1
|
Zhang Y, Hogan JA, Ye Y, Liu X, Song M, Chen J, Sun H. Decoupled responses of soil microbial diversity and ecosystem functions to successive degeneration processes in alpine pioneer community. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2692-5. [PMID: 39862343 DOI: 10.1007/s11427-024-2692-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/24/2024] [Indexed: 01/27/2025]
Abstract
Many alpine ecosystems are undergoing vegetation degradation because of global changes, which are affecting ecosystem functioning and biodiversity. The ecological consequences of alpine pioneer community degradation have been less studied than glacial retreat or meadow degradation in alpine ecosystems. We document the comprehensive responses of microbial community characteristics to degradation processes using field-based sampling, conduct soil microcosm experiments to simulate the effects of global change on microorganisms, and explore their relationships to ecosystem functioning across stages of alpine pioneer community degradation. Our work provides the first evidence that alpine pioneer community degradation led to declines of 27% in fungal richness, 8% in bacterial richness, and about 50% in endemic microorganisms. As vegetation degraded, key ecosystem functions such as nutrient availability, soil enzymatic activity, microbial biomass, and ecosystem multifunctionality progressively increased. However, soil respiration rate and carbon storage exhibited unbalanced dynamics. Respiration rate increased by 190% during the middle stage of degradation compared with the primary stage, and it decreased by 38% in the later stage. This indicates that soil carbon loss or emission increases during the mid-successional stage, whereas in later successional stages, alpine meadows become significant carbon sinks. Compared with microbial community characteristics (such as richness of total and functional taxa, and network complexity), community resistance contributes more significantly to ecosystem functions. Especially, the bacterial community resistance is crucial for ecosystem functioning, yet it is greatly impaired by nitrogen addition. Based on microbial network, community assembly, and community resistance analyses, we conclude that fungi are more vulnerable to environmental changes and show smaller contributions to ecosystem functions than bacteria in degrading alpine ecosystems. Our findings enhance the knowledge of the distinct and synergistic functional contributions of microbial communities in degrading alpine ecosystems and offer guidance for developing restoration strategies that optimize ecosystem functioning of degraded alpine plant communities.
Collapse
Affiliation(s)
- Yazhou Zhang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - J Aaron Hogan
- USDA Forest Service, International Institute of Tropical Forestry, San Juan, Puerto Rico, 00926-1119, USA
| | - Yaojun Ye
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Xin Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China
| | - Minshu Song
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jianguo Chen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Hang Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
2
|
Rijk I, Ekblad A, Dahlin AS, Enell A, Larsson M, Leroy P, Kleja DB, Tiberg C, Hallin S, Jones C. Biochar and peat amendments affect nitrogen retention, microbial capacity and nitrogen cycling microbial communities in a metal and polycyclic aromatic hydrocarbon contaminated urban soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 936:173454. [PMID: 38795987 DOI: 10.1016/j.scitotenv.2024.173454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/18/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Soil contaminants may restrict soil functions. A promising soil remediation method is amendment with biochar, which has the potential to both adsorb contaminants and improve soil health. However, effects of biochar amendment on soil-plant nitrogen (N) dynamics and N cycling microbial guilds in contaminated soils are still poorly understood. Here, a metal- and polycyclic aromatic hydrocarbon (PAH) contaminated soil was amended with either biochar (0, 3, 6 % w/w) and/or peat (0, 1.5, 3 % w/w) in a full-factorial design and sown with perennial ryegrass in an outdoor field trial. After three months, N and the stable isotopic ratio δ15N was measured in soil, roots and leaves, along with microbial responses. Aboveground grass biomass decreased by 30 % and leaf N content by 20 % with biochar, while peat alone had no effect. Peat in particular, but also biochar, stimulated the abundance of microorganisms (measured as 16S rRNA gene copy number) and basal respiration. Microbial substrate utilization (MicroResp™) was altered differentially, as peat increased respiration of all carbon sources, while for biochar, respiration of carboxylic acids increased, sugars decreased, and was unaffected for amino acids. Biochar increased the abundance of ammonia oxidizing archaea, while peat stimulated ammonia oxidizing bacteria, Nitrobacter-type nitrite oxidizers and comB-type complete ammonia oxidizers. Biochar and peat also increased nitrous oxide reducing communities (nosZI and nosZII), while peat alone or combined with biochar also increased abundance of nirK-type denitrifiers. However, biochar and peat lowered leaf δ15N by 2-4 ‰, indicating that processes causing gaseous N losses, like denitrification and ammonia volatilization, were reduced compared to the untreated contaminated soil, probably an effect of biotic N immobilization. Overall, this study shows that in addition to contaminant stabilization, amendment with biochar and peat can increase N retention while improving microbial capacity to perform important soil functions.
