1
|
Desormeaux E, Barksdale GJ, van der Donk WA. Kinetic Analysis of Cyclization by the Substrate-Tolerant Lanthipeptide Synthetase ProcM. ACS Catal 2024; 14:18310-18321. [PMID: 39722886 PMCID: PMC11667668 DOI: 10.1021/acscatal.4c06216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 12/28/2024]
Abstract
Lanthipeptides are ribosomally synthesized and post-translationally modified peptides (RiPPs) characterized by the presence of thioether cross-links called lanthionine and methyllanthionine, formed by dehydration of Ser/Thr residues and Michael-type addition of Cys side chains onto the resulting dehydroamino acids. Class II lanthipeptide synthetases are bifunctional enzymes responsible for both steps, thus generating macrocyclic natural products. ProcM is part of a group of class II lanthipeptide synthetases that are known for their remarkable substrate tolerance, having large numbers of natural substrates with highly diverse peptide sequences. They install multiple (methyl)lanthionine rings with high accuracy, attributes that have been used to make large libraries of polycyclic peptides. Previous studies suggested that the final ring pattern of the lanthipeptide product may be determined by the substrate sequence rather than by ProcM. The current investigation on the ProcM-catalyzed modification of one of its 30 natural substrates (ProcA3.3) and its sequence variants utilizes kinetic assays to understand the factors that determine the ring pattern. The data show that changes in the substrate sequence result in changes to the reaction rates of ring formation that in some cases lead to a change in the order of the modifications and thereby bring about different ring patterns. These observations provide further support that the substrate sequence determines to a large degree the final ring pattern. The data also show that similar to a previous study on another substrate (ProcA2.8), the reaction rates of successive reactions slow down as the peptide is matured; rate constants observed for the reactions of these two substrates are similar, suggesting that they reflect the intrinsic activity of the enzyme with its 30 natural substrates. We also investigated whether rates of formation of single isolated rings can predict the final ring pattern of polycyclic products, an important question for the products of genome mining exercises, as well as library generation. Collectively, the findings in this study indicate that the rates of isolated modifications can be used for predicting the final ProcM-produced ring pattern, but they also revealed limitations. One unexpected observation was that even changing Ser to Thr and vice versa, a common means to convert lanthionine to methyllanthionine and vice versa, can result in a change in the ring pattern.
Collapse
Affiliation(s)
- Emily
K. Desormeaux
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Garrett J. Barksdale
- School
of Molecular and Cellular Biology, University
of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- School
of Molecular and Cellular Biology, University
of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Howard
Hughes Medical Institute, University of
Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Le T, Zhang D, Martini RM, Biswas S, van der Donk WA. Use of a head-to-tail peptide cyclase to prepare hybrid RiPPs. Chem Commun (Camb) 2024; 60:6508-6511. [PMID: 38833296 PMCID: PMC11189026 DOI: 10.1039/d3cc04919a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/25/2024] [Indexed: 06/06/2024]
Abstract
Cyclotides and lanthipeptides are cyclic peptide natural products with promising bioengineering potential. No peptides have been isolated that contain both structural motifs defining these two families, an N-to-C cyclised backbone and lanthionine linkages. We combined their biosynthetic machineries to produce hybrid structures that possess improved activity or stability, demonstrate how the AEP-1 plant cyclase can be utilised to complete the maturation of the sactipeptide subtilosin A, and present head-to-tail cyclisation of the glycocin sublancin. These studies show the plasticity of AEP-1 and its utilisation alongside other post-translational modifications.
Collapse
Affiliation(s)
- Tung Le
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Dongtianyu Zhang
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Rachel M Martini
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Subhanip Biswas
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
3
|
Liu WQ, Ji X, Ba F, Zhang Y, Xu H, Huang S, Zheng X, Liu Y, Ling S, Jewett MC, Li J. Cell-free biosynthesis and engineering of ribosomally synthesized lanthipeptides. Nat Commun 2024; 15:4336. [PMID: 38773100 PMCID: PMC11109155 DOI: 10.1038/s41467-024-48726-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024] Open
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a major class of natural products with diverse chemical structures and potent biological activities. A vast majority of RiPP gene clusters remain unexplored in microbial genomes, which is partially due to the lack of rapid and efficient heterologous expression systems for RiPP characterization and biosynthesis. Here, we report a unified biocatalysis (UniBioCat) system based on cell-free gene expression for rapid biosynthesis and engineering of RiPPs. We demonstrate UniBioCat by reconstituting a full biosynthetic pathway for de novo biosynthesis of salivaricin B, a lanthipeptide RiPP. Next, we delete several protease/peptidase genes from the source strain to enhance the performance of UniBioCat, which then can synthesize and screen salivaricin B variants with enhanced antimicrobial activity. Finally, we show that UniBioCat is generalizable by synthesizing and evaluating the bioactivity of ten uncharacterized lanthipeptides. We expect UniBioCat to accelerate the discovery, characterization, and synthesis of RiPPs.
Collapse
Affiliation(s)
- Wan-Qiu Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiangyang Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Fang Ba
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yufei Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Huiling Xu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shuhui Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiao Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yifan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| | - Michael C Jewett
- Department of Bioengineering, Stanford University, Stanford, CA, US.
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
4
|
Desormeaux EK, van der Donk WA. Kinetic Analysis of Lanthipeptide Cyclization by Substrate-Tolerant ProcM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594612. [PMID: 38798579 PMCID: PMC11118578 DOI: 10.1101/2024.05.16.594612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Lanthipeptides are ribosomally synthesized and post-translationally modified peptides characterized by the presence of thioether crosslinks. Class II lanthipeptide synthetases are bifunctional enzymes responsible for the multistep chemical modification of these natural products. ProcM is a class II lanthipeptide synthetase known for its remarkable substrate tolerance and ability to install diverse (methyl)lanthionine rings with high accuracy. Previous studies suggested that the final ring pattern of the lanthipeptide product may be determined by the substrate sequence rather than by ProcM, and that ProcM operates by a kinetically controlled mechanism, wherein the ring pattern is dictated by the relative rates of the individual cyclization reactions. This study utilizes kinetic assays to determine if rates of isolated modifications can predict the final ring pattern present in prochlorosins. Changes in the core substrate sequence resulted in changes to the reaction rates of ring formation as well as a change in the order of modifications. Additionally, individual chemical reaction rates were significantly impacted by the presence of other modifications on the peptide. These findings indicate that the rates of isolated modifications are capable of predicting the final ring pattern but are not necessarily a good predictor of the order of modification in WT ProcA3.3 and its variants.
Collapse
Affiliation(s)
- Emily K Desormeaux
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Wilfred A van der Donk
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| |
Collapse
|
5
|
Zhang ZJ, Wu C, Moreira R, Dorantes D, Pappas T, Sundararajan A, Lin H, Pamer EG, van der Donk WA. Activity of Gut-Derived Nisin-like Lantibiotics against Human Gut Pathogens and Commensals. ACS Chem Biol 2024; 19:357-369. [PMID: 38293740 PMCID: PMC10877564 DOI: 10.1021/acschembio.3c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/12/2023] [Accepted: 01/10/2024] [Indexed: 02/01/2024]
Abstract
Recent advances in sequencing techniques unveiled the vast potential of ribosomally synthesized and post-translationally modified peptides (RiPPs) encoded in microbiomes. Class I lantibiotics such as nisin A, widely used as a food preservative, have been investigated for their efficacy in killing pathogens. However, the impact of nisin and nisin-like class I lantibiotics on commensal bacteria residing in the human gut remains unclear. Here, we report six gut-derived class I lantibiotics that are close homologues of nisin, four of which are novel. We applied an improved lantibiotic expression platform to produce and purify these lantibiotics for antimicrobial assays. We determined their minimal inhibitory concentration (MIC) against both Gram-positive human pathogens and gut commensals and profiled the lantibiotic resistance genes in these pathogens and commensals. Structure-activity relationship (SAR) studies with analogs revealed key regions and residues that impact their antimicrobial properties. Our characterization and SAR studies of nisin-like lantibiotics against both pathogens and human gut commensals could shed light on the future development of lantibiotic-based therapeutics and food preservatives.
