1
|
Dey S, Nayak AK, Rajaram H, Das S. Exploitative stress within Bacillus subtilis biofilm determines the spatial distribution of pleomorphic cells. Microbiol Res 2025; 292:128034. [PMID: 39729737 DOI: 10.1016/j.micres.2024.128034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/04/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
Bacteria commonly live in a spatially organized biofilm assemblage. The metabolic activity inside the biofilm leads to segmented physiological microenvironments. In nature, bacteria possess several pleomorphic forms to withstand certain ecological alterations. We hypothesized that pleomorphism also exists within the biofilm, which can be considered as the fundamental niche for bacteria. We report a distinct pattern of cell size variation throughout the biofilm of Bacillus subtilis. Cell size heterogeneity was observed in biofilm development, wherein the frequency of long cells is higher in outer regions, whereas lower in inner regions. Moreover, compared to planktonic cells, bacteria in the biofilm mode reduce their geometric ratio from 8.34 to 3.69 and 2.65 in the outer and inner regions, respectively. There were no significant differences observed in nutrient diffusion from the outer to the inner region, and more than 73 % of cells in the inner region were viable. However, the inner and middle regions were more acidic than the outer of the biofilm. Conclusively, growth rate-independent cell size reduction at low pH suggests that the resulting phenotype switching within biofilm was observed due to the pH gradient of neutral to acidic from the outer to the core of the biofilm. This gradient of H+ ions concentration may create exploitative stress within the biofilm, which could favor specific pleomorphic cells to thrive in their specialized niches. By understanding the cell size variation in response to the local environment, we propose a model of biofilm formation by pleomorphic cells.
Collapse
Affiliation(s)
- Sumon Dey
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Ankit Kumar Nayak
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Hema Rajaram
- Molecular Biology Division, Bhabha Atomic Research Institute, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India.
| |
Collapse
|
2
|
Henderson A, Del Panta A, Schubert OT, Mitri S, van Vliet S. Disentangling the feedback loops driving spatial patterning in microbial communities. NPJ Biofilms Microbiomes 2025; 11:32. [PMID: 39979272 PMCID: PMC11842706 DOI: 10.1038/s41522-025-00666-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
The properties of multispecies biofilms are determined by how species are arranged in space. How these patterns emerge is a complex and largely unsolved problem. Here, we synthesize the known factors affecting pattern formation, identify the interdependencies and feedback loops coupling them, and discuss approaches to disentangle their effects. Finally, we propose an interdisciplinary research program that could create a predictive understanding of pattern formation in microbial communities.
Collapse
Affiliation(s)
- Alyssa Henderson
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Alessia Del Panta
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Olga T Schubert
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Sara Mitri
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Simon van Vliet
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
- Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
3
|
Rani G, Sengupta A. Growing bacterial colonies harness emergent genealogical demixing to regulate organizational entropy. BIOPHYSICAL REPORTS 2024; 4:100175. [PMID: 39197679 PMCID: PMC11416667 DOI: 10.1016/j.bpr.2024.100175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
Spatiotemporal organization of individuals within growing bacterial colonies is a key determinant of intraspecific interactions and colony-scale heterogeneities. The evolving cellular distribution, in relation to the genealogical lineage, is thus central to our understanding of bacterial fate across scales. Yet, how bacteria self-organize genealogically as a colony expands has remained unknown. Here, by developing a custom-built label-free algorithm, we track and study the genesis and evolution of emergent self-similar genealogical enclaves, whose dynamics are governed by biological activity. Topological defects at enclave boundaries tune finger-like morphologies of the active interfaces. The Shannon entropy of cell arrangements reduce over time; with faster-dividing cells possessing higher spatial affinity to genealogical relatives, at the cost of a well-mixed, entropically favorable state. Our coarse-grained lattice model demonstrates that genealogical enclaves emerge due to an interplay of division-mediated dispersal, stochasticity of division events, and cell-cell interactions. The study reports so-far hidden emergent self-organizing features arising due to entropic suppression, ultimately modulating intraspecific genealogical distances within bacterial colonies.