Collapse
Affiliation(s)
- Ingrid Rijk
- MTM Research Centre, School of Science and Technology, Örebro University, Sweden; Structor Miljöteknik AB, Sweden
| | - Alf Ekblad
- MTM Research Centre, School of Science and Technology, Örebro University, Sweden
| | - A Sigrun Dahlin
- Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), Sweden; Department of Crop Production Ecology, Swedish University of Agricultural Sciences (SLU), Sweden
| | - Anja Enell
- Swedish Geotechnical Institute (SGI), Sweden
| | - Maria Larsson
- MTM Research Centre, School of Science and Technology, Örebro University, Sweden
| | - Prune Leroy
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences (SLU), Sweden
| | - Dan B Kleja
- Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), Sweden; Swedish Geotechnical Institute (SGI), Sweden
| | | | - Sara Hallin
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences (SLU), Sweden
| | - Christopher Jones
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences (SLU), Sweden
| |
Collapse
|
3
|
Deb S, Lewicka-Szczebak D, Rohe L. Microbial nitrogen transformations tracked by natural abundance isotope studies and microbiological methods: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172073. [PMID: 38554959 DOI: 10.1016/j.scitotenv.2024.172073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/07/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Nitrogen is an essential nutrient in the environment that exists in multiple oxidation states in nature. Numerous microbial processes are involved in its transformation. Knowledge about very complex N cycling has been growing rapidly in recent years, with new information about associated isotope effects and about the microbes involved in particular processes. Furthermore, molecular methods that are able to detect and quantify particular processes are being developed, applied and combined with other analytical approaches, which opens up new opportunities to enhance understanding of nitrogen transformation pathways. This review presents a summary of the microbial nitrogen transformation, including the respective isotope effects of nitrogen and oxygen on different nitrogen-bearing compounds (including nitrates, nitrites, ammonia and nitrous oxide), and the microbiological characteristics of these processes. It is supplemented by an overview of molecular methods applied for detecting and quantifying the activity of particular enzymes involved in N transformation pathways. This summary should help in the planning and interpretation of complex research studies applying isotope analyses of different N compounds and combining microbiological and isotopic methods in tracking complex N cycling, and in the integration of these results in modelling approaches.
Collapse
Affiliation(s)
- Sushmita Deb
- Institute of Geological Sciences, University of Wrocław, pl. M. Borna 9, 50-204 Wrocław, Poland
| | | | - Lena Rohe
- Thünen Institute of Climate-Smart Agriculture, Bundesallee 65, 38116 Braunschweig, Germany
| |
Collapse
|
4
|
Wang S, Lyu T, Li S, Jiang Z, Dang Z, Zhu X, Hu W, Yue FJ, Ji G. Unignorable enzyme-specific isotope fractionation for nitrate source identification in aquatic ecosystem. CHEMOSPHERE 2024; 348:140771. [PMID: 38000558 DOI: 10.1016/j.chemosphere.2023.140771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
Nitrate contamination in aquatic systems is a widespread problem across the world. The isotopic composition (δ15N, δ18O) of nitrate and their isotope effect (15ε, 18ε) can facilitate the identification of the source and transformation of nitrate. Although previous researches claimed the isotope fractionations may change the original δ15N/δ18O values and further bias identification of nitrate sources, isotope effect was often ignored due to its complexity. To fill the gap between the understanding and application, it is crucial to develop a deep understanding of isotopic fractionation based on available evidence. In this regard, this study summarized the available methods to determine isotope effects, thereby systematically comparing the magnitude of isotope effects (15ε and 18ε) in nitrification, denitrification and anammox. We found that the enzymatic reaction plays the key role in isotope fractionations, which is significantly affected by the difference in the affinity, substrate channel properties and redox potential of active site. Due to the overlapping of microbial processes and accumulation of uncertainties, the significant isotope effects at small scales inevitably decrease in large-scale ecosystems. However, the proportionality of N and O isotope fractionation (δ18O/δ15N; 18ε/15ε) associated with nitrate reduction generally follows enzyme-specific proportionalities (i.e., Nar, 0.95; Nap, 0.57; eukNR, 0.98) in aquatic ecosystems, providing enzyme-specific constant factors for the identification of nitrate transformation. With these results, this study finally discussed feasible source portioning methods when considering the isotope effect and aimed to improve the accuracy in nitrate source identification.
