1
|
Kokhdan EP, Khodavandi P, Ataeyan MH, Alizadeh F, Khodavandi A, Zaheri A. Anti-cancer activity of secreted aspartyl proteinase protein from Candida tropicalis on human cervical cancer HeLa cells. Toxicon 2024; 249:108073. [PMID: 39153686 DOI: 10.1016/j.toxicon.2024.108073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/16/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Cervical cancer is the fourth leading cause of cancer-related death in women worldwide. Microbial products are valuable sources of anti-cancer drugs. The aim of this study was to isolate secreted aspartyl proteinase protein from Candida tropicalis, investigate its inhibitory effect on human cervical cancer HeLa cells, and analyze the expression profiling of selected nuclear stem cell-associated transcription factors. The presence of secreted aspartyl proteinase protein was confirmed by the expression of SAP2 and SAP4 genes in C. tropicalis during the yeast-hyphae transition phase. The enzyme was purified and characterized using the aqueous two-phase system purification method, as well as proteolytic activity and the Bradford and micro-Kjeldahl methods, respectively. The in vitro anti-cancer properties of secreted aspartyl proteinase protein were evaluated by MTT assay, microscopic image analysis, nitric oxide (NO) scavenging activity assay, intracellular reactive oxygen species (ROS) production assay, and RT-qPCR. The isolated C. tropicalis secreted aspartyl proteinase protein exhibited proteinase activity with values ranging from 93.72 to 130.70 μg/mL and 89.88-127.72 μg/mL according to the Bradford and micro-Kjeldahl methods, respectively. Secreted aspartyl proteinase showed effective cytotoxicity in HeLa cell line leading to significant morphological changes. Additionally, it exhibited increased free radical scavenging activity compared to the untreated control group, as evidenced by nitrite inhibition. ROS production increased in HeLa cells exposed to secreted aspartyl proteinase. The expression levels of the nuclear stem cell-associated transcription factors octamer-binding transcription factor 4 (OCT4), sex determining region Y-box 2 (SOX2), and Nanog homeobox (NANOG) were significantly downregulated in the HeLa cells treated with secreted aspartyl proteinase. Secreted aspartyl proteinase protein may be a promising anti-cancer agent, as it effectively affects gene expression and may ultimately reduce the development and progression of cervical cancer. Targeting the genes related to nuclear stem cell-associated transcription factors may provide a novel amenable to cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Fahimeh Alizadeh
- Department of Biology, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran.
| | - Alireza Khodavandi
- Department of Biology, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran.
| | - Ahmad Zaheri
- Department of Biology, Payame Noor University, Tehran, Iran
| |
Collapse
|
2
|
Li S, Liu X, Gu Q, Yu X. Isolation and Identification of Indole Alkaloids from Aspergillus amstelodami BSX001 and Optimization of Ultrasound-Assisted Extraction of Neoechinulin A. Microorganisms 2024; 12:864. [PMID: 38792694 PMCID: PMC11123293 DOI: 10.3390/microorganisms12050864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
This study aimed to investigate the alkaloid secondary metabolites of Aspergillus amstelodami BSX001, a fungus isolated from Anhua dark tea, and to improve the extraction yield of the active ingredients by optimizing the extraction process. The structural characterization of the compounds was investigated using mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. The antioxidant activity of echinulin-related alkaloids was evaluated by determining the total reducing power and DPPH radical scavenging capacity. The extraction process of the compound with optimum activity was optimized by a single-factor test and response surface methodology (RSM) combined with Box-Behnken design (BBD). The optimized result was validated. Finally, a new alkaloid 8-hydroxyechinulin (1), and four known alkaloids, variecolorin G (2), echinulin (3), neoechinulin A (4), and eurocristatine (5), were isolated. Echinulin-related compounds 1, 3, and 4 possessed certain antioxidant activities, with IC50 values of 0.587 mg/mL, 1.628 mg/mL, and 0.219 mg/mL, respectively, against DPPH radicals. Their total reducing power at a concentration of 0.5 mg/mL was 0.29 mmol/L, 0.17 mmol/L, and 4.25 mmol/L. The extraction process of neoechinulin A was optimized with the optimum extraction parameters of 72.76% methanol volume fraction, 25 mL/g solid-liquid ratio, and 50.8 °C soaking temperature. Under these conditions, the extraction yield of neoechinulin A was up to 1.500 mg/g.
Collapse
Affiliation(s)
- Shuyao Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China;
| | - Xiaobo Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China;
| | - Qiuya Gu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China;
| | - Xiaobin Yu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China;
| |
Collapse
|
3
|
El Amir D, Sayed AM, El-Hawary SS, Elsakhawy OM, Attia EZ, Abdelmohsen UR, Mohammed R. Metabolomic profiling of Medicago sativa-derived fungal endophytes and evaluation of their biological activities. RSC Adv 2024; 14:14296-14302. [PMID: 38690109 PMCID: PMC11059938 DOI: 10.1039/d4ra00790e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/07/2024] [Indexed: 05/02/2024] Open
Abstract
This study aimed to discover the potential of Medicago sativa-derived fungal endophytes as a prospective source of bioactive metabolites. In the present study, three different strains of fungal endophyte Aspergillus terreus were isolated from leaves L, roots T and stems St of Medicago sativa to explore their biological and chemical diversity. These isolated fungi were exposed to different fermentation conditions by adding various chemical elicitors to their solid fermentation media. According to LC-HRESIMS-based metabolomics and multivariate analysis, each chemical treatment had a different effect on the chemical profiles of the fungi. Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) proposed several compounds with anticancer action against MCF-7 (a human breast cancer cell line) and MDA-MB-231 (a human epithelial breast cancer cell line).
Collapse
Affiliation(s)
- Dalia El Amir
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University 62514 Beni-Suef Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Collage of Pharmacy, Almaaqal University 61014 Basrah Iraq
| | - Seham S El-Hawary
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University 11936 Cairo Egypt
| | - Omnia M Elsakhawy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University 62514 Beni-Suef Egypt
| | - Eman Zekry Attia
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University 61111 New Minia Egypt
| | - Rabab Mohammed
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University 62514 Beni-Suef Egypt
| |
Collapse
|
4
|
Goher SS, Abdrabo WS, Veerakanellore GB, Elgendy B. 2,5-Diketopiperazines (DKPs): Promising Scaffolds for Anticancer Agents. Curr Pharm Des 2024; 30:597-623. [PMID: 38343054 DOI: 10.2174/0113816128291798240201112916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/22/2024] [Indexed: 05/25/2024]
Abstract
2,5-Diketopiperazine (2,5-DKP) derivatives represent a family of secondary metabolites widely produced by bacteria, fungi, plants, animals, and marine organisms. Many natural products with DKP scaffolds exhibited various pharmacological activities such as antiviral, antifungal, antibacterial, and antitumor. 2,5-DKPs are recognized as privileged structures in medicinal chemistry, and compounds that incorporate the 2,5-DKP scaffold have been extensively investigated for their anticancer properties. This review is a thorough update on the anti-cancer activity of natural and synthesized 2,5-DKPs from 1997 to 2022. We have explored various aspects of 2,5-DKPs modifications and summarized their structure-activity relationships (SARs) to gain insight into their anticancer activities. We have also highlighted the novel approaches to enhance the specificity and pharmacokinetics of 2,5-DKP-based anticancer agents.