Collapse
Affiliation(s)
- Zhenrun J. Zhang
- Duchossois
Family Institute, University of Chicago, Chicago, Illinois 60637, United States
- Department
of Microbiology, University of Chicago, Chicago, Illinois 60637, United States
| | - Chunyu Wu
- Department
of Biochemistry, University of Illinois
at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Ryan Moreira
- Department
of Chemistry, The Howard Hughes Medical
Institute, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Darian Dorantes
- Department
of Biochemistry, University of Illinois
at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Téa Pappas
- Duchossois
Family Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Anitha Sundararajan
- Duchossois
Family Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Huaiying Lin
- Duchossois
Family Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Eric G. Pamer
- Duchossois
Family Institute, University of Chicago, Chicago, Illinois 60637, United States
- Departments
of Medicine and Pathology, University of
Chicago, Chicago, Illinois 60637, United States
| | - Wilfred A. van der Donk
- Department
of Biochemistry, University of Illinois
at Urbana—Champaign, Urbana, Illinois 61801, United States
- Department
of Chemistry, The Howard Hughes Medical
Institute, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Li L, Zhang J, Zhou L, Shi H, Mai H, Su J, Ma X, Zhong J. The First Lanthipeptide from Lactobacillus iners, Inecin L, Exerts High Antimicrobial Activity against Human Vaginal Pathogens. Appl Environ Microbiol 2023; 89:e0212322. [PMID: 36847550 PMCID: PMC10057874 DOI: 10.1128/aem.02123-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/02/2023] [Indexed: 03/01/2023] Open
Abstract
Vaginal infections continue to be a serious public health issue, and developing new approaches to address antibiotic-resistant pathogens is an urgent task. The dominant vaginal Lactobacillus species and their active metabolites (e.g., bacteriocins) have the potential to defeat pathogens and help individuals recover from disorders. Here, we describe for the first time a novel lanthipeptide, inecin L, a bacteriocin from Lactobacillus iners with posttranslational modifications. The biosynthetic genes of inecin L were actively transcribed in the vaginal environment. Inecin L was active against the prevailing vaginal pathogens, such as Gardnerella vaginalis and Streptococcus agalactiae, at nanomolar concentrations. We demonstrated that the antibacterial activity of inecin L was closely related to the N terminus and the positively charged His13 residue. In addition, inecin L was a bactericidal lanthipeptide that showed little effect on the cytoplasmic membrane but inhibited the cell wall biosynthesis. Thus, the present work characterizes a new antimicrobial lanthipeptide from a predominant species of the human vaginal microbiota. IMPORTANCE The human vaginal microbiota plays essential roles in preventing pathogenic bacteria, fungi, and viruses from invading. The dominant vaginal Lactobacillus species show great potential to be developed as probiotics. However, the molecular mechanisms (such as bioactive molecules and their modes of action) involved in the probiotic properties remain to be determined. Our work describes the first lanthipeptide molecule from the dominant Lactobacillus iners. Additionally, inecin L is the only lanthipeptide found among the vaginal lactobacilli thus far. Inecin L shows strong antimicrobial activity toward the prevalent vaginal pathogens and antibiotic-resistant strains, suggesting that inecin L is a potent antibacterial molecule for drug development. In addition, our results show that inecin L exhibits specific antibacterial activity related to the residues in the N-terminal region and ring A, which will contribute to structure-activity relationship studies in lacticin 481-like lanthipeptides.
Collapse
Affiliation(s)
- Lili Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Liyan Zhou
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Haijuan Shi
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Hong Mai
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Junchang Su
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xingwang Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jin Zhong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Miller SA, Fouque KJD, Ridgeway ME, Park MA, Fernandez-Lima F. Trapped Ion Mobility Spectrometry, Ultraviolet Photodissociation, and Time-of-Flight Mass Spectrometry for Gas-Phase Peptide Isobars/Isomers/Conformers Discrimination. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1267-1275. [PMID: 35658468 PMCID: PMC9262853 DOI: 10.1021/jasms.2c00091] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Trapped ion mobility spectrometry (TIMS) when coupled with mass spectrometry (MS) offers great advantages for the separation of isobaric, isomeric, and/or conformeric species. In the present work, we report the advantages of coupling TIMS with a low-cost, ultraviolet photodissociation (UVPD) linear ion trap operated at few mbars prior to time-of-flight (ToF) MS analysis for the effective characterization of isobaric, isomeric, and/or conformeric species based on mobility-selected fragmentation patterns. These three traditional challenges to MS-based separations are illustrated for the case of biologically relevant model systems: H3.1 histone tail PTM isobars (K4Me3/K18Ac), lanthipeptide regioisomers (overlapping/nonoverlapping ring patterns), and a model peptide conformer (angiotensin I). The sequential nature of the TIMS operation allows for effective synchronization with the ToF MS scans, in addition to parallel operation between the TIMS and the UVPD trap. Inspection of the mobility-selected UVPD MS spectra showed that for all three cases considered, unique fragmentation patterns (fingerprints) were observed per mobility band. Different from other IMS-UVPD implementations, the higher resolution of the TIMS device allowed for high mobility resolving power (R > 100) and effective mobility separation. The mobility selected UVPD MS provided high sequence coverage (>85%) with a fragmentation efficiency up to ∼40%.
Collapse
Affiliation(s)
- Samuel A. Miller
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
| | | | - Melvin A. Park
- Bruker Daltonics Inc., Billerica, MA 01821, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
- Corresponding Author: Francisco Fernandez-Lima,
| |
Collapse
|
8
|
Lantibiotic-encoding Streptococcus in the human microbiome are underlying risk factors for liver diseases. J Infect 2022; 84:e70-e72. [PMID: 35202611 DOI: 10.1016/j.jinf.2022.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/17/2022] [Indexed: 11/21/2022]
|
9
|
Antimicrobial Bacillus: Metabolites and Their Mode of Action. Antibiotics (Basel) 2022; 11:antibiotics11010088. [PMID: 35052965 PMCID: PMC8772736 DOI: 10.3390/antibiotics11010088] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 12/12/2022] Open
Abstract
The agricultural industry utilizes antibiotic growth promoters to promote livestock growth and health. However, the World Health Organization has raised concerns over the ongoing spread of antibiotic resistance transmission in the populace, leading to its subsequent ban in several countries, especially in the European Union. These restrictions have translated into an increase in pathogenic outbreaks in the agricultural industry, highlighting the need for an economically viable, non-toxic, and renewable alternative to antibiotics in livestock. Probiotics inhibit pathogen growth, promote a beneficial microbiota, regulate the immune response of its host, enhance feed conversion to nutrients, and form biofilms that block further infection. Commonly used lactic acid bacteria probiotics are vulnerable to the harsh conditions of the upper gastrointestinal system, leading to novel research using spore-forming bacteria from the genus Bacillus. However, the exact mechanisms behind Bacillus probiotics remain unexplored. This review tackles this issue, by reporting antimicrobial compounds produced from Bacillus strains, their proposed mechanisms of action, and any gaps in the mechanism studies of these compounds. Lastly, this paper explores omics approaches to clarify the mechanisms behind Bacillus probiotics.
Collapse
|
10
|
Le T, Jeanne Dit Fouque K, Santos-Fernandez M, Navo CD, Jiménez-Osés G, Sarksian R, Fernandez-Lima FA, van der Donk WA. Substrate Sequence Controls Regioselectivity of Lanthionine Formation by ProcM. J Am Chem Soc 2021; 143:18733-18743. [PMID: 34724611 DOI: 10.1021/jacs.1c09370] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lanthipeptides belong to the family of ribosomally synthesized and post-translationally modified peptides (RiPPs). The (methyl)lanthionine cross-links characteristic to lanthipeptides are essential for their stability and bioactivities. In most bacteria, lanthipeptides are maturated from single precursor peptides encoded in the corresponding biosynthetic gene clusters. However, cyanobacteria engage in combinatorial biosynthesis and encode as many as 80 substrate peptides with highly diverse sequences that are modified by a single lanthionine synthetase into lanthipeptides of different lengths and ring patterns. It is puzzling how a single enzyme could exert control over the cyclization processes of such a wide range of substrates. Here, we used a library of ProcA3.3 precursor peptide variants and show that it is not the enzyme ProcM but rather its substrate sequences that determine the regioselectivity of lanthionine formation. We also demonstrate the utility of trapped ion mobility spectrometry-tandem mass spectrometry (TIMS-MS/MS) as a fast and convenient method to efficiently separate lanthipeptide constitutional isomers, particularly in cases where the isomers cannot be resolved by conventional liquid chromatography. Our data allowed identification of factors that are important for the cyclization outcome, but also showed that there are no easily identifiable predictive rules for all sequences. Our findings provide a platform for future deep learning approaches to allow such prediction of ring patterns of products of combinatorial biosynthesis.
Collapse
Affiliation(s)
- Tung Le
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| | - Miguel Santos-Fernandez
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| | - Claudio D Navo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Spain.,Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Gonzalo Jiménez-Osés
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Spain.,Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Raymond Sarksian
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Francisco Alberto Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
11
|
Abstract
Nisin P is a natural nisin variant, the genetic determinants for which were previously identified in the genomes of two Streptococcus species, albeit with no confirmed evidence of production. Here we describe Streptococcus agalactiae DPC7040, a human faecal isolate, which exhibits antimicrobial activity against a panel of gut and food isolates by virtue of producing nisin P. Nisin P was purified, and its predicted structure was confirmed by nanoLC-MS/MS, with both the fully modified peptide and a variant without rings B and E being identified. Additionally, we compared its spectrum of inhibition and minimum inhibitory concentration (MIC) with that of nisin A and its antimicrobial effect in a faecal fermentation in comparison with nisin A and H. We found that its antimicrobial activity was less potent than nisin A and H, and we propose a link between this reduced activity and the peptide structure.