Collapse
Affiliation(s)
- Garima Rani
- Physics of Living Matter Group, Department of Physics and Materials Science, University of Luxembourg, 162a Avenue de la Faïencerie, Luxembourg City, Grand Duchy of Luxembourg
| | - Anupam Sengupta
- Physics of Living Matter Group, Department of Physics and Materials Science, University of Luxembourg, 162a Avenue de la Faïencerie, Luxembourg City, Grand Duchy of Luxembourg; Institute for Advanced Studies, University of Luxembourg, 2 Avenue de l'Université, Esch-sur-Alzette, Grand Duchy of Luxembourg.
| |
Collapse
|
4
|
García Vázquez A, Mitarai N, Jauffred L. Genetic mixing and demixing on expanding spherical frontiers. ISME COMMUNICATIONS 2024; 4:ycae009. [PMID: 38524760 PMCID: PMC10958774 DOI: 10.1093/ismeco/ycae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 03/26/2024]
Abstract
Genetic fluctuation during range expansion is a key process driving evolution. When a bacterial population is expanding on a 2D surface, random fluctuations in the growth of the pioneers at the front line cause a strong demixing of genotypes. Even when there is no selective advantage, sectors of low genetic diversity are formed. Experimental studies of range expansions in surface-attached colonies of fluorescently labelled micro-organisms have contributed significantly to our understanding of fundamental evolutionary dynamics. However, experimental studies on genetic fluctuations in 3D range expansions have been sparse, despite their importance for tumour or biofilm development. We encapsulated populations of two fluorescent Escherichia coli strains in inoculation droplets (volumes [Formula: see text] nl). The confined ensemble of cells grew when embedded in a hydrogel-with nutrients-and developed 3D colonies with well-defined, sector-like regions. Using confocal laser scanning microscopy, we imaged the development of 3D colonies and the emergence of sectors. We characterized how cell concentration in the inoculation droplet controls sectors, growth rate, and the transition from branched colonies to quasi-spherical colonies. We further analysed how sectors on the surface change over time. We complement these experimental results with a modified 3D Eden growth model. The model in 3D spherical growth predicts a phase, where sectors are merging, followed by a steady increase (constant rate), and the experimentally analysed sectors were consistent with this prediction. Therefore, our results demonstrate qualitative differences between radial (2D) and spherical (3D) range expansions and their importance in gene fixation processes.
Collapse
Affiliation(s)
- Alba García Vázquez
- The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen O, Denmark
| | - Namiko Mitarai
- The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen O, Denmark
| | - Liselotte Jauffred
- The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen O, Denmark
| |
Collapse
|
5
|
Cordero M, Mitarai N, Jauffred L. Motility mediates satellite formation in confined biofilms. THE ISME JOURNAL 2023; 17:1819-1827. [PMID: 37592064 PMCID: PMC10579341 DOI: 10.1038/s41396-023-01494-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
Bacteria have spectacular survival capabilities and can spread in many, vastly different environments. For instance, when pathogenic bacteria infect a host, they expand by proliferation and squeezing through narrow pores and elastic matrices. However, the exact role of surface structures-important for biofilm formation and motility-and matrix density in colony expansion and morphogenesis is still largely unknown. Using confocal laser-scanning microscopy, we show how satellite colonies emerge around Escherichia coli colonies embedded in semi-dense hydrogel in controlled in vitro assays. Using knock-out mutants, we tested how extra-cellular structures, (e.g., exo-polysaccharides, flagella, and fimbria) control this morphology. Moreover, we identify the extra-cellular matrix' density, where this morphology is possible. When paralleled with mathematical modelling, our results suggest that satellite formation allows bacterial communities to spread faster. We anticipate that this strategy is important to speed up expansion in various environments, while retaining the close interactions and protection provided by the community.
Collapse
Affiliation(s)
- Mireia Cordero
- The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100, Copenhagen O, Denmark
| | - Namiko Mitarai
- The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100, Copenhagen O, Denmark.
| | - Liselotte Jauffred
- The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100, Copenhagen O, Denmark.
| |
Collapse
|
6
|
Dunajova Z, Mateu BP, Radler P, Lim K, Brandis D, Velicky P, Danzl JG, Wong RW, Elgeti J, Hannezo E, Loose M. Chiral and nematic phases of flexible active filaments. NATURE PHYSICS 2023; 19:1916-1926. [PMID: 38075437 PMCID: PMC10709145 DOI: 10.1038/s41567-023-02218-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 08/21/2023] [Indexed: 01/05/2025]
Abstract
The emergence of large-scale order in self-organized systems relies on local interactions between individual components. During bacterial cell division, FtsZ-a prokaryotic homologue of the eukaryotic protein tubulin-polymerizes into treadmilling filaments that further organize into a cytoskeletal ring. In vitro, FtsZ filaments can form dynamic chiral assemblies. However, how the active and passive properties of individual filaments relate to these large-scale self-organized structures remains poorly understood. Here we connect single-filament properties with the mesoscopic scale by combining minimal active matter simulations and biochemical reconstitution experiments. We show that the density and flexibility of active chiral filaments define their global order. At intermediate densities, curved, flexible filaments organize into chiral rings and polar bands. An effectively nematic organization dominates for high densities and for straight, mutant filaments with increased rigidity. Our predicted phase diagram quantitatively captures these features, demonstrating how the flexibility, density and chirality of the active filaments affect their collective behaviour. Our findings shed light on the fundamental properties of active chiral matter and explain how treadmilling FtsZ filaments organize during bacterial cell division.