Collapse
Affiliation(s)
- Shaimaa S Goher
- Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
- Nanotechnology Research Centre (NTRC), The British University in Egypt (BUE), Suez Desert Road, El Sherouk City, Cairo 1183, Egypt
| | - Wessam S Abdrabo
- Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Giri Babu Veerakanellore
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, Missouri 63110, United States
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, United States
| | - Bahaa Elgendy
- Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, Missouri 63110, United States
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, United States
| |
Collapse
|
5
|
Deng J, Li Y, Yuan Y, Yin F, Chao J, Huang J, Liu Z, Wang K, Zhu M. Secondary Metabolites from the Genus Eurotium and Their Biological Activities. Foods 2023; 12:4452. [PMID: 38137256 PMCID: PMC10742824 DOI: 10.3390/foods12244452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Eurotium is the teleomorph genus associated with the section Aspergillus. Eurotium comprises approximately 20 species, which are widely distributed in nature and human environments. Eurotium is usually the key microorganism for the fermentation of traditional food, such as Fuzhuan brick tea, Liupao tea, Meju, and Karebushi; thus, Eurotium is an important fungus in the food industry. Eurotium has been extensively studied because it contains a series of interesting, structurally diverse, and biologically important secondary metabolites, including anthraquinones, benzaldehyde derivatives, and indol diketopiperazine alkaloids. These secondary metabolites have shown multiple biological activities, including antioxidative, antimicrobial, cytotoxic, antitumor, insecticidal, antimalarial, and anti-inflammatory activities. This study presents an up-to-date review of the phytochemistry and biological activities of all Eurotium species. This review will provide recent advances on the secondary metabolites and their bioactivities in the genus Eurotium for the first time and serve as a database for future research and drug development from the genus Eurotium.
Collapse
Affiliation(s)
- Jiantianye Deng
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; (J.D.); (Y.L.); (J.H.); (Z.L.); (K.W.)
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Yilong Li
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; (J.D.); (Y.L.); (J.H.); (Z.L.); (K.W.)
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Yong Yuan
- Hunan Tea Group Co., Ltd., Changsha 410128, China; (Y.Y.); (F.Y.); (J.C.)
| | - Feiyan Yin
- Hunan Tea Group Co., Ltd., Changsha 410128, China; (Y.Y.); (F.Y.); (J.C.)
| | - Jin Chao
- Hunan Tea Group Co., Ltd., Changsha 410128, China; (Y.Y.); (F.Y.); (J.C.)
| | - Jianan Huang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; (J.D.); (Y.L.); (J.H.); (Z.L.); (K.W.)
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Zhonghua Liu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; (J.D.); (Y.L.); (J.H.); (Z.L.); (K.W.)
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Kunbo Wang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; (J.D.); (Y.L.); (J.H.); (Z.L.); (K.W.)
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Mingzhi Zhu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; (J.D.); (Y.L.); (J.H.); (Z.L.); (K.W.)
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
6
|
Taheri M, Bahrami A, Asadi KK, Mohammadi M, Molaei P, Hashemi M, Nouri F. A review on nonviral, nonbacterial infectious agents toxicity involved in neurodegenerative diseases. Neurodegener Dis Manag 2023; 13:351-369. [PMID: 38357803 DOI: 10.2217/nmt-2023-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Neuronal death, decreased activity or dysfunction of neurotransmitters are some of the pathophysiological reasons for neurodegenerative diseases like Alzheimer's, Parkinson's and multiple sclerosis. Also, there is evidence for the role of infections and infectious agents in neurodegenerative diseases and the effect of some metabolites in microorganisms in the pathophysiology of these diseases. In this study, we intend to evaluate the existing studies on the role of infectious agents and their metabolites on the pathophysiology of neurodegenerative diseases. PubMed, Scopus, Google Scholar and Web of Science search engines were searched. Some infectious agents have been observed in neurodegenerative diseases. Also, isolations of some fungi and microalgae have an improving effect on Parkinson's and Alzheimer's.
Collapse
Affiliation(s)
- Mohammad Taheri
- Department of Medical Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Bahrami
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Kiana Kimiaei Asadi
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojdeh Mohammadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Pejman Molaei
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science & Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Nouri
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
7
|
Pant A, Vasundhara M. Endophytic fungi: a potential source for drugs against central nervous system disorders. Braz J Microbiol 2023; 54:1479-1499. [PMID: 37165297 PMCID: PMC10485218 DOI: 10.1007/s42770-023-00997-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 04/27/2023] [Indexed: 05/12/2023] Open
Abstract
Neuroprotection is one of the important protection methods against neuronal cells and tissue damage caused by neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington's, and multiple sclerosis. Various bioactive compounds produced by medicinal plants can potentially treat central nervous system (CNS) disorders. Apart from these resources, endophytes also produce diverse secondary metabolites capable of protecting the CNS. The bioactive compounds produced by endophytes play essential roles in enhancing the growth factors, antioxidant defence functions, diminishing neuroinflammatory, and apoptotic pathways. The efficacy of compounds produced by endophytic fungi was also evaluated by enzymes, cell lines, and in vivo models. Acetylcholine esterase (AChE) inhibition is frequently used to assess in vitro neuroprotective activity along with cytotoxicity-induced neuronal cell lines. Some of drugs, such as tacrine, donepezil, rivastigmine, galantamine, and other compounds, are generally used as reference standards. Furthermore, clinical trials are required to confirm the role of these natural compounds in neuroprotection efficacy and evaluate their safety profile. This review illustrates the production of various bioactive compounds produced by endophytic fungi and their role in preventing neurodegeneration.
Collapse
Affiliation(s)
- Anushree Pant
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - M Vasundhara
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
8
|
Xiong C, Zhu Y, Luo Q, Phan CW, Huo Y, Li P, Li Q, Jin X, Huang W. Neuroprotective effects of a novel peptide from Lignosus rhinocerotis against 6-hydroxydopamine-induced apoptosis in PC12 cells by inhibiting NF-κB activation. Food Sci Nutr 2023; 11:2152-2165. [PMID: 37181320 PMCID: PMC10171544 DOI: 10.1002/fsn3.3050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 08/07/2022] [Accepted: 08/22/2022] [Indexed: 11/11/2022] Open
Abstract
According to previous studies, oxidative stress is a leading cause of dopaminergic neuron death and may contribute to the pathogenesis of Parkinson's disease (PD). In the current study, we used chromatography of gel filtration to identify a novel peptide (Lignosus rhinocerotis peptide [LRP]) from the sclerotium of Lignosus rhinocerotis (Cooke) Ryvarden. Its neuroprotective effect was evaluated using an in vitro PD model constructed by 6-hydroxydopamine (6-OHDA)-stimulated to apoptosis in PC12 cells. The molecular weight of LRP is determined as 1532 Da and the secondary structure is irregular. The simple amino acid sequence of LRP is Thr-Leu-Ala-Pro-Thr-Phe-Leu-Ser-Ser-Leu-Gly-Pro-Cys-Leu-Leu. Notably, LRP has the ability to significantly boost the viability of PC12 cells after exposure to 6-OHDA, as well as enhance the cellular activity of antioxidative enzymes like superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px). LRP also lowers the level of malondialdehyde (MDA), decreases the activation performance of Caspase-3, and reduces 6-OHDA-induced apoptosis via inhibition of nuclear factor-kappa B (NF-κB) activation. These data indicate that LRP may have the potential to act as a neuroprotective agent.