Collapse
|
12
|
Todorov SD, Kang HJ, Ivanova IV, Holzapfel WH. Bacteriocins From LAB and Other Alternative Approaches for the Control of Clostridium and Clostridiodes Related Gastrointestinal Colitis. Front Bioeng Biotechnol 2020; 8:581778. [PMID: 33042979 PMCID: PMC7517946 DOI: 10.3389/fbioe.2020.581778] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022] Open
Abstract
The gut microbiome is considered as a promising target for future non-conventional therapeutic treatment of inflammatory and infectious diseases. The search for appropriate safe and beneficial (lactic acid bacterial and other) putative probiotic strains and/or their antimicrobial metabolites represents a challenging approach for combating several problematic and emerging infections. The process of selecting suitable strains, especially of lactic acid bacteria (LAB) with superior properties, has been accelerated and intensified during the past two decades, also thanks to recent developments in lab techniques. Currently, special focus is on the potential of antimicrobial metabolites produced by some LAB strains and their application as active therapeutic agents. The vision is to develop a scientific basis for 'biotherapeutics' as alternative to conventional approaches in both human and veterinary medicine. Consequently, innovative and promising applications of LAB to the therapeutic practice are presently emerging. An overview of the existing literature indicates that some antimicrobial metabolites such as bacteriocins, widely produced by different bacterial species including LAB, are promising biotherapeutic agents for controlling infections caused by potential pathogens, such as Clostridium and Clostridiodes. Non-conventional, safe and well designed therapeutic treatments may contribute to the improvement of gut dysbiotic conditions. Thereby gut homeostasis can be restored and inflammatory conditions such as gastrointestinal colitis ameliorated. Combining the knowledge on the production, characterization and application of bacteriocins from probiotic LAB, together with their antibacterial properties, appears to be a promising and novel approach in biotherapy. In this overview, different scenarios for the control of Clostridium spp. by application of bacteriocins as therapeutic agents, also in synergistic combination with antibiotics, will be discussed.
Collapse
Affiliation(s)
- Svetoslav D. Todorov
- Advanced Green Energy and Environment Institute (AGEE), Handong Global University, Pohang, South Korea
| | - Hye-Ji Kang
- Advanced Green Energy and Environment Institute (AGEE), Handong Global University, Pohang, South Korea
- HEM Inc., Handong Global University, Pohang, South Korea
| | - Iskra V. Ivanova
- Department of General and Applied Microbiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Wilhelm H. Holzapfel
- Advanced Green Energy and Environment Institute (AGEE), Handong Global University, Pohang, South Korea
- HEM Inc., Handong Global University, Pohang, South Korea
- *Correspondence: Wilhelm H. Holzapfel,
| |
Collapse
|
13
|
Preclinical evaluation of the maximum tolerated dose and toxicokinetics of enteric-coated lantibiotic OG253 capsules. Toxicol Appl Pharmacol 2019; 374:32-40. [PMID: 31034929 DOI: 10.1016/j.taap.2019.04.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/22/2019] [Accepted: 04/25/2019] [Indexed: 11/23/2022]
Abstract
Clostridium difficile associated disease (CDAD) is the leading infectious cause of antibiotic-associated diarrhea and colitis in the United States. Both the incidence and severity of CDAD have been increased over the past two decades. We evaluated the maximum tolerated dose (MTD) and toxicokinetics of OG253, a novel lantibiotic in development for the treatment of CDAD. OG253 was orally administered to Wistar Han rats as enteric-coated capsules in a one-day dose escalation study, followed by a seven-day repeated dose toxicokinetics study. All three doses of OG253 (6.75, 27 and 108 mg/day) were generally well-tolerated with no treatment-related clinical signs, alterations in body weight or food consumption in both one-day acute tolerability and seven-days repeated dose tolerability and toxicokinetics study. OG253 capsule administration neither significantly alter the weight of organs nor affect the hematology, coagulation, clinical biochemistry parameters and urine pH compared to placebo capsule administered rats. LC-MS/MS analysis did not detect OG253 in the plasma, indicating that OG253 is not absorbed into the blood from the rat gastrointestinal tract. Glandular atrophy of the rectal mucosa was noticed in two out of six rats administered with a high dose of OG253. Surprisingly, we found that OG253 treatment significantly lowered both serum cholesterol and triglyceride levels in both sexes of rats. Overall, there was a 29.8 and 61.38% decrease in the serum cholesterol and triglyceride levels, respectively as compared to placebo-treated rats. The well-tolerated high dose of OG253 (425.7 mg/kg/day) is recommended as the MTD for safety and efficacy studies. Further preclinical study is needed to evaluate the safety profile of OG253 under longer exposure.
Collapse
|
14
|
Pharmacological, Toxicological, and Dose Range Assessment of OG716, a Novel Lantibiotic for the Treatment of Clostridium difficile-Associated Infection. Antimicrob Agents Chemother 2019; 63:AAC.01904-18. [PMID: 30670434 DOI: 10.1128/aac.01904-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/15/2019] [Indexed: 12/21/2022] Open
Abstract
Lantibiotics present an attractive scaffold for the development of novel antibiotics. We report here a novel lantibiotic for the treatment of Clostridium difficile infection. The lead compounds were selected from a library of over 700 single- and multiple-substitution variants of the lantibiotic mutacin 1140 (MU1140). The best performers in vitro and in vivo were further used to challenge Golden Syrian hamsters orally in a Golden Syrian hamster model of Clostridium difficile-associated disease (CDAD) in a dose-response format, resulting in the selection of OG716 as the lead compound. This lantibiotic was characterized by a 50% effective dose of 23.85 mg/kg of body weight/day (10.97 μmol/kg/day) in this model. Upon oral administration of the maximum feasible dose (≥1,918 mg/kg/day), no observable toxicities or side effects were noted, and no effect on intestinal motility was observed. Compartmentalization to the gastrointestinal tract was confirmed. MU1140-derived variants offer a large pipeline for the development of novel antibiotics for the treatment of several indications and are particularly attractive considering their novel mechanism of action. Based on the currently available data, OG716 has an acceptable profile for further development for the treatment of CDAD.
Collapse
|
15
|
Acedo JZ, Chiorean S, Vederas JC, van Belkum MJ. The expanding structural variety among bacteriocins from Gram-positive bacteria. FEMS Microbiol Rev 2019; 42:805-828. [PMID: 30085042 DOI: 10.1093/femsre/fuy033] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022] Open
Abstract
Bacteria use various strategies to compete in an ecological niche, including the production of bacteriocins. Bacteriocins are ribosomally synthesized antibacterial peptides, and it has been postulated that the majority of Gram-positive bacteria produce one or more of these natural products. Bacteriocins can be used in food preservation and are also considered as potential alternatives to antibiotics. The majority of bacteriocins from Gram-positive bacteria had been traditionally divided into two major classes, namely lantibiotics, which are post-translationally modified bacteriocins, and unmodified bacteriocins. The last decade has seen an expanding number of ribosomally synthesized and post-translationally modified peptides (RiPPs) in Gram-positive bacteria that have antibacterial activity. These include linear azol(in)e-containing peptides, thiopeptides, bottromycins, glycocins, lasso peptides and lipolanthines. In addition, the three-dimensional (3D) structures of a number of modified and unmodified bacteriocins have been elucidated in recent years. This review gives an overview on the structural variety of bacteriocins from Gram-positive bacteria. It will focus on the chemical and 3D structures of these peptides, and their interactions with receptors and membranes, structure-function relationships and possible modes of action.
Collapse
Affiliation(s)
- Jeella Z Acedo
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - Sorina Chiorean
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - John C Vederas
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - Marco J van Belkum
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
16
|
Medeiros-Silva J, Jekhmane S, Paioni AL, Gawarecka K, Baldus M, Swiezewska E, Breukink E, Weingarth M. High-resolution NMR studies of antibiotics in cellular membranes. Nat Commun 2018; 9:3963. [PMID: 30262913 PMCID: PMC6160437 DOI: 10.1038/s41467-018-06314-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/23/2018] [Indexed: 01/12/2023] Open
Abstract
The alarming rise of antimicrobial resistance requires antibiotics with unexploited mechanisms. Ideal templates could be antibiotics that target the peptidoglycan precursor lipid II, known as the bacterial Achilles heel, at an irreplaceable pyrophosphate group. Such antibiotics would kill multidrug-resistant pathogens at nanomolecular concentrations without causing antimicrobial resistance. However, due to the challenge of studying small membrane-embedded drug–receptor complexes in native conditions, the structural correlates of the pharmaceutically relevant binding modes are unknown. Here, using advanced highly sensitive solid-state NMR setups, we present a high-resolution approach to study lipid II-binding antibiotics directly in cell membranes. On the example of nisin, the preeminent lantibiotic, we show that the native antibiotic-binding mode strongly differs from previously published structures, and we demonstrate that functional hotspots correspond to plastic drug domains that are critical for the cellular adaptability of nisin. Thereby, our approach provides a foundation for an improved understanding of powerful antibiotics. Antibiotics that target the peptidoglycan precursor lipid II are promising templates for next-generation antibiotics. Here authors use solid-state NMR and monitor lipid II-binding antibiotics, such as nisin, directly in cell membranes.