Collapse
Affiliation(s)
- Zuzana Dunajova
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | | | - Philipp Radler
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Keesiang Lim
- WPI-Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Dörte Brandis
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Philipp Velicky
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Johann Georg Danzl
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Richard W. Wong
- WPI-Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Jens Elgeti
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany
| | - Edouard Hannezo
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Martin Loose
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| |
Collapse
|
7
|
Eigentler L, Davidson FA, Stanley-Wall NR. Mechanisms driving spatial distribution of residents in colony biofilms: an interdisciplinary perspective. Open Biol 2022; 12:220194. [PMID: 36514980 PMCID: PMC9748781 DOI: 10.1098/rsob.220194] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Biofilms are consortia of microorganisms that form collectives through the excretion of extracellular matrix compounds. The importance of biofilms in biological, industrial and medical settings has long been recognized due to their emergent properties and impact on surrounding environments. In laboratory situations, one commonly used approach to study biofilm formation mechanisms is the colony biofilm assay, in which cell communities grow on solid-gas interfaces on agar plates after the deposition of a population of founder cells. The residents of a colony biofilm can self-organize to form intricate spatial distributions. The assay is ideally suited to coupling with mathematical modelling due to the ability to extract a wide range of metrics. In this review, we highlight how interdisciplinary approaches have provided deep insights into mechanisms causing the emergence of these spatial distributions from well-mixed inocula.
Collapse
Affiliation(s)
- Lukas Eigentler
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK,Mathematics, School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| | - Fordyce A. Davidson
- Mathematics, School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| | - Nicola R. Stanley-Wall
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
8
|
Karasz DC, Weaver AI, Buckley DH, Wilhelm RC. Conditional filamentation as an adaptive trait of bacteria and its ecological significance in soils. Environ Microbiol 2021; 24:1-17. [PMID: 34929753 DOI: 10.1111/1462-2920.15871] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/30/2022]
Abstract
Bacteria can regulate cell morphology in response to environmental conditions, altering their physiological and metabolic characteristics to improve survival. Conditional filamentation, in which cells suspend division while continuing lateral growth, is a strategy with a range of adaptive benefits. Here, we review the causes and consequences of conditional filamentation with respect to bacterial physiology, ecology and evolution. We describe four major benefits from conditional filamentation: stress tolerance, surface colonization, gradient spanning and the facilitation of biotic interactions. Adopting a filamentous growth habit involves fitness trade-offs which are also examined. We focus on the role of conditional filamentation in soil habitats, where filamentous morphotypes are highly prevalent and where environmental heterogeneity can benefit a conditional response. To illustrate the use of information presented in our review, we tested the conditions regulating filamentation by the forest soil isolate Paraburkholderia elongata 5NT . Filamentation by P. elongata was induced at elevated phosphate concentrations, and was associated with the accumulation of intracellular polyphosphate, highlighting the role of filamentation in a phosphate-solubilizing bacterium. Conditional filamentation enables bacteria to optimize their growth and metabolism in environments that are highly variable, a trait that can impact succession, symbioses, and biogeochemistry in soil environments.
