1
|
Wang YC, Wang S, Lv YH, Wang JY, Yang WX, Deng Y, Ju F, Wang C. Diversity, influential factor, and communication network construction of quorum sensing bacteria in global wastewater treatment plants. WATER RESEARCH 2025; 279:123437. [PMID: 40054278 DOI: 10.1016/j.watres.2025.123437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 05/06/2025]
Abstract
Quorum sensing (QS) is widespread in the microbial world and mediates microbial relationships in communities. However, the existing knowledge is far from a full description of the complex communication-based microbial interactions in engineered ecosystems, i.e., wastewater treatment plants (WWTPs). Herein, we conducted a systematic analysis of the diversity and influential factors of the QS-related microflora through the collection of global 1186 activated sludge microbiome samples. We found that the richness of bacteria associated with the universal bacterial secondary messenger presented the highest in QS system, whereas the bacteria related to the degradation of N-Acyl-homoserine lactones occupied the main position in the quorum quenching system. The community turnover of QS microflora was found more likely to be dominated by the deterministic process, such as the dissolved oxygen and resource availability (the ratio of organic matter to microorganisms). Meanwhile, these QS microflora in turn have a profound impact on the functions of WWTPs, especially multilingual intelligencers involving various language systems, such as Nitrospira. By connecting the signal molecule synthesis and acceptance bacteria, we constructed a QS communication network, which can be a robust tool for initial investigation of signaling molecule-mediated microbial interactions. The above results were further integrated into an online access website, named Quorum Sensing Communication Network in Activated Sludge (QSCNAS) (http://www.qscnas.cn/), which allowed users to browse and capture possible QS-based interactions of target bacterium. This work contributes to the understanding of bacterial communication in WWTPs and provides a platform to help in developing potential regulation strategies.
Collapse
Affiliation(s)
- Yong-Chao Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Sen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Ya-Hui Lv
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Jia-Yi Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Wen-Xuan Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China.
| |
Collapse
|
2
|
Qiu H, Dandekar AA, Dai W. Co-regulation of cooperative and private traits by PsdR in Pseudomonas aeruginosa. Evol Lett 2025; 9:273-281. [PMID: 40191406 PMCID: PMC11968183 DOI: 10.1093/evlett/qrae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/07/2024] [Accepted: 12/06/2024] [Indexed: 04/09/2025] Open
Abstract
Social interactions profoundly shape the dynamics and functionality of microbial populations. However, mechanisms governing the regulation of cooperative or individual traits have remained elusive. Here, we investigated the regulatory mechanisms of social behaviors by characterizing the fitness of transcriptional regulator PsdR mutants in cooperating Pseudomonas aeruginosa populations. In a canonical model described previously, PsdR was shown to solely have a nonsocial role in adaptation of these populations by controlling the intracellular uptake and processing of dipeptides. In addition to these known private traits, we found that PsdR mutants also enhanced cooperation by increasing the production of quorum sensing (QS)-regulated public goods. Although private dipeptide utilization promotes individual absolute fitness, it only partially accounts for the growth advantage of PsdR mutants. The absence of the QS master regulator LasR delayed the appearance of PsdR variants in an evolution experiment. We also demonstrated that the growth fitness of PsdR mutants is determined by a combination of the QS-mediated cooperative trait and the dipeptide metabolism-related private trait. This dual trait is co-regulated by PsdR, leading to the rapid spread of PsdR variants throughout the population. In conclusion, we identified a new social model of co-regulating cooperative and private traits in PsdR variants, uncovering the social and nonsocial roles of this transcriptional regulator in cooperating bacterial populations. Our findings advance the fundamental understanding of bacterial social interactions and provide insights into population evolution, pathogen infection control and synthetic biotechnology.
Collapse
Affiliation(s)
- Huifang Qiu
- Integrative Microbiology Research Center, College of Plant Protection, South China of Agricultural University, Guangzhou, China
| | - Ajai A Dandekar
- Department of Microbiology, University of Washington, Seattle, WA, United States
| | - Weijun Dai
- Integrative Microbiology Research Center, College of Plant Protection, South China of Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Li J, Nie M, Ma H, Tao X, Sun Y, Tu X, Zhang P, Zhang L, Jia R, He Y, Zhang N, Ge H. Quorum Sensing Coordinates Carbon and Nitrogen Metabolism to Optimize Public Goods Production in Pseudomonas fluorescens 2P24. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412224. [PMID: 39888293 PMCID: PMC11948153 DOI: 10.1002/advs.202412224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/24/2024] [Indexed: 02/01/2025]
Abstract
The coordination of public and private goods production is essential for bacterial adaptation to environmental changes. Quorum sensing (QS) regulates this balance by mediating the trade-off between the communal benefits of "public goods," such as siderophores and antibiotics, and the individual metabolic needs fulfilled by "private goods," such as intracellular metabolites utilized for growth and survival. Pseudomonas fluorescens 2P24 harbors a LasI/LasR-type QS system, MupI/MupR, which regulates mupirocin production through signaling molecules. This study explores how QS coordinates carbon and nitrogen metabolism to optimize the production of key secondary metabolites, including 2,4-diacetylphloroglucinol (2,4-DAPG), mupirocin, and siderophores, which serve as public goods. Loss of QS disrupts this balance by enhancing the Krebs cycle, denitrification, pyruvate anaplerosis, and ammonium assimilation, lead to halted 2,4-DAPG and mupirocin synthesis and increased siderophore production. In the absence of QS, elevated siderophore production compensates for iron acquisition, ensuring rapid cellular growth. Under nutrient-limited or high cell density conditions, MupR regulates carbon and nitrogen fluxes to sustain public goods production. These findings highlight QS as a key environmental sensor that fine-tunes resource allocation, bacterial fitness, and adaptation to ecological and nutritional conditions, suggesting the potential for QS-targeted approaches to enhance antibiotic production and agricultural sustainability.
Collapse
Affiliation(s)
- Jie Li
- School of Life SciencesAnhui UniversityHefei230601China
- Institute of Health Sciences and TechnologyInstitutes of Physical Science and Information TechnologyAnhui UniversityHefei230601China
| | - Mengxue Nie
- School of Life SciencesAnhui UniversityHefei230601China
| | - Hongguang Ma
- School of Life SciencesAnhui UniversityHefei230601China
- Institute of Health Sciences and TechnologyInstitutes of Physical Science and Information TechnologyAnhui UniversityHefei230601China
| | - Xuanying Tao
- School of Life SciencesAnhui UniversityHefei230601China
| | - Yanxia Sun
- School of Life SciencesAnhui UniversityHefei230601China
| | - Xinyue Tu
- School of Life SciencesAnhui UniversityHefei230601China
| | | | - Li‐Qun Zhang
- College of Plant ProtectionChina Agricultural UniversityBeijing100083China
| | - Rong Jia
- School of Life SciencesAnhui UniversityHefei230601China
| | - Yong‐Xing He
- Ministry of Education Key Laboratory of Cell Activities and Stress AdaptationsSchool of Life SciencesLanzhou UniversityLanzhou730000China
- School of Veterinary Medicine and BiosecurityLanzhou UniversityLanzhou730000China
| | - Nannan Zhang
- School of Life SciencesAnhui UniversityHefei230601China
| | - Honghua Ge
- Institute of Health Sciences and TechnologyInstitutes of Physical Science and Information TechnologyAnhui UniversityHefei230601China
| |
Collapse
|
4
|
Miao Y, Wang W, Xu H, Xia Y, Gong Q, Xu Z, Zhang N, Xun W, Shen Q, Zhang R. A novel decomposer-exploiter interaction framework of plant residue microbial decomposition. Genome Biol 2025; 26:20. [PMID: 39901283 PMCID: PMC11792400 DOI: 10.1186/s13059-025-03486-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 01/24/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Plant residue microbial decomposition, subject to significant environmental regulation, represents a crucial ecological process shaping and cycling the largest terrestrial soil organic carbon pool. However, the fundamental understanding of the functional dynamics and interactions between the principal participants, fungi and bacteria, in natural habitats remains limited. RESULTS In this study, the evolution of fungal and bacterial communities and their functional interactions were elucidated during the degradation of complexity-gradient plant residues. The results reveal that with increasing residue complexity, fungi exhibit heightened adaptability, while bacterial richness declines sharply. The differential functional evolution of fungi and bacteria is driven by residue complexity but follows distinct trajectories. Fundamentally, fungi evolve towards promoting plant residue degradation and so consistently act as the dominant decomposers. Conversely, bacteria predominantly increase expression of genes of glycosidases to exploit fungal degradation products, thereby consistently acting as exploiters. The presence of fungi enables and endures bacterial exploitation. CONCLUSIONS This study introduces a novel framework of fungal decomposers and bacterial exploiters during plant residue microbial decomposition, advancing our comprehensive understanding of microbial processes governing the organic carbon cycling.
Collapse
Affiliation(s)
- Youzhi Miao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Key Lab of Organic-Based Fertilizers of China, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Wei Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Key Lab of Organic-Based Fertilizers of China, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Huanhuan Xu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Key Lab of Organic-Based Fertilizers of China, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Yanwei Xia
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Key Lab of Organic-Based Fertilizers of China, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Qingxin Gong
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Key Lab of Organic-Based Fertilizers of China, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Key Lab of Organic-Based Fertilizers of China, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Nan Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Key Lab of Organic-Based Fertilizers of China, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Weibing Xun
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Key Lab of Organic-Based Fertilizers of China, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China.
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Key Lab of Organic-Based Fertilizers of China, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Key Lab of Organic-Based Fertilizers of China, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
5
|
Tang CJ, Qu C, Tang X, Spinney R, Dionysiou DD, Wells GF, Xiao R. Acyl-Homoserine Lactone Enhances the Resistance of Anammox Consortia under Heavy Metal Stress: Quorum Sensing Regulatory Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:603-615. [PMID: 39723917 DOI: 10.1021/acs.est.4c09186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Anaerobic ammonium oxidation (anammox) represents an energy-efficient process for the removal of biological nitrogen from ammonium-rich wastewater. However, the susceptibility of anammox bacteria to coexisting heavy metals considerably restricts their use in engineering practices. Here, we report that acyl-homoserine lactone (AHL), a signaling molecule that mediates quorum sensing (QS), significantly enhances the nitrogen removal rate by 24% under Cu2+ stress. A suite of macro-/microanalytical and bioinformatic analyses was exploited to unravel the underlying mechanisms of AHL-induced Cu2+ resistance. Macro-/microanalytical evidence indicated that AHL regulations on the production, spatial distribution, and functional groups of extracellular polymeric substances were not significant, ruling out extracellular partitioning and complexation as a principal mechanism. Meanwhile, molecular biological evidence showed that AHL upregulated the transcriptional levels of resistance genes (sod, kat, cysQ, and czcC responsible for antioxidation defense, Cu2+ sequestration, and transport) to appreciable extents, indicating intracellular resistance as the primary mechanism. This study yielded a mechanistic understanding of the regulatory roles of AHL in extracellular and intracellular resistance of anammox consortia, providing a fundamental basis for utilizing QS regulation for efficient nitrogen removal in wastewaters with heavy metal stress.