Collapse
Affiliation(s)
- Chuan Xiong
- Biotechnology and Nuclear Technology Research InstituteSichuan Academy of Agricultural SciencesChengduChina
| | - Yu Zhu
- Biotechnology and Nuclear Technology Research InstituteSichuan Academy of Agricultural SciencesChengduChina
| | - Qiang Luo
- The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Chia Wei Phan
- Mushroom Research CentreUniversiti MalayaKuala LumpurMalaysia
- Department of Pharmaceutical Life SciencesFaculty of PharmacyUniversiti MalayaKuala LumpurMalaysia
| | - Yujie Huo
- Yunnan Plateau Characteristic Agricultural Industry Research InstituteYunnan Agricultural UniversityKunmingChina
| | - Ping Li
- Biotechnology and Nuclear Technology Research InstituteSichuan Academy of Agricultural SciencesChengduChina
| | - Qiang Li
- College of Food and Biological EngineeringChengdu UniversityChengduChina
| | - Xin Jin
- Biotechnology and Nuclear Technology Research InstituteSichuan Academy of Agricultural SciencesChengduChina
| | - Wenli Huang
- Biotechnology and Nuclear Technology Research InstituteSichuan Academy of Agricultural SciencesChengduChina
| |
Collapse
|
9
|
Rahman MM, Wang X, Islam MR, Akash S, Supti FA, Mitu MI, Harun-Or-Rashid M, Aktar MN, Khatun Kali MS, Jahan FI, Singla RK, Shen B, Rauf A, Sharma R. Multifunctional role of natural products for the treatment of Parkinson's disease: At a glance. Front Pharmacol 2022; 13:976385. [PMID: 36299886 PMCID: PMC9590378 DOI: 10.3389/fphar.2022.976385] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
Natural substances originating from plants have long been used to treat neurodegenerative disorders (NDs). Parkinson's disease (PD) is a ND. The deterioration and subsequent cognitive impairments of the midbrain nigral dopaminergic neurons distinguish by this characteristic. Various pathogenic mechanisms and critical components have been reported, despite the fact that the origin is unknown, such as protein aggregation, iron buildup, mitochondrial dysfunction, neuroinflammation and oxidative stress. Anti-Parkinson drugs like dopamine (DA) agonists, levodopa, carbidopa, monoamine oxidase type B inhibitors and anticholinergics are used to replace DA in the current treatment model. Surgery is advised in cases where drug therapy is ineffective. Unfortunately, the current conventional treatments for PD have a number of harmful side effects and are expensive. As a result, new therapeutic strategies that control the mechanisms that contribute to neuronal death and dysfunction must be addressed. Natural resources have long been a useful source of possible treatments. PD can be treated with a variety of natural therapies made from medicinal herbs, fruits, and vegetables. In addition to their well-known anti-oxidative and anti-inflammatory capabilities, these natural products also play inhibitory roles in iron buildup, protein misfolding, the maintenance of proteasomal breakdown, mitochondrial homeostasis, and other neuroprotective processes. The goal of this research is to systematically characterize the currently available medications for Parkinson's and their therapeutic effects, which target diverse pathways. Overall, this analysis looks at the kinds of natural things that could be used in the future to treat PD in new ways or as supplements to existing treatments. We looked at the medicinal plants that can be used to treat PD. The use of natural remedies, especially those derived from plants, to treat PD has been on the rise. This article examines the fundamental characteristics of medicinal plants and the bioactive substances found in them that may be utilized to treat PD.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Xiaoyan Wang
- Department of Pathology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Fatema Akter Supti
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Mohona Islam Mitu
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Harun-Or-Rashid
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Most. Nazmin Aktar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Most. Sumaiya Khatun Kali
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Farhana Israt Jahan
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Pakistan
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
10
|
Tian Y, Li Y. A Review on Bioactive Compounds from Marine-Derived Chaetomium Species. J Microbiol Biotechnol 2022; 32:541-550. [PMID: 35586928 PMCID: PMC9628867 DOI: 10.4014/jmb.2201.01007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 12/15/2022]
Abstract
Filamentous marine fungi have proven to be a plentiful source of new natural products. Chaetomium, a widely distributed fungal genus in the marine environment, has gained much interest within the scientific community. In the last 20 years, many potential secondary metabolites have been detected from marine-derived Chaetomium. In this review, we attempt to provide a comprehensive summary of the natural products produced by marine-derived Chaetomium species. A total of 122 secondary metabolites that were described from 2001 to 2021 are covered. The structural diversity of the compounds, along with details of the sources and relevant biological properties are also provided, while the relationships between structures and their bioactivities are discussed. It is our expectation that this review will be of benefit to drug development and innovation.
Collapse
Affiliation(s)
- Yuan Tian
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, P.R. China,Corresponding authors Yuan Tian E-mail:
| | - Yanling Li
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, P.R. China,
Yanling Li E-mail:
| |
Collapse
|
11
|
Sharifi-Rad J, Bahukhandi A, Dhyani P, Sati P, Capanoglu E, Docea AO, Al-Harrasi A, Dey A, Calina D. Therapeutic Potential of Neoechinulins and Their Derivatives: An Overview of the Molecular Mechanisms Behind Pharmacological Activities. Front Nutr 2021; 8:664197. [PMID: 34336908 PMCID: PMC8322439 DOI: 10.3389/fnut.2021.664197] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022] Open
Abstract
Neoechinulins are diketopiperazine type indole alkaloids that demonstrate radical scavenging, anti-inflammatory, antiviral, anti-neurodegenerative, neurotrophic factor-like, anticancer, pro-apoptotic, and anti-apoptotic properties. An array of neoechinulins such as neoechinulins A-E, isoechinulins A-C, cryptoechunilin have been isolated from various fungal sources like Aspergillus sp., Xylaria euglossa, Eurotium cristatum, Microsporum sp., etc. Besides, neoechinulin derivatives or stereoisomers were also obtained from diverse non-fungal sources viz. Tinospora sagittata, Opuntia dillenii, Cyrtomium fortunei, Cannabis sativa, and so on. The main purpose of this review is to provide update information on neoechinulins and their analogues about the molecular mechanisms of the pharmacological action and possible future research. The recent data from this review can be used to create a basis for the discovery of new neoechinulin-based drugs and their analogues in the near future. The online databases PubMed, Science and Google scholar were researched for the selection and collection of data from the available literature on neoechinulins, their natural sources and their pharmacological properties. The published books on this topic were also analysed. In vitro and in vivo assays have established the potential of neoechinulin A as a promising anticancer and anti-neuroinflammatory lead molecule. Neoechinulin B was also identified as a potential antiviral drug against hepatitis C virus. Toxicological and clinical trials are needed in the future to improve the phyto-pharmacological profile of neoquinolines. From the analysis of the literature, we found that neoechinulins and their derivatives have special biological potential. Although some modern pharmacological analyzes have highlighted the molecular mechanisms of action and some signalling pathways, the correlation between these phytoconstituents and pharmacological activities must be validated in the future by preclinical toxicological and clinical studies.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amit Bahukhandi
- G.B Pant National Institute of Himalayan Environment, Almora, India
| | - Praveen Dhyani
- Institute of Himalayan Bioresource Technology, Palampur, India
| | - Priyanka Sati
- Department of Biotechnology Graphic Era University, Dehradun, India
| | - Esra Capanoglu
- Food Engineering Department, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Turkey
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
12
|
Calado MDL, Silva J, Alves C, Susano P, Santos D, Alves J, Martins A, Gaspar H, Pedrosa R, Campos MJ. Marine endophytic fungi associated with Halopteris scoparia (Linnaeus) Sauvageau as producers of bioactive secondary metabolites with potential dermocosmetic application. PLoS One 2021; 16:e0250954. [PMID: 33983974 PMCID: PMC8118457 DOI: 10.1371/journal.pone.0250954] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/17/2021] [Indexed: 12/16/2022] Open
Abstract
Marine fungi and, particularly, endophytic species have been recognised as one of the most prolific sources of structurally new and diverse bioactive secondary metabolites with multiple biotechnological applications. Despite the increasing number of bioprospecting studies, very few have already evaluated the cosmeceutical potential of marine fungal compounds. Thus, this study focused on a frequent seaweed in the Portuguese coast, Halopteris scoparia, to identify the endophytic marine fungi associated with this host, and assess their ability to biosynthesise secondary metabolites with antioxidative, enzymatic inhibitory (hyaluronidase, collagenase, elastase and tyrosinase), anti-inflammatory, photoprotective, and antimicrobial (Cutibacterium acnes, Staphylococcus epidermidis and Malassezia furfur) activities. The results revealed eight fungal taxa included in the Ascomycota, and in the most representative taxonomic classes in marine ecosystems (Eurotiomycetes, Sordariomycetes and Dothideomycetes). These fungi were reported for the first time in Portugal and in association with H. scoparia, as far as it is known. The screening analyses showed that most of these endophytic fungi were producers of compounds with relevant biological activities, though those biosynthesised by Penicillium sect. Exilicaulis and Aspergillus chevalieri proved to be the most promising ones for being further exploited by dermocosmetic industry. The chemical analysis of the crude extract from an isolate of A. chevalieri revealed the presence of two bioactive compounds, echinulin and neoechinulin A, which might explain the high antioxidant and UV photoprotective capacities exhibited by the extract. These noteworthy results emphasised the importance of screening the secondary metabolites produced by these marine endophytic fungal strains for other potential bioactivities, and the relevance of investing more efforts in understanding the ecology of halo/osmotolerant fungi.