Collapse
Affiliation(s)
- David C Karasz
- School of Integrative Plant Science, Bradfield Hall, Cornell University, Ithaca, New York, 14853, USA
| | - Anna I Weaver
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, New York, 14853, USA.,Weill Institute for Cell and Molecular Biology, Weill Hall, Cornell University, Ithaca, New York, 14853, USA
| | - Daniel H Buckley
- School of Integrative Plant Science, Bradfield Hall, Cornell University, Ithaca, New York, 14853, USA
| | - Roland C Wilhelm
- School of Integrative Plant Science, Bradfield Hall, Cornell University, Ithaca, New York, 14853, USA
| |
Collapse
|
9
|
Bacterial Filamentation Drives Colony Chirality. mBio 2021; 12:e0154221. [PMID: 34724813 PMCID: PMC8561393 DOI: 10.1128/mbio.01542-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chirality is ubiquitous in nature, with consequences at the cellular and tissue scales. As Escherichia coli colonies expand radially, an orthogonal component of growth creates a pinwheel-like pattern that can be revealed by fluorescent markers. To elucidate the mechanistic basis of this colony chirality, we investigated its link to left-handed, single-cell twisting during E. coli elongation. While chemical and genetic manipulation of cell width altered single-cell twisting handedness, colonies ceased to be chiral rather than switching handedness, and anaerobic growth altered colony chirality without affecting single-cell twisting. Chiral angle increased with increasing temperature even when growth rate decreased. Unifying these findings, we discovered that colony chirality was associated with the propensity for cell filamentation. Inhibition of cell division accentuated chirality under aerobic growth and generated chirality under anaerobic growth. Thus, regulation of cell division is intrinsically coupled to colony chirality, providing a mechanism for tuning macroscale spatial patterning. IMPORTANCE Chiral objects, such as amino acids, are distinguishable from their mirror image. For living systems, the fundamental mechanisms relating cellular handedness to chirality at the multicellular scale remain largely mysterious. Here, we use chemical, genetic, and environmental perturbations of Escherichia coli to investigate whether pinwheel patterns in bacterial colonies are directly linked to single-cell growth behaviors. We discover that chirality can be abolished without affecting single-cell twisting; instead, the degree of chirality was linked to the proportion of highly elongated cells at the colony edge. Inhibiting cell division boosted the degree of chirality during aerobic growth and even introduced chirality to otherwise achiral colonies during anaerobic growth. These findings reveal a fascinating connection between cell division and macroscopic colony patterning.
Collapse
|
10
|
Gupta G, Ndiaye A, Filteau M. Leveraging Experimental Strategies to Capture Different Dimensions of Microbial Interactions. Front Microbiol 2021; 12:700752. [PMID: 34646243 PMCID: PMC8503676 DOI: 10.3389/fmicb.2021.700752] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/31/2021] [Indexed: 12/27/2022] Open
Abstract
Microorganisms are a fundamental part of virtually every ecosystem on earth. Understanding how collectively they interact, assemble, and function as communities has become a prevalent topic both in fundamental and applied research. Owing to multiple advances in technology, answering questions at the microbial system or network level is now within our grasp. To map and characterize microbial interaction networks, numerous computational approaches have been developed; however, experimentally validating microbial interactions is no trivial task. Microbial interactions are context-dependent, and their complex nature can result in an array of outcomes, not only in terms of fitness or growth, but also in other relevant functions and phenotypes. Thus, approaches to experimentally capture microbial interactions involve a combination of culture methods and phenotypic or functional characterization methods. Here, through our perspective of food microbiologists, we highlight the breadth of innovative and promising experimental strategies for their potential to capture the different dimensions of microbial interactions and their high-throughput application to answer the question; are microbial interaction patterns or network architecture similar along different contextual scales? We further discuss the experimental approaches used to build various types of networks and study their architecture in the context of cell biology and how they translate at the level of microbial ecosystem.
Collapse
Affiliation(s)
- Gunjan Gupta
- Département des Sciences des aliments, Université Laval, Québec, QC, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Amadou Ndiaye
- Département des Sciences des aliments, Université Laval, Québec, QC, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Marie Filteau
- Département des Sciences des aliments, Université Laval, Québec, QC, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| |
Collapse
|
11
|
Fields C, Glazebrook JF, Levin M. Minimal physicalism as a scale-free substrate for cognition and consciousness. Neurosci Conscious 2021; 2021:niab013. [PMID: 34345441 PMCID: PMC8327199 DOI: 10.1093/nc/niab013] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 12/14/2022] Open
Abstract
Theories of consciousness and cognition that assume a neural substrate automatically regard phylogenetically basal, nonneural systems as nonconscious and noncognitive. Here, we advance a scale-free characterization of consciousness and cognition that regards basal systems, including synthetic constructs, as not only informative about the structure and function of experience in more complex systems but also as offering distinct advantages for experimental manipulation. Our "minimal physicalist" approach makes no assumptions beyond those of quantum information theory, and hence is applicable from the molecular scale upwards. We show that standard concepts including integrated information, state broadcasting via small-world networks, and hierarchical Bayesian inference emerge naturally in this setting, and that common phenomena including stigmergic memory, perceptual coarse-graining, and attention switching follow directly from the thermodynamic requirements of classical computation. We show that the self-representation that lies at the heart of human autonoetic awareness can be traced as far back as, and serves the same basic functions as, the stress response in bacteria and other basal systems.