Collapse
Affiliation(s)
- Chong-Jian Tang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Caiyan Qu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Xi Tang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Richard Spinney
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - George F Wells
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Ruiyang Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| |
Collapse
|
6
|
Zhou J, Wu X, Feng Y, Huo T, Zhao Y, Pan J, Liu S. Bacterial communication intelligently regulates their interactions in anammox consortia under decreasing temperatures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176239. [PMID: 39277003 DOI: 10.1016/j.scitotenv.2024.176239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/28/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Bacterial communication could affect their interactions, but whether this regulation has "intelligence" is still unknown. Here, we operated an anammox reactor under temperature gradient from 35 °C to 15 °C. As results, expression abundance of bacterial communication genes increased by 12 % significantly after temperature declined. Division of labor among distinct signal molecules was evidenced by complementary roles of acyl-homoserine lactones (AHLs) and diffusible signal factor (DSF) in affecting bacterial interactions and niche differentiation respectively. DSF based inter-and intra-communication helped bacteria match their investments and rewards during cross-feedings. When temperature was below 25 °C, transcription regulator Clp governed by DSF inclined to promote folate and molybdenum cofactor biosynthesis, which coincidentally benefited one anammox species more than another. Meanwhile, for the anammox species with lower benefits, Clp also inclined to decrease biosynthesis of costly tryptophan and vitamin B1 rewarding others. Interestingly, bacterial communication inclined to influence the bacteria with many cooperators in the community or with high capacity to export cofactors for cross-feedings when temperature decreased. As results, these bacteria were enriched which could lead to closer interactions in whole community to adapt to low temperatures. The discovered intelligence of bacterial communication opened another window for understanding bacterial sociobiology.
Collapse
Affiliation(s)
- Jianhang Zhou
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Xiaogang Wu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Yiming Feng
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Tangran Huo
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Yunpeng Zhao
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Juejun Pan
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Sitong Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China.
| |
Collapse
|
7
|
Lindsay RJ, Holder PJ, Hewlett M, Gudelj I. Experimental evolution of yeast shows that public-goods upregulation can evolve despite challenges from exploitative non-producers. Nat Commun 2024; 15:7810. [PMID: 39242624 PMCID: PMC11379824 DOI: 10.1038/s41467-024-52043-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 08/23/2024] [Indexed: 09/09/2024] Open
Abstract
Microbial secretions, such as metabolic enzymes, are often considered to be cooperative public goods as they are costly to produce but can be exploited by others. They create incentives for the evolution of non-producers, which can drive producer and population productivity declines. In response, producers can adjust production levels. Past studies suggest that while producers lower production to reduce costs and exploitation opportunities when under strong selection pressure from non-producers, they overproduce secretions when these pressures are weak. We challenge the universality of this trend with the production of a metabolic enzyme, invertase, by Saccharomyces cerevisiae, which catalyses sucrose hydrolysis into two hexose molecules. Contrary to past studies, overproducers evolve during evolutionary experiments even when under strong selection pressure from non-producers. Phenotypic and competition assays with a collection of synthetic strains - engineered to have modified metabolic attributes - identify two mechanisms for suppressing the benefits of invertase to those who exploit it. Invertase overproduction increases extracellular hexose concentrations that suppresses the metabolic efficiency of competitors, due to the rate-efficiency trade-off, and also enhances overproducers' hexose capture rate by inducing transporter expression. Thus, overproducers are maintained in the environment originally thought to not support public goods production.
Collapse
Affiliation(s)
- Richard J Lindsay
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Philippa J Holder
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Mark Hewlett
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Ivana Gudelj
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK.
| |
Collapse
|
8
|
Lynn BK, De Leenheer P, Schuster M. Putting theory to the test: An integrated computational/experimental chemostat model of the tragedy of the commons. PLoS One 2024; 19:e0300887. [PMID: 38598418 PMCID: PMC11006152 DOI: 10.1371/journal.pone.0300887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/06/2024] [Indexed: 04/12/2024] Open
Abstract
Cooperation via shared public goods is ubiquitous in nature, however, noncontributing social cheaters can exploit the public goods provided by cooperating individuals to gain a fitness advantage. Theory predicts that this dynamic can cause a Tragedy of the Commons, and in particular, a 'Collapsing' Tragedy defined as the extinction of the entire population if the public good is essential. However, there is little empirical evidence of the Collapsing Tragedy in evolutionary biology. Here, we experimentally demonstrate this outcome in a microbial model system, the public good-producing bacterium Pseudomonas aeruginosa grown in a continuous-culture chemostat. In a growth medium that requires extracellular protein digestion, we find that P. aeruginosa populations maintain a high density when entirely composed of cooperating, protease-producing cells but completely collapse when non-producing cheater cells are introduced. We formulate a mechanistic mathematical model that recapitulates experimental observations and suggests key parameters, such as the dilution rate and the cost of public good production, that define the stability of cooperative behavior. We combine model prediction with experimental validation to explain striking differences in the long-term cheater trajectories of replicate cocultures through mutational events that increase cheater fitness. Taken together, our integrated empirical and theoretical approach validates and parametrizes the Collapsing Tragedy in a microbial population, and provides a quantitative, mechanistic framework for generating testable predictions of social behavior.
Collapse
Affiliation(s)
- Bryan K. Lynn
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Patrick De Leenheer
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
- Department of Mathematics, Oregon State University, Corvallis, Oregon, United States of America
| | - Martin Schuster
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
9
|
Song L, Xu L, Wu T, Shi Z, Kareem HA, Wang Z, Dai Q, Guo C, Pan J, Yang M, Wei X, Wang Y, Wei G, Shen X. Trojan horselike T6SS effector TepC mediates both interference competition and exploitative competition. THE ISME JOURNAL 2024; 18:wrad028. [PMID: 38365238 PMCID: PMC10833071 DOI: 10.1093/ismejo/wrad028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 02/18/2024]
Abstract
The type VI secretion system (T6SS) is a bacterial weapon capable of delivering antibacterial effectors to kill competing cells for interference competition, as well as secreting metal ion scavenging effectors to acquire essential micronutrients for exploitation competition. However, no T6SS effectors that can mediate both interference competition and exploitation competition have been reported. In this study, we identified a unique T6SS-1 effector in Yersinia pseudotuberculosis named TepC, which plays versatile roles in microbial communities. First, secreted TepC acts as a proteinaceous siderophore that binds to iron and mediates exploitative competition. Additionally, we discovered that TepC has DNase activity, which gives it both contact-dependent and contact-independent interference competition abilities. In conditions where iron is limited, the iron-loaded TepC is taken up by target cells expressing the outer membrane receptor TdsR. For kin cells encoding the cognate immunity protein TipC, TepC facilitates iron acquisition, and its toxic effects are neutralized. On the other hand, nonkin cells lacking TipC are enticed to uptake TepC and are killed by its DNase activity. Therefore, we have uncovered a T6SS effector, TepC, that functions like a "Trojan horse" by binding to iron ions to provide a valuable resource to kin cells, whereas punishing cheaters that do not produce public goods. This lure-to-kill mechanism, mediated by a bifunctional T6SS effector, may offer new insights into the molecular mechanisms that maintain stability in microbial communities.
Collapse
Affiliation(s)
- Li Song
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lei Xu
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tong Wu
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhenkun Shi
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hafiz Abdul Kareem
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhuo Wang
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingyun Dai
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chenghao Guo
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junfeng Pan
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingming Yang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaomeng Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yao Wang
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gehong Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xihui Shen
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
10
|
Zhao R, Gao H, Yu R. Dissolved oxygen benefits N-decanoyl-homoserine lactone regulated biological nitrogen removal system to resist acute ZnO nanoparticle exposure. ENVIRONMENTAL RESEARCH 2023; 228:115806. [PMID: 37004855 DOI: 10.1016/j.envres.2023.115806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 05/16/2023]
Abstract
The beneficial effects of N-decanoyl-homoserine lactone (C10-HSL), one of the typical N-acyl-homoserine lactones on biological nitrogen removal (BNR) system to resist the acute exposure of zinc oxide nanoparticles (ZnO NPs) has attracted extensive attentions. Nevertheless, the potential impact of dissolved oxygen (DO) concentration on the regulatory capacity of C10-HSL in the BNR system has yet to be investigated. This study conducted a systematic investigation of the impact of DO concentration on the C10-HSL-regulated BNR system against short-term ZnO NP exposure. Based on the findings, sufficient DO played a crucial role to improve the BNR system's resistance capacity to ZnO NPs. Under the micro-aerobic condition (0.5 mg/L DO), the BNR system was more sensitive to ZnO NPs. The ZnO NPs induced increased intracellular reactive oxygen species (ROS) accumulation, reduced antioxidant enzyme activities, and decreased specific ammonia oxidation rates in the BNR system. Furthermore, the exogenous C10-HSL had a positive effect on the BNR system's resistance to ZnO NP-induced stress, primarily by decreasing ZnO NPs-induced ROS generation and improving ammonia monooxygenase activities, especially under low DO concentrations. The findings contributed to the theoretical foundation for regulation strategy development of wastewater treatment plants under NP shock threat.
Collapse
Affiliation(s)
- Runyu Zhao
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu, 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Huan Gao
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu, 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Ran Yu
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu, 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
11
|
Huang DQ, Wu Q, Yang JH, Jiang Y, Li ZY, Fan NS, Jin RC. Deciphering endogenous and exogenous regulations of anammox consortia in responding to lincomycin by multiomics: quorum sensing and CRISPR system. WATER RESEARCH 2023; 239:120061. [PMID: 37201375 DOI: 10.1016/j.watres.2023.120061] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/11/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
The widespread use of antibiotics has created an antibiotic resistance genes (ARGs)-enriched environment, which causes high risks on human and animal health. Although antibiotics can be partially adsorbed and degraded in wastewater treatment processes, striving for a complete understanding of the microbial adaptive mechanism to antibiotic stress remains urgent. Combined with metagenomics and metabolomics, this study revealed that anammox consortia could adapt to lincomycin by spontaneously changing the preference for metabolite utilization and establishing interactions with eukaryotes, such as Ascomycota and Basidiomycota. Specifically, quorum sensing (QS) based microbial regulation and the ARGs transfer mediated by clustered regularly interspaced short palindromic repeats (CRISPR) system and global regulatory genes were the principal adaptive strategies. Western blotting results validated that Cas9 and TrfA were mainly responsible for the alteration of ARGs transfer pathway. These findings highlight the potential adaptative mechanism of microbes to antibiotic stress and fill gaps in horizontal gene transfer pathways in the anammox process, further facilitating the ARGs control through molecular and synthetic biology techniques.