Collapse
Affiliation(s)
- Maria da Luz Calado
- MARE–Marine and Environmental Sciences Centre, Polytechnic of Leiria, Peniche, Portugal
| | - Joana Silva
- MARE–Marine and Environmental Sciences Centre, Polytechnic of Leiria, Peniche, Portugal
| | - Celso Alves
- MARE–Marine and Environmental Sciences Centre, Polytechnic of Leiria, Peniche, Portugal
| | - Patrícia Susano
- MARE–Marine and Environmental Sciences Centre, Polytechnic of Leiria, Peniche, Portugal
| | - Débora Santos
- MARE–Marine and Environmental Sciences Centre, Polytechnic of Leiria, Peniche, Portugal
| | - Joana Alves
- MARE–Marine and Environmental Sciences Centre, Polytechnic of Leiria, Peniche, Portugal
| | - Alice Martins
- MARE–Marine and Environmental Sciences Centre, Polytechnic of Leiria, Peniche, Portugal
| | - Helena Gaspar
- MARE–Marine and Environmental Sciences Centre, Polytechnic of Leiria, Peniche, Portugal
- MARE–Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, Peniche, Portugal
| | - Rui Pedrosa
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences of the University of Lisbon, Lisbon, Portugal
| | - Maria Jorge Campos
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences of the University of Lisbon, Lisbon, Portugal
| |
Collapse
|
13
|
Nies J, Li SM. Prenylation and Dehydrogenation of a C2-Reversely Prenylated Diketopiperazine as a Branching Point in the Biosynthesis of Echinulin Family Alkaloids in Aspergillus ruber. ACS Chem Biol 2021; 16:185-192. [PMID: 33381959 DOI: 10.1021/acschembio.0c00874] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The echinulin family alkaloids can be grouped into three series depending on the number of the exo double bonds adjacent to the diketopiperazine core structure. Heterologous expression of the putative echinulin biosynthetic gene cluster from Aspergillus ruber in Aspergillus nidulans led to accumulation of echinulin without a double bond and neoechinulin A with one double bond (Δ10) as major products. Their analogues with a different number of prenyl moieties were detected as minor products. Neoechinulin B and analogues with two double bonds (Δ10,14) were not observed. Feeding experiments confirmed that the cytochrome P450 enzyme EchP450 only catalyzes the formation of the double bond between C10 and C11. Coincubation and substrate concentration dependent assays with the prenyltransferase EchPT2 revealed that the reversely C2-prenylated preechinulin without a double bond is a much better substrate than neoechinulin A. These results prove that preechinulin serves as a common substrate for the formation of echinulin by two regiospecific prenylation steps with EchPT2 or for EchP450 to introduce one double bond and subsequent prenylations with low regioselectivity.
Collapse
Affiliation(s)
- Jonas Nies
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, Marburg 35037, Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, Marburg 35037, Germany
| |
Collapse
|
14
|
Wei X, Feng C, Wang SY, Zhang DM, Li XH, Zhang CX. New Indole Diketopiperazine Alkaloids from Soft Coral-Associated Epiphytic Fungus Aspergillus sp. EGF 15-0-3. Chem Biodivers 2020; 17:e2000106. [PMID: 32212241 DOI: 10.1002/cbdv.202000106] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/24/2020] [Indexed: 11/09/2022]
Abstract
Three new indole diketopiperazine alkaloids, 11-methylneoechinulin E and variecolorin M, and (+)-variecolorin G, along with 12 known analogs, were isolated from a soft coral-associated epiphytic fungus Aspergillus sp. EGF 15-0-3. The structures of the new compounds were unambiguously established by extensive spectroscopic analyses including HR-ESI-MS, 1D and 2D NMR spectroscopy and optical rotation measurements. The absolute configurations of (+)- and (-)-variecolorin G were determined by experimental and quantum-chemical ECD investigations and single-crystal X-ray diffraction analysis. Variecolorin G is a pair of enantiomeric mixtures with a ratio of 1 : 2. Moreover, (+)-neoechinulin A is firstly reported as a natural product. The cytotoxic activities of all the isolated compounds against NCI-H1975 gefitinib resistance (NCI-H1975/GR) cell lines were preliminarily evaluated by MTT method.
Collapse
Affiliation(s)
- Xia Wei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Chan Feng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Si-Yu Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Dong-Mei Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Xiao-Hui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Cui-Xian Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| |
Collapse
|
15
|
Biologically Active Echinulin-Related Indolediketopiperazines from the Marine Sediment-Derived Fungus Aspergillus niveoglaucus. Molecules 2019; 25:molecules25010061. [PMID: 31878044 PMCID: PMC6983058 DOI: 10.3390/molecules25010061] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 01/23/2023] Open
Abstract
Seven known echinulin-related indolediketopiperazine alkaloids (1–7) were isolated from the Vietnamese sediment-derived fungus Aspergillus niveoglaucus. Using chiral HPLC, the enantiomers of cryptoechinuline B (1) were isolated as individual compounds for the first time. (+)-Cryptoechinuline B (1a) exhibited neuroprotective activity in 6-OHDA-, paraquat-, and rotenone-induced in vitro models of Parkinson’s disease. (−)-Cryptoechinuline B (1b) and neoechinulin C (5) protected the neuronal cells against paraquat-induced damage in a Parkinson’s disease model. Neoechinulin B (4) exhibited cytoprotective activity in a rotenone-induced model, and neoechinulin (7) showed activity in the 6-OHDA-induced model.