Collapse
Affiliation(s)
- João Medeiros-Silva
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Shehrazade Jekhmane
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Alessandra Lucini Paioni
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Katarzyna Gawarecka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Ewa Swiezewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Markus Weingarth
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
17
|
Xu B, Aitken EJ, Baker BP, Turner CA, Harvey JE, Stott MB, Power JF, Harris PWR, Keyzers RA, Brimble MA. Genome mining, isolation, chemical synthesis and biological evaluation of a novel lanthipeptide, tikitericin, from the extremophilic microorganism Thermogemmatispora strain T81. Chem Sci 2018; 9:7311-7317. [PMID: 30294420 PMCID: PMC6167946 DOI: 10.1039/c8sc02170h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/19/2018] [Indexed: 01/31/2023] Open
Abstract
Tikitericin, a novel lanthipeptide was isolated and characterised together with its first total synthesis.
Genome mining of the New Zealand extremophilic microorganism Thermogemmatispora strain T81 indicated the presence of biosynthetic machinery to produce several different peptidic natural products. Solid-phase culture of T81 led to the isolation of tikitericin 1, a new lanthipeptide characterised by four (methyl)lanthionine bridges. The mass-guided isolation and structural elucidation of tikitericin 1 is described together with its total synthesis via Fmoc-solid-phase peptide synthesis (SPPS). The key non-canonical (methyl)lanthionine residues were synthesised in solution phase via an improved synthetic route and subsequently assembled to construct the peptide backbone using Fmoc-SPPS. N-Terminal truncated analogues of tikitericin (2–5) were also prepared in order to evaluate the contribution of each sequential ring of the polycyclic lanthipeptide to the antibacterial activity.
Collapse
Affiliation(s)
- Buzhe Xu
- School of Chemical Sciences , 23 Symonds Street , Auckland 1010 , New Zealand . ; Tel: +64 9 9238259.,Maurice Wilkins Centre for Molecular Biodiscovery , The University of Auckland , Private Bag 92019 , Auckland 1142 , New Zealand . ; Tel: +64 4 4635117
| | - Emma J Aitken
- School of Chemical & Physical Sciences , The Centre for Biodiscovery , Victoria University of Wellington , PO Box 600 , Wellington 6140 , New Zealand
| | - Benjamin P Baker
- School of Chemical & Physical Sciences , The Centre for Biodiscovery , Victoria University of Wellington , PO Box 600 , Wellington 6140 , New Zealand
| | - Claire A Turner
- School of Chemical & Physical Sciences , The Centre for Biodiscovery , Victoria University of Wellington , PO Box 600 , Wellington 6140 , New Zealand
| | - Joanne E Harvey
- Maurice Wilkins Centre for Molecular Biodiscovery , The University of Auckland , Private Bag 92019 , Auckland 1142 , New Zealand . ; Tel: +64 4 4635117.,School of Chemical & Physical Sciences , The Centre for Biodiscovery , Victoria University of Wellington , PO Box 600 , Wellington 6140 , New Zealand
| | - Matthew B Stott
- School of Biological Sciences , University of Canterbury , Private Bag 4800 , Christchurch 8140 , New Zealand.,GNS Science , Private Bag 2000 , Taupō 3352 , New Zealand
| | - Jean F Power
- GNS Science , Private Bag 2000 , Taupō 3352 , New Zealand
| | - Paul W R Harris
- School of Chemical Sciences , 23 Symonds Street , Auckland 1010 , New Zealand . ; Tel: +64 9 9238259.,Maurice Wilkins Centre for Molecular Biodiscovery , The University of Auckland , Private Bag 92019 , Auckland 1142 , New Zealand . ; Tel: +64 4 4635117.,School of Biological Sciences , 23 Symonds Street , Auckland 1010 , New Zealand
| | - Robert A Keyzers
- Maurice Wilkins Centre for Molecular Biodiscovery , The University of Auckland , Private Bag 92019 , Auckland 1142 , New Zealand . ; Tel: +64 4 4635117.,School of Chemical & Physical Sciences , The Centre for Biodiscovery , Victoria University of Wellington , PO Box 600 , Wellington 6140 , New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences , 23 Symonds Street , Auckland 1010 , New Zealand . ; Tel: +64 9 9238259.,Maurice Wilkins Centre for Molecular Biodiscovery , The University of Auckland , Private Bag 92019 , Auckland 1142 , New Zealand . ; Tel: +64 4 4635117.,School of Biological Sciences , 23 Symonds Street , Auckland 1010 , New Zealand
| |
Collapse
|
18
|
Kers JA, Sharp RE, Muley S, Mayo M, Colbeck J, Zhu Y, DeFusco AW, Park JH, Handfield M. Blueprints for the rational design of therapeutic mutacin 1140 variants. Chem Biol Drug Des 2018; 92:1940-1953. [DOI: 10.1111/cbdd.13365] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/12/2018] [Accepted: 07/09/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Johan A. Kers
- Intrexon Corp.; Industrial Products Division; South San Francisco California
| | - R. Eryl Sharp
- Intrexon Corp.; Industrial Products Division; South San Francisco California
| | - Sheela Muley
- Intrexon Corp.; Industrial Products Division; South San Francisco California
| | - Melissa Mayo
- Intrexon Corp.; Industrial Products Division; South San Francisco California
| | - Jeffrey Colbeck
- Intrexon Corp.; Industrial Products Division; South San Francisco California
| | - Yihui Zhu
- Intrexon Corp.; Industrial Products Division; South San Francisco California
| | | | | | | |
Collapse
|
19
|
OG716: Designing a fit-for-purpose lantibiotic for the treatment of Clostridium difficile infections. PLoS One 2018; 13:e0197467. [PMID: 29894469 PMCID: PMC5997364 DOI: 10.1371/journal.pone.0197467] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/02/2018] [Indexed: 12/28/2022] Open
Abstract
Lantibiotics continue to offer an untapped pipeline for the development of novel antibiotics. We report here the discovery of a novel lantibiotic for the treatment of C. difficile infection (CDI). The leads were selected from a library of over 300 multiple substitution variants of the lantibiotic Mutacin 1140 (MU1140). Top performers were selected based on testing for superior potency, solubility, manufacturability, and physicochemical and/or metabolic stability in biologically-relevant systems. The best performers in vitro were further evaluated orally in the Golden Syrian hamster model of CDAD. In vivo testing ultimately identified OG716 as the lead compound, which conferred 100% survival and no relapse at 3 weeks post infection. MU1140-derived variants are particularly attractive for further clinical development considering their novel mechanism of action.
Collapse
|
20
|
Kakkar N, Perez JG, Liu WR, Jewett MC, van der Donk WA. Incorporation of Nonproteinogenic Amino Acids in Class I and II Lantibiotics. ACS Chem Biol 2018; 13:951-957. [PMID: 29439566 PMCID: PMC5910287 DOI: 10.1021/acschembio.7b01024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lantibiotics are ribosomally synthesized and post-translationally modified peptide natural products that contain thioether cross-links formed by lanthionine and methyllanthionine residues. They exert potent antimicrobial activity against Gram-positive bacteria. We herein report production of analogues of two lantibiotics, lacticin 481 and nisin, that contain nonproteinogenic amino acids using two different strategies involving amber stop codon suppression technology. These methods complement recent alternative approaches to incorporate nonproteinogenic amino acids into lantibiotics.