Collapse
Affiliation(s)
- Shuo Wang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Tao Lyu
- School of Water, Energy and Environment, Cranfield University, College Road, Cranfield, Bedfordshire, MK43 0AL, UK
| | - Shengjie Li
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Zhuo Jiang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Zhengzhu Dang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Xianfang Zhu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Wei Hu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Fu-Jun Yue
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
5
|
Wu B, Ding M, Zhang H, Devlin AT, Wang P, Chen L, Zhang Y, Xia Y, Wen J, Liu L, Zhang Y, Wang M. Reduced soil multifunctionality and microbial network complexity in degraded and revegetated alpine meadows. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 343:118182. [PMID: 37224687 DOI: 10.1016/j.jenvman.2023.118182] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 05/26/2023]
Abstract
Understanding how microbial processes develop and change in alpine meadow soils is key to global initiatives toward environmental sustainability and local land management. Yet, how microbial interactions mediate soil multifunctionality in disturbed and managed alpine meadows remains understudied. Here, we investigated multiple community metrics, particularly microbial network properties and assembly processes, of soil bacterial and fungal communities and their links to certain soil functions along a degradation-restoration sequence of alpine meadows in the Qinghai-Tibetan Plateau. Meadow degradation caused significant declines in soil hydraulic conductivity (e.g., higher bulk density, reduced soil porosity and water content) and nitrogen availability, leading to lowered soil multifunctionality. Meadow degradation only caused weak changes in microbial abundance, alpha diversity, and community composition, but remarkably reduced bacterial network complexity, to a less extent for fungal network properties. Short-term artificial restoration with productive grass monocultures did not restore soil multifunctionality, in turn even destabilized bacterial network and favored pathogenic over mutualistic fungi. Soil fungi community are more stable than bacteria in disturbed alpine meadows, and they evolved with distinct assembly strategies (stochastic-dominant versus deterministic-driven processes, respectively). Further, microbial network complexity, positively and better predicts soil multifunctionality than alpha diversity. Our work shows how microbial interaction complexity may enhance soil multifunctionality in degraded alpine meadow ecosystems, noting that meadow restoration with low plant species diversity may failed in restoring multiple ecosystem functions. These findings would help predict the outcomes of global environmental changes and inform management strategies in regional grassland conservation and restoration.
Collapse
Affiliation(s)
- Bobo Wu
- Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, School of Geography and Environment, Jiangxi Normal University, Nanchang, 330022, China
| | - Mingjun Ding
- Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, School of Geography and Environment, Jiangxi Normal University, Nanchang, 330022, China
| | - Hua Zhang
- Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, School of Geography and Environment, Jiangxi Normal University, Nanchang, 330022, China.