Collapse
Affiliation(s)
- Dong-Qi Huang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Qian Wu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jia-Hui Yang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuan Jiang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zi-Yue Li
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Nian-Si Fan
- Laboratory of Water Pollution Remediation, School of Engineering, Hangzhou Normal University, Hangzhou 310018, China; School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| | - Ren-Cun Jin
- Laboratory of Water Pollution Remediation, School of Engineering, Hangzhou Normal University, Hangzhou 310018, China; School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
12
|
Rattray JB, Kramer PJ, Gurney J, Thomas S, Brown SP. The dynamic response of quorum sensing to density is robust to signal supplementation and individual signal synthase knockouts. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001321. [PMID: 37204848 PMCID: PMC10268839 DOI: 10.1099/mic.0.001321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/17/2023] [Indexed: 05/20/2023]
Abstract
Quorum sensing (QS) is a widespread mechanism of environment sensing and behavioural coordination in bacteria. At its core, QS is based on the production, sensing and response to small signalling molecules. Previous work with Pseudomonas aeruginosa shows that QS can be used to achieve quantitative resolution and deliver a dosed response to the bacteria's density environment, implying a sophisticated mechanism of control. To shed light on how the mechanistic signal components contribute to graded responses to density, we assess the impact of genetic (AHL signal synthase deletion) and/or signal supplementation (exogenous AHL addition) perturbations on lasB reaction-norms to changes in density. Our approach condenses data from 2000 timeseries (over 74 000 individual observations) into a comprehensive view of QS-controlled gene expression across variation in genetic, environmental and signal determinants of lasB expression. We first confirm that deleting either (∆lasI, ∆rhlI) or both (∆lasIrhlI) AHL signal synthase gene attenuates QS response to density. In the ∆rhlI background we show persistent yet attenuated density-dependent lasB expression due to native 3-oxo-C12-HSL signalling. We then test if density-independent quantities of AHL signal (3-oxo-C12-HSL, C4-HSL) added to the WT either flatten or increase responsiveness to density and find that the WT response is robust to all tested concentrations of signal, alone or in combination. We then move to progressively supplementing the genetic knockouts and find that cognate signal supplementation of a single AHL signal (∆lasI +3-oxo-C12-HSL, ∆rhlI +C4HSL) is sufficient to restore the ability to respond in a density-dependent manner to increasing density. We also find that dual signal supplementation of the double AHL synthase knockout restores the ability to produce a graded response to increasing density, despite adding a density-independent amount of signal. Only the addition of high concentrations of both AHLs and PQS can force maximal lasB expression and ablate responsiveness to density. Our results show that density-dependent control of lasB expression is robust to multiple combinations of QS gene deletion and density-independent signal supplementation. Our work develops a modular approach to query the robustness and mechanistic bases of the central environmental sensing phenotype of quorum sensing.
Collapse
Affiliation(s)
- Jennifer B. Rattray
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Patrick J. Kramer
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - James Gurney
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Stephen Thomas
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Sam P. Brown
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
13
|
Rattray JB, Brown SP. Beyond Thresholds: Quorum‐Sensing as Quantitatively Varying Reaction Norms to Multiple Environmental Dimensions. Isr J Chem 2023. [DOI: 10.1002/ijch.202200109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Jennifer B. Rattray
- School of Biological Sciences Georgia Institute of Technology Atlanta GA 30332 USA
- Center for Microbial Dynamics and Infection Georgia Institute of Technology Atlanta GA 30332 USA
| | - Sam P. Brown
- School of Biological Sciences Georgia Institute of Technology Atlanta GA 30332 USA
- Center for Microbial Dynamics and Infection Georgia Institute of Technology Atlanta GA 30332 USA
| |
Collapse
|
14
|
Schaal KA, Yu YTN, Vasse M, Velicer GJ. Allopatric divergence of cooperators confers cheating resistance and limits effects of a defector mutation. BMC Ecol Evol 2022; 22:141. [PMID: 36510120 PMCID: PMC9746145 DOI: 10.1186/s12862-022-02094-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Social defectors may meet diverse cooperators. Genotype-by-genotype interactions may constrain the ranges of cooperators upon which particular defectors can cheat, limiting cheater spread. Upon starvation, the soil bacterium Myxococcus xanthus cooperatively develops into spore-bearing fruiting bodies, using a complex regulatory network and several intercellular signals. Some strains (cheaters) are unable to sporulate effectively in pure culture due to mutations that reduce signal production but can exploit and outcompete cooperators within mixed groups. RESULTS In this study, interactions between a cheater disrupted at the signaling gene csgA and allopatrically diversified cooperators reveal a very small cheating range. Expectedly, the cheater failed to cheat on all natural-isolate cooperators owing to non-cheater-specific antagonisms. Surprisingly, some lab-evolved cooperators had already exited the csgA mutant's cheating range after accumulating fewer than 20 mutations and without experiencing cheating during evolution. Cooperators might also diversify in the potential for a mutation to reduce expression of a cooperative trait or generate a cheating phenotype. A new csgA mutation constructed in several highly diverged cooperators generated diverse sporulation phenotypes, ranging from a complete defect to no defect, indicating that genetic backgrounds can limit the set of genomes in which a mutation creates a defector. CONCLUSIONS Our results demonstrate that natural populations may feature geographic mosaics of cooperators that have diversified in their susceptibility to particular cheaters, limiting defectors' cheating ranges and preventing them from spreading. This diversification may also lead to variation in the phenotypes generated by any given cooperation-gene mutation, further decreasing the chance of a cheater emerging which threatens the persistence of cooperation in the system.
Collapse
Affiliation(s)
- Kaitlin A. Schaal
- grid.5801.c0000 0001 2156 2780Institute of Integrative Biology, ETH Zürich, 8092 Zurich, Switzerland
| | - Yuen-Tsu Nicco Yu
- grid.5801.c0000 0001 2156 2780Institute of Integrative Biology, ETH Zürich, 8092 Zurich, Switzerland
| | - Marie Vasse
- grid.5801.c0000 0001 2156 2780Institute of Integrative Biology, ETH Zürich, 8092 Zurich, Switzerland ,grid.121334.60000 0001 2097 0141Institute MIVEGEC (UMR 5290 CNRS, IRD, UM), 34394 Montpellier, France
| | - Gregory J. Velicer
- grid.5801.c0000 0001 2156 2780Institute of Integrative Biology, ETH Zürich, 8092 Zurich, Switzerland
| |
Collapse
|
15
|
Souza LS, Irie Y, Eda S. Black Queen Hypothesis, partial privatization, and quorum sensing evolution. PLoS One 2022; 17:e0278449. [PMID: 36449503 PMCID: PMC9710793 DOI: 10.1371/journal.pone.0278449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
Microorganisms produce costly cooperative goods whose benefit is partially shared with nonproducers, called 'mixed' goods. The Black Queen Hypothesis predicts that partial privatization has two major evolutionary implications. First, to favor strains producing several types of mixed goods over nonproducing strains. Second, to favor the maintenance of cooperative traits through different strains instead of having all cooperative traits present in a single strain (metabolic specialization). Despite the importance of quorum sensing regulation of mixed goods, it is unclear how partial privatization affects quorum sensing evolution. Here, we studied the influence of partial privatization on the evolution of quorum sensing. We developed a mathematical population genetics model of an unstructured microbial population considering four strains that differ in their ability to produce an autoinducer (quorum sensing signaling molecule) and a mixed good. Our model assumes that the production of the autoinducers and the mixed goods is constitutive and/or depends on quorum sensing. Our results suggest that, unless autoinducers are costless, partial privatization cannot favor quorum sensing. This result occurs because with costly autoinducers: (1) a strain that produces both autoinducer and goods (fully producing strain) cannot persist in the population; (2) the strain only producing the autoinducer and the strain producing mixed goods in response to the autoinducers cannot coexist, i.e., metabolic specialization cannot be favored. Together, partial privatization might have been crucial to favor a primordial form of quorum sensing-where autoinducers were thought to be a metabolic byproduct (costless)-but not the transition to nowadays costly autoinducers.
Collapse
Affiliation(s)
- Lucas Santana Souza
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Yasuhiko Irie
- Department of Physics, Chemistry, and Biology, Linköping University, Linköping, Sweden
| | - Shigetoshi Eda
- Department of Forestry, Wildlife and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, Tennessee, United States of America
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| |
Collapse
|
16
|
Falà AK, Álvarez-Ordóñez A, Filloux A, Gahan CGM, Cotter PD. Quorum sensing in human gut and food microbiomes: Significance and potential for therapeutic targeting. Front Microbiol 2022; 13:1002185. [PMID: 36504831 PMCID: PMC9733432 DOI: 10.3389/fmicb.2022.1002185] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/17/2022] [Indexed: 11/27/2022] Open
Abstract
Human gut and food microbiomes interact during digestion. The outcome of these interactions influences the taxonomical composition and functional capacity of the resident human gut microbiome, with potential consequential impacts on health and disease. Microbe-microbe interactions between the resident and introduced microbiomes, which likely influence host colonisation, are orchestrated by environmental conditions, elements of the food matrix, host-associated factors as well as social cues from other microorganisms. Quorum sensing is one example of a social cue that allows bacterial communities to regulate genetic expression based on their respective population density and has emerged as an attractive target for therapeutic intervention. By interfering with bacterial quorum sensing, for instance, enzymatic degradation of signalling molecules (quorum quenching) or the application of quorum sensing inhibitory compounds, it may be possible to modulate the microbial composition of communities of interest without incurring negative effects associated with traditional antimicrobial approaches. In this review, we summarise and critically discuss the literature relating to quorum sensing from the perspective of the interactions between the food and human gut microbiome, providing a general overview of the current understanding of the prevalence and influence of quorum sensing in this context, and assessing the potential for therapeutic targeting of quorum sensing mechanisms.