Collapse
Affiliation(s)
- Nidhi Kakkar
- Howard Hughes Medical Institute and Roger Adams Laboratory, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jessica G. Perez
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Wenshe R. Liu
- Department of Chemistry, Texas A&M University, College Station, TX 77843m United States
| | - Michael C. Jewett
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Howard Hughes Medical Institute and Roger Adams Laboratory, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
21
|
Kers JA, Sharp RE, Defusco AW, Park JH, Xu J, Pulse ME, Weiss WJ, Handfield M. Mutacin 1140 Lantibiotic Variants Are Efficacious Against Clostridium difficile Infection. Front Microbiol 2018; 9:415. [PMID: 29615987 PMCID: PMC5864910 DOI: 10.3389/fmicb.2018.00415] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/21/2018] [Indexed: 12/13/2022] Open
Abstract
Lantibiotics offer an untapped pipeline for the development of novel antibiotics to treat serious Gram-positive (+) infections including Clostridium difficile. Mutacin 1140 (MU1140) is a lantibiotic produced by Streptococcus mutans and acts via a novel mechanism of action, which may limit the development of resistance. This study sought to identify a lead compound for the treatment of C. difficile associated diarrhea (CDAD). Compounds were selected from a saturation mutagenesis library of 418 single amino acid variants of MU1140. Compounds were produced by small scale fermentation, purified, characterized and then subjected to a panel of assays aimed at identifying the best performers. The screening assays included: in vitro susceptibility testing [MIC against Micrococcus luteus, Clostridium difficile, vancomycin-resistant enterococci (VRE), Staphylococcus aureus, Streptococcus pneumonia, Mycobacterium phlei, and Pseudomonas aeruginosa; cytotoxicity screening on HepG2 hepatocytes; in vitro pharmacological profiling with the Safety Screen 44TM, metabolic and chemical stability in biologically relevant fluids (FaSSGF, FaSSIF and serum); and efficacy in vivo]. Several lantibiotic compounds had better MIC against C. difficile, compared to vancomycin, but not against other bacterial species tested. The Safety Screen 44TMin vitro pharmacological profiling assay suggested that this class of compounds has relatively low overall toxicity and that compound OG253 (MU1140, Phe1Ile) is not likely to present inadvertent off-target effects, as evidenced by a low promiscuity score. The in vitro cytotoxicity assay also indicated that this class of compounds was characterized by low toxicity; the EC50 of OG253 was 636 mg/mL on HepG2 cells. The half-life in simulated gastric fluid was >240 min. for all compound tested. The stability in simulated intestinal fluid ranged between a half-life of 5 min to >240 min, and paralleled the half-life in serum. OG253 ultimately emerged as the lead compound based on superior in vivo efficacy along with an apparent lack of relapse in a hamster model of infection. The lessons learned from this report are applicable to therapeutic lanthipeptides in general and may assist in the design of novel molecules with improved pharmacological, therapeutic and physicochemical profiles. The data presented also support the continued clinical development of OG253 as a novel antibiotic against CDAD that could prevent recurrence of the infection.
Collapse
Affiliation(s)
- Johan A Kers
- Industrial Products Division, Intrexon Corp., South San Francisco, CA, United States
| | - Robert E Sharp
- Industrial Products Division, Intrexon Corp., South San Francisco, CA, United States
| | | | - Jae H Park
- Oragenics, Inc., Tampa, FL, United States
| | - Jin Xu
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, United States
| | - Mark E Pulse
- PreClinical Services, UNT System College of Pharmacy, Fort Worth, TX, United States
| | - William J Weiss
- PreClinical Services, UNT System College of Pharmacy, Fort Worth, TX, United States
| | | |
Collapse
|
22
|
Gomes KM, Duarte RS, de Freire Bastos MDC. Lantibiotics produced by Actinobacteria and their potential applications (a review). MICROBIOLOGY-SGM 2017; 163:109-121. [PMID: 28270262 DOI: 10.1099/mic.0.000397] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The phylum Actinobacteria, which comprises a great variety of Gram-positive bacteria with a high G+C content in their genomes, is known for its large production of bioactive compounds, including those with antimicrobial activity. Among the antimicrobials, bacteriocins, ribosomally synthesized peptides, represent an important arsenal of potential new drugs to face the increasing prevalence of resistance to antibiotics among microbial pathogens. The actinobacterial bacteriocins form a heterogeneous group of substances that is difficult to adapt to most proposed classification schemes. However, recent updates have accommodated efficiently the diversity of bacteriocins produced by this phylum. Among the bacteriocins, the lantibiotics represent a source of new antimicrobials to control infections caused mainly by Gram-positive bacteria and with a low propensity for resistance development. Moreover, some of these compounds have additional biological properties, exhibiting activity against viruses and tumour cells and having also potential to be used in blood pressure or inflammation control and in pain relief. Thus, lantibiotics already described in Actinobacteria exhibit potential practical applications in medical settings, food industry and agriculture, with examples at different stages of pre-clinical and clinical trials.
Collapse
Affiliation(s)
- Karen Machado Gomes
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, UFRJ, Rio de Janeiro, Brazil
| | - Rafael Silva Duarte
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, UFRJ, Rio de Janeiro, Brazil
| | | |
Collapse
|
23
|
Vukomanović M, Žunič V, Kunej Š, Jančar B, Jeverica S, Podlipec R, Suvorov D. Nano-engineering the Antimicrobial Spectrum of Lantibiotics: Activity of Nisin against Gram Negative Bacteria. Sci Rep 2017; 7:4324. [PMID: 28659619 PMCID: PMC5489483 DOI: 10.1038/s41598-017-04670-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 05/18/2017] [Indexed: 11/22/2022] Open
Abstract
Lantibiotics, bacteria-sourced antimicrobial peptides, are very good candidates for effective and safe food additives. Among them, nisin is already approved by the EU and FDA, and has been used in food preservation for the past 40 years. Now, there is a possibility and strong interest to extend its applicability to biomedicine for designing innovative alternatives to antibiotics. The main obstacle is, however, its naturally narrow spectrum of antimicrobial activity, focused on Gram positive bacteria. Here we demonstrate broadening nisin's spectrum to Gram negative bacteria using a nano-engineering approach. After binding nisin molecules to the surface of gold nano-features, uniformly deposited on spherical carbon templates, we created a nanocomposite with a high density of positively charged groups. Before assembly, none of the components of the nanocomposite showed any activity against bacterial growth, which was changed after assembly in the form of the nanocomposite. For the first time we showed that this type of structure enables interactions capable of disintegrating the wall of Gram negative bacteria. As confirmed by the nisin model, the developed approach opens up new horizons for the use of lantibiotics in designing post-antibiotic drugs.
Collapse
Affiliation(s)
- Marija Vukomanović
- Advanced Materials Department, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia.
| | - Vojka Žunič
- Advanced Materials Department, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Špela Kunej
- Advanced Materials Department, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Boštjan Jančar
- Advanced Materials Department, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Samo Jeverica
- Institute for Microbiology and Immunology, Medical Faculty, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia
| | - Rok Podlipec
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Danilo Suvorov
- Advanced Materials Department, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| |
Collapse
|
24
|
Baindara P, Kapoor A, Korpole S, Grover V. Cysteine-rich low molecular weight antimicrobial peptides from Brevibacillus and related genera for biotechnological applications. World J Microbiol Biotechnol 2017; 33:124. [DOI: 10.1007/s11274-017-2291-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 05/20/2017] [Indexed: 11/28/2022]
|
25
|
Repka LM, Chekan JR, Nair SK, van der Donk WA. Mechanistic Understanding of Lanthipeptide Biosynthetic Enzymes. Chem Rev 2017; 117:5457-5520. [PMID: 28135077 PMCID: PMC5408752 DOI: 10.1021/acs.chemrev.6b00591] [Citation(s) in RCA: 368] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
Lanthipeptides
are ribosomally synthesized and post-translationally
modified peptides (RiPPs) that display a wide variety of biological
activities, from antimicrobial to antiallodynic. Lanthipeptides that
display antimicrobial activity are called lantibiotics. The post-translational
modification reactions of lanthipeptides include dehydration of Ser
and Thr residues to dehydroalanine and dehydrobutyrine, a transformation
that is carried out in three unique ways in different classes of lanthipeptides.
In a cyclization process, Cys residues then attack the dehydrated
residues to generate the lanthionine and methyllanthionine thioether
cross-linked amino acids from which lanthipeptides derive their name.
The resulting polycyclic peptides have constrained conformations that
confer their biological activities. After installation of the characteristic
thioether cross-links, tailoring enzymes introduce additional post-translational
modifications that are unique to each lanthipeptide and that fine-tune
their activities and/or stability. This review focuses on studies
published over the past decade that have provided much insight into
the mechanisms of the enzymes that carry out the post-translational
modifications.