| | - Adam Thomas Devlin
- Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, School of Geography and Environment, Jiangxi Normal University, Nanchang, 330022, China
| | - Peng Wang
- Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, School of Geography and Environment, Jiangxi Normal University, Nanchang, 330022, China
| | - Lu Chen
- Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, School of Geography and Environment, Jiangxi Normal University, Nanchang, 330022, China
| | - Yueju Zhang
- Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, School of Geography and Environment, Jiangxi Normal University, Nanchang, 330022, China
| | - Yang Xia
- Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, School of Geography and Environment, Jiangxi Normal University, Nanchang, 330022, China
| | - Jiawei Wen
- Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, School of Geography and Environment, Jiangxi Normal University, Nanchang, 330022, China
| | - Linshan Liu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences. Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yili Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences. Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minhuang Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
6
|
Diverse nirS-type Denitrifying Bacteria Contribute to Vital Nitrogen Loss in Natural Acidic Red Soils. Curr Microbiol 2022; 79:289. [PMID: 35972698 DOI: 10.1007/s00284-022-02982-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/17/2022] [Indexed: 11/03/2022]
Abstract
Denitrifying bacteria, playing a key role in nitrogen removal in ecosystem, are highly diverse and complex in their community composition. However, there were few reports on the abundance, community composition, and the contribution to nitrogen loss of denitrifiers in natural acidic red soils. In this study, we investigated the structure and function of nirS-type denitrifying bacteria in ten natural red soil samples collected from nine provinces in southern China, based on quantitative polymerase chain reaction (qPCR) and high-throughput sequencing techniques. Nitrogen loss from microbial denitrification in red soils of southern China was estimated up to 9.86 Tg N per year based on 15N isotope tracing method. The abundance of nirS-type denitrifiers varied from 8.41 × 105 to 2.55 × 109 copies per gram of dry weight. The community of nirS-type denitrifying bacterial was revealed, which contained 50 dominant OTUs assigned to 9 clusters phylogenetically related to Marinobacter, Rhodobacter, and other uncultured species. pH was the key factor affecting both denitrification rates and community composition. Our results demonstrate that nirS-type denitrifying bacteria have higher abundance, diversity, and contribution to the nitrogen loss in natural acidic red soils of southern China.
Collapse
|
7
|
Wu MH, Xue K, Wei PJ, Jia YL, Zhang Y, Chen SY. Soil microbial distribution and assembly are related to vegetation biomass in the alpine permafrost regions of the Qinghai-Tibet Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155259. [PMID: 35452733 DOI: 10.1016/j.scitotenv.2022.155259] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/09/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
It is generally believed that there is a vegetation succession sequence from alpine marsh meadow to desert in the alpine ecosystem of the Qinghai-Tibet Plateau. However, we still have a limited understanding about distribution patterns and community assemblies of microorganisms' response to such vegetation changes. Hence, across a gradient represented by three types of alpine vegetation from swamp meadow to meadow to steppe, the soil bacterial, fungal and archaeal diversity was evaluated and then associated with their assembly processes, and glacier foreland vegetation was also surveyed as a case out of this gradient. Vegetation biomass was found to decrease significantly along the vegetation gradient. In contrast to irregular shifts in alpha diversity, bacterial and fungal beta diversities that were dominated by species replacement components (71.07-79.08%) significantly increased with the decreasing gradient in vegetation biomass (P < 0.05). These trends of increase were also found in the extent of stochastic bacterial and fungal assembly. Moreover, an increase in microbial beta diversity but a decrease in beta nearest taxon index were observed along with increased discrepancy in vegetation biomass (P < 0.001). Stepwise regression analyses and structural equation models suggested that vegetation biomass was the major variable that was related to microbial distribution and community assembly, and there might be associations between the dominance of species replacements and stochastic assembly. These findings enhanced our recognition of the relationship between vegetation and soil microorganisms and would facilitate the development of vegetation-microbe feedback models in alpine ecosystems.
Collapse
Affiliation(s)
- Ming-Hui Wu
- Cryosphere and Eco-Environment Research Station of Shule River Headwaters, National Field Science Observation and Research Station of Yulong Snow Mountain Cryosphere and Sustainable Development, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Xue
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pei-Jie Wei
- Cryosphere and Eco-Environment Research Station of Shule River Headwaters, National Field Science Observation and Research Station of Yulong Snow Mountain Cryosphere and Sustainable Development, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying-Lan Jia
- Cryosphere and Eco-Environment Research Station of Shule River Headwaters, National Field Science Observation and Research Station of Yulong Snow Mountain Cryosphere and Sustainable Development, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhang
- Long-term National Scientific Research Base of the Qilian Mountain National Park, Xining, Qinghai 810000, China
| | - Sheng-Yun Chen
- Cryosphere and Eco-Environment Research Station of Shule River Headwaters, National Field Science Observation and Research Station of Yulong Snow Mountain Cryosphere and Sustainable Development, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China; Long-term National Scientific Research Base of the Qilian Mountain National Park, Xining, Qinghai 810000, China.