Collapse
|
16
|
Huang C, Zhang Z, Cui W. Marine-Derived Natural Compounds for the Treatment of Parkinson's Disease. Mar Drugs 2019; 17:md17040221. [PMID: 30978965 PMCID: PMC6520879 DOI: 10.3390/md17040221] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/23/2019] [Accepted: 04/05/2019] [Indexed: 12/29/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder caused by the loss of dopaminergic neurons, leading to the motor dysfunctions of patients. Although the etiology of PD is still unclear, the death of dopaminergic neurons during PD progress was revealed to be associated with the abnormal aggregation of α-synuclein, the elevation of oxidative stress, the dysfunction of mitochondrial functions, and the increase of neuroinflammation. However, current anti-PD therapies could only produce symptom-relieving effects, because they could not provide neuroprotective effects, stop or delay the degeneration of dopaminergic neurons. Marine-derived natural compounds, with their novel chemical structures and unique biological activities, may provide anti-PD neuroprotective effects. In this study, we have summarized anti-PD marine-derived natural products which have shown pharmacological activities by acting on various PD targets, such as α-synuclein, monoamine oxidase B, and reactive oxygen species. Moreover, marine-derived natural compounds currently evaluated in the clinical trials for the treatment of PD are also discussed.
Collapse
Affiliation(s)
- Chunhui Huang
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China.
- Laboratory of Marine Natural Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Zaijun Zhang
- Institute of New Drug Research, Guangdong Province Key Laboratory of Pharmacodynamic, Constituents of Traditional Chinese Medicine and New Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Wei Cui
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China.
- Laboratory of Marine Natural Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
17
|
Kamisuki S, Himeno N, Tsurukawa Y, Kusayanagi T, Takeno M, Kamakura T, Kuramochi K, Sugawara F. Identification of proteins that bind to the neuroprotective agent neoechinulin A. Biosci Biotechnol Biochem 2018; 82:442-448. [PMID: 29447077 DOI: 10.1080/09168451.2018.1433018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neoechinulin A is an indole alkaloid with several biological activities. We previously reported that this compound protects neuronal PC12 cells from cytotoxicity induced by the peroxynitrite generator 3-morpholinosydnonimine (SIN-1), but the target proteins and precise mechanism of action of neoechinulin A were unclear. Here, we employed a phage display screen to identify proteins that bind directly with neoechinulin A. Our findings identified two proteins, chromogranin B and glutaredoxin 3, as candidate target binding partners for the alkaloid. QCM analyses revealed that neoechinulin A displays high affinity for both chromogranin B and glutaredoxin 3. RNA interference-mediated depletion of chromogranin B decreased the sensitivity of PC12 cells against SIN-1. Our results suggested chromogranin B is a plausible target of neoechinulin A.
Collapse
Affiliation(s)
- Shinji Kamisuki
- a School of Veterinary Medicine , Azabu University , Kanagawa , Japan
| | - Natsumi Himeno
- b Department of Applied Biological Science , Tokyo University of Science , Chiba , Japan
| | - Yukine Tsurukawa
- a School of Veterinary Medicine , Azabu University , Kanagawa , Japan
| | - Tomoe Kusayanagi
- b Department of Applied Biological Science , Tokyo University of Science , Chiba , Japan
| | - Masahiro Takeno
- b Department of Applied Biological Science , Tokyo University of Science , Chiba , Japan
| | - Takashi Kamakura
- b Department of Applied Biological Science , Tokyo University of Science , Chiba , Japan
| | - Kouji Kuramochi
- b Department of Applied Biological Science , Tokyo University of Science , Chiba , Japan
| | - Fumio Sugawara
- b Department of Applied Biological Science , Tokyo University of Science , Chiba , Japan
| |
Collapse
|
18
|
|
19
|
Zhao XY, Wang G, Wang Y, Tian XG, Zhao JC, Huo XK, Sun CP, Feng L, Ning J, Wang C, Zhang BJ, Wang X. Chemical constituents from Alisma plantago-aquatica subsp. orientale (Sam.) Sam and their anti-inflammatory and antioxidant activities. Nat Prod Res 2017; 32:2749-2755. [PMID: 28954548 DOI: 10.1080/14786419.2017.1380024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Xin-Yu Zhao
- College of Pharmacy, College (Institute) of Intergrative Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Gang Wang
- College of Pharmacy, College (Institute) of Intergrative Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Yan Wang
- College of Pharmacy, College (Institute) of Intergrative Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
- Chinese People’s Liberation Army 210 Hospital, Dalian, China
| | - Xiang-Ge Tian
- College of Pharmacy, College (Institute) of Intergrative Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Jian-Chao Zhao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiao-Kui Huo
- College of Pharmacy, College (Institute) of Intergrative Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Cheng-Peng Sun
- College of Pharmacy, College (Institute) of Intergrative Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Lei Feng
- College of Pharmacy, College (Institute) of Intergrative Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Jing Ning
- College of Pharmacy, College (Institute) of Intergrative Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Chao Wang
- College of Pharmacy, College (Institute) of Intergrative Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Bao-Jing Zhang
- College of Pharmacy, College (Institute) of Intergrative Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Xun Wang
- College of Pharmacy, College (Institute) of Intergrative Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
- Department of Nuerosurgery, The Third People’s Hospital of Dalian, Non-directly Affliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
20
|
Visagie CM, Yilmaz N, Renaud JB, Sumarah MW, Hubka V, Frisvad JC, Chen AJ, Meijer M, Seifert KA. A survey of xerophilic Aspergillus from indoor environment, including descriptions of two new section Aspergillus species producing eurotium-like sexual states. MycoKeys 2017. [DOI: 10.3897/mycokeys.19.11161] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
21
|
Sasaki-Hamada S, Hoshi M, Niwa Y, Ueda Y, Kokaji A, Kamisuki S, Kuramochi K, Sugawara F, Oka JI. Neoechinulin A induced memory improvements and antidepressant-like effects in mice. Prog Neuropsychopharmacol Biol Psychiatry 2016; 71:155-61. [PMID: 27495355 DOI: 10.1016/j.pnpbp.2016.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 07/20/2016] [Accepted: 08/01/2016] [Indexed: 12/13/2022]
Abstract
Neoechinulin A is an isoprenyl indole alkaloid that exhibits scavenging, neurotrophic factor-like, and anti-apoptotic activities. However, the effectiveness of neoechinulin A in animal models of disease has not yet been explored. In the present study, we investigated the effects of neoechinulin A on memory impairment in lipopolysaccharide (LPS)-treated mice and its antidepressant-like effects in mice. In the Y-maze test, the intracerebroventicular (i.c.v.) administration of LPS (10μg/mouse) significantly decreased spontaneous alternation behavior, which was prevented by the prior administration of neoechinulin A (300ng/mouse, i.c.v.). None of the treatments altered the locomotor activity of mice. Moreover, the administration of neoechinulin A decreased the immobility time in the forced-swim test or tail suspension test, which was prevented by the prior administration of WAY100635 (an antagonist of 5-HT1A receptors) and parachlorophenylalanine (an inhibitor of tryptophan hydroxylase). These results suggest that neoechinulin A improves memory functions in LPS-treated mice, and also exerts antidepressant-like effects through changes in the 5-HT system.