Collapse
Affiliation(s)
- Lindsay M Repka
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jonathan R Chekan
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Satish K Nair
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Wilfred A van der Donk
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
26
|
The Lantibiotic NAI-107 Efficiently Rescues Drosophila melanogaster from Infection with Methicillin-Resistant Staphylococcus aureus USA300. Antimicrob Agents Chemother 2016; 60:5427-36. [PMID: 27381394 PMCID: PMC4997821 DOI: 10.1128/aac.02965-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 06/22/2016] [Indexed: 12/20/2022] Open
Abstract
We used the fruit fly Drosophila melanogaster as a cost-effective in vivo model to evaluate the efficacy of novel antibacterial peptides and peptoids for treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections. A panel of peptides with known antibacterial activity in vitro and/or in vivo was tested in Drosophila Although most peptides and peptoids that were effective in vitro failed to rescue lethal effects of S. aureus infections in vivo, we found that two lantibiotics, nisin and NAI-107, rescued adult flies from fatal infections. Furthermore, NAI-107 rescued mortality of infection with the MRSA strain USA300 with an efficacy equivalent to that of vancomycin, a widely applied antibiotic for the treatment of serious MRSA infections. These results establish Drosophila as a useful model for in vivo drug evaluation of antibacterial peptides.
Collapse
|
27
|
Ongey EL, Neubauer P. Lanthipeptides: chemical synthesis versus in vivo biosynthesis as tools for pharmaceutical production. Microb Cell Fact 2016; 15:97. [PMID: 27267232 PMCID: PMC4897893 DOI: 10.1186/s12934-016-0502-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/01/2016] [Indexed: 01/15/2023] Open
Abstract
Lanthipeptides (also called lantibiotics for those with antibacterial activities) are ribosomally synthesized post-translationally modified peptides having thioether cross-linked amino acids, lanthionines, as a structural element. Lanthipeptides have conceivable potentials to be used as therapeutics, however, the lack of stable, high-yield, well-characterized processes for their sustainable production limit their availability for clinical studies and further pharmaceutical commercialization. Though many reviews have discussed the various techniques that are currently employed to produce lanthipeptides, a direct comparison between these methods to assess industrial applicability has not yet been described. In this review we provide a synoptic comparison of research efforts on total synthesis and in vivo biosynthesis aimed at fostering lanthipeptides production. We further examine current applications and propose measures to enhance product yields. Owing to their elaborate chemical structures, chemical synthesis of these biomolecules is economically less feasible for large-scale applications, and hence biological production seems to be the only realistic alternative.
Collapse
Affiliation(s)
- Elvis Legala Ongey
- Chair of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstraße 76, ACK24, 13355, Berlin, Germany.
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstraße 76, ACK24, 13355, Berlin, Germany
| |
Collapse
|
28
|
Thibodeaux CJ, Wagoner J, Yu Y, van der Donk WA. Leader Peptide Establishes Dehydration Order, Promotes Efficiency, and Ensures Fidelity During Lacticin 481 Biosynthesis. J Am Chem Soc 2016; 138:6436-44. [PMID: 27123925 PMCID: PMC4880487 DOI: 10.1021/jacs.6b00163] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanisms by which lanthipeptide synthetases control the order in which they catalyze multiple chemical processes are poorly understood. The lacticin 481 synthetase (LctM) cleaves eight chemical bonds and forms six new chemical bonds in a controlled and ordered process. Two general mechanisms have been suggested for the temporal and spatial control of these transformations. In the spatial positioning model, leader peptide binding promotes certain reactions by establishing the spatial orientation of the substrate peptide relative to the synthetase active sites. In the intermediate structure model, the LctM-catalyzed dehydration and cyclization reactions that occur in two distinct active sites orchestrate the overall process by imparting a specific structure into the maturing peptide that facilitates the ensuing reaction. Using isotopically labeled LctA analogues with engineered lacticin 481 biosynthetic machinery and mass spectrometry analysis, we show here that the LctA leader peptide plays critical roles in establishing the modification order and enhancing the catalytic efficiency and fidelity of the synthetase. The data are most consistent with a mechanistic model for LctM where both spatial positioning and intermediate structure contribute to efficient biosynthesis.
Collapse
Affiliation(s)
- Christopher J. Thibodeaux
- Department of Chemistry, University of Illinois, Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL. 61801
| | - Joshua Wagoner
- Department of Chemistry, University of Illinois, Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL. 61801
| | - Yi Yu
- Department of Biochemistry, University of Illinois, Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL. 61801
| | - Wilfred A. van der Donk
- Department of Chemistry, University of Illinois, Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL. 61801
- Department of Biochemistry, University of Illinois, Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL. 61801
- Howard Hughes Medical Institute, University of Illinois, Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL. 61801
| |
Collapse
|
29
|
Shin JM, Gwak JW, Kamarajan P, Fenno JC, Rickard AH, Kapila YL. Biomedical applications of nisin. J Appl Microbiol 2016; 120:1449-65. [PMID: 26678028 DOI: 10.1111/jam.13033] [Citation(s) in RCA: 354] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/20/2015] [Accepted: 12/07/2015] [Indexed: 12/16/2022]
Abstract
Nisin is a bacteriocin produced by a group of Gram-positive bacteria that belongs to Lactococcus and Streptococcus species. Nisin is classified as a Type A (I) lantibiotic that is synthesized from mRNA and the translated peptide contains several unusual amino acids due to post-translational modifications. Over the past few decades, nisin has been used widely as a food biopreservative. Since then, many natural and genetically modified variants of nisin have been identified and studied for their unique antimicrobial properties. Nisin is FDA approved and generally regarded as a safe peptide with recognized potential for clinical use. Over the past two decades the application of nisin has been extended to biomedical fields. Studies have reported that nisin can prevent the growth of drug-resistant bacterial strains, such as methicillin-resistant Staphylococcus aureus, Streptococcus pneumoniae, Enterococci and Clostridium difficile. Nisin has now been shown to have antimicrobial activity against both Gram-positive and Gram-negative disease-associated pathogens. Nisin has been reported to have anti-biofilm properties and can work synergistically in combination with conventional therapeutic drugs. In addition, like host-defence peptides, nisin may activate the adaptive immune response and have an immunomodulatory role. Increasing evidence indicates that nisin can influence the growth of tumours and exhibit selective cytotoxicity towards cancer cells. Collectively, the application of nisin has advanced beyond its role as a food biopreservative. Thus, this review will describe and compare studies on nisin and provide insight into its future biomedical applications.
Collapse
Affiliation(s)
- J M Shin
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA.,Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - J W Gwak
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - P Kamarajan
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - J C Fenno
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - A H Rickard
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Y L Kapila
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
30
|
Slootweg JC, van Herwerden EF, van Doremalen MFM, Breukink E, Liskamp RMJ, Rijkers DTS. Synthesis of nisin AB dicarba analogs using ring-closing metathesis: influence of sp(3) versus sp(2) hybridization of the α-carbon atom of residues dehydrobutyrine-2 and dehydroalanine-5 on the lipid II binding affinity. Org Biomol Chem 2016; 13:5997-6009. [PMID: 25940216 DOI: 10.1039/c5ob00336a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Herein the synthesis of two nisin AB dicarba analogs is described, focusing on amino acid modifications at positions 2 and 5. The nisin mimics were synthesized by a combination of solid phase synthesis of the linear peptides, followed by macrocyclization via ring-closing metathesis and fragment assembly by means of solution phase chemistry. The two N-terminal nisin AB-fragment mimics contain either the native dehydrobutyrine (Dhb)/dehydroalanine (Dha) amino acid residues or alanine at position 2 and 5, respectively. The native dehydrobutyrine at position 2 and dehydroalanine at position 5 were introduced as their precursors, namely threonine and serine, respectively, and subsequent dehydration was carried out by EDCI/CuCl as the condensing agent. Both AB-fragment mimics were analyzed in a lipid II binding assay and it was found that the Ala2/Ala5 AB-mimic (2) showed a reduced activity, while the Dhb2/Dha5 AB-mimic (3) was as active as the native AB-fragment (1).
Collapse
Affiliation(s)
- Jack C Slootweg
- Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
31
|
Antibacterial Peptides: Opportunities for the Prevention and Treatment of Dental Caries. Probiotics Antimicrob Proteins 2016; 3:68. [PMID: 26781572 DOI: 10.1007/s12602-011-9076-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Dental caries is a multifactorial disease that is a growing and costly global health concern. The onset of disease is a consequence of an ecological imbalance within the dental plaque biofilm that favors specific acidogenic and aciduric caries pathogens, namely Streptococcus mutans and Streptococcus sobrinus. It is now recognized by the scientific and medical community that it is neither possible nor desirable to totally eliminate dental plaque. Conversely, the chemical biocides most commonly used for caries prevention and treatment indiscriminately attack all plaque microorganisms. These treatments also suffer from other drawbacks such as bad taste, irritability, and staining. Furthermore, the public demand for safe and natural personal hygiene products continues to rise. Therefore, there are opportunities that exist to develop new strategies for the treatment of this disease. As an alternative to conventional antibiotics, antibacterial peptides have been explored greatly over the last three decades for many different therapeutic uses. There are currently tens of hundreds of antibacterial peptides characterized across the evolutionary spectrum, and among these, many demonstrate physical and/or biological properties that may be suitable for a more targeted approach to the selective control or elimination of putative caries pathogens. Additionally, many peptides, such as nisin, are odorless, colorless, and tasteless and do not cause irritation or staining. This review focuses on antibacterial peptides for their potential role in the treatment and prevention of dental caries and suggests candidates that need to be explored further. Practical considerations for the development of antibacterial peptides as oral treatments are also discussed.