| |
Collapse
|
8
|
Wang D, Zhou H, Zuo J, Chen P, She Y, Yao B, Dong S, Wu J, Li F, Njoroge DM, Shi G, Mao X, Ma L, Zhang Z, Mao Z. Responses of Soil Microbial Metabolic Activity and Community Structure to Different Degraded and Restored Grassland Gradients of the Tibetan Plateau. FRONTIERS IN PLANT SCIENCE 2022; 13:770315. [PMID: 35463442 PMCID: PMC9024238 DOI: 10.3389/fpls.2022.770315] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/22/2022] [Indexed: 05/31/2023]
Abstract
Climate change and land-use disturbances are supposed to have severely affected the degraded alpine grasslands on the Tibetan Plateau. Artificial grassland establishment has been implemented as a restoration tool against grassland degradation. However, the impact of such degradation and restoration processes on soil microbial communities and soil quality is not clearly understood. Here, we aim to investigate how the dynamics of microbial community and soil quality of alpine grasslands respond to a gradient of degradation and that of restoration, respectively. We conducted a randomised experiment with four degradation stages (light, moderate, heavy, and extreme degradation) and three restoration stages (artificial restoration for 1, 5, and 10 years). We analysed the abundance and diversity of soil bacteria and fungi, and measured soil nutrients, enzymatic activity and microbial biomass. The concentration of soil nitrogen (TN), soil organic matter (OM) in heavy degraded grassland decreased significantly by 37.4 and 45.08% compared with that in light degraded grassland. TN and OM in 10-years restored grassland also increased significantly by 33.10 and 30.42% compared to that in 1-year restored grassland. Four soil enzymatic activity indicators related to microbial biomass decreased with degradation gradient and increased with recovery time (i.e., restoration gradient). Both bacterial and fungal community structure was significantly different among grassland degradation or restoration successional stages. The LEfSe analysis revealed that 29 fungal clades and 9 bacterial clades were susceptible to degraded succession, while16 fungal clades and 5 bacterial clades were susceptible to restoration succession. We conclude that soil quality (TN, OM, and enzymatic activity) deteriorated significantly in heavy degraded alpine grassland. Soil microbial community structure of alpine is profoundly impacted by both degradation and restoration processes, fungal communities are more sensitive to grassland succession than bacterial communities. Artificial grasslands can be used as an effective method of restoring degraded grassland, but the soil functions of artificial grassland, even after 10 years of recovery, cannot be restored to the original state of alpine grassland.
Collapse
Affiliation(s)
- Dangjun Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Cold Regions Restoration Ecology, Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huakun Zhou
- Key Laboratory of Cold Regions Restoration Ecology, Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Juan Zuo
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Peng Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Yandi She
- Key Laboratory of Cold Regions Restoration Ecology, Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Buqing Yao
- Key Laboratory of Cold Regions Restoration Ecology, Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Shikui Dong
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Jianshuang Wu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Denis Mburu Njoroge
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guoxi Shi
- Key Laboratory of Utilization of Agriculture Solid Waste Resources, College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui, China
| | - Xufeng Mao
- School of Geographical Sciences, Qinghai Normal University, Xining, China
| | - Li Ma
- Key Laboratory of Cold Regions Restoration Ecology, Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhonghua Zhang
- Key Laboratory of Cold Regions Restoration Ecology, Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhun Mao
- AMAP, Univ. Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| |
Collapse
|
9
|
Saifuddin M, Bhatnagar JM, Phillips RP, Finzi AC. Ectomycorrhizal fungi are associated with reduced nitrogen cycling rates in temperate forest soils without corresponding trends in bacterial functional groups. Oecologia 2021; 196:863-875. [PMID: 34170396 DOI: 10.1007/s00442-021-04966-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 06/09/2021] [Indexed: 11/30/2022]
Abstract
Microbial processes play a central role in controlling the availability of N in temperate forests. While bacteria, archaea, and fungi account for major inputs, transformations, and exports of N in soil, relationships between microbial community structure and N cycle fluxes have been difficult to detect and characterize. Several studies have reported differences in N cycling based on mycorrhizal type in temperate forests, but associated differences in N cycling genes underlying these fluxes are not well-understood. We explored how rates of soil N cycle fluxes vary across gradients of mycorrhizal abundance (hereafter "mycorrhizal gradients") at four temperate forest sites in Massachusetts and Indiana, USA. We paired measurements of N-fixation, net nitrification, and denitrification rates with gene abundance data for specific bacterial functional groups associated with each process. We find that the availability of NO3 and rates of N-fixation, net nitrification, and denitrification are reduced in stands dominated by trees associated with ECM fungi. On average, rates of N-fixation and denitrification in stands dominated by trees associated with arbuscular mycorrhizal fungi were more than double the corresponding rates in stands dominated by trees associated with ectomycorrhizal fungi. Despite the structuring of flux rates across the mycorrhizal gradients, we did not find concomitant shifts in the abundances of N-cycling bacterial genes, and gene abundances were not correlated with process rates. Given that AM-associating trees are replacing ECM-associating trees throughout much of the eastern US, our results suggest that shifts in mycorrhizal dominance may accelerate N cycling independent of changes in the relative abundance of N cycling bacteria, with consequences for forest productivity and N retention.