Collapse
Affiliation(s)
- A. Kate Falà
- APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Microbiology, University College Cork, Cork, Ireland,Food Bioscience Department, Teagasc Food Research Centre, Fermoy, Ireland
| | - Avelino Álvarez-Ordóñez
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Cormac G. M. Gahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Microbiology, University College Cork, Cork, Ireland,School of Pharmacy, University College Cork, Cork, Ireland
| | - Paul D. Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Food Bioscience Department, Teagasc Food Research Centre, Fermoy, Ireland,*Correspondence: Paul D. Cotter,
| |
Collapse
|
17
|
Abstract
Chronic (long-lasting) infections are globally a major and rising cause of morbidity and mortality. Unlike typical acute infections, chronic infections are ecologically diverse, characterized by the presence of a polymicrobial mix of opportunistic pathogens and human-associated commensals. To address the challenge of chronic infection microbiomes, we focus on a particularly well-characterized disease, cystic fibrosis (CF), where polymicrobial lung infections persist for decades despite frequent exposure to antibiotics. Epidemiological analyses point to conflicting results on the benefits of antibiotic treatment yet are confounded by the dependency of antibiotic exposures on prior pathogen presence, limiting their ability to draw causal inferences on the relationships between antibiotic exposure and pathogen dynamics. To address this limitation, we develop a synthetic infection microbiome model representing CF metacommunity diversity and benchmark on clinical data. We show that in the absence of antibiotics, replicate microbiome structures in a synthetic sputum medium are highly repeatable and dominated by oral commensals. In contrast, challenge with physiologically relevant antibiotic doses leads to substantial community perturbation characterized by multiple alternate pathogen-dominant states and enrichment of drug-resistant species. These results provide evidence that antibiotics can drive the expansion (via competitive release) of previously rare opportunistic pathogens and offer a path toward microbiome-informed conditional treatment strategies. IMPORTANCE We develop and clinically benchmark an experimental model of the cystic fibrosis (CF) lung infection microbiome to investigate the impacts of antibiotic exposures on chronic, polymicrobial infections. We show that a single experimental model defined by metacommunity data can partially recapitulate the diversity of individual microbiome states observed across a population of people with CF. In the absence of antibiotics, we see highly repeatable community structures, dominated by oral microbes. Under clinically relevant antibiotic exposures, we see diverse and frequently pathogen-dominated communities, and a nonevolutionary enrichment of antimicrobial resistance on the community scale, mediated by competitive release. The results highlight the potential importance of nonevolutionary (community-ecological) processes in driving the growing global crisis of increasing antibiotic resistance.
Collapse
|
18
|
Moffett AS, Thomas PJ, Hinczewski M, Eckford AW. Cheater suppression and stochastic clearance through quorum sensing. PLoS Comput Biol 2022; 18:e1010292. [PMID: 35901008 PMCID: PMC9333318 DOI: 10.1371/journal.pcbi.1010292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
The evolutionary consequences of quorum sensing in regulating bacterial cooperation are not fully understood. In this study, we reveal unexpected effects of regulating public good production through quorum sensing on bacterial population dynamics, showing that quorum sensing can be a collectively harmful alternative to unregulated production. We analyze a birth-death model of bacterial population dynamics accounting for public good production and the presence of non-producing cheaters. Our model demonstrates that when demographic noise is a factor, the consequences of controlling public good production according to quorum sensing depend on the cost of public good production and the growth rate of populations in the absence of public goods. When public good production is inexpensive, quorum sensing is a destructive alternative to unconditional production, in terms of the mean population extinction time. When costs are higher, quorum sensing becomes a constructive strategy for the producing strain, both stabilizing cooperation and decreasing the risk of population extinction. Quorum sensing is a process through which bacteria can regulate gene expression according to their population density. The reasons for why bacteria use quorum sensing to regulate production of “public goods”, biochemical products that benefit nearby bacteria, are not entirely clear. We use mathematical modeling to explore how quorum sensing compares to other strategies for controlling production of public goods, namely unconditional production independent on population density, in small populations of bacteria where the random nature of growth is significant. Our model captures both how likely “cheater” strains, which do not produce public goods but benefit from them, are to take over a population and how long on average the population will last before going extinct. We find that depending on how expensive public good production is and how critical public goods are for growth, quorum sensing can decrease or increase the mean time to extinction compared with unconditional production, while always reducing the likelihood of cheaters taking over. Our results could have important implications for the growth of bacterial infections, for example Pseudomonas aeruginosa infections of the lungs of cystic fibrosis patients.
Collapse
Affiliation(s)
- Alexander S. Moffett
- Department of Electrical Engineering and Computer Science, York University, Toronto, Ontario, Canada
| | - Peter J. Thomas
- Department of Mathematics, Applied Mathematics, and Statistics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Michael Hinczewski
- Department of Physics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Andrew W. Eckford
- Department of Electrical Engineering and Computer Science, York University, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
19
|
Rattray JB, Thomas SA, Wang Y, Molotkova E, Gurney J, Varga JJ, Brown SP. Bacterial Quorum Sensing Allows Graded and Bimodal Cellular Responses to Variations in Population Density. mBio 2022; 13:e0074522. [PMID: 35583321 PMCID: PMC9239169 DOI: 10.1128/mbio.00745-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 12/20/2022] Open
Abstract
Quorum sensing (QS) is a mechanism of cell-cell communication that connects gene expression to environmental conditions (e.g., cell density) in many bacterial species, mediated by diffusible signal molecules. Current functional studies focus on qualitatively distinct QS ON/OFF states. In the context of density sensing, this view led to the adoption of a "quorum" analogy in which populations sense when they are above a sufficient density (i.e., "quorate") to efficiently turn on cooperative behaviors. This framework overlooks the potential for intermediate, graded responses to shifts in the environment. In this study, we tracked QS-regulated protease (lasB) expression and showed that Pseudomonas aeruginosa can deliver a graded behavioral response to fine-scale variation in population density, on both the population and single-cell scales. On the population scale, we saw a graded response to variation in population density (controlled by culture carrying capacity). On the single-cell scale, we saw significant bimodality at higher densities, with separate OFF and ON subpopulations that responded differentially to changes in density: a static OFF population of cells and increasing intensity of expression among the ON population of cells. Together, these results indicate that QS can tune gene expression to graded environmental change, with no critical cell mass or "quorum" at which behavioral responses are activated on either the individual-cell or population scale. In an infection context, our results indicate there is not a hard threshold separating a quorate "attack" mode from a subquorate "stealth" mode. IMPORTANCE Bacteria can be highly social, controlling collective behaviors via cell-cell communication mechanisms known as quorum sensing (QS). QS is now a large research field, yet a basic question remains unanswered: what is the environmental resolution of QS? The notion of a threshold, or "quorum," separating coordinated ON and OFF states is a central dogma in QS, but recent studies have shown heterogeneous responses at a single cell scale. Using Pseudomonas aeruginosa, we showed that populations generate graded responses to environmental variation through shifts in the proportion of cells responding and the intensity of responses. In an infection context, our results indicate that there is not a hard threshold separating a quorate "attack" mode and a subquorate "stealth" mode.
Collapse
Affiliation(s)
- Jennifer B. Rattray
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Stephen A. Thomas
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Graduate Program in Quantitative Biosciences (QBioS), Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Yifei Wang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- The Institute for Data Engineering and Science (IDEaS), Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Evgeniya Molotkova
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - James Gurney
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - John J. Varga
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Sam P. Brown
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
20
|
Lissens M, Joos M, Lories B, Steenackers HP. Evolution-proof inhibitors of public good cooperation: a screening strategy inspired by social evolution theory. FEMS Microbiol Rev 2022; 46:6604382. [PMID: 35675280 PMCID: PMC9616471 DOI: 10.1093/femsre/fuac019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/22/2022] [Indexed: 01/07/2023] Open
Abstract
Interference with public good cooperation provides a promising novel antimicrobial strategy since social evolution theory predicts that resistant mutants will be counter-selected if they share the public benefits of their resistance with sensitive cells in the population. Although this hypothesis is supported by a limited number of pioneering studies, an extensive body of more fundamental work on social evolution describes a multitude of mechanisms and conditions that can stabilize public behaviour, thus potentially allowing resistant mutants to thrive. In this paper we theorize on how these different mechanisms can influence the evolution of resistance against public good inhibitors. Based hereon, we propose an innovative 5-step screening strategy to identify novel evolution-proof public good inhibitors, which involves a systematic evaluation of the exploitability of public goods under the most relevant experimental conditions, as well as a careful assessment of the most optimal way to interfere with their action. Overall, this opinion paper is aimed to contribute to long-term solutions to fight bacterial infections.
Collapse
Affiliation(s)
- Maries Lissens
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Leuven, B-3001, Belgium
| | - Mathieu Joos
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Leuven, B-3001, Belgium
| | - Bram Lories
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Leuven, B-3001, Belgium
| | - Hans P Steenackers
- Corresponding author: Centre of Microbial and Plant Genetics (CMPG), Kasteelpark Arenberg 20 – Box 2460, B-3001 Leuven, Belgium. E-mail:
| |
Collapse
|
21
|
Liang Y, Ma A, Zhuang G. Construction of Environmental Synthetic Microbial Consortia: Based on Engineering and Ecological Principles. Front Microbiol 2022; 13:829717. [PMID: 35283862 PMCID: PMC8905317 DOI: 10.3389/fmicb.2022.829717] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/31/2022] [Indexed: 01/30/2023] Open
Abstract
In synthetic biology, engineering principles are applied to system design. The development of synthetic microbial consortia represents the intersection of synthetic biology and microbiology. Synthetic community systems are constructed by co-cultivating two or more microorganisms under certain environmental conditions, with broad applications in many fields including ecological restoration and ecological theory. Synthetic microbial consortia tend to have high biological processing efficiencies, because the division of labor reduces the metabolic burden of individual members. In this review, we focus on the environmental applications of synthetic microbial consortia. Although there are many strategies for the construction of synthetic microbial consortia, we mainly introduce the most widely used construction principles based on cross-feeding. Additionally, we propose methods for constructing synthetic microbial consortia based on traits and spatial structure from the perspective of ecology to provide a basis for future work.
Collapse
Affiliation(s)
- Yu Liang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Anzhou Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Guoqiang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Gurney J, Simonet C, Wollein Waldetoft K, Brown SP. Challenges and opportunities for cheat therapy in the control of bacterial infections. Nat Prod Rep 2021; 39:325-334. [PMID: 34913456 DOI: 10.1039/d1np00053e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: 1999 to 2021Bacterial pathogens can be highly social, communicating and cooperating within multi-cellular groups to make us sick. The requirement for collective action in pathogens presents novel therapeutic avenues that seek to undermine cooperative behavior, what we call here 'cheat therapies'. We review two broad avenues of cheat therapy: first, the introduction of genetically engineered 'cheat' strains (bio-control cheats), and second the chemical induction of 'cheat' behavior in the infecting pathogens (chemical-control cheats). Both genetically engineered and chemically induced cheats can socially exploit the cooperative wildtype infection, reducing pathogen burden and the severity of disease. We review the costs and benefits of cheat therapies, highlighting advantages of evolutionary robustness and also the challenges of low to moderate efficacy, compared to conventional antibiotic treatments. We end with a summary of what we see as the most valuable next steps, focusing on adjuvant treatments and use as alternate therapies for mild, self-resolving infections - allowing the reservation of current and highly effective antibiotics for more critical patient needs.
Collapse
Affiliation(s)
- James Gurney
- Center for Microbial Dynamics & Infection, Georgia Institute of Technology, Atlanta, 30332 GA, USA. .,School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332 GA, USA
| | - Camille Simonet
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Kristofer Wollein Waldetoft
- Center for Microbial Dynamics & Infection, Georgia Institute of Technology, Atlanta, 30332 GA, USA. .,School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332 GA, USA.,Torsby Hospital, Torsby, Sweden
| | - Sam P Brown
- Center for Microbial Dynamics & Infection, Georgia Institute of Technology, Atlanta, 30332 GA, USA. .,School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332 GA, USA
| |
Collapse
|
23
|
Lindsay RJ, Jepson A, Butt L, Holder PJ, Smug BJ, Gudelj I. Would that it were so simple: Interactions between multiple traits undermine classical single-trait-based predictions of microbial community function and evolution. Ecol Lett 2021; 24:2775-2795. [PMID: 34453399 DOI: 10.1111/ele.13861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/11/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022]
Abstract
Understanding how microbial traits affect the evolution and functioning of microbial communities is fundamental for improving the management of harmful microorganisms, while promoting those that are beneficial. Decades of evolutionary ecology research has focused on examining microbial cooperation, diversity, productivity and virulence but with one crucial limitation. The traits under consideration, such as public good production and resistance to antibiotics or predation, are often assumed to act in isolation. Yet, in reality, multiple traits frequently interact, which can lead to unexpected and undesired outcomes for the health of macroorganisms and ecosystem functioning. This is because many predictions generated in a single-trait context aimed at promoting diversity, reducing virulence or controlling antibiotic resistance can fail for systems where multiple traits interact. Here, we provide a much needed discussion and synthesis of the most recent research to reveal the widespread and diverse nature of multi-trait interactions and their consequences for predicting and controlling microbial community dynamics. Importantly, we argue that synthetic microbial communities and multi-trait mathematical models are powerful tools for managing the beneficial and detrimental impacts of microbial communities, such that past mistakes, like those made regarding the stewardship of antimicrobials, are not repeated.
Collapse
Affiliation(s)
- Richard J Lindsay
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Alys Jepson
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Lisa Butt
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Philippa J Holder
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Bogna J Smug
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ivana Gudelj
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| |
Collapse
|
24
|
Srivatsav AT, Kapoor S. The Emerging World of Membrane Vesicles: Functional Relevance, Theranostic Avenues and Tools for Investigating Membrane Function. Front Mol Biosci 2021; 8:640355. [PMID: 33968983 PMCID: PMC8101706 DOI: 10.3389/fmolb.2021.640355] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Lipids are essential components of cell membranes and govern various membrane functions. Lipid organization within membrane plane dictates recruitment of specific proteins and lipids into distinct nanoclusters that initiate cellular signaling while modulating protein and lipid functions. In addition, one of the most versatile function of lipids is the formation of diverse lipid membrane vesicles for regulating various cellular processes including intracellular trafficking of molecular cargo. In this review, we focus on the various kinds of membrane vesicles in eukaryotes and bacteria, their biogenesis, and their multifaceted functional roles in cellular communication, host-pathogen interactions and biotechnological applications. We elaborate on how their distinct lipid composition of membrane vesicles compared to parent cells enables early and non-invasive diagnosis of cancer and tuberculosis, while inspiring vaccine development and drug delivery platforms. Finally, we discuss the use of membrane vesicles as excellent tools for investigating membrane lateral organization and protein sorting, which is otherwise challenging but extremely crucial for normal cellular functioning. We present current limitations in this field and how the same could be addressed to propel a fundamental and technology-oriented future for extracellular membrane vesicles.
Collapse
Affiliation(s)
- Aswin T. Srivatsav
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
- Wadhwani Research Center of Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
25
|
Guo Y, Zhao Y, Tang X, Na T, Pan J, Zhao H, Liu S. Deciphering bacterial social traits via diffusible signal factor (DSF) -mediated public goods in an anammox community. WATER RESEARCH 2021; 191:116802. [PMID: 33433336 DOI: 10.1016/j.watres.2020.116802] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/04/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Both the benefits of bacterial quorum sensing (QS) and cross-feeding for bio-reactor performance in wastewater treatment have been recently reported. As the social traits of microbial communities, how bacterial QS regulating bacterial trade-off by cross-feeding remains unclear. Here, we find diffusion signal factor (DSF), a kind of QS molecules, can bridge bacterial interactions through regulating public goods (extracellular polymeric substances (EPS), amino acids) for metabolic cross-feedings. It showed that exogenous DSF-addition leads to change of public goods level and community structure dynamics in the anammox consortia. Approaches involving meta-omics clarified that anammox and a Lautropia-affiliated species in the phylum Proteobacteria can supply costly public goods for DSF-Secretor species via secondary messenger c-di-GMP regulator (Clp) after sensing DSF. Meanwhile, DSF-Secretor species help anammox bacteria scavenge extracellular detritus, which creates a more suitable environment for the anammox species, enhances the anammox activity, and improves the nitrogen removal rate of anammox reactor. The trade-off induces discrepant metabolic loads of different microbial clusters, which were responsible for the community succession. It illustrated the potential to artificially alleviate metabolic loads for certain bacteria. Deciphering microbial interactions via QS not only provides insights for understanding the social behavior of microbial community, but also creates new thought for enhancing treatment performance through regulating bacterial social traits via quorum sensing-mediated public goods.
Collapse
Affiliation(s)
- Yongzhao Guo
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China
| | - Yunpeng Zhao
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China
| | - Xi Tang
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China
| | - Tianxing Na
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Juejun Pan
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China
| | - Huazhang Zhao
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China
| | - Sitong Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education of China, Beijing 100871, China.
| |
Collapse
|
26
|
Simonet C, McNally L. Kin selection explains the evolution of cooperation in the gut microbiota. Proc Natl Acad Sci U S A 2021; 118:e2016046118. [PMID: 33526674 PMCID: PMC8017935 DOI: 10.1073/pnas.2016046118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Through the secretion of "public goods" molecules, microbes cooperatively exploit their habitat. This is known as a major driver of the functioning of microbial communities, including in human disease. Understanding why microbial species cooperate is therefore crucial to achieve successful microbial community management, such as microbiome manipulation. A leading explanation is that of Hamilton's inclusive-fitness framework. A cooperator can indirectly transmit its genes by helping the reproduction of an individual carrying similar genes. Therefore, all else being equal, as relatedness among individuals increases, so should cooperation. However, the predictive power of relatedness, particularly in microbes, is surrounded by controversy. Using phylogenetic comparative analyses across the full diversity of the human gut microbiota and six forms of cooperation, we find that relatedness is predictive of the cooperative gene content evolution in gut-microbe genomes. Hence, relatedness is predictive of cooperation over broad microbial taxonomic levels that encompass variation in other life-history and ecology details. This supports the generality of Hamilton's central insights and the relevance of relatedness as a key parameter of interest to advance microbial predictive and engineering science.
Collapse
Affiliation(s)
- Camille Simonet
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom;
| | - Luke McNally
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| |
Collapse
|
27
|
Rodrigues AMM, Estrela S, Brown SP. Community lifespan, niche expansion and the evolution of interspecific cooperation. J Evol Biol 2020; 34:352-363. [PMID: 33238064 DOI: 10.1111/jeb.13739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/25/2020] [Accepted: 11/06/2020] [Indexed: 11/29/2022]
Abstract
Microbes live in dense and diverse communities where they deploy many traits that promote the growth and survival of neighbouring species, all the while also competing for shared resources. Because microbial communities are highly dynamic, the costs and benefits of species interactions change over the growth cycle of a community. How mutualistic interactions evolve under such demographic and ecological conditions is still poorly understood. Here, we develop an eco-evolutionary model to explore how different forms of helping with distinct fitness effects (rate-enhancing and yield-enhancing) affect the multiple phases of community growth, and its consequences for the evolution of mutualisms. We specifically focus on a form of yield-enhancing trait in which cooperation augments the common pool of resources, termed niche expansion. We show that although mutualisms in which cooperation increases partners growth rate are generally favoured at early stages of community growth, niche expansion can evolve at later stages where densities are high. Further, we find that niche expansion can promote the evolution of reproductive restraint, in which a focal species adaptively reduces its own growth rate to increase the density of partner species. Our findings suggest that yield-enhancing mutualisms are more prevalent in stable habitats with a constant supply of resources, and where populations typically live at high densities. In general, our findings highlight the need to integrate different components of population growth in the analysis of mutualisms to understand the composition and function of microbial communities.
Collapse
Affiliation(s)
| | - Sylvie Estrela
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Sam P Brown
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.,Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
28
|
Shibasaki S, Mitri S. Controlling evolutionary dynamics to optimize microbial bioremediation. Evol Appl 2020; 13:2460-2471. [PMID: 33005234 PMCID: PMC7513707 DOI: 10.1111/eva.13050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 06/03/2020] [Accepted: 06/22/2020] [Indexed: 12/24/2022] Open
Abstract
Some microbes have a fascinating ability to degrade compounds that are toxic for humans in a process called bioremediation. Although these traits help microbes survive the toxins, carrying them can be costly if the benefit of detoxification is shared by all surrounding microbes, whether they detoxify or not. Detoxification can thereby be seen as a public goods game, where nondegrading mutants can sweep through the population and collapse bioremediation. Here, we constructed an evolutionary game theoretical model to optimize bioremediation in a chemostat initially containing "cooperating" (detoxifying) microbes. We consider two types of mutants: "cheaters" that do not detoxify, and mutants that become resistant to the toxin through private mechanisms that do not benefit others. By manipulating the concentration and flow rate of a toxin into the chemostat, we identified conditions where cooperators can exclude cheaters that differ in their private resistance. However, eventually, cheaters are bound to invade. To overcome this inevitable outcome and maximize detoxification efficiency, cooperators can be periodically reinoculated into the population. Our study investigates the outcome of an evolutionary game combining both public and private goods and demonstrates how environmental parameters can be used to control evolutionary dynamics in practical applications.
Collapse
Affiliation(s)
- Shota Shibasaki
- Department of Fundamental MicrobiologyUniversity of LausanneLausanneSwitzerland
| | - Sara Mitri
- Department of Fundamental MicrobiologyUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
29
|
Kramer J, López Carrasco MÁ, Kümmerli R. Positive linkage between bacterial social traits reveals that homogeneous rather than specialised behavioral repertoires prevail in natural Pseudomonas communities. FEMS Microbiol Ecol 2020; 96:5643885. [PMID: 31769782 DOI: 10.1093/femsec/fiz185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/22/2019] [Indexed: 12/27/2022] Open
Abstract
Bacteria frequently cooperate by sharing secreted metabolites such as enzymes and siderophores. The expression of such 'public good' traits can be interdependent, and studies on laboratory systems have shown that trait linkage affects eco-evolutionary dynamics within bacterial communities. Here, we examine whether linkage among social traits occurs in natural habitats by examining investment levels and correlations between five public goods (biosurfactants, biofilm components, proteases, pyoverdines and toxic compounds) in 315 Pseudomonas isolates from soil and freshwater communities. Our phenotypic assays revealed that (i) social trait expression profiles varied dramatically; (ii) correlations between traits were frequent, exclusively positive and sometimes habitat-specific; and (iii) heterogeneous (specialised) trait repertoires were rarer than homogeneous (unspecialised) repertoires. Our results show that most isolates lie on a continuum between a 'social' type producing multiple public goods, and an 'asocial' type showing low investment into social traits. This segregation could reflect local adaptation to different microhabitats, or emerge from interactions between different social strategies. In the latter case, our findings suggest that the scope for competition among unspecialised isolates exceeds the scope for mutualistic exchange of different public goods between specialised isolates. Overall, our results indicate that complex interdependencies among social traits shape microbial lifestyles in nature.
Collapse
Affiliation(s)
- Jos Kramer
- Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.,Department of Quantitative Biomedicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Miguel Ángel López Carrasco
- Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.,Departamento de Biología Celular, Genética y Fisiología, University of Málaga, Bulevar Louis Pasteur 31, 29010 Málaga, Spain
| | - Rolf Kümmerli
- Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.,Department of Quantitative Biomedicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
30
|
Gurney J, Azimi S, Brown SP, Diggle SP. Combinatorial quorum sensing in Pseudomonas aeruginosa allows for novel cheating strategies. MICROBIOLOGY-SGM 2020; 166:777-784. [PMID: 32511085 DOI: 10.1099/mic.0.000941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the opportunistic pathogen Pseudomonas aeruginosa, quorum sensing (QS) is a social trait that is exploitable by non-cooperating cheats. Previously it has been shown that by linking QS to the production of both public and private goods, cheats can be prevented from invading populations of cooperators and this was described by Dandekar et al. (Science 2012;338:264-266) as 'a metabolic incentive to cooperate'. We hypothesized that P. aeruginosa could evolve novel cheating strategies to circumvent private goods metabolism by rewiring its combinatorial response to two QS signals (3O-C12-HSL and C4-HSL). We performed a selection experiment that cycled P. aeruginosa between public and private goods growth media and evolved an isolate that rewired its control of cooperative protease expression from a synergistic (AND-gate) response to dual-signal input to a 3O-C12-HSL-only response. We show that this isolate circumvents metabolic incentives to cooperate and acts as a combinatorial signalling cheat, with higher fitness in competition with its ancestor. Our results show three important principles: first, combinatorial QS allows for diverse social strategies to emerge; second, restrictions levied by private goods are not sufficient to explain the maintenance of cooperation in natural populations; and third, modifying combinatorial QS responses could result in important physiological outcomes in bacterial populations.
Collapse
Affiliation(s)
- James Gurney
- School of Biological Sciences, Georgia Institute of Technology, Atlanta,, USA.,Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, USA
| | - Sheyda Azimi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta,, USA.,Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, USA
| | - Sam P Brown
- School of Biological Sciences, Georgia Institute of Technology, Atlanta,, USA.,Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, USA
| | - Stephen P Diggle
- School of Biological Sciences, Georgia Institute of Technology, Atlanta,, USA.,Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, USA
| |
Collapse
|
31
|
Optimal Response to Quorum-Sensing Signals Varies in Different Host Environments with Different Pathogen Group Size. mBio 2020; 11:mBio.00535-20. [PMID: 32487754 PMCID: PMC7267880 DOI: 10.1128/mbio.00535-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Quorum sensing describes the ability of microbes to alter gene regulation according to their local population size. Some successful theory suggests that this is a form of cooperation, namely, investment in shared products is only worthwhile if there are sufficient bacteria making the same product. This theory can explain the genetic diversity in these signaling systems in Gram-positive bacteria, such as Bacillus and Staphylococcus sp. The possible advantages gained by rare genotypes (which can exploit the products of their more common neighbors) could explain why different genotypes can coexist. We show that while these social interactions can occur in simple laboratory experiments, they do not occur in naturalistic infections using an invertebrate pathogen, Bacillus thuringiensis. Instead, our results suggest that different genotypes are adapted to differently sized hosts. Overall, social models are not easily applied to this system, implying that a different explanation for this form of quorum sensing is required. The persistence of genetic variation in master regulators of gene expression, such as quorum-sensing systems, is hard to explain. Here, we investigated two alternative hypotheses for the prevalence of polymorphic quorum sensing in Gram-positive bacteria, i.e., the use of different signal/receptor pairs (‘pherotypes’) to regulate the same functions. First, social interactions between pherotypes or ‘facultative cheating’ may favor rare variants that exploit the signals of others. Second, different pherotypes may increase fitness in different environments. We evaluated these hypotheses in the invertebrate pathogen Bacillus thuringiensis, using three pherotypes expressed in a common genetic background. Facultative cheating could occur in well-mixed host homogenates provided there was minimal cross talk between competing pherotypes. However, facultative cheating did not occur when spatial structure was increased in static cultures or in naturalistic oral infections, where common pherotypes had higher fitness. There was clear support for environment-dependent fitness; pherotypes varied in responsiveness to signals and in mean competitive fitness. Notably, competitive fitness varied with group size. In contrast to typical social evolution models of quorum sensing which predict higher response to signal at larger group size, the pherotype with highest responsiveness to signals performed best in smaller hosts where infections have a lower pathogen group size. In this system, low signal abundance appears to limit fitness in hosts, while the optimal level of response to signals varies in different host environments.
Collapse
|
32
|
Wang Y, Rattray JB, Thomas SA, Gurney J, Brown SP. In silico bacteria evolve robust cooperaion via complex quorum-sensing strategies. Sci Rep 2020; 10:8628. [PMID: 32451396 PMCID: PMC7248119 DOI: 10.1038/s41598-020-65076-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 04/28/2020] [Indexed: 12/22/2022] Open
Abstract
Many species of bacteria collectively sense and respond to their social and physical environment via 'quorum sensing' (QS), a communication system controlling extracellular cooperative traits. Despite detailed understanding of the mechanisms of signal production and response, there remains considerable debate over the functional role(s) of QS: in short, what is it for? Experimental studies have found support for diverse functional roles: density sensing, mass-transfer sensing, genotype sensing, etc. While consistent with theory, these results cannot separate whether these functions were drivers of QS adaption, or simply artifacts or 'spandrels' of systems shaped by distinct ecological pressures. The challenge of separating spandrels from drivers of adaptation is particularly hard to address using extant bacterial species with poorly understood current ecologies (let alone their ecological histories). To understand the relationship between defined ecological challenges and trajectories of QS evolution, we used an agent-based simulation modeling approach. Given genetic mixing, our simulations produce behaviors that recapitulate features of diverse microbial QS systems, including coercive (high signal/low response) and generalized reciprocity (signal auto-regulation) strategists - that separately and in combination contribute to QS-dependent resilience of QS-controlled cooperation in the face of diverse cheats. We contrast our in silico results given defined ecological challenges with bacterial QS architectures that have evolved under largely unknown ecological contexts, highlighting the critical role of genetic constraints in shaping the shorter term (experimental evolution) dynamics of QS. More broadly, we see experimental evolution of digital organisms as a complementary tool in the search to understand the emergence of complex QS architectures and functions.
Collapse
Affiliation(s)
- Yifei Wang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332 GA, USA.
- The Institute for Data Engineering and Science (IDEaS), Georgia Institute of Technology, Atlanta, 30332 GA, USA.
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, 30332 GA, USA.
| | - Jennifer B Rattray
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332 GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, 30332 GA, USA
| | - Stephen A Thomas
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332 GA, USA
- Graduate Program in Quantitative Biosciences (QBioS), Georgia Institute of Technology, Atlanta, 30332 GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, 30332 GA, USA
| | - James Gurney
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332 GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, 30332 GA, USA
| | - Sam P Brown
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332 GA, USA.
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, 30332 GA, USA.
| |
Collapse
|
33
|
Abstract
In various types of structured communities newcomers choose their interaction partners by selecting a role-model and copying their social networks. Participants in these networks may be cooperators who contribute to the prosperity of the community, or cheaters who do not and simply exploit the cooperators. For newcomers it is beneficial to interact with cooperators but detrimental to interact with cheaters. However, cheaters and cooperators usually cannot be identified unambiguously and newcomers’ decisions are often based on a combination of private and public information. We use evolutionary game theory and dynamical networks to demonstrate how the specificity and sensitivity of those decisions can dramatically affect the resilience of cooperation in the community. We show that promiscuous decisions (high sensitivity, low specificity) are advantageous for cooperation when the strength of competition is weak; however, if competition is strong then the best decisions for cooperation are risk-adverse (low sensitivity, high specificity). Opportune decisions based on private and public information can still support cooperation but suffer of the presence of information cascades that damage cooperation, especially in the case of strong competition. Our research sheds light on the way the interplay of specificity and sensitivity in individual decision-making affects the resilience of cooperation in dynamical structured communities.
Collapse
|
34
|
Kassinger SJ, van Hoek ML. Biofilm architecture: An emerging synthetic biology target. Synth Syst Biotechnol 2020; 5:1-10. [PMID: 31956705 PMCID: PMC6961760 DOI: 10.1016/j.synbio.2020.01.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/29/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023] Open
Abstract
Synthetic biologists are exploiting biofilms as an effective mechanism for producing various outputs. Metabolic optimization has become commonplace as a method of maximizing system output. In addition to production pathways, the biofilm itself contributes to the efficacy of production. The purpose of this review is to highlight opportunities that might be leveraged to further enhance production in preexisting biofilm production systems. These opportunities may be used with previously established production systems as a method of improving system efficiency further. This may be accomplished through the reduction in the cost of establishing and maintaining biofilms, and maintenance of the enhancement of product yield per unit of time, per unit of area, or per unit of required input.
Collapse
Affiliation(s)
| | - Monique L. van Hoek
- George Mason University, School of Systems Biology, George Mason University, 10920 George Mason Circle, Manassas, VA, 20110, USA
| |
Collapse
|
35
|
Uppal G, Vural DC. Evolution of specialized microbial cooperation in dynamic fluids. J Evol Biol 2020; 33:256-269. [DOI: 10.1111/jeb.13593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/28/2022]
|
36
|
Garcia-Garcera M, Rocha EPC. Community diversity and habitat structure shape the repertoire of extracellular proteins in bacteria. Nat Commun 2020; 11:758. [PMID: 32029728 PMCID: PMC7005277 DOI: 10.1038/s41467-020-14572-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 01/17/2020] [Indexed: 11/21/2022] Open
Abstract
We test the hypothesis that the frequency and cost of extracellular proteins produced by bacteria, which often depend on cooperative processes, vary with habitat structure and community diversity. The integration of the environmental distribution of bacteria (using 16S datasets) and their genomes shows that bacteria living in more structured habitats encode more extracellular proteins. In contrast, the effect of community diversity depends on protein function: it’s positive for proteins implicated in antagonistic interactions and negative for those involved in nutrient acquisition. Extracellular proteins are costly and endure stronger selective pressure for low cost and for low diffusivity in less structured habitats and in more diverse communities. Finally, Bacteria found in multiple types of habitats, including host-associated generalists, encode more extracellular proteins than niche-restricted bacteria. These results show that ecological variables, notably habitat structure and community diversity, shape the evolution of the repertoires of genes encoding extracellular proteins and thus affect the ability of bacteria to manipulate their environment. Microbes secrete a repertoire of extracellular proteins to serve various functions depending on the ecological context. Here the authors examine how bacterial community composition and habitat structure affect the extracellular proteins, showing that generalist species and those living in more structured environments produce more extracellular proteins, and that costs of production are lower in more diverse communities.
Collapse
Affiliation(s)
- Marc Garcia-Garcera
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, 28, rue Dr Roux, 75015, Paris, France. .,Department of Fundamental Microbiology, University of Lausanne, Batiment Biophore, Quartier SORGE, 1003, Lausanne, Switzerland.
| | - Eduardo P C Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, 28, rue Dr Roux, 75015, Paris, France.
| |
Collapse
|
37
|
Abstract
To avoid an antibiotic resistance crisis, we need to develop antibiotics at a pace that matches the rate of evolution of resistance. However, the complex functions performed by antibiotics-combining, e.g., penetration of membranes, counteraction of resistance mechanisms, and interaction with molecular targets-have proven hard to achieve with current methods for drug development, including target-based screening and rational design. Here, we argue that we can meet the evolution of resistance in the clinic with evolution of antibiotics in the laboratory. On the basis of the results of experimental evolution studies of microbes in general and antibiotic production in Actinobacteria in particular, we propose methodology for evolving antibiotics to circumvent mechanisms of resistance. This exploits the ability of evolution to find solutions to complex problems without a need for design. We review evolutionary theory critical to this approach and argue that it is feasible and has important advantages over current methods for antibiotic discovery.
Collapse
|
38
|
|
39
|
Smith NW, Shorten PR, Altermann E, Roy NC, McNabb WC. The Classification and Evolution of Bacterial Cross-Feeding. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00153] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
40
|
Wechsler T, Kümmerli R, Dobay A. Understanding policing as a mechanism of cheater control in cooperating bacteria. J Evol Biol 2019; 32:412-424. [PMID: 30724418 PMCID: PMC6520251 DOI: 10.1111/jeb.13423] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/17/2022]
Abstract
Policing occurs in insect, animal and human societies, where it evolved as a mechanism maintaining cooperation. Recently, it has been suggested that policing might even be relevant in enforcing cooperation in much simpler organisms such as bacteria. Here, we used individual-based modelling to develop an evolutionary concept for policing in bacteria and identify the conditions under which it can be adaptive. We modelled interactions between cooperators, producing a beneficial public good, cheaters, exploiting the public good without contributing to it, and public good-producing policers that secrete a toxin to selectively target cheaters. We found that toxin-mediated policing is favoured when (a) toxins are potent and durable, (b) toxins are cheap to produce, (c) cell and public good diffusion is intermediate, and (d) toxins diffuse farther than the public good. Although our simulations identify the parameter space where toxin-mediated policing can evolve, we further found that policing decays when the genetic linkage between public good and toxin production breaks. This is because policing is itself a public good, offering protection to toxin-resistant mutants that still produce public goods, yet no longer invest in toxins. Our work thus highlights that not only specific environmental conditions are required for toxin-mediated policing to evolve, but also strong genetic linkage between the expression of public goods, toxins and toxin resistance is essential for this mechanism to remain evolutionarily stable in the long run.
Collapse
Affiliation(s)
- Tobias Wechsler
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Rolf Kümmerli
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Akos Dobay
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
41
|
Bettenworth V, Steinfeld B, Duin H, Petersen K, Streit WR, Bischofs I, Becker A. Phenotypic Heterogeneity in Bacterial Quorum Sensing Systems. J Mol Biol 2019; 431:4530-4546. [PMID: 31051177 DOI: 10.1016/j.jmb.2019.04.036] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/11/2022]
Abstract
Quorum sensing is usually thought of as a collective behavior in which all members of a population partake. However, over the last decade, several reports of phenotypic heterogeneity in quorum sensing-related gene expression have been put forward, thus challenging this view. In the respective systems, cells of isogenic populations did not contribute equally to autoinducer production or target gene activation, and in some cases, the fraction of contributing cells was modulated by environmental factors. Here, we look into potential origins of these incidences and into how initial cell-to-cell variations might be amplified to establish distinct phenotypic heterogeneity. We furthermore discuss potential functions heterogeneity in bacterial quorum sensing systems could serve: as a preparation for environmental fluctuations (bet hedging), as a more cost-effective way of producing public goods (division of labor), as a loophole for genotypic cooperators when faced with non-contributing mutants (cheat protection), or simply as a means to fine-tune the output of the population as a whole (output modulation). We illustrate certain aspects of these recent developments with the model organisms Sinorhizobium meliloti, Sinorhizobium fredii and Bacillus subtilis, which possess quorum sensing systems of different complexity, but all show phenotypic heterogeneity therein.
Collapse
Affiliation(s)
- Vera Bettenworth
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, 35043 Marburg, Germany; Faculty of Biology, Philipps-Universität Marburg, 35043 Marburg, Germany.
| | - Benedikt Steinfeld
- BioQuant Center of the University of Heidelberg, 69120 Heidelberg, Germany; Center for Molecular Biology (ZMBH), University of Heidelberg, 69120 Heidelberg, Germany; Max-Planck-Institute for Terrestrial Microbiology, 35043 Marburg, Germany.
| | - Hilke Duin
- Department of Microbiology and Biotechnology, University of Hamburg, 22609 Hamburg, Germany.
| | - Katrin Petersen
- Department of Microbiology and Biotechnology, University of Hamburg, 22609 Hamburg, Germany.
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, University of Hamburg, 22609 Hamburg, Germany.
| | - Ilka Bischofs
- BioQuant Center of the University of Heidelberg, 69120 Heidelberg, Germany; Center for Molecular Biology (ZMBH), University of Heidelberg, 69120 Heidelberg, Germany; Max-Planck-Institute for Terrestrial Microbiology, 35043 Marburg, Germany.
| | - Anke Becker
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, 35043 Marburg, Germany; Faculty of Biology, Philipps-Universität Marburg, 35043 Marburg, Germany.
| |
Collapse
|
42
|
Martinez MN, Watts JL, Gilbert JM. Questions associated with the development of novel drugs intended for the treatment of bacterial infections in veterinary species. Vet J 2019; 248:79-85. [PMID: 31113568 DOI: 10.1016/j.tvjl.2019.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 11/17/2022]
Abstract
The emergence of multi-drug resistant bacteria has limited therapeutic options for the treatment of bacterial diseases in both human and veterinary medicine. This has resulted in an urgent need for novel agents to treat infectious diseases. Veterinary medicine is further constrained by the need to ensure that our emerging therapeutics have minimal or no impact on resistance in human pathogens. Thus, there has recently been increased attention given to the development of alternative treatments for infectious disease in animals. The domain of alternative therapies, which includes antimicrobial peptides, bacteriophages, probiotics, and immunomodulators, provides a means to directly inhibit the ability of a pathogen to damage the host while optimally, not imposing a selective pressure favouring antibiotic resistance. However, it is recognized that bacterial pathogens have the capability of expressing a variety of virulence factors, necessitating a clear understanding of the specific target for that therapeutic intervention. This manuscript explores the various virulence mechanisms, the potential utility of developing novel anti-virulence agents for counteracting the expression of diseases associated with veterinary species, and some of the unique regulatory hurdles to be addressed within the framework of a new animal drug application. We conclude with the public health concerns to be considered as these agents are integrated into the veterinary therapeutic arsenal. Our hope is that this manuscript will provide a platform to stimulate discussions on the critical questions that need to be addressed.
Collapse
Affiliation(s)
- Marilyn N Martinez
- US FDA Center for Veterinary Medicine, Rockville, MD 20855, United States.
| | - Jeffrey L Watts
- Zoetis, Inc., 333 Portage Street, Kalamazoo, MI 49007, United States
| | - Jeffrey M Gilbert
- US FDA Center for Veterinary Medicine, Rockville, MD 20855, United States
| |
Collapse
|
43
|
Clonality and non-linearity drive facultative-cooperation allele diversity. ISME JOURNAL 2018; 13:824-835. [PMID: 30464316 PMCID: PMC6461992 DOI: 10.1038/s41396-018-0310-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/05/2018] [Accepted: 10/04/2018] [Indexed: 11/25/2022]
Abstract
Kin discrimination describes the differential interaction of organisms with kin versus non-kin. In microorganisms, many genetic loci act as effective kin-discrimination systems, such as kin-directed help and non-kin-directed harm. Another important example is facultative cooperation, where cooperators increase their investment in group-directed cooperation with the abundance of their kin in the group. Many of these kin-discrimination loci are highly diversified, yet it remains unclear what evolutionary mechanisms maintain this diversity, and how it is affected by population structure. Here, we demonstrate the unique dependence of kin-discriminative interactions on population structure, and how this could explain facultative-cooperation allele-diversity. We show mathematically that low relatedness between microbes in non-clonal social groups is needed to maintain the diversity of facultative-cooperation alleles, while high clonality is needed to stabilize this diversity against cheating. Interestingly, we demonstrate with simulations that such population structure occurs naturally in expanding microbial colonies. Finally, analysis of experimental data of quorum-sensing mediated facultative cooperation, in Bacillus subtilis, demonstrates the relevance of our results to realistic microbial interactions, due to their intrinsic non-linear frequency dependence. Our analysis therefore stresses the impact of clonality on the interplay between exploitation and kin discrimination and portrays a way for the evolution of facultative cooperation.