Collapse
Affiliation(s)
- Chris Fields
- 23 Rue des Lavandières, 11160 Caunes Minervois, France
| | - James F Glazebrook
- Department of Mathematics and Computer Science, Eastern Illinois University, 600 Lincoln Ave, Charleston, IL 61920 USA
- Department of Mathematics, Adjunct Faculty, University of Illinois at Urbana–Champaign, 1409 W. Green Street, Urbana, IL 61801, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, 200 College Avenue, Medford, MA 02155, USA
| |
Collapse
|
12
|
Li X, Yang Y, Quan J, Zhang J, Cheng M, Yan H, Zhang S, Yang L, Lu Z, Li H. A layer-by-layer assembled D/L-arginine-calix[4]arene-Si-surface for macroscopic enantio-selective discrimination of ( R)/( S)-ibuprofen. Chem Commun (Camb) 2021; 57:5706-5709. [PMID: 33982718 DOI: 10.1039/d1cc01307f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Chiral arginine was introduced by layer-by-layer assembly onto a calix[4]arene-diacid modified silica surface to control the adsorption of different kinds of ibuprofen droplets. The droplet of (S)-ibuprofen slid off rapidly, whereas the droplet of (R)-ibuprofen absorbed on the modified surface.
Collapse
Affiliation(s)
- Xiong Li
- Department of ultrasound, Zhongnan Hospital, Wuhan University, Wuhan 430071, China.
| | - Yingying Yang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Jiaxin Quan
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Jin Zhang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Ming Cheng
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Hewei Yan
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Siyun Zhang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Lei Yang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Zhiyan Lu
- Department of Forensic Medicine, Zhongnan Hospital of Wuhan University, No. 169 East Lake Road, Wuchang District, Wuhan 430071, Hubei, China.
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| |
Collapse
|
13
|
Rooney LM, Amos WB, Hoskisson PA, McConnell G. Intra-colony channels in E. coli function as a nutrient uptake system. THE ISME JOURNAL 2020; 14:2461-2473. [PMID: 32555430 PMCID: PMC7490401 DOI: 10.1038/s41396-020-0700-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/05/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022]
Abstract
The ability of microorganisms to grow as aggregated assemblages has been known for many years, however their structure has remained largely unexplored across multiple spatial scales. The development of the Mesolens, an optical system which uniquely allows simultaneous imaging of individual bacteria over a 36 mm2 field of view, has enabled the study of mature Escherichia coli macro-colony biofilm architecture like never before. The Mesolens enabled the discovery of intra-colony channels on the order of 10 μm in diameter, that are integral to E. coli macro-colony biofilms and form as an emergent property of biofilm growth. These channels have a characteristic structure and re-form after total mechanical disaggregation of the colony. We demonstrate that the channels are able to transport particles and play a role in the acquisition of and distribution of nutrients through the biofilm. These channels potentially offer a new route for the delivery of dispersal agents for antimicrobial drugs to biofilms, ultimately lowering their impact on public health and industry.
Collapse
Affiliation(s)
- Liam M Rooney
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK.
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - William B Amos
- Department of Physics, SUPA, University of Strathclyde, 107 Rottenrow East, Glasgow, G4 0NG, UK
| | - Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Gail McConnell
- Department of Physics, SUPA, University of Strathclyde, 107 Rottenrow East, Glasgow, G4 0NG, UK
| |
Collapse
|
14
|
Rhodeland B, Hoeger K, Ursell T. Bacterial surface motility is modulated by colony-scale flow and granular jamming. J R Soc Interface 2020; 17:20200147. [PMID: 32574537 DOI: 10.1098/rsif.2020.0147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Microbes routinely face the challenge of acquiring territory and resources on wet surfaces. Cells move in large groups inside thin, surface-bound water layers, often achieving speeds of 30 µm s-1 within this environment, where viscous forces dominate over inertial forces (low Reynolds number). The canonical Gram-positive bacterium Bacillus subtilis is a model organism for the study of collective migration over surfaces with groups exhibiting motility on length-scales three orders of magnitude larger than themselves within a few doubling times. Genetic and chemical studies clearly show that the secretion of endogenous surfactants and availability of free surface water are required for this fast group motility. Here, we show that: (i) water availability is a sensitive control parameter modulating an abiotic jamming-like transition that determines whether the group remains fluidized and therefore collectively motile, (ii) groups self-organize into discrete layers as they travel, (iii) group motility does not require proliferation, rather groups are pulled from the front, and (iv) flow within expanding groups is capable of moving material from the parent colony into the expanding tip of a cellular dendrite with implications for expansion into regions of varying nutrient content. Together, these findings illuminate the physical structure of surface-motile groups and demonstrate that physical properties, like cellular packing fraction and flow, regulate motion from the scale of individual cells up to length scales of centimetres.