Collapse
|
10
|
Kotajima S, Koba K, Ikeda D, Terada A, Isaka K, Nishina K, Kimura Y, Makabe A, Yano M, Fujitani H, Ushiki N, Tsuneda S, Yoh M. Nitrogen and Oxygen Isotope Signatures of Nitrogen Compounds during Anammox in the Laboratory and a Wastewater Treatment Plant. Microbes Environ 2020; 35. [PMID: 33162466 PMCID: PMC7734408 DOI: 10.1264/jsme2.me20031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Isotopic fractionation factors against 15N and 18O during anammox (anaerobic ammonia oxidization by nitrite) are critical for evaluating the importance of this process in natural environments. We performed batch incubation experiments with an anammox-dominated biomass to investigate nitrogen (N) and oxygen (O) isotopic fractionation factors during anammox and also examined apparent isotope fractionation factors during anammox in an actual wastewater treatment plant. We conducted one incubation experiment with high δ18O of water to investigate the effects of water δ18O. The N isotopic fractionation factors estimated from incubation experiments and the wastewater treatment plant were similar to previous values. We also found that the N isotopic effect (15εNXR of -77.8 to -65.9‰ and 15ΔNXR of -31.3 to -30.4‰) and possibly O isotopic effect (18εNXR of -20.6‰) for anaerobic nitrite oxidation to nitrate were inverse. We applied the estimated isotopic fractionation factors to the ordinary differential equation model to clarify whether anammox induces deviations in the δ18O vs δ15N of nitrate from a linear trajectory of 1, similar to heterotrophic denitrification. Although this deviation has been attributed to nitrite oxidation, the O isotopic fractionation factor for anammox is crucial for obtaining a more detailed understanding of the mechanisms controlling this deviation. In our model, anammox induced the trajectory of the δ18O vs δ15N of nitrate during denitrification to less than one, which strongly indicates that this deviation is evidence of nitrite oxidation by anammox under denitrifying conditions.
Collapse
Affiliation(s)
- Shotoku Kotajima
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | - Keisuke Koba
- Center for Ecological Research, Kyoto University.,Institute of Agriculture, Tokyo University of Agriculture and Technology
| | - Daisuke Ikeda
- Graduate School of Engineering, Tokyo University of Agriculture and Technology
| | - Akihiko Terada
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology
| | - Kazuichi Isaka
- Hitachi, Ltd.,Department of Applied Chemistry, Faculty of Science and Engineering, Toyo University
| | - Kazuya Nishina
- Center for Regional Environmental Research, National Institute of Environmental Sciences
| | | | - Akiko Makabe
- Institute of Agriculture, Tokyo University of Agriculture and Technology.,Project Team for Development of New-generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and Technology.,Present address: Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Japan Agency for Marine-Earth Science and Technology
| | - Midori Yano
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology.,Center for Ecological Research, Kyoto University
| | - Hirotsugu Fujitani
- Department of Life Science and Medical Bioscience, Waseda University.,Present address: Department of Biological Sciences, Faculty of Science and Engineering, Chuo University
| | - Norisuke Ushiki
- Department of Life Science and Medical Bioscience, Waseda University
| | - Satoshi Tsuneda
- Department of Life Science and Medical Bioscience, Waseda University
| | - Muneoki Yoh
- Institute of Agriculture, Tokyo University of Agriculture and Technology
| |
Collapse
|