interspecies variation.
Collapse
Affiliation(s)
- Suvi Sutela
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Tuula Piri
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Eeva J Vainio
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| |
Collapse
|
17
|
The Threat of Pests and Pathogens and the Potential for Biological Control in Forest Ecosystems. FORESTS 2021. [DOI: 10.3390/f12111579] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Forests are an essential component of the natural environment, as they support biodiversity, sequester carbon, and play a crucial role in biogeochemical cycles—in addition to producing organic matter that is necessary for the function of terrestrial organisms. Forests today are subject to threats ranging from natural occurrences, such as lightning-ignited fires, storms, and some forms of pollution, to those caused by human beings, such as land-use conversion (deforestation or intensive agriculture). In recent years, threats from pests and pathogens, particularly non-native species, have intensified in forests. The damage, decline, and mortality caused by insects, fungi, pathogens, and combinations of pests can lead to sizable ecological, economic, and social losses. To combat forest pests and pathogens, biocontrol may be an effective alternative to chemical pesticides and fertilizers. This review of forest pests and potential adversaries in the natural world highlights microbial inoculants, as well as research efforts to further develop biological control agents against forest pests and pathogens. Recent studies have shown promising results for the application of microbial inoculants as preventive measures. Other studies suggest that these species have potential as fertilizers.
Collapse
|
18
|
Abstract
This study provides new information on the infection biology and pathogenicity of an important root-rot fungus, Heterobasidion annosum sensu stricto (Fr.) Bref., through a detailed examination of the vegetative spread of clonal individuals and their capacity to produce fruiting bodies on young pine seedlings. The seedlings were planted in a clear-cutting area (c. 1.2 ha in size) after a pine generation that showed slight external symptoms of Heterobasidion root rot. The first dead seedlings were found five years after planting and during a nine-year monitoring period; nearly 600 seedlings were killed by H. annosum s.s. in 48 individual disease centers. Based on pairing tests of 482 isolates, 117 different H. annosum s.s. genotypes were identified. On average, 2.9 genotypes occurred in a single disease center. The extensive secondary spread of genotypes within root systems (up to 48 pine seedlings infected by the same genotype) resulted in annually expanding disease centers. In addition, more than half of the seedlings killed by H. annosum s.s. produced perennial fruiting bodies thus providing air-borne inoculum. The risk of spore infection should be taken into account in any type of cutting operation in young pine stands. Moreover, new control measures directed towards the secondary spread of H. annosum s.s. in pine regeneration are urgently needed in order to maintain the productivity of the pine forest on infested sites.
Collapse
|
19
|
Rumbou A, Vainio EJ, Büttner C. Towards the Forest Virome: High-Throughput Sequencing Drastically Expands Our Understanding on Virosphere in Temperate Forest Ecosystems. Microorganisms 2021; 9:microorganisms9081730. [PMID: 34442809 PMCID: PMC8399312 DOI: 10.3390/microorganisms9081730] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022] Open
Abstract
Thanks to the development of HTS technologies, a vast amount of genetic information on the virosphere of temperate forests has been gained in the last seven years. To estimate the qualitative/quantitative impact of HTS on forest virology, we have summarized viruses affecting major tree/shrub species and their fungal associates, including fungal plant pathogens, mutualists and saprotrophs. The contribution of HTS methods is extremely significant for forest virology. Reviewed data on viral presence in holobionts allowed us a first attempt to address the role of virome in holobionts. Forest health is dependent on the variability of microorganisms interacting with the host tree/holobiont; symbiotic microbiota and pathogens engage in a permanent interplay, which influences the host. Through virus–virus interplays synergistic or antagonistic relations may evolve, which may drastically affect the health of the holobiont. Novel insights of these interplays may allow practical applications for forest plant protection based on endophytes and mycovirus biocontrol agents. The current analysis is conceived in light of the prospect that novel viruses may initiate an emergent infectious disease and that measures for the avoidance of future outbreaks in forests should be considered.
Collapse
Affiliation(s)
- Artemis Rumbou
- Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, 14195 Berlin, Germany;
- Correspondence:
| | - Eeva J. Vainio
- Natural Resources Institute Finland, Forest Health and Biodiversity, Latokartanonkaari 9, 00790 Helsinki, Finland;
| | - Carmen Büttner
- Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, 14195 Berlin, Germany;
| |
Collapse
|
20
|
Botella L, Jung T. Multiple Viral Infections Detected in Phytophthora condilina by Total and Small RNA Sequencing. Viruses 2021; 13:v13040620. [PMID: 33916635 PMCID: PMC8067226 DOI: 10.3390/v13040620] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022] Open
Abstract
Marine oomycetes have recently been shown to be concurrently infected by (−)ssRNA viruses of the order Bunyavirales. In this work, even higher virus variability was found in a single isolate of Phytophthora condilina, a recently described member of Phytophthora phylogenetic Clade 6a, which was isolated from brackish estuarine waters in southern Portugal. Using total and small RNA-seq the full RdRp of 13 different potential novel bunya-like viruses and two complete toti-like viruses were detected. All these viruses were successfully confirmed by reverse transcription polymerase chain reaction (RT-PCR) using total RNA as template, but complementarily one of the toti-like and five of the bunya-like viruses were confirmed when dsRNA was purified for RT-PCR. In our study, total RNA-seq was by far more efficient for de novo assembling of the virus sequencing but small RNA-seq showed higher read numbers for most viruses. Two main populations of small RNAs (21 nts and 25 nts-long) were identified, which were in accordance with other Phytophthora species. To the best of our knowledge, this is the first study using small RNA sequencing to identify viruses in Phytophthora spp.
Collapse
Affiliation(s)
- Leticia Botella
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 1, 61300 Brno, Czech Republic;
- Biotechnological Centre, Faculty of Agriculture, University of South Bohemia, Na Sadkach 1780, 37005 Ceske Budejovice, Czech Republic
- Correspondence: ; Tel.: +420-389-032-942
| | - Thomas Jung
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 1, 61300 Brno, Czech Republic;
| |
Collapse
|
21
|
Abstract
Species of Armillaria are distributed globally and include some of the most important pathogens of forest and ornamental trees. Some of them form large long-living clones that are considered as one of the largest organisms on earth and are capable of long-range spore-mediated transfer as well as vegetative spread by drought-resistant hyphal cords called rhizomorphs. However, the virus community infecting these species has remained unknown. In this study we used dsRNA screening and high-throughput sequencing to search for possible virus infections in a collection of Armillaria isolates representing three different species: Armillaria mellea from South Africa, A. borealis from Finland and Russia (Siberia) and A. cepistipes from Finland. Our analysis revealed the presence of both negative-sense RNA viruses and positive-sense RNA viruses, while no dsRNA viruses were detected. The viruses included putative new members of virus families Mymonaviridae, Botourmiaviridae and Virgaviridae and members of a recently discovered virus group tentatively named "ambiviruses" with ambisense bicistronic genomic organization. We demonstrated that Armillaria isolates can be cured of viruses by thermal treatment, which enables the examination of virus effects on host growth and phenotype using isogenic virus-infected and virus-free strains.
Collapse
|
22
|
Lee JH, Zhu J. Analyses of short-chain fatty acids and exhaled breath volatiles in dietary intervention trials for metabolic diseases. Exp Biol Med (Maywood) 2020; 246:778-789. [PMID: 33327781 DOI: 10.1177/1535370220979952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
As an alternative to pharmacological treatment to diseases, lifestyle interventions, such as dietary changes and physical activities, can help maintain healthy metabolic conditions. Recently, the emerging analyses of volatile organic compounds (VOCs) from breath and short-chain fatty acids (SCFAs) from plasma/feces have been considered as useful tools for the diagnosis and mechanistic understanding of metabolic diseases. Furthermore, diet-induced changes of SCFAs in individuals with diagnosed metabolic abnormalities have been correlated with the composition changes of the gut microbiome. More interestingly, the analysis of exhaled breath (breathomics) has gained attention as a useful technique to measure the human VOC profile altered as a result of dietary interventions. In this mini-review, we examined recent clinical trials that performed promising dietary interventions, SCFAs analysis in plasma/feces, and VOC profile analysis in exhaling breath to understand the relationship between dietary intervention and metabolic health.
Collapse
Affiliation(s)
- Jisun Hj Lee
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA.,James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Jiangjiang Zhu
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA.,James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
23
|
Liu Y, Zhang L, Esmael A, Duan J, Bian X, Jia J, Xie J, Cheng J, Fu Y, Jiang D, Lin Y. Four Novel Botourmiaviruses Co-Infecting an Isolate of the Rice Blast Fungus Magnaporthe oryzae. Viruses 2020; 12:1383. [PMID: 33287110 PMCID: PMC7761653 DOI: 10.3390/v12121383] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 11/16/2022] Open
Abstract
Via virome sequencing, six viruses were detected from Magnaporthe oryzae strains YC81-2, including one virus in the family Tombusviridae, one virus in the family Narnaviridae and four viruses in the family Botourmiaviridae. Since the RNA-dependent RNA polymerase (RdRp) of one botourmiavirus show the highest identity (79%) with Magnaporthe oryzae ourmia-like virus 1 (MOLV1), the virus that was grouped into the genus Magoulivirus was designated as Magnaporthe oryzae botourmiavirus 2 (MOBV2). The three other novel botourmiaviruses were selected for further study. The complete nucleotide sequences of the three botourmiaviruses were determined. Sequence analysis showed that virus 1, virus 2, and virus 3 were 2598, 2385, and 2326 nts in length, respectively. The variable 3' untranslated region (3'-UTR) and 5'-UTR of each virus could be folded into a stable stem-loop secondary structure. Each virus consisted of a unique ORF encoding a putative RdRp. The putative proteins with a conserved GDD motif of RdRp showed the highest sequence similarity to RdRps of viruses in the family Botourmiaviridae. Phylogenetic analysis demonstrated that these viruses were three distinct novel botourmiaviruses, clustered into the Botourmiaviridae family but not belonging to any known genera of this family. Thus, virus 1, virus 2, and virus 3 were designated as Magnaporthe oryzae botourmiavirus 5, 6, and 7 (MOBV5, MOBV6, and MOBV7), respectively. Our results suggest that four distinct botourmiaviruses, MOBV2, MOBV5, MOBV6, and MOBV7, co-infect a single strain of Magnaporthe oryzae, and MOBV5, MOBV6, and MOBV7 are members of three unclassified genera in the family Botourmiaviridae.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (A.E.); (J.J.); (J.X.); (D.J.)
| | - Liyan Zhang
- Institute of Biotechnology, Heilongjiang Academy of Agricultural Sciences, Harbin 150001, China;
| | - Ahmed Esmael
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (A.E.); (J.J.); (J.X.); (D.J.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (X.B.); (J.C.); (Y.F.)
- Botany and Microbiology Department, Faculty of Science, Benha University, Qalubiya Governorate, Benha 13511, Egypt
| | - Jie Duan
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (X.B.); (J.C.); (Y.F.)
| | - Xuefeng Bian
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (X.B.); (J.C.); (Y.F.)
| | - Jichun Jia
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (A.E.); (J.J.); (J.X.); (D.J.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (X.B.); (J.C.); (Y.F.)
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (A.E.); (J.J.); (J.X.); (D.J.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (X.B.); (J.C.); (Y.F.)
| | - Jiasen Cheng
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (X.B.); (J.C.); (Y.F.)
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (X.B.); (J.C.); (Y.F.)
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (A.E.); (J.J.); (J.X.); (D.J.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (X.B.); (J.C.); (Y.F.)
| | - Yang Lin
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (X.B.); (J.C.); (Y.F.)
| |
Collapse
|
24
|
Sutela S, Vainio EJ. Virus population structure in the ectomycorrhizal fungi Lactarius rufus and L. tabidus at two forest sites in Southern Finland. Virus Res 2020; 285:197993. [PMID: 32360299 DOI: 10.1016/j.virusres.2020.197993] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/25/2020] [Accepted: 04/25/2020] [Indexed: 01/27/2023]
Abstract
Lactarius fungi belong to the Russulaceae family and have an important ecological role as ectomycorrhizal symbionts of coniferous and deciduous trees. Two Lactarius species, L. tabidus and L. rufus have been shown to harbor bisegmented dsRNA viruses belonging to an unclassified virus group including the mutualistic Curvularia thermal tolerance virus (CThTV). In this study, we characterized the first complete genome sequences of these viruses designated as Lactarius tabidus RNA virus 1 (LtRV1) and Lactarius rufus RNA virus 1 (LrRV1), both of which included two genome segments of 2241 and 2049 bp. We also analyzed spatial distribution and sequence diversity of the viruses in sixty host strains at two forest sites, and showed that the viruses are species-specific at sites where both host species co-occur. We also found that single virus isolates inhabited several different conspecific host strains, and were involved in persistent infections during up to eight years.
Collapse
Affiliation(s)
- Suvi Sutela
- Natural Resources Institute Finland, Latokartanonkaari 9, 00790 Helsinki, Finland.
| | - Eeva J Vainio
- Natural Resources Institute Finland, Latokartanonkaari 9, 00790 Helsinki, Finland
| |
Collapse
|
25
|
Hantula J, Mäkelä S, Xu P, Brusila V, Nuorteva H, Kashif M, Hyder R, Vainio EJ. Multiple virus infections on Heterobasidion sp. Fungal Biol 2020; 124:102-109. [DOI: 10.1016/j.funbio.2019.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/26/2019] [Accepted: 12/05/2019] [Indexed: 11/27/2022]
|
26
|
You J, Zhou K, Liu X, Wu M, Yang L, Zhang J, Chen W, Li G. Defective RNA of a Novel Mycovirus with High Transmissibility Detrimental to Biocontrol Properties of Trichoderma spp. Microorganisms 2019; 7:microorganisms7110507. [PMID: 31671828 PMCID: PMC6920978 DOI: 10.3390/microorganisms7110507] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/20/2019] [Accepted: 10/25/2019] [Indexed: 01/07/2023] Open
Abstract
Trichoderma species are a group of fungi which is widely distributed in major terrestrial ecosystems; they are also commonly used as biocontrol agents for many plant diseases. A virus, namely Trichoderma harzianum hypovirus 1 (ThHV1), was identified in T. harzianum isolate T-70, and also infected isolate T-70D, together with its defective RNA (ThHV1-S). The ThHV1 genome possessed two Open Reading Frames (ORFs), namely ORF1 and ORF2. The start codon of ORF2 overlapped with the stop codon of ORF1 in a 43 nt long region. The polypeptide encoded by ORF2 of ThHV1 shared sequence similarities with those of betahypoviruses, indicating that ThHV1 is a novel member of Hypoviridea. Isolate T-70D, carrying both ThHV1 and ThHV1-S, showed abnormal biological properties, notably a decreased mycoparasitism ability when compared with isolate T-70. Both ThHV1 and ThHV1-S could be vertically transmitted to conidia and horizontally transmitted to T. harzianum isolate T-68 and T. koningiopsis T-51. The derivative strains carrying both ThHV1 and ThHV1-S showed decreased mycoparasitism ability, whereas strains carrying ThHV1 alone were normal, indicating that ThHV1-S is closely associated with the decreased mycoparasitism ability of T. harzianum isolate T-70D. ThHV1 was widely detected in isolates of T. harzianum, T. koningiopsis and T. atroviride originating from soil of China. Therefore, viruses in fungal biocontrol agents may also be a factor associated with the stability of their application.
Collapse
Affiliation(s)
- Jiaqi You
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- The Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
- Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China.
| | - Kang Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- The Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaolin Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- The Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mingde Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- The Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Long Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- The Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jing Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- The Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Weidong Chen
- U.S. Department of Agriculture, Agricultural Research Service, Washington State University, Pullman, WA 99164, USA.
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- The Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
27
|
Vainio EJ. Mitoviruses in the conifer root rot pathogens Heterobasidion annosum and H. parviporum. Virus Res 2019; 271:197681. [PMID: 31394105 DOI: 10.1016/j.virusres.2019.197681] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 10/26/2022]
Abstract
Mitoviral infections are highly common among fungi, but so far only one mitovirus has been described in Heterobasidion spp. conifer pathogens. Here, the occurrence of further mitoviruses was investigated using a previously published RNA-Seq dataset for de novo contig assembly. This allowed the identification of two additional mitovirus strains designated as Heterobasidion mitovirus 2 (HetMV2) and HetMV3 with genome lengths of ca. 2.9 and 5.0 kb. Furthermore, the occurrence of similar viruses was screened among a collection of Heterobasidion isolates using RT-PCR. Mitoviruses were detected in six more fungal isolates and two different host species, H. annosum and H. parviporum.
Collapse
Affiliation(s)
- Eeva J Vainio
- Natural Resources Institute Finland, Latokartanonkaari 9, 00790 Helsinki, Finland.
| |
Collapse
|
28
|
Sutela S, Poimala A, Vainio EJ. Viruses of fungi and oomycetes in the soil environment. FEMS Microbiol Ecol 2019; 95:5542194. [DOI: 10.1093/femsec/fiz119] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/30/2019] [Indexed: 12/17/2022] Open
Abstract
ABSTRACTSoils support a myriad of organisms hosting highly diverse viromes. In this minireview, we focus on viruses hosted by true fungi and oomycetes (members of Stamenopila, Chromalveolata) inhabiting bulk soil, rhizosphere and litter layer, and representing different ecological guilds, including fungal saprotrophs, mycorrhizal fungi, mutualistic endophytes and pathogens. Viruses infecting fungi and oomycetes are characterized by persistent intracellular nonlytic lifestyles and transmission via spores and/or hyphal contacts. Almost all fungal and oomycete viruses have genomes composed of single-stranded or double-stranded RNA, and recent studies have revealed numerous novel viruses representing yet unclassified family-level groups. Depending on the virus–host combination, infections can be asymptomatic, beneficial or detrimental to the host. Thus, mycovirus infections may contribute to the multiplex interactions of hosts, therefore likely affecting the dynamics of fungal communities required for the functioning of soil ecosystems. However, the effects of fungal and oomycete viruses on soil ecological processes are still mostly unknown. Interestingly, new metagenomics data suggest an extensive level of horizontal virus transfer between plants, fungi and insects.
Collapse
Affiliation(s)
- Suvi Sutela
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Anna Poimala
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Eeva J Vainio
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| |
Collapse
|
29
|
Petrzik K. Evolutionary forces at work in partitiviruses. Virus Genes 2019; 55:563-573. [PMID: 31230256 DOI: 10.1007/s11262-019-01680-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023]
Abstract
The family Partitiviridae consists of dsRNA viruses with genome separated into two segments and encoding replicase and capsid protein only. We examined the nucleotide diversity expressed as the ratio dN/dS of nonsynonymous and synonymous substitutions, which has been calculated for 12 representative viruses of all five genera of partitiviruses. We can state that strong purifying selection works on both the RdRp and CP genes and propose that putative positive selection occurs also on the RdRp genes in two viruses. Among the 95 evaluated viruses, wherein both segments had been sequenced, 8 viruses in betapartitiviruses and 9 in alphapartitiviruses were identified as reassortment candidates because they differ extremely in their CP identity even as they are related in terms of RdRp. Furthermore, there are indications that reassortants are present among isolates of different viruses.
Collapse
Affiliation(s)
- Karel Petrzik
- Department of Plant Virology, Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice, Czech Republic.
| |
Collapse
|
30
|
Thapa V, Roossinck MJ. Determinants of Coinfection in the Mycoviruses. Front Cell Infect Microbiol 2019; 9:169. [PMID: 31179246 PMCID: PMC6542947 DOI: 10.3389/fcimb.2019.00169] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Vaskar Thapa
- Department of Plant Pathology and Environmental Microbiology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, United States
| | - Marilyn J Roossinck
- Department of Plant Pathology and Environmental Microbiology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
31
|
Yang M, Zhai L, Xiao F, Guo Y, Fu M, Hong N, Wang G. Characterization of a novel victorivirus isolated from the phytopathogenic fungus Botryosphaeria dothidea. Arch Virol 2019; 164:1609-1617. [DOI: 10.1007/s00705-019-04234-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 02/21/2019] [Indexed: 02/02/2023]
|
32
|
Kashif M, Jurvansuu J, Vainio EJ, Hantula J. Alphapartitiviruses of Heterobasidion Wood Decay Fungi Affect Each Other's Transmission and Host Growth. Front Cell Infect Microbiol 2019; 9:64. [PMID: 30972301 PMCID: PMC6443826 DOI: 10.3389/fcimb.2019.00064] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/01/2019] [Indexed: 11/13/2022] Open
Abstract
Heterobasidion spp. root rot fungi are highly destructive forest pathogens of the northern boreal forests, and are known to host a diverse community of partitiviruses. The transmission of these mycoviruses occurs horizontally among host strains via mycelial anastomoses. We revealed using dual cultures that virus transmission rates are affected by pre-existing virus infections among two strains of H. annosum. The transmission efficacy of mycovirus HetPV15-pa1 to a pre-infected host was elevated from zero to 50% by the presence of HetPV13-an1, and a double infection of these viruses in the donor resulted in an overall transmission rate of 90% to a partitivirus-free recipient. On contrary, pre-existing virus infections of two closely related strains of HetPV11 hindered each other's transmission, but had unexpectedly dissimilar effects on the transmission of more distantly related viruses. The co-infection of HetPV13-an1 and HetPV15-pa1 significantly reduced host growth, whereas double infections including HetPV11 strains had variable effects. Moreover, the results showed that RdRp transcripts are generally more abundant than capsid protein (CP) transcripts and the four different virus strains express unique transcripts ratios of RdRp and CP. Taken together, the results show that the interplay between co-infecting viruses and their host is extremely complex and highly unpredictable.
Collapse
Affiliation(s)
- Muhammad Kashif
- Forest Health and Biodiversity, Natural Resources Institute Finland, Helsinki, Finland
| | | | - Eeva J Vainio
- Forest Health and Biodiversity, Natural Resources Institute Finland, Helsinki, Finland
| | - Jarkko Hantula
- Forest Health and Biodiversity, Natural Resources Institute Finland, Helsinki, Finland
| |
Collapse
|
33
|
Ježić M, Mlinarec J, Vuković R, Katanić Z, Krstin L, Nuskern L, Poljak I, Idžojtić M, Tkalec M, Ćurković-Perica M. Changes in Cryphonectria parasitica Populations Affect Natural Biological Control of Chestnut Blight. PHYTOPATHOLOGY 2018; 108:870-877. [PMID: 29442579 DOI: 10.1094/phyto-07-17-0252-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Invasive species, especially plant pathogens, have a potential to completely eradicate native plant species and remodel landscapes. Tripartite interactions among sweet chestnut (Castanea sativa), chestnut blight-causing invasive fungus Cryphonectria parasitica, and hyperparasitic virus Cryphonectria hypovirus 1 (CHV1) were studied in two populations. The number of different vegetative compatibility (vc) types of C. parasitica more than doubled over the 10 years, while the hypovirulence incidence dropped in one population and slightly increased in the other one. Over the course of our 3-year monitoring experiment, the prevalence of hypovirulent isolates obtained from monitored cankers increased slowly (i.e., more hypovirulent isolates were being obtained from the same cankers over time). Within studied cankers, considerable changes in vc type and CHV1 presence were observed, indicating a highly dynamic system in which virulent and hypovirulent mycelia, sometimes of discordant vc types, often appeared together. The increase in hypovirulence prevalence did not have any observable curative effect on the cankers and, occasionally, reactivation of healed cankers by new, virulent C. parasitica isolates was observed. Both short- and long-term observations and revalidation of the infected plant populations are necessary to accurately estimate disease progress and formulate an adequate disease management strategy.
Collapse
Affiliation(s)
- Marin Ježić
- First, second, sixth, and tenth authors: University of Zagreb, Faculty of Science, Department of Biology, Division of Microbiology, Marulicev trg 9a, Zagreb, Croatia; third, fourth, and fifth authors: J. J. Strossmayer University of Osijek, Department of Biology, Cara Hadrijana 8A, Osijek, Croatia; seventh and eighth authors: University of Zagreb, Faculty of Forestry, Department of forest genetics and dendrology, Svetosimunska 25, Zagreb, Croatia; and ninth author: University of Zagreb, Faculty of Science, Department of Biology, Division of Botany, Rooseveltov trg 6, Zagreb, Croatia
| | - Jelena Mlinarec
- First, second, sixth, and tenth authors: University of Zagreb, Faculty of Science, Department of Biology, Division of Microbiology, Marulicev trg 9a, Zagreb, Croatia; third, fourth, and fifth authors: J. J. Strossmayer University of Osijek, Department of Biology, Cara Hadrijana 8A, Osijek, Croatia; seventh and eighth authors: University of Zagreb, Faculty of Forestry, Department of forest genetics and dendrology, Svetosimunska 25, Zagreb, Croatia; and ninth author: University of Zagreb, Faculty of Science, Department of Biology, Division of Botany, Rooseveltov trg 6, Zagreb, Croatia
| | - Rosemary Vuković
- First, second, sixth, and tenth authors: University of Zagreb, Faculty of Science, Department of Biology, Division of Microbiology, Marulicev trg 9a, Zagreb, Croatia; third, fourth, and fifth authors: J. J. Strossmayer University of Osijek, Department of Biology, Cara Hadrijana 8A, Osijek, Croatia; seventh and eighth authors: University of Zagreb, Faculty of Forestry, Department of forest genetics and dendrology, Svetosimunska 25, Zagreb, Croatia; and ninth author: University of Zagreb, Faculty of Science, Department of Biology, Division of Botany, Rooseveltov trg 6, Zagreb, Croatia
| | - Zorana Katanić
- First, second, sixth, and tenth authors: University of Zagreb, Faculty of Science, Department of Biology, Division of Microbiology, Marulicev trg 9a, Zagreb, Croatia; third, fourth, and fifth authors: J. J. Strossmayer University of Osijek, Department of Biology, Cara Hadrijana 8A, Osijek, Croatia; seventh and eighth authors: University of Zagreb, Faculty of Forestry, Department of forest genetics and dendrology, Svetosimunska 25, Zagreb, Croatia; and ninth author: University of Zagreb, Faculty of Science, Department of Biology, Division of Botany, Rooseveltov trg 6, Zagreb, Croatia
| | - Ljiljana Krstin
- First, second, sixth, and tenth authors: University of Zagreb, Faculty of Science, Department of Biology, Division of Microbiology, Marulicev trg 9a, Zagreb, Croatia; third, fourth, and fifth authors: J. J. Strossmayer University of Osijek, Department of Biology, Cara Hadrijana 8A, Osijek, Croatia; seventh and eighth authors: University of Zagreb, Faculty of Forestry, Department of forest genetics and dendrology, Svetosimunska 25, Zagreb, Croatia; and ninth author: University of Zagreb, Faculty of Science, Department of Biology, Division of Botany, Rooseveltov trg 6, Zagreb, Croatia
| | - Lucija Nuskern
- First, second, sixth, and tenth authors: University of Zagreb, Faculty of Science, Department of Biology, Division of Microbiology, Marulicev trg 9a, Zagreb, Croatia; third, fourth, and fifth authors: J. J. Strossmayer University of Osijek, Department of Biology, Cara Hadrijana 8A, Osijek, Croatia; seventh and eighth authors: University of Zagreb, Faculty of Forestry, Department of forest genetics and dendrology, Svetosimunska 25, Zagreb, Croatia; and ninth author: University of Zagreb, Faculty of Science, Department of Biology, Division of Botany, Rooseveltov trg 6, Zagreb, Croatia
| | - Igor Poljak
- First, second, sixth, and tenth authors: University of Zagreb, Faculty of Science, Department of Biology, Division of Microbiology, Marulicev trg 9a, Zagreb, Croatia; third, fourth, and fifth authors: J. J. Strossmayer University of Osijek, Department of Biology, Cara Hadrijana 8A, Osijek, Croatia; seventh and eighth authors: University of Zagreb, Faculty of Forestry, Department of forest genetics and dendrology, Svetosimunska 25, Zagreb, Croatia; and ninth author: University of Zagreb, Faculty of Science, Department of Biology, Division of Botany, Rooseveltov trg 6, Zagreb, Croatia
| | - Marilena Idžojtić
- First, second, sixth, and tenth authors: University of Zagreb, Faculty of Science, Department of Biology, Division of Microbiology, Marulicev trg 9a, Zagreb, Croatia; third, fourth, and fifth authors: J. J. Strossmayer University of Osijek, Department of Biology, Cara Hadrijana 8A, Osijek, Croatia; seventh and eighth authors: University of Zagreb, Faculty of Forestry, Department of forest genetics and dendrology, Svetosimunska 25, Zagreb, Croatia; and ninth author: University of Zagreb, Faculty of Science, Department of Biology, Division of Botany, Rooseveltov trg 6, Zagreb, Croatia
| | - Mirta Tkalec
- First, second, sixth, and tenth authors: University of Zagreb, Faculty of Science, Department of Biology, Division of Microbiology, Marulicev trg 9a, Zagreb, Croatia; third, fourth, and fifth authors: J. J. Strossmayer University of Osijek, Department of Biology, Cara Hadrijana 8A, Osijek, Croatia; seventh and eighth authors: University of Zagreb, Faculty of Forestry, Department of forest genetics and dendrology, Svetosimunska 25, Zagreb, Croatia; and ninth author: University of Zagreb, Faculty of Science, Department of Biology, Division of Botany, Rooseveltov trg 6, Zagreb, Croatia
| | - Mirna Ćurković-Perica
- First, second, sixth, and tenth authors: University of Zagreb, Faculty of Science, Department of Biology, Division of Microbiology, Marulicev trg 9a, Zagreb, Croatia; third, fourth, and fifth authors: J. J. Strossmayer University of Osijek, Department of Biology, Cara Hadrijana 8A, Osijek, Croatia; seventh and eighth authors: University of Zagreb, Faculty of Forestry, Department of forest genetics and dendrology, Svetosimunska 25, Zagreb, Croatia; and ninth author: University of Zagreb, Faculty of Science, Department of Biology, Division of Botany, Rooseveltov trg 6, Zagreb, Croatia
| |
Collapse
|
34
|
Hyder R, Piri T, Hantula J, Nuorteva H, Vainio EJ. Distribution of Viruses Inhabiting Heterobasidion annosum in a Pine-Dominated Forest Plot in Southern Finland. MICROBIAL ECOLOGY 2018; 75:622-630. [PMID: 28779297 DOI: 10.1007/s00248-017-1027-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
We investigated the diversity and spatial distribution of viruses infecting strains of the root rot fungus Heterobasidion annosum collected from pine stumps at a heavily infected forest site. Four different partitiviruses were detected in 14 H. annosum isolates at the study site, constituting approximately 29% of all Heterobasidion isolates investigated (N = 48). Two of the viruses detected were new partitiviruses designated here as Heterobasidion partitivirus 16 (HetPV16) and HetPV20, and two were previously known partitiviruses: HetPV7 and HetPV13. The two new partitiviruses found, HetPV16-an1 and HetPV20-an1, shared ~70% RdRp nucleotide sequence identity with the alphapartitivirus Rosellinia necatrix partitivirus 2, and less than 40% identity with known viruses of Heterobasidion spp. HetPV7-an1 was closely similar to HetPV7-pa1 isolated earlier from Heterobasidion parviporum, supporting the view of conspecific virus pools in different Heterobasidion species. Three fungal isolates were found to be co-infected with two different partitivirus strains (HetPV7-an1 and HetPV13-an2 or HetPV16-an1 and HetPV20-an1). Different isolates representing each host clone had variable virus compositions, and virus strains occurring in more than one host clone showed minor sequence variations between clones.
Collapse
Affiliation(s)
- Rafiqul Hyder
- Natural Resources Institute Finland, Latokartanonkaari 9, 00790, Helsinki, Finland.
| | - Tuula Piri
- Natural Resources Institute Finland, Latokartanonkaari 9, 00790, Helsinki, Finland
| | - Jarkko Hantula
- Natural Resources Institute Finland, Latokartanonkaari 9, 00790, Helsinki, Finland
| | - Heikki Nuorteva
- Natural Resources Institute Finland, Latokartanonkaari 9, 00790, Helsinki, Finland
| | - Eeva J Vainio
- Natural Resources Institute Finland, Latokartanonkaari 9, 00790, Helsinki, Finland
| |
Collapse
|
35
|
Heterobasidion Partitivirus 13 Mediates Severe Growth Debilitation and Major Alterations in the Gene Expression of a Fungal Forest Pathogen. J Virol 2018; 92:JVI.01744-17. [PMID: 29237832 DOI: 10.1128/jvi.01744-17] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/28/2017] [Indexed: 11/20/2022] Open
Abstract
The fungal genus Heterobasidion includes some of the most devastating conifer pathogens in the boreal forest region. In this study, we showed that the alphapartitivirus Heterobasidion partitivirus 13 from Heterobasidion annosum (HetPV13-an1) is the main causal agent of severe phenotypic debilitation in the host fungus. Based on RNA sequencing using isogenic virus-infected and cured fungal strains, HetPV13-an1 affected the transcription of 683 genes, of which 60% were downregulated and 40% upregulated. Alterations observed in carbohydrate and amino acid metabolism suggest that the virus causes a state of starvation, which is compensated for by alternative synthesis routes. We used dual cultures to transmit HetPV13-an1 into new strains of H. annosum and Heterobasidion parviporum The three strains of H. parviporum that acquired the virus showed noticeable growth reduction on rich culturing medium, while only two of six H. annosum isolates tested showed significant debilitation. Based on reverse transcription-quantitative PCR (RT-qPCR) analysis, the response toward HetPV13-an1 infection was somewhat different in H. annosum and H. parviporum We assessed the effects of HetPV13-an1 on the wood colonization efficacy of H. parviporum in a field experiment where 46 Norway spruce trees were inoculated with isogenic strains with or without the virus. The virus-infected H. parviporum strain showed considerably less growth within living trees than the isolate without HetPV13-an1, indicating that the virus also causes growth debilitation in natural substrates.IMPORTANCE A biocontrol method restricting the spread of Heterobasidion species would be highly beneficial to forestry, as these fungi are difficult to eradicate from diseased forest stands and cause approximate annual losses of €800 million in Europe. We used virus curing and reintroduction experiments and RNA sequencing to show that the alphapartitivirus HetPV13-an1 affects many basic cellular functions of the white rot wood decay fungus Heterobasidion annosum, which results in aberrant hyphal morphology and a low growth rate. Dual fungal cultures were used to introduce HetPV13-an1 into a new host species, Heterobasidion parviporum, and field experiments confirmed the capability of the virus to reduce the growth of H. parviporum in living spruce wood. Taken together, our results suggest that HetPV13-an1 shows potential for the development of a future biocontrol agent against Heterobasidion fungi.
Collapse
|
36
|
Sahin E, Akata I. Viruses infecting macrofungi. Virusdisease 2018; 29:1-18. [PMID: 29607353 DOI: 10.1007/s13337-018-0434-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/25/2018] [Indexed: 11/26/2022] Open
Abstract
Ever since their discovery just about 56 years ago in the cultivated mushroom Agaricus bisporus, many more viruses infecting fungi have been identified in a wide range of fungal taxa. With mostly being asymptomatic, especially the ones that are detrimental to their phytopathogenic hosts are intensively studied due to their considerable importance in developing novel plant protection measures. Contrary to the rapid accumulation of notable data on viruses of plant pathogenic microfungi, much less information have hitherto been obtained in regards to the viruses whose hosts are macrofungi. According to the current literature, only more than 80 distinct viruses bearing either linear dsRNA or linear positive sense ssRNA genome and infecting a total number of 34 macrofungal species represented with four Ascomycota and 30 Basidiomycota have been identified so far. Among these 34 macrofungal species, 14 are cultivated edible and wild edible mushroom species. According to the 10th ICTV (International Committee on Taxonomy of Viruses) Report, macrofungal viruses with linear dsRNA genome are classified into five families (Partitiviridae, Totiviridae, Chrysoviridae, Endornaviridae and Hypoviridae) and macrofungal viruses with linear positive sense ssRNA genome are classified into seven families (Betaflexiviridae, Gammaflexiviridae, Barnaviridae, Narnaviridae, Virgaviridae, Benyviridae and Tymoviridae). In this review, following a brief overview of some general characteristics of fungal viruses, an up to date knowledge on viruses infecting macrofungal hosts were presented by summarizing the previous, recent and prospective studies of the field.
Collapse
Affiliation(s)
- Ergin Sahin
- Faculty of Science, Department of Biology, Ankara University, Ankara, Turkey
| | - Ilgaz Akata
- Faculty of Science, Department of Biology, Ankara University, Ankara, Turkey
| |
Collapse
|
37
|
Hrabáková L, Grum-Grzhimaylo AA, Koloniuk I, Debets AJM, Sarkisova T, Petrzik K. The alkalophilic fungus Sodiomyces alkalinus hosts beta- and gammapartitiviruses together with a new fusarivirus. PLoS One 2017; 12:e0187799. [PMID: 29186149 PMCID: PMC5706713 DOI: 10.1371/journal.pone.0187799] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 10/26/2017] [Indexed: 11/18/2022] Open
Abstract
Mixed infection by three dsRNA viruses, a novel betapartitivirus, a gammapartitivirus, and a novel fusarivirus, has been identified in four isolates of the obligate alkalophilic fungus Sodiomyces alkalinus. The first, Sodiomyces alkalinus partitivirus 1 (SaPV1), is placed within the genus Betapartitivirus and is related to Ustilaginoidea virens partitivirus 2. The taxonomic position of the second virus is less clear as it shares high (85%) amino acid sequence identity but significantly low (77%) nucleotide sequence identity of the capsid protein with Colletotrichum truncatum partitivirus 1. The third, the novel Sodiomyces alkalinus fusarivirus 1 (SaFV1), is related to Fusarium poae fusarivirus 1. All the viruses show efficient vertical transmission through asexual and sexual spores. These novel coexisting viruses do not evoke apparent phenotypic alteration to their fungal host. This is the first description of a viral infection in an alkalophilic fungus.
Collapse
Affiliation(s)
- Lenka Hrabáková
- Department of Plant Virology, Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | | | - Igor Koloniuk
- Department of Plant Virology, Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | | | - Tatiana Sarkisova
- Department of Plant Virology, Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Karel Petrzik
- Department of Plant Virology, Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| |
Collapse
|
38
|
Virus-mediated suppression of host non-self recognition facilitates horizontal transmission of heterologous viruses. PLoS Pathog 2017; 13:e1006234. [PMID: 28334041 PMCID: PMC5363999 DOI: 10.1371/journal.ppat.1006234] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/10/2017] [Indexed: 02/06/2023] Open
Abstract
Non-self recognition is a common phenomenon among organisms; it often leads to innate immunity to prevent the invasion of parasites and maintain the genetic polymorphism of organisms. Fungal vegetative incompatibility is a type of non-self recognition which often induces programmed cell death (PCD) and restricts the spread of molecular parasites. It is not clearly known whether virus infection could attenuate non-self recognition among host individuals to facilitate its spread. Here, we report that a hypovirulence-associated mycoreovirus, named Sclerotinia sclerotiorum mycoreovirus 4 (SsMYRV4), could suppress host non-self recognition and facilitate horizontal transmission of heterologous viruses. We found that cell death in intermingled colony regions between SsMYRV4-infected Sclerotinia sclerotiorum strain and other tested vegetatively incompatible strains was markedly reduced and inhibition barrage lines were not clearly observed. Vegetative incompatibility, which involves Heterotrimeric guanine nucleotide-binding proteins (G proteins) signaling pathway, is controlled by specific loci termed het (heterokaryon incompatibility) loci. Reactive oxygen species (ROS) plays a key role in vegetative incompatibility-mediated PCD. The expression of G protein subunit genes, het genes, and ROS-related genes were significantly down-regulated, and cellular production of ROS was suppressed in the presence of SsMYRV4. Furthermore, SsMYRV4-infected strain could easily accept other viruses through hyphal contact and these viruses could be efficiently transmitted from SsMYRV4-infected strain to other vegetatively incompatible individuals. Thus, we concluded that SsMYRV4 is capable of suppressing host non-self recognition and facilitating heterologous viruses transmission among host individuals. These findings may enhance our understanding of virus ecology, and provide a potential strategy to utilize hypovirulence-associated mycoviruses to control fungal diseases.
Collapse
|
39
|
The complete genome sequence of a double-stranded RNA mycovirus from Fusarium graminearum strain HN1. Arch Virol 2017; 162:2119-2124. [DOI: 10.1007/s00705-017-3317-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 02/23/2017] [Indexed: 10/20/2022]
|
40
|
Modelling the mechanisms behind the key epidemiological processes of the conifer pathogen Heterobasidion annosum. FUNGAL ECOL 2017. [DOI: 10.1016/j.funeco.2016.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Baldrian P. Forest microbiome: diversity, complexity and dynamics. FEMS Microbiol Rev 2016; 41:109-130. [DOI: 10.1093/femsre/fuw040] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2016] [Indexed: 12/13/2022] Open
|
42
|
A novel monopartite dsRNA virus isolated from the entomopathogenic and nematophagous fungus Purpureocillium lilacinum. Arch Virol 2016; 161:3375-3384. [DOI: 10.1007/s00705-016-3045-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/31/2016] [Indexed: 12/01/2022]
|
43
|
Vainio EJ, Hantula J. Taxonomy, biogeography and importance of Heterobasidion viruses. Virus Res 2015; 219:2-10. [PMID: 26477938 DOI: 10.1016/j.virusres.2015.10.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/08/2015] [Accepted: 10/10/2015] [Indexed: 11/17/2022]
Abstract
The genus Heterobasidion consists of several species of necrotrophic and saprotrophic fungi, and includes some of the most detrimental organisms in boreal conifer forests. These fungi host a widespread and diverse mycovirus community composed of more than 16 species of Partitiviridae, a species of Narnaviridae and one taxonomically unassigned virus related to the Curvularia thermal tolerance virus. These viruses are able to cross species borders, co-infect single host strains and cause phenotypic changes in their hosts. The abundance of viruses increases over time in Heterobasidion infection centers, and they are targeted by fungal RNA interference. Long-term field studies are essential for obtaining a comprehensive view of virus effects in the nature.
Collapse
Affiliation(s)
- Eeva J Vainio
- Natural Resources Institute Finland (Luke), Jokiniemenkuja 1, POB 18, 01301 Vantaa, Finland.
| | - Jarkko Hantula
- Natural Resources Institute Finland (Luke), Jokiniemenkuja 1, POB 18, 01301 Vantaa, Finland.
| |
Collapse
|
44
|
Botella L, Vainio EJ, Hantula J, Diez JJ, Jankovsky L. Description and prevalence of a putative novel mycovirus within the conifer pathogen Gremmeniella abietina. Arch Virol 2015; 160:1967-75. [PMID: 26047648 DOI: 10.1007/s00705-015-2456-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/11/2015] [Indexed: 10/23/2022]
Abstract
The European race of Gremmeniella abietina (Lagerberg) Morelet is the causal agent of stem canker and shoot blight on numerous conifers in Europe and North America. It comprises different species and biotypes in which the presence of mycoviruses has been determined. In this report, we describe the full-length sequence of the RNA-dependent RNA polymerase (RdRp) of a putative novel virus, Gremmeniella abietina RNA virus 6 (GaRV6), with 2165 nt and a GC content of 54.7 %. A BLASTp search using the deduced RdRp amino acid sequence confirmed GaRV6 to be related to members of a still unassigned virus taxon, which includes, e.g., Fusarium graminearum dsRNA mycovirus 4 (FgV-4) and the mutualistic Curvularia thermal tolerance virus (CThTV). The prevalence and genetic diversity of GaRV6 was also studied within the European race of G. abietina. We examined 162 isolates originating from Canada, the Czech Republic, Finland, Italy, Montenegro, Serbia, Spain, Switzerland, Turkey and the United States. According to direct specific reverse transcription (RT) PCR screening based on the RdRp sequence, the virus appears to be present only in Spain, where it is relatively abundant but genetically highly uniform.
Collapse
Affiliation(s)
- Leticia Botella
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 1, 61300, Brno, Czech Republic,
| | | | | | | | | |
Collapse
|
45
|
Fusarium circinatum isolates from northern Spain are commonly infected by three distinct mitoviruses. Arch Virol 2015; 160:2093-8. [PMID: 26025157 DOI: 10.1007/s00705-015-2462-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/20/2015] [Indexed: 10/23/2022]
Abstract
Pitch canker is a serious disease of pines caused by the ascomycete fungus Gibberella circinata (anamorph = Fusarium circinatum). Three distinct mitovirus strains have been described in this fungus: Fusarium circinatum mitovirus 1 (FcMV1), FcMV2-1 and FcMV2-2. Here, we investigated the frequency and population variation of these viruses and closely related sequence variants in northern Spain using RT-PCR and sequencing. Each virus strain and similar sequence variants shared >95 % sequence identity and were collectively designated as virus types. All virus types were relatively common in Spain, with estimated prevalence of 18.5 %, 8.9 % and 16.3 % for FcMV1, FcMV2-1 and FcMV2-2, respectively.
Collapse
|
46
|
Kashif M, Hyder R, De Vega Perez D, Hantula J, Vainio E. Heterobasidion wood decay fungi host diverse and globally distributed viruses related to Helicobasidium mompa partitivirus V70. Virus Res 2015; 195:119-23. [DOI: 10.1016/j.virusres.2014.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/05/2014] [Accepted: 09/06/2014] [Indexed: 10/24/2022]
|
47
|
Vainio EJ, Jurvansuu J, Streng J, Rajamäki ML, Hantula J, Valkonen JPT. Diagnosis and discovery of fungal viruses using deep sequencing of small RNAs. J Gen Virol 2014; 96:714-725. [PMID: 25480928 DOI: 10.1099/jgv.0.000003] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Analysis of virus-derived small RNAs with high-throughput sequencing has been successful for detecting novel viruses in plants and invertebrates. However, the applicability of this method has not been demonstrated in fungi, although fungi were among the first organisms reported to utilize RNA silencing. Here, we used virus-infected isolates of the fungal species complex Heterobasidion annosum sensu lato as a model system to test whether mycovirus genome segments can be detected with small RNA deep sequencing. Species of the genus Heterobasidion are some of the most devastating forest pathogens in boreal forests. These fungi cause wood decay and are commonly infected with species of the family Partitiviridae and the unassigned virus species Heterobasidion RNA virus 6. Small RNA deep sequencing allowed the simultaneous detection of all eight double-stranded RNA virus strains known to be present in the tested samples and one putative mitovirus species (family Narnaviridae) with a single-stranded RNA genome, designated here as Heterobasidion mitovirus 1. Prior to this study, no members of the family Narnaviridae had been described as infecting species of Heterobasidion. Quantification of viral double- and single-stranded RNA with quantitative PCR indicated that co-infecting viral species and viruses with segmented genomes can be detected with small RNA deep sequencing despite vast differences in the amount of RNA. This is the first study demonstrating the usefulness of this method for detecting fungal viruses. Moreover, the results suggest that viral genomes are processed into small RNAs by different species of Heterobasidion.
Collapse
Affiliation(s)
- Eeva J Vainio
- Finnish Forest Research Institute, Vantaa Research Unit, Jokiniemenkuja 1, Vantaa, Finland
| | - Jaana Jurvansuu
- Finnish Forest Research Institute, Vantaa Research Unit, Jokiniemenkuja 1, Vantaa, Finland
| | - Janne Streng
- Department of Agricultural Sciences, P.O. Box 27, University of Helsinki, FI-00014 Helsinki, Finland
| | - Minna-Liisa Rajamäki
- Department of Agricultural Sciences, P.O. Box 27, University of Helsinki, FI-00014 Helsinki, Finland
| | - Jarkko Hantula
- Finnish Forest Research Institute, Vantaa Research Unit, Jokiniemenkuja 1, Vantaa, Finland
| | - Jari P T Valkonen
- Department of Agricultural Sciences, P.O. Box 27, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|