Collapse
|
32
|
References. Antibiotics (Basel) 2015. [DOI: 10.1128/9781555819316.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
33
|
Barbosa J, Caetano T, Mendo S. Class I and Class II Lanthipeptides Produced by Bacillus spp. JOURNAL OF NATURAL PRODUCTS 2015; 78:2850-2866. [PMID: 26448102 DOI: 10.1021/np500424y] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The increasing number of multidrug-resistant pathogens, along with the small number of new antimicrobials under development, leads to an increased need for novel alternatives. Class I and class II lanthipeptides (also known as lantibiotics) have been considered promising alternatives to classical antibiotics. In addition to their relevant medical applications, they are used as probiotics, prophylactics, preservatives, and additives in cosmetics and personal-care products. The genus Bacillus is a prolific source of bioactive compounds including ribosomally and nonribosomally synthesized antibacterial peptides. Accordingly, there is significant interest in the biotechnological potential of members of the genus Bacillus as producers of antimicrobial lanthipeptides. The present review focuses on aspects of the biosynthesis, gene cluster organization, structure, antibacterial spectrum, and bioengineering approaches of lanthipeptides produced by Bacillus strains. Their efficacy and potency against some clinically relevant strains, including MRSA and VRE, are also discussed. Although no lanthipeptides are currently in clinical use, the information herein highlights the potential of these compounds.
Collapse
Affiliation(s)
- Joana Barbosa
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro , 3810-193 Aveiro, Portugal
| | - Tânia Caetano
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro , 3810-193 Aveiro, Portugal
| | - Sónia Mendo
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro , 3810-193 Aveiro, Portugal
| |
Collapse
|
34
|
Chandrasekar J, Wylder AC, Silverman SK. Phosphoserine Lyase Deoxyribozymes: DNA-Catalyzed Formation of Dehydroalanine Residues in Peptides. J Am Chem Soc 2015. [PMID: 26200899 DOI: 10.1021/jacs.5b06308] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dehydroalanine (Dha) is a nonproteinogenic electrophilic amino acid that is a synthetic intermediate or product in the biosynthesis of several bioactive cyclic peptides such as lantibiotics, thiopeptides, and microcystins. Dha also enables labeling of proteins and synthesis of post-translationally modified proteins and their analogues. However, current chemical approaches to introducing Dha into peptides have substantial limitations. Using in vitro selection, here we show that DNA can catalyze Zn(2+) or Zn(2+)/Mn(2+)-dependent formation of Dha from phosphoserine (pSer), i.e., exhibit pSer lyase activity, a fundamentally new DNA-catalyzed reaction. Two new pSer lyase deoxyribozymes, named Dha-forming deoxyribozymes 1 and 2 (DhaDz1 and DhaDz2), each function with multiple turnover on the model hexapeptide substrate that was used during selection. Using DhaDz1, we generated Dha from pSer within an unrelated linear 13-mer peptide. Subsequent base-promoted intramolecular cyclization of homocysteine into Dha formed a stable cystathionine (thioether) analogue of the complement inhibitor compstatin. These findings establish the fundamental catalytic ability of DNA to eliminate phosphate from pSer to form Dha and suggest that with further development, pSer lyase deoxyribozymes will have broad practical utility for site-specific enzymatic synthesis of Dha from pSer in peptide substrates.
Collapse
Affiliation(s)
- Jagadeeswaran Chandrasekar
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Adam C Wylder
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Scott K Silverman
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
35
|
Ding W, Li Y, Zhang Q. Substrate-Controlled Stereochemistry in Natural Product Biosynthesis. ACS Chem Biol 2015; 10:1590-8. [PMID: 25844528 DOI: 10.1021/acschembio.5b00104] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Enzymes are generally believed to be highly regio- and stereoselective catalysts that strictly control the reaction coordinates and dominate the final catalytic outcomes. However, recent studies have started to suggest that substrates sometimes play key roles in determining the product selectivity in enzyme catalysis. Here, we highlight several enzymatic reactions in which the stereoselectivity is, at least in large part, governed by the intrinsic properties of the substrate rather than by characteristics of the enzyme. These reactions are involved in the biosynthesis of different classes of natural products, including lanthipeptides, sactipeptides, and polyketides. Understanding the mechanism of substrate-controlled stereospecificity may not only expand our knowledge of enzyme catalysis and enzyme evolution but also guide bioengineering efforts to produce novel valuable products.
Collapse
Affiliation(s)
- Wei Ding
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Yongzhen Li
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
36
|
Maffioli SI, Monciardini P, Catacchio B, Mazzetti C, Münch D, Brunati C, Sahl HG, Donadio S. Family of class I lantibiotics from actinomycetes and improvement of their antibacterial activities. ACS Chem Biol 2015; 10:1034-42. [PMID: 25574687 DOI: 10.1021/cb500878h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Lantibiotics, an abbreviation for "lanthionine-containing antibiotics", interfere with bacterial metabolism by a mechanism not exploited by the antibiotics currently in clinical use. Thus, they have aroused interest as a source for new therapeutic agents because they can overcome existing resistance mechanisms. Starting from fermentation broth extracts preselected from a high-throughput screening program for discovering cell-wall inhibitors, we isolated a series of related class I lantibiotics produced by different genera of actinomycetes. Analytical techniques together with explorative chemistry have been used to establish their structures: the newly described compounds share a common 24 aa sequence with the previously reported lantibiotic planosporicin (aka 97518), differing at positions 4, 6, and 14. All of these compounds maintain an overall -1 charge at physiological pH. While all of these lantibiotics display modest antibacterial activity, their potency can be substantially modulated by progressively eliminating the negative charges, with the most active compounds carrying basic amide derivatives of the two carboxylates originally present in the natural compounds. Interestingly, both natural and chemically modified lantibiotics target the key biosynthetic intermediate lipid II, but the former compounds do not bind as effectively as the latter in vivo. Remarkably, the basic derivatives display an antibacterial potency and a killing effect similar to those of NAI-107, a distantly related actinomycete-produced class I lantibiotic which lacks altogether carboxyl groups and which is a promising clinical candidate for treating Gram-positive infections caused by multi-drug-resistant pathogens.
Collapse
Affiliation(s)
| | | | - Bruno Catacchio
- Naicons srl, 20139 Milano, Italy
- ITB-CNR Segrate, 20090 Milano, Italy
| | - Carlo Mazzetti
- Naicons srl, 20139 Milano, Italy
- ITB-CNR Segrate, 20090 Milano, Italy
| | - Daniela Münch
- Institute
of Medical Microbiology, Immunology and Parasitology, Pharmaceutical
Microbiology Section, University of Bonn, 53113 Bonn, Germany
| | | | - Hans-Georg Sahl
- Institute
of Medical Microbiology, Immunology and Parasitology, Pharmaceutical
Microbiology Section, University of Bonn, 53113 Bonn, Germany
| | - Stefano Donadio
- Naicons srl, 20139 Milano, Italy
- KtedoGen srl, 21046 Milano, Italy
| |
Collapse
|
37
|
Expanded natural product diversity revealed by analysis of lanthipeptide-like gene clusters in actinobacteria. Appl Environ Microbiol 2015; 81:4339-50. [PMID: 25888176 DOI: 10.1128/aem.00635-15] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/14/2015] [Indexed: 01/18/2023] Open
Abstract
Lanthionine-containing peptides (lanthipeptides) are a rapidly growing family of polycyclic peptide natural products belonging to the large class of ribosomally synthesized and posttranslationally modified peptides (RiPPs). Lanthipeptides are widely distributed in taxonomically distant species, and their currently known biosynthetic systems and biological activities are diverse. Building on the recent natural product gene cluster family (GCF) project, we report here large-scale analysis of lanthipeptide-like biosynthetic gene clusters from Actinobacteria. Our analysis suggests that lanthipeptide biosynthetic pathways, and by extrapolation the natural products themselves, are much more diverse than currently appreciated and contain many different posttranslational modifications. Furthermore, lanthionine synthetases are much more diverse in sequence and domain topology than currently characterized systems, and they are used by the biosynthetic machineries for natural products other than lanthipeptides. The gene cluster families described here significantly expand the chemical diversity and biosynthetic repertoire of lanthionine-related natural products. Biosynthesis of these novel natural products likely involves unusual and unprecedented biochemistries, as illustrated by several examples discussed in this study. In addition, class IV lanthipeptide gene clusters are shown not to be silent, setting the stage to investigate their biological activities.