Collapse
Affiliation(s)
- Ben Rhodeland
- Department of Physics, University of Oregon, Eugene OR 97403, USA
| | - Kentaro Hoeger
- Department of Physics, University of Oregon, Eugene OR 97403, USA
| | - Tristan Ursell
- Department of Physics, University of Oregon, Eugene OR 97403, USA.,Institute of Molecular Biology, University of Oregon, Eugene OR 97403, USA.,Materials Science Institute, University of Oregon, Eugene OR 97403, USA
| |
Collapse
|
15
|
Shi H, Quint DA, Grason GM, Gopinathan A, Huang KC. Chiral twisting in a bacterial cytoskeletal polymer affects filament size and orientation. Nat Commun 2020; 11:1408. [PMID: 32179732 PMCID: PMC7075873 DOI: 10.1038/s41467-020-14752-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/24/2020] [Indexed: 12/30/2022] Open
Abstract
In many rod-shaped bacteria, the actin homolog MreB directs cell-wall insertion and maintains cell shape, but it remains unclear how structural changes to MreB affect its organization in vivo. Here, we perform molecular dynamics simulations for Caulobacter crescentus MreB to extract mechanical parameters for inputs into a coarse-grained biophysical polymer model that successfully predicts MreB filament properties in vivo. Our analyses indicate that MreB double protofilaments can exhibit left-handed twisting that is dependent on the bound nucleotide and membrane binding; the degree of twisting correlates with the length and orientation of MreB filaments observed in vitro and in vivo. Our molecular dynamics simulations also suggest that membrane binding of MreB double protofilaments induces a stable membrane curvature of similar magnitude to that observed in vivo. Thus, our multiscale modeling correlates cytoskeletal filament size with conformational changes inferred from molecular dynamics simulations, providing a paradigm for connecting protein filament structure and mechanics to cellular organization and function. The actin homolog MreB directs cell-wall insertion and maintains cell shape in many rod-shaped bacteria. Here, Shi et al. perform molecular dynamics simulations for MreB to extract mechanical parameters for inputs into a coarse-grained biophysical polymer model that predicts MreB filament properties.
Collapse
Affiliation(s)
- Handuo Shi
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - David A Quint
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.,Department of Physics, University of California at Merced, Merced, CA, 95343, USA.,NSF-CREST: Center for Cellular and Biomolecular Machines, University of California at Merced, Merced, CA, 95343, USA
| | - Gregory M Grason
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Ajay Gopinathan
- Department of Physics, University of California at Merced, Merced, CA, 95343, USA.,NSF-CREST: Center for Cellular and Biomolecular Machines, University of California at Merced, Merced, CA, 95343, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA. .,Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| |
Collapse
|
16
|
Fields C, Levin M. Does regeneration recapitulate phylogeny? Planaria as a model of body-axis specification in ancestral eumetazoa. Commun Integr Biol 2020; 13:27-38. [PMID: 32128026 PMCID: PMC7039665 DOI: 10.1080/19420889.2020.1729601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 12/31/2022] Open
Abstract
Metazoan body plans combine well-defined primary, secondary, and in many bilaterians, tertiary body axes with structural asymmetries at multiple scales. Despite decades of study, how axis-defining symmetries and system-defining asymmetries co-emerge during both evolution and development remain open questions. Regeneration studies in asexual planaria have demonstrated an array of viable forms with symmetrized and, in some cases, duplicated body axes. We suggest that such forms may point toward an ancestral eumetazoan form with characteristics of both cnidarians and placazoa.
Collapse
Affiliation(s)
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA, USA
| |
Collapse
|
17
|
Velmourougane K, Prasanna R, Supriya P, Ramakrishnan B, Thapa S, Saxena AK. Transcriptome profiling provides insights into regulatory factors involved in Trichoderma viride-Azotobacter chroococcum biofilm formation. Microbiol Res 2019; 227:126292. [PMID: 31421719 DOI: 10.1016/j.micres.2019.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/30/2019] [Accepted: 06/15/2019] [Indexed: 12/14/2022]
Abstract
Azotobacter chroococcum (Az) and Trichoderma viride (Tv) represent agriculturally important and beneficial plant growth promoting options which contribute towards nutrient management and biocontrol, respectively. When Az and Tv are co-cultured, they form a biofilm, which has proved promising as an inoculant in several crops; however, the basic aspects related to regulation of biofilm formation were not investigated. Therefore, whole transcriptome sequencing (Illumina NextSeq500) and gene expression analyses were undertaken, related to biofilm formation vis a vis Tv and Az growing individually. Significant changes in the transcriptome profiles of biofilm were recorded and validated through qPCR analyses. In-depth evaluation also identified several genes (phoA, phoB, glgP, alg8, sipW, purB, pssA, fadD) specifically involved in biofilm formation in Az, Tv and Tv-Az. Genes coding for RNA-dependent RNA polymerase, ABC transporters, translation elongation factor EF-1, molecular chaperones and double homeobox 4 were either up-regulated or down-regulated during biofilm formation. To our knowledge, this is the first report on the modulation of gene expression in an agriculturally beneficial association, as a biofilm. Our results provide insights into the regulatory factors involved during biofilm formation, which can help to improve the beneficial effects and develop more effective and promising plant- microbe associations.
Collapse
Affiliation(s)
| | - Radha Prasanna
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - Puram Supriya
- Centre for Agricultural Bioinformatics, ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Shobit Thapa
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kusmaur, PO Kaitholi, Mau Nath Bhanjan, Uttar Pradesh 275101, India
| |
Collapse
|
18
|
Fan J, Zhang H, Rahman T, Stanton DN, Wan LQ. Cell organelle-based analysis of cell chirality. Commun Integr Biol 2019; 12:78-81. [PMID: 31143366 PMCID: PMC6527183 DOI: 10.1080/19420889.2019.1605277] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/02/2019] [Indexed: 01/06/2023] Open
Abstract
The maintenance of tight endothelial junctions requires the establishment of proper cell polarity, which includes not only the apicobasal and front-rear polarity but also the left-right (L-R) polarity. The cell possesses an intrinsic mechanism of orienting the L-R axis with respect to the other axes, following a left-hand or right-hand rule, termed cell chirality. We have previously reported that endothelial cells exhibit a clockwise or rightward bias on ring-shaped micropatterns. Now we further characterize the chirality of individual endothelial cells on micropatterns by analyzing the L-R positioning of the cell centroid relative to the nucleus-centrosome axis. Our results show that the centroids of endothelial cells preferably polarized towards the right side of the nucleus-centrosome axis. This bias is consistent with cell chirality characterized by other methods. These results suggest that the positioning of cell organelles is intrinsically L-R biased inside individual cells. This L-R bias provides an opportunity for determining cell chirality in situ, even in vivo, without the limitations of using isolated cells in in vitro engineered platforms.
Collapse
Affiliation(s)
- Jie Fan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.,Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Haokang Zhang
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Tasnif Rahman
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Diana N Stanton
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Leo Q Wan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.,Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.,Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA.,Center for Modeling, Simulation and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
19
|
B. George A, Korolev KS. Chirality provides a direct fitness advantage and facilitates intermixing in cellular aggregates. PLoS Comput Biol 2018; 14:e1006645. [PMID: 30589836 PMCID: PMC6307711 DOI: 10.1371/journal.pcbi.1006645] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/15/2018] [Indexed: 12/23/2022] Open
Abstract
Chirality in shape and motility can evolve rapidly in microbes and cancer cells. To determine how chirality affects cell fitness, we developed a model of chiral growth in compact aggregates such as microbial colonies and solid tumors. Our model recapitulates previous experimental findings and shows that mutant cells can invade by increasing their chirality or switching their handedness. The invasion results either in a takeover or stable coexistence between the mutant and the ancestor depending on their relative chirality. For large chiralities, the coexistence is accompanied by strong intermixing between the cells, while spatial segregation occurs otherwise. We show that the competition within the aggregate is mediated by bulges in regions where the cells with different chiralities meet. The two-way coupling between aggregate shape and natural selection is described by the chiral Kardar-Parisi-Zhang equation coupled to the Burgers’ equation with multiplicative noise. We solve for the key features of this theory to explain the origin of selection on chirality. Overall, our work suggests that chirality could be an important ecological trait that mediates competition, invasion, and spatial structure in cellular populations. Is it better to be left- or right-handed? The answer depends on whether the goal is making a handshake or winning a boxing match. The need for coordination favors the handedness of the majority, but being different could also provide an advantage. The same rules could apply to microbial colonies and cancer tumors. Like humans, cells often have handedness (chirality) that reflects the lack of mirror symmetry in their shapes or movement patterns. We find that cells gain a substantial fitness advantage by either increasing the magnitude of their chirality or switching to the opposite handedness. Selection for specific chirality can overcome differences in growth rate and is mediated by the formation of bulges along the colony edge in regions where cells with different chiralities meet.
Collapse
Affiliation(s)
- Ashish B. George
- Department of Physics, Boston University, Boston, Massachusetts, United States of America
- * E-mail: (ABG); (KSK)
| | - Kirill S. Korolev
- Department of Physics and Graduate Program in Bioinformatics, Boston University, Boston, Massachusetts, United States of America
- * E-mail: (ABG); (KSK)
| |
Collapse
|
20
|
Watson C, Hush P, Williams J, Dawson A, Ojkic N, Titmuss S, Waclaw B. Reduced adhesion between cells and substrate confers selective advantage in bacterial colonies
(a). ACTA ACUST UNITED AC 2018. [DOI: 10.1209/0295-5075/123/68001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Weinstein BT, Lavrentovich MO, Möbius W, Murray AW, Nelson DR. Genetic drift and selection in many-allele range expansions. PLoS Comput Biol 2017; 13:e1005866. [PMID: 29194439 PMCID: PMC5728587 DOI: 10.1371/journal.pcbi.1005866] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 12/13/2017] [Accepted: 11/01/2017] [Indexed: 12/15/2022] Open
Abstract
We experimentally and numerically investigate the evolutionary dynamics of four competing strains of E. coli with differing expansion velocities in radially expanding colonies. We compare experimental measurements of the average fraction, correlation functions between strains, and the relative rates of genetic domain wall annihilations and coalescences to simulations modeling the population as a one-dimensional ring of annihilating and coalescing random walkers with deterministic biases due to selection. The simulations reveal that the evolutionary dynamics can be collapsed onto master curves governed by three essential parameters: (1) an expansion length beyond which selection dominates over genetic drift; (2) a characteristic angular correlation describing the size of genetic domains; and (3) a dimensionless constant quantifying the interplay between a colony’s curvature at the frontier and its selection length scale. We measure these parameters with a new technique that precisely measures small selective differences between spatially competing strains and show that our simulations accurately predict the dynamics without additional fitting. Our results suggest that the random walk model can act as a useful predictive tool for describing the evolutionary dynamics of range expansions composed of an arbitrary number of genotypes with different fitnesses. Population expansions occur naturally during the spread of invasive species and have played a role in our evolutionary history when humans migrated out of Africa. We use a colony of non-motile bacteria expanding into unoccupied, nutrient-rich territory on an agar plate as a model system to explore how an expanding population’s spatial structure impacts its evolutionary dynamics. Spatial structure is present in expanding microbial colonies because daughter cells migrate only a small distance away from their mothers each generation. Generally, the constituents of expansions occurring in nature and in the lab have different genetic compositions (genotypes, or alleles if a single gene differs), each instilling different fitnesses, which compete to proliferate at the frontier. Here, we show that a random-walk model can accurately predict the dynamics of four expanding strains of E. coli with different fitnesses; each strain represents a competing allele. Our results can be extended to describe any number of competing genotypes with different fitnesses in a naturally occurring expansion as long as the underlying motility of the organisms does not cause our model to break down. Our model can also be used to precisely measure small selective differences between spatially competing genotypes in controlled laboratory settings.
Collapse
Affiliation(s)
- Bryan T. Weinstein
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| | - Maxim O. Lavrentovich
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Wolfram Möbius
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
- Physics and Astronomy, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom
- Department of Physics, Harvard University, Cambridge, Massachusetts, United States of America
| | - Andrew W. Murray
- FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - David R. Nelson
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Physics, Harvard University, Cambridge, Massachusetts, United States of America
- FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|