Collapse
|
44
|
dos Santos M, Ghoul M, West SA. Pleiotropy, cooperation, and the social evolution of genetic architecture. PLoS Biol 2018; 16:e2006671. [PMID: 30359363 PMCID: PMC6219813 DOI: 10.1371/journal.pbio.2006671] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 11/06/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023] Open
Abstract
Pleiotropy has been suggested as a novel mechanism for stabilising cooperation in bacteria and other microbes. The hypothesis is that linking cooperation with a trait that provides a personal (private) benefit can outweigh the cost of cooperation in situations when cooperation would not be favoured by mechanisms such as kin selection. We analysed the theoretical plausibility of this hypothesis, with analytical models and individual-based simulations. We found that (1) pleiotropy does not stabilise cooperation, unless the cooperative and private traits are linked via a genetic architecture that cannot evolve (mutational constraint); (2) if the genetic architecture is constrained in this way, then pleiotropy favours any type of trait and not especially cooperation; (3) if the genetic architecture can evolve, then pleiotropy does not favour cooperation; and (4) there are several alternative explanations for why traits may be linked, and causality can even be predicted in the opposite direction, with cooperation favouring pleiotropy. Our results suggest that pleiotropy could only explain cooperation under restrictive conditions and instead show how social evolution can shape the genetic architecture.
Collapse
Affiliation(s)
| | - Melanie Ghoul
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Stuart A. West
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
45
|
Brown SP, Blackwell HE, Hammer BK. The State of the Union Is Strong: a Review of ASM's 6th Conference on Cell-Cell Communication in Bacteria. J Bacteriol 2018; 200:e00291-18. [PMID: 29760210 PMCID: PMC6018360 DOI: 10.1128/jb.00291-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 6th American Society for Microbiology Conference on Cell-Cell Communication in Bacteria convened from 16 to 19 October 2017 in Athens, GA. In this minireview, we highlight some of the research presented at that meeting that addresses central questions emerging in the field, including the following questions. How are cell-cell communication circuits designed to generate responses? Where are bacteria communicating? Finally, why are bacteria engaging in such behaviors?
Collapse
Affiliation(s)
- Sam P Brown
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Helen E Blackwell
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Brian K Hammer
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
46
|
Uppal G, Vural DC. Shearing in flow environment promotes evolution of social behavior in microbial populations. eLife 2018; 7:34862. [PMID: 29785930 PMCID: PMC6002248 DOI: 10.7554/elife.34862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/10/2018] [Indexed: 11/23/2022] Open
Abstract
How producers of public goods persist in microbial communities is a major question in evolutionary biology. Cooperation is evolutionarily unstable, since cheating strains can reproduce quicker and take over. Spatial structure has been shown to be a robust mechanism for the evolution of cooperation. Here we study how spatial assortment might emerge from native dynamics and show that fluid flow shear promotes cooperative behavior. Social structures arise naturally from our advection-diffusion-reaction model as self-reproducing Turing patterns. We computationally study the effects of fluid advection on these patterns as a mechanism to enable or enhance social behavior. Our central finding is that flow shear enables and promotes social behavior in microbes by increasing the group fragmentation rate and thereby limiting the spread of cheating strains. Regions of the flow domain with higher shear admit high cooperativity and large population density, whereas low shear regions are devoid of life due to opportunistic mutations. According to the principle of the ‘survival of the fittest’, selfish individuals should be better off compared to peers that cooperate with each other. Indeed, even though a population of organisms benefits from working together, selfish members can exploit the cooperative behavior of others without doing their part. These ‘cheaters’ then use their advantage to reproduce faster and take over the population. Yet, social cooperation is widespread in the natural world, and occurs in creatures as diverse as bacteria and whales. How can it arise and persist then? One idea is that when individuals form distinct groups, the ones with cheaters will perish. Even though a selfish individual will fare better than the rest of its team, overall, cooperating groups will survive more and reproduce faster; ultimately, they will be favored by evolution. This is called group selection. Here, Uppal and Vural examine how the physical properties of the environment can influence the evolution of social interactions between bacteria. To this end, mathematical models are used to simulate how bacteria grow, evolve and drift in a flowing fluid. These are based on equations worked out from the behavior of real-life populations. The results show that flow patterns in a fluid habitat govern the social behavior of bacteria. When different regions of the fluid are moving at different speeds, ‘shear forces’ are created that cause bacterial colonies to distort and occasionally break apart to form two groups. As such, cooperative groups will rapidly form new cooperating colonies, whereas groups with cheaters will reproduce slower or perish. Furthermore, results show that when different areas of the fluid have different shear forces, social cooperation will only prevail in certain places. This makes it possible to use flow patterns to fine tune social evolution so that cooperating bacteria will be confined in a certain region. Outside of this area, these bacteria would be taken over by cheaters and go extinct. Bacteria are both useful and dangerous to humans: for example, certain species can break down pollutants in the water, when others cause deadly infections. These results show it could be possible to control the activity of these microorganisms to our advantage by changing the flow of the fluids in which they live. More broadly, the simulations developed by Uppal and Vural can be applied to a variety of ecosystems where microscopic organisms inhabit fluids, such as plankton flowing in oceanic currents.
Collapse
Affiliation(s)
- Gurdip Uppal
- Department of Physics, University of Notre Dame, Notre Dame, United States
| | - Dervis Can Vural
- Department of Physics, University of Notre Dame, Notre Dame, United States
| |
Collapse
|
47
|
Conditional privatization of a public siderophore enables Pseudomonas aeruginosa to resist cheater invasion. Nat Commun 2018; 9:1383. [PMID: 29643375 PMCID: PMC5895777 DOI: 10.1038/s41467-018-03791-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 03/13/2018] [Indexed: 01/06/2023] Open
Abstract
Understanding the mechanisms that promote cooperative behaviors of bacteria in their hosts is of great significance to clinical therapies. Environmental stress is generally believed to increase competition and reduce cooperation in bacteria. Here, we show that bacterial cooperation can in fact be maintained because of environmental stress. We show that Pseudomonas aeruginosa regulates the secretion of iron-scavenging siderophores in the presence of different environmental stresses, reserving this public good for private use in protection against reactive oxygen species when under stress. We term this strategy "conditional privatization". Using a combination of experimental evolution and theoretical modeling, we demonstrate that in the presence of environmental stress the conditional privatization strategy is resistant to invasion by non-producing cheaters. These findings show how the regulation of public goods secretion under stress affects the evolutionary stability of cooperation in a pathogenic population, which may assist in the rational development of novel therapies.
Collapse
|
48
|
Yan H, Wang M, Sun F, Dandekar AA, Shen D, Li N. A Metabolic Trade-Off Modulates Policing of Social Cheaters in Populations of Pseudomonas aeruginosa. Front Microbiol 2018. [PMID: 29535700 PMCID: PMC5835063 DOI: 10.3389/fmicb.2018.00337] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa uses quorum sensing (QS) to regulate the production of public goods such as the secreted protease elastase. P. aeruginosa requires the LasI-LasR QS circuit to induce elastase and enable growth on casein as the sole carbon and energy source. The LasI-LasR system also induces a second QS circuit, the RhlI-RhlR system. During growth on casein, LasR-mutant social cheaters emerge, and this can lead to a population collapse. In a minimal medium containing ammonium sulfate as a nitrogen source, populations do not collapse, and cheaters and cooperators reach a stable equilibrium; however, without ammonium sulfate, cheaters overtake the cooperators and populations collapse. We show that ammonium sulfate enhances the activity of the RhlI-RhlR system in casein medium and this leads to increased production of cyanide, which serves to control levels of cheaters. This enhancement of cyanide production occurs because of a trade-off in the metabolism of glycine: exogenous ammonium ion inhibits the transformation of glycine to 5,10-methylenetetrahydrofolate through a reduction in the expression of the glycine cleavage genes gcvP1 and gcvP2, thereby increasing the availability of glycine as a substrate for RhlR-regulated hydrogen cyanide synthesis. Thus, environmental ammonia enhances cyanide production and stabilizes QS in populations of P. aeruginosa.
Collapse
Affiliation(s)
- Huicong Yan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China
| | - Meizhen Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, China
| | - Feng Sun
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China
| | - Ajai A Dandekar
- Department of Microbiology, University of Washington, Seattle, WA, United States.,Department of Medicine, University of Washington, Seattle, WA, United States
| | - Dongsheng Shen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, China
| | - Na Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, China
| |
Collapse
|
49
|
O'Brien S, Luján AM, Paterson S, Cant MA, Buckling A. Adaptation to public goods cheats in Pseudomonas aeruginosa. Proc Biol Sci 2018; 284:rspb.2017.1089. [PMID: 28747481 PMCID: PMC5543229 DOI: 10.1098/rspb.2017.1089] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/23/2017] [Indexed: 01/25/2023] Open
Abstract
Cooperation in nature is ubiquitous, but is susceptible to social cheats who pay little or no cost of cooperation yet reap the benefits. The effect such cheats have on reducing population productivity suggests that there is selection for cooperators to mitigate the adverse effects of cheats. While mechanisms have been elucidated for scenarios involving a direct association between producer and cooperative product, it is less clear how cooperators may suppress cheating in an anonymous public goods scenario, where cheats cannot be directly identified. Here, we investigate the real-time evolutionary response of cooperators to cheats when cooperation is mediated by a diffusible public good: the production of iron-scavenging siderophores by Pseudomonas aeruginosa. We find that siderophore producers evolved in the presence of a high frequency of non-producing cheats were fitter in the presence of cheats, at no obvious cost to population productivity. A novel morphotype independently evolved and reached higher frequencies in cheat-adapted versus control populations, exhibiting reduced siderophore production but increased production of pyocyanin—an extracellular toxin that can also increase the availability of soluble iron. This suggests that cooperators may have mitigated the negative effects of cheats by downregulating siderophore production and upregulating an alternative iron-acquisition public good. More generally, the study emphasizes that cooperating organisms can rapidly adapt to the presence of anonymous cheats without necessarily incurring fitness costs in the environment they evolve in.
Collapse
Affiliation(s)
- Siobhán O'Brien
- Center for Adaptation to a Changing Environment (ACE), ETH Zürich, 8092 Zürich, Switzerland
| | - Adela M Luján
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET and Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Steve Paterson
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Michael A Cant
- College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
| | - Angus Buckling
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
| |
Collapse
|
50
|
Lang AS, Westbye AB, Beatty JT. The Distribution, Evolution, and Roles of Gene Transfer Agents in Prokaryotic Genetic Exchange. Annu Rev Virol 2017; 4:87-104. [DOI: 10.1146/annurev-virology-101416-041624] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andrew S. Lang
- Department of Biology, Memorial University of Newfoundland, St. John's, A1B 3X9, Canada
| | - Alexander B. Westbye
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - J. Thomas Beatty
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, V6T 1Z3, Canada
| |
Collapse
|