Collapse
Affiliation(s)
- Sachie Sasaki-Hamada
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Maho Hoshi
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yuki Niwa
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yudai Ueda
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Aya Kokaji
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Shinji Kamisuki
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kouji Kuramochi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan
| | - Fumio Sugawara
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Jun-Ichiro Oka
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
22
|
Chen M, Zhao Q, Hao JD, Wang CY. Two benzaldehyde derivatives and their artefacts from a gorgonian-derived Eurotium sp. fungus. Nat Prod Res 2016; 31:268-274. [PMID: 27627699 DOI: 10.1080/14786419.2016.1230116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Two new benzaldehyde derivatives, named 3'-OH-tetrahydroauroglaucin (1) and(3'S*,4'R*)-6-(3',5-epoxy-4'-hydroxy-1'-heptenyl)-2-hydroxy-3-(3''-methyl-2''-butenyl)benzaldehyde (2), were isolated from a gorgonian-derived Eurotium sp. fungus. Their structures were determined by extensive spectroscopic analysis including NMR and MS spectra. Dissolved 1 in CDCl3 for several days could be detected its 2H-chromene skeleton derivatives (1a/1b), a pair of enantiomers with opposite configurations at C-3'. Compound 2 was also found to chemically convert to a pair of epimers non-enzymatically. The plausible mechanism to form the 2H-chromene artefacts with racemisation at C-3' undergoing nucleophilic substitution (SN1) was proposed.
Collapse
Affiliation(s)
- Min Chen
- a Marine Science & Technology Institute, College of Environmental Science & Engineering , Yangzhou University , Yangzhou , People's Republic of China.,b Key Laboratory of Marine Drugs, the Ministry of Education , School of Medicine and Pharmacy, Ocean University of China , Qingdao , People's Republic of China
| | - Qing Zhao
- b Key Laboratory of Marine Drugs, the Ministry of Education , School of Medicine and Pharmacy, Ocean University of China , Qingdao , People's Republic of China.,c Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao , People's Republic of China
| | - Jun-Di Hao
- b Key Laboratory of Marine Drugs, the Ministry of Education , School of Medicine and Pharmacy, Ocean University of China , Qingdao , People's Republic of China.,c Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao , People's Republic of China
| | - Chang-Yun Wang
- b Key Laboratory of Marine Drugs, the Ministry of Education , School of Medicine and Pharmacy, Ocean University of China , Qingdao , People's Republic of China.,c Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao , People's Republic of China
| |
Collapse
|
23
|
Jiang J, Ma Z, Castle SL. Bulky α,β-dehydroamino acids: their occurrence in nature, synthesis, and applications. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
24
|
Chen X, Si L, Liu D, Proksch P, Zhang L, Zhou D, Lin W. Neoechinulin B and its analogues as potential entry inhibitors of influenza viruses, targeting viral hemagglutinin. Eur J Med Chem 2015; 93:182-95. [PMID: 25681711 DOI: 10.1016/j.ejmech.2015.02.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 02/01/2015] [Accepted: 02/04/2015] [Indexed: 11/16/2022]
Abstract
A class of prenylated indole diketopiperazine alkaloids including 15 new compounds namely rubrumlines A-O obtained from marine-derived fungus Eurotium rubrum, were tested against influenza A/WSN/33 virus. Neoechinulin B (18) exerted potent inhibition against H1N1 virus infected in MDCK cells, and is able to inhibit a panel of influenza virus strains including amantadine- and oseltamivir-resistant clinical isolates. Mechanism of action studies indicated that neoechinulin B binds to influenza envelope hemagglutinin, disrupting its interaction with the sialic acid receptor and the attachment of viruses to host cells. In addition, neoechinulin B was still efficient in inhibiting influenza A/WSN/33 virus propagation even after a fifth passage. The high potency and broad-spectrum activities against influenza viruses with less drug resistance make neoechinulin B as a new lead for the development of potential inhibitor of influenza viruses.
Collapse
Affiliation(s)
- Xueqing Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Longlong Si
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Dong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Peter Proksch
- Institute für Pharmazeutische Biologie und Biotechnologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, Geb.26.23, 40225 Düsseldorf, Germany
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
25
|
Natural products from marine organisms with neuroprotective activity in the experimental models of Alzheimer's disease, Parkinson's disease and ischemic brain stroke: their molecular targets and action mechanisms. Arch Pharm Res 2014; 38:139-70. [PMID: 25348867 DOI: 10.1007/s12272-014-0503-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/14/2014] [Indexed: 12/20/2022]
Abstract
Continuous increases in the incidence of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and brain stroke demand the urgent development of therapeutics. Marine organisms are well-known producers of natural products with diverse structures and pharmacological activities. Therefore, researchers have endeavored to identify marine natural products with neuroprotective effects. In this regard, this review summarizes therapeutic targets for AD, PD, and ischemic brain stroke and marine natural products with pharmacological activities on the targets according to taxonomies of marine organisms. Furthermore, several marine natural products on the clinical trials for the treatment of neurological disorders are discussed.
Collapse
|
26
|
Kim KS, Cui X, Lee DS, Sohn JH, Yim JH, Kim YC, Oh H. Anti-inflammatory effect of neoechinulin a from the marine fungus Eurotium sp. SF-5989 through the suppression of NF-кB and p38 MAPK Pathways in lipopolysaccharide-stimulated RAW264.7 macrophages. Molecules 2013; 18:13245-59. [PMID: 24165583 PMCID: PMC6270177 DOI: 10.3390/molecules181113245] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/05/2013] [Accepted: 10/18/2013] [Indexed: 01/13/2023] Open
Abstract
In the course of a bioassay-guided study of metabolites from the marine fungus Eurotium sp. SF-5989, two diketopiperazine type indole alkaloids, neoechinulins A and B, were isolated. In this study, we investigated the anti-inflammatory effects of neoechinulins A (1) and B (2) on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Neoechinulin A (1) markedly suppressed the production of nitric oxide (NO) and prostaglandin E2 (PGE2) and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in a dose dependent manner ranging from 12.5 µM to 100 µM without affecting the cell viability. On the other hand, neoechinulin B (2) affected the cell viability at 25 µM although the compound displayed similar inhibitory effect of NO production to neoechinulin A (1) at lower doses. Furthermore, neoechinulin A (1) decreased the secretion of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). We also confirmed that neoechinulin A (1) blocked the activation of nuclear factor-kappaB (NF-κB) in LPS-stimulated RAW264.7 macrophages by inhibiting the phosphorylation and degradation of inhibitor kappa B (IκB)-α. Moreover, neoechinulin A (1) decreased p38 mitogen-activated protein kinase (MAPK) phosphorylation. Therefore, these data showed that the anti-inflammatory effects of neoechinulin A (1) in LPS-stimulated RAW264.7 macrophages were due to the inhibition of the NF-κB and p38 MAPK pathways, suggesting that neoechinulin A (1) might be a potential therapeutic agent for the treatment of various inflammatory diseases.
Collapse
Affiliation(s)
- Kyoung-Su Kim
- College of Pharmacy, Wonkwang University, Iksan 570-749, Korea; E-Mails: (K.-S.K); (X.C.); (D.-S.L.)
- Standardized Material Bank for New Botanical Drugs, College of Pharmacy, Wonkwang University, Iksan 570-749, Korea
- Authors to whom correspondence should be addressed; E-Mails: (Y.-C.K.); (H.O.); Tel.: +82-63-850-6823 (Y.-C.K.); Tel.: +82-63-850-6815 (H.O.); Fax: +82-63-852-8837 (H.O.)
| | - Xiang Cui
- College of Pharmacy, Wonkwang University, Iksan 570-749, Korea; E-Mails: (K.-S.K); (X.C.); (D.-S.L.)
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, Yanbian University College of Pharmacy, 977 Gongyuan Road, Yanji 133002, Jilin, China
- Authors to whom correspondence should be addressed; E-Mails: (Y.-C.K.); (H.O.); Tel.: +82-63-850-6823 (Y.-C.K.); Tel.: +82-63-850-6815 (H.O.); Fax: +82-63-852-8837 (H.O.)
| | - Dong-Sung Lee
- College of Pharmacy, Wonkwang University, Iksan 570-749, Korea; E-Mails: (K.-S.K); (X.C.); (D.-S.L.)
- Standardized Material Bank for New Botanical Drugs, College of Pharmacy, Wonkwang University, Iksan 570-749, Korea
- Hanbang Body-Fluid Research Center, Wonkwang University, Iksan 570-749, Korea
| | - Jae Hak Sohn
- College of Medical and Life Sciences, Silla University, Busan 617-736, Korea; E-Mail: (J.H.S.)
| | - Joung Han Yim
- Korea Polar Research Institute, KORDI, 7-50 Songdo-dong, Yeonsu-gu, Incheon 406-840, Korea; E-Mail: (J.H.Y.)
| | - Youn-Chul Kim
- College of Pharmacy, Wonkwang University, Iksan 570-749, Korea; E-Mails: (K.-S.K); (X.C.); (D.-S.L.)
- Standardized Material Bank for New Botanical Drugs, College of Pharmacy, Wonkwang University, Iksan 570-749, Korea
- Hanbang Body-Fluid Research Center, Wonkwang University, Iksan 570-749, Korea
- Authors to whom correspondence should be addressed; E-Mails: (Y.-C.K.); (H.O.); Tel.: +82-63-850-6823 (Y.-C.K.); Tel.: +82-63-850-6815 (H.O.); Fax: +82-63-852-8837 (H.O.)
| | - Hyuncheol Oh
- College of Pharmacy, Wonkwang University, Iksan 570-749, Korea; E-Mails: (K.-S.K); (X.C.); (D.-S.L.)
- Standardized Material Bank for New Botanical Drugs, College of Pharmacy, Wonkwang University, Iksan 570-749, Korea
- Hanbang Body-Fluid Research Center, Wonkwang University, Iksan 570-749, Korea
- Authors to whom correspondence should be addressed; E-Mails: (Y.-C.K.); (H.O.); Tel.: +82-63-850-6823 (Y.-C.K.); Tel.: +82-63-850-6815 (H.O.); Fax: +82-63-852-8837 (H.O.)
| |
Collapse
|
27
|
Synthetic and structure-activity relationship studies on bioactive natural products. Biosci Biotechnol Biochem 2013; 77:446-54. [PMID: 23470748 DOI: 10.1271/bbb.120884] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This review summarizes our research into the synthesis and structure-activity relationships of epolactaene, neoechinulin A, plakevulin A, pseudodeflectusin and ustusorane C. These natural products are attractive in view of their apoptosis-inducing activity, cytoprotective activity against peroxynitrite, inhibitory activity against DNA polymerases, and cytotoxicity in cancer cells.
Collapse
|
28
|
Dewapriya P, Li YX, Himaya S, Pangestuti R, Kim SK. Neoechinulin A suppresses amyloid-β oligomer-induced microglia activation and thereby protects PC-12 cells from inflammation-mediated toxicity. Neurotoxicology 2013; 35:30-40. [DOI: 10.1016/j.neuro.2012.12.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 12/08/2012] [Accepted: 12/14/2012] [Indexed: 12/22/2022]
|
29
|
Wijesekara I, Li YX, Vo TS, Van Ta Q, Ngo DH, Kim SK. Induction of apoptosis in human cervical carcinoma HeLa cells by neoechinulin A from marine-derived fungus Microsporum sp. Process Biochem 2013. [DOI: 10.1016/j.procbio.2012.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Akashi S, Shirai K, Okada T, Konishi K, Takeuchi T, Kuramochi K, Takahashi M, Nakagawa T, Ogura Y, Fujieda S, Shibata Y, Sugawara F, Kobayashi S, Watanabe N, Arai T. Neoechinulin a imparts resistance to acute nitrosative stress in PC12 cells: a potential link of an elevated cellular reserve capacity for pyridine nucleotide redox turnover with cytoprotection. Biol Pharm Bull 2012; 35:1105-17. [PMID: 22791159 DOI: 10.1248/bpb.b12-00055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Treatment of PC12 cells with fungus-derived alkaloid neoechinulin A for more than 12 h renders the cells resistant to subsequent superoxide (O₂⁻)/nitric oxide (NO) insults derived from 3-morpholinosydnonimine (SIN-1). However, the underlying mechanism(s) remains largely unclear. To elucidate the mechanism(s), we assessed the specificity of the cytoprotection afforded by neoechinulin A treatment using other cytocidal stressors and also clarified the resulting cellular alterations, focusing on the antioxidant and metabolic enzymes systems. Neoechinulin A treatment for more than 12 h endowed PC12 cells with significant resistance to transient NO toxicity, but not persistent NO toxicity, bolus H₂O₂ toxicity, or oxidative insult from the redox cycling quinone menadione. Cellular antioxidant system profiling revealed no substantial potentiation of the activity of any antioxidant enzyme in lysate from the neoechinulin A-treated cells excluding glutathione (GSH) content, which was significantly decreased (>50%), resulting in a proportional compromise in the thiol-reducing activity of the intact cells. In addition, no differences were observed in the activity for any nicotinamide adenine dinucleotide (phosphate) reduced form (NAD(P)H)-generating enzyme, steady-state NAD(P)H/nicotinamide adenine dinucleotide (phosphate) oxidized form (NAD(P)⁺) ratios, or the levels of total NAD(P)H. Nevertheless, the neoechinulin A-treated intact cells exhibited increased NAD(P)H redox turnover when driven by extracellular tetrazolium. The structurally inactive analog preechinulin failed to protect cells against NO toxicity or induce these alterations, suggesting their link with the cytoprotective mechanism. These results suggest that neoechinulin A, despite disabling the GSH defense system, confers cytoprotection against nitrosative stresses by elevating the cellular reserve capacity for NAD(P)H generation, which could offset crippling of energy-supplying systems due to nitrosative stress.
Collapse
Affiliation(s)
- Soichiro Akashi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Akashi S, Kimura T, Takeuchi T, Kuramochi K, Kobayashi S, Sugawara F, Watanabe N, Arai T. Neoechinulin a impedes the progression of rotenone-induced cytotoxicity in PC12 cells. Biol Pharm Bull 2011; 34:243-8. [PMID: 21415535 DOI: 10.1248/bpb.34.243] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neoechinulin A, an indole alkaloid from marine fungi, can protect PC12 cells from the cytotoxicity of 1-methyl-4-phenylpyridinium (MPP(+)), a Parkinson disease-inducing neurotoxin, by ameliorating downstream events resulting from mitochondrial complex I inactivation. However, the cytoprotective mechanisms remained unclear. In this study, by using rotenone, another parkinsonian-inducing neurotoxin targeting mitochondrial complex I, we investigated the cytoprotective mechanism of neoechinulin A. Rotenone-induced cell death was associated with accelerated glucose consumption, and excess glucose supplementation in the culture medium almost completely suppressed cell death, suggesting that glucose deficiency in the medium is critical for triggering cell death in this model. Co-treatment with neoechinulin A, but not neoechinulin A pre-treatment before rotenone exposure, significantly impeded cell death by rotenone. Although the presence of neoechinulin A did not affect the accelerated glycolytic turnover in rotenone-treated cells, it paradoxically decreased ATP levels in the cells, suggesting increased ATP consumption. Although the link between the decreased ATP levels and cytoprotection is not clear at present, it suggests that neoechinulin A may ameliorate rotenone toxicity by activating a cytoprotective machinery that requires ATP.
Collapse
Affiliation(s)
- Soichiro Akashi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Tokyo University of Science; 2641 Yamazaki, Noda, Chiba 278–8510, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Kanokmedhakul K, Kanokmedhakul S, Suwannatrai R, Soytong K, Prabpai S, Kongsaeree P. Bioactive meroterpenoids and alkaloids from the fungus Eurotium chevalieri. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.05.066] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Synthesis and Neuroprotective Action of Optically Pure Neoechinulin A and Its Analogs. Pharmaceuticals (Basel) 2010; 3:1063-1069. [PMID: 27713287 PMCID: PMC4034020 DOI: 10.3390/ph3041063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 01/05/2010] [Accepted: 03/29/2010] [Indexed: 11/17/2022] Open
Abstract
We developed an efficient, stereoselective synthetic method for the diketopiperazine moiety of neoechinulin A and its derivatives. The intramolecular cyclization at 80 ºC proceeded with minimal racemization of the stereogenic center at C-12 on neoechinulin A, even though the cyclization at 110 ºC caused partial racemization. In contrast with these results, the cyclization on diketopiperazine of 8,9-dihydroneoechinulin A derivatives did not cause epimerization of the stereogenic centers, even at 110 °C. We examined the structure-activity relationships for the cytoprotective activity against cytotoxicity induced by 3-morpholinosydnonimine (SIN-1) in nerve growth factor (NGF)-differentiated PC12 cells. The C-8/C-9 double bond, but not the stereogenic center derived from alanine, was found to play a key role in the cytoprotective activity.
Collapse
|
34
|
Miller JD, Sun M, Gilyan A, Roy J, Rand TG. Inflammation-associated gene transcription and expression in mouse lungs induced by low molecular weight compounds from fungi from the built environment. Chem Biol Interact 2010; 183:113-24. [PMID: 19818335 DOI: 10.1016/j.cbi.2009.09.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Revised: 09/29/2009] [Accepted: 09/29/2009] [Indexed: 12/27/2022]
Abstract
Few metabolites from fungi found indoors have been tested for inflammatory mediators endpoints in primary cultures of alveolar macrophages or in vivo. In this study, mice were intratracheally instilled with a single dose comprising 4x10(-5)moletoxin/kg lung wt dose of either atranone C, brevianamide, cladosporin, mycophenolic acid, neoechinulin A & B, sterigmatocystin or TMC-120A. These toxins are from fungi common on damp building materials. The dose used was comparable to the estimated doses of possible human exposure. Hematoxylin and eosin (H&E) histology and Alcian Blue/Periodic Acid Schiff (AB/PAS) histochemistry were used to evaluate lungs for time course (4h and 12h post-exposure (PE)) inflammatory and toxic changes. Reverse-transcription (RT)-PCR based arrays were also employed to evaluate time course inflammation-associated gene transcription in lung tissues of the different toxins. Immunohistochemistry (IHC) was used to probe MIP-2 and Tnf-alpha protein expression in treatment lungs to determine whether responses correspond with gene transcription data. Both histology and histochemistry revealed that toxin exposed lungs at 12h PE showed evidence of inflammation. H&E revealed that bronchioli were lined with irregularly thickened and sometimes sloughing epithelium and bronchiolar spaces supported infiltration of leukocytes, cellular and mucus-like debris while alveolar spaces supported swollen macrophages and modest amorphous debris accumulations. All toxin-instilled lungs exhibited copious mucus production and alveolar macrophages with red stained cytoplasm on bronchiolar surfaces, especially at 12h PE. Array analysis of 83 inflammation-associated genes extracted from lung tissue demonstrated a number of patterns, compared to controls. 82 genes assayed at 4h PE and 75 genes at 12h PE were significantly altered (p< or =0.05; >or =1.5-fold or < or =-1.5-fold change) in the different treatment animal groups. Expression of transcriptionally regulated genes was confirmed using immunohistochemistry that demonstrated MIP-2 and Tnf-alpha staining in respiratory bronchiolar epithelia, alveolar macrophages and alveolar type II cells. The transcriptional regulation in these genes in the treatment groups suggests that they may serve central roles in the immunomodulation of toxin-induced pro-inflammatory lung responses. Hierarchical cluster analysis revealed significant patterns of gene transcription linking the response of the toxins at equimolar doses in three groups: (1) brevianamide, mycophenolic acid and neoechinulin B, (2) neoechinulin A and sterigmatocystin, and (3) cladosporin, atranone C and TMC-120. The results further confirm the inflammatory nature of metabolites/toxins from such fungi can contribute to the development of non-allergenic respiratory health effects.
Collapse
Affiliation(s)
- J D Miller
- Department of Chemistry, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | | | | | | | | |
Collapse
|
35
|
Slack GJ, Puniani E, Frisvad JC, Samson RA, Miller JD. Secondary metabolites from Eurotium species, Aspergillus calidoustus and A. insuetus common in Canadian homes with a review of their chemistry and biological activities. ACTA ACUST UNITED AC 2009; 113:480-90. [PMID: 19422073 DOI: 10.1016/j.mycres.2008.12.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Abstract
Neoechinulin A, an alkaloid from Eurotium rubrum, can protect neuronal PC12 cells against cytotoxicity of a potent oxidant, peroxynitrite. Because involvement of peroxynitrite has been suggested in the pathogenesis of Parkinson's disease, we assessed whether this alkaloid could also protect PC12 cells from the cytocidal action of 1-methyl-4-phenylpyridine (MPP+), a neurotoxin capable of provoking acute Parkinson's-like neurodegeneration in humans. Neoechinulin A could protect PC12 cells from MPP+ cytotoxicity without protecting against mitochondrial complex I dysfunction, suggesting the alkaloid can ameliorate downstream events of mitochondrial failure. Thus, neoechinulin A has the potential to intervene in this progressive neurodegeneration.
Collapse
|
37
|
Kuramochi K, Ohnishi K, Fujieda S, Nakajima M, Saitoh Y, Watanabe N, Takeuchi T, Nakazaki A, Sugawara F, Arai T, Kobayashi S. Synthesis and Biological Activities of Neoechinulin A Derivatives: New Aspects of Structure-Activity Relationships for Neoechinulin A. Chem Pharm Bull (Tokyo) 2008; 56:1738-43. [DOI: 10.1248/cpb.56.1738] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kouji Kuramochi
- Department of Applied Biological Science, Tokyo University of Science
- Genome and Drug Discovery Center, Tokyo University of Science
| | - Kensuke Ohnishi
- Genome and Drug Discovery Center, Tokyo University of Science
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Satoshi Fujieda
- Department of Applied Biological Science, Tokyo University of Science
| | | | - Yoshihiko Saitoh
- Department of Applied Biological Science, Tokyo University of Science
| | - Nobuo Watanabe
- Department of Applied Biological Science, Tokyo University of Science
| | | | - Atsuo Nakazaki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Fumio Sugawara
- Department of Applied Biological Science, Tokyo University of Science
- Genome and Drug Discovery Center, Tokyo University of Science
| | - Takao Arai
- Department of Applied Biological Science, Tokyo University of Science
| | - Susumu Kobayashi
- Genome and Drug Discovery Center, Tokyo University of Science
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| |
Collapse
|