Collapse
|
38
|
Zhou L, van Heel AJ, Kuipers OP. The length of a lantibiotic hinge region has profound influence on antimicrobial activity and host specificity. Front Microbiol 2015; 6:11. [PMID: 25688235 PMCID: PMC4310329 DOI: 10.3389/fmicb.2015.00011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/06/2015] [Indexed: 11/14/2022] Open
Abstract
Lantibiotics are ribosomally synthesized (methyl)lanthionine containing peptides which can efficiently inhibit the growth of Gram-positive bacteria. As lantibiotics kill bacteria efficiently and resistance to them is difficult to be obtained, they have the potential to be used in many applications, e.g., in pharmaceutical industry or food industry. Nisin can inhibit the growth of Gram-positive bacteria by binding to lipid II and by making pores in their membrane. The C-terminal part of nisin is known to play an important role during translocation over the membrane and forming pore complexes. However, as the thickness of bacterial membranes varies between different species and environmental conditions, this property could have an influence on the pore forming activity of nisin. To investigate this, the so-called “hinge region” of nisin (residues NMK) was engineered to vary from one to six amino acid residues and specific activity against different indicators was compared. Antimicrobial activity in liquid culture assays showed that wild type nisin is most active, while truncation of the hinge region dramatically reduced the activity of the peptide. However, one or two amino acids extensions showed only slightly reduced activity against most indicator strains. Notably, some variants (+2, +1, −1, −2) exhibited higher antimicrobial activity than nisin in agar well diffusion assays against Lactococcus lactis MG1363, Listeria monocytogenes, Enterococcus faecalis VE14089, Bacillus sporothermodurans IC4 and Bacillus cereus 4153 at certain temperatures.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Groningen, Netherlands
| | - Auke J van Heel
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Groningen, Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Groningen, Netherlands
| |
Collapse
|
39
|
Zhang Q, Yang X, Wang H, van der Donk WA. High divergence of the precursor peptides in combinatorial lanthipeptide biosynthesis. ACS Chem Biol 2014; 9:2686-94. [PMID: 25244001 PMCID: PMC4245175 DOI: 10.1021/cb500622c] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lanthionine-containing peptides (lanthipeptides) are a rapidly growing family of polycyclic peptide natural products belonging to the large class of ribosomally synthesized and post-translationally modified peptides (RiPPs). These compounds are widely distributed in taxonomically distant species, and their biosynthetic systems and biological activities are diverse. A unique example of lanthipeptide biosynthesis is the prochlorosin synthetase ProcM from the marine cyanobacterium Prochlorococcus MIT9313, which transforms up to 29 different precursor peptides (ProcAs) into a library of lanthipeptides called prochlorosins (Pcns) with highly diverse sequences and ring topologies. Here, we show that many ProcM-like enzymes from a variety of bacteria have the capacity to carry out post-translational modifications on highly diverse precursor peptides, providing new examples of natural combinatorial biosynthesis. We also demonstrate that the leader peptides come from different evolutionary origins, suggesting that the combinatorial biosynthesis is tied to the enzyme and not a specific type of leader peptide. For some precursor peptides encoded in the genomes, the leader peptides apparently have been truncated at the N-termini, and we show that these N-terminally truncated peptides are still substrates of the enzymes. Consistent with this hypothesis, we demonstrate that about two-thirds of the ProcA N-terminal sequence is not essential for ProcM activity. Our results also highlight the potential of exploring this class of natural products by genome mining and bioengineering.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Chemistry,
Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Xiao Yang
- Department of Chemistry,
Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Huan Wang
- Department of Chemistry,
Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department of Chemistry,
Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
40
|
Harmsen RA, Ghalit N, Kemmink J, Breukink E, Liskamp RM, Rijkers DT. A conformationally constrained fused tricyclic nisin AB-ring system mimic toward an improved pyrophosphate binder of lipid II. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.06.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Semi-synthesis of biologically active nisin hybrids composed of the native lanthionine ABC-fragment and a cross-stapled synthetic DE-fragment. Bioorg Med Chem 2014; 22:5345-53. [DOI: 10.1016/j.bmc.2014.07.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/24/2014] [Accepted: 07/28/2014] [Indexed: 01/23/2023]
|
42
|
Type AII lantibiotic bovicin HJ50 with a rare disulfide bond: structure, structure-activity relationships and mode of action. Biochem J 2014; 461:497-508. [PMID: 24814218 DOI: 10.1042/bj20131524] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lantibiotics are ribosomally synthesized antimicrobial peptides containing unusual amino acids. As promising alternatives to conventional antibiotics, they have a high potential for alleviating the problem of emergent antibiotic resistance, with possible applications in many industries that have antibacterial demand. Bovicin HJ50 is a type AII lantibiotic, the largest group of lantibiotics, comprising a linear N-terminal region and a globular C-terminal region. Interestingly, bovicin H50 has a disulfide bond that is rare in this group. Owing to limited information about the spatial structures of type AII lantibiotics, the functional regions of this type and the role of the disulfide bond are still unknown. In the present study, we resolved the solution structure of bovicin HJ50 using NMR spectroscopy. This is the first spatial structure of a type AII lantibiotic. Bovicin HJ50 exhibited high flexibility in aqueous solution, whereas varied rigidities were observed in the different rings with the conserved ring A being the most rigid. The charged residues Lys¹¹, Asp¹² and Lys³⁰, as well as the essential disulfide bond were critical for antimicrobial activity. Importantly, bovicin HJ50 showed not only peptidoglycan precursor lipid II-binding ability, but also pore-forming activity, which is significantly different from other bacteriostatic type AII lantibiotics, suggesting a novel antimicrobial mechanism.
Collapse
|
43
|
Lohans CT, Li JL, Vederas JC. Structure and Biosynthesis of Carnolysin, a Homologue of Enterococcal Cytolysin with d-Amino Acids. J Am Chem Soc 2014; 136:13150-3. [DOI: 10.1021/ja5070813] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Jessica L. Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - John C. Vederas
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| |
Collapse
|
44
|
Tabor AB. Recent advances in synthetic analogues of lantibiotics: What can we learn from these? Bioorg Chem 2014; 55:39-50. [PMID: 24877613 DOI: 10.1016/j.bioorg.2014.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 04/11/2014] [Indexed: 11/30/2022]
Abstract
The lantibiotics are a family of antibacterial cyclic peptides distinguished by one or more thioether linkages between amino acid side chains, and by unique modes of action. Recent developments in the chemical synthesis, mutagenesis and mutasynthesis of these peptides are providing insights into the structural requirements for antibacterial activity and into the mode of action, as well as having the potential to produce analogues with greater stability, potency and bioavailability. This Review provides a survey of these recent advances.
Collapse
Affiliation(s)
- Alethea B Tabor
- UCL Department of Chemistry, 20, Gordon Street, London WC1H 0AJ, UK.
| |
Collapse
|
45
|
Purification and characterization of antimicrobial peptides from fish isolate Carnobacterium maltaromaticum C2: Carnobacteriocin X and carnolysins A1 and A2. Int J Food Microbiol 2014; 173:81-8. [DOI: 10.1016/j.ijfoodmicro.2013.12.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 12/18/2013] [Accepted: 12/22/2013] [Indexed: 11/18/2022]
|
46
|
Kuranaga T, Sesoko Y, Inoue M. Cu-mediated enamide formation in the total synthesis of complex peptide natural products. Nat Prod Rep 2014; 31:514-32. [PMID: 24567066 DOI: 10.1039/c3np70103d] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cu-mediated C(sp(2))-N bond formation has received intense interest recently, and has been applied to the total synthesis of a wide variety of structurally complex natural products. This review covers the synthetic assembly of peptide natural products in which Cu-mediated enamide formation is the key transformation. The total syntheses of cyclopeptide alkaloids, pacidamycin D, and yaku'amide A exemplify the versatility of the Cu-catalyzed cross-coupling reaction in comparison to other synthetic methods.
Collapse
Affiliation(s)
- Takefumi Kuranaga
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | |
Collapse
|
47
|
Dischinger J, Basi Chipalu S, Bierbaum G. Lantibiotics: Promising candidates for future applications in health care. Int J Med Microbiol 2014; 304:51-62. [DOI: 10.1016/j.ijmm.2013.09.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
48
|
Slootweg JC, van der Wal S, Quarles van Ufford HC, Breukink E, Liskamp RMJ, Rijkers DTS. Synthesis, antimicrobial activity, and membrane permeabilizing properties of C-terminally modified nisin conjugates accessed by CuAAC. Bioconjug Chem 2013; 24:2058-66. [PMID: 24266643 DOI: 10.1021/bc400401k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Functionalization of the lantibiotic nisin with fluorescent reporter molecules is highly important for the understanding of its mode of action as a potent antimicrobial peptide. In addition to this, multimerization of nisin to obtain multivalent peptide constructs and conjugation of nisin to bioactive molecules or grafting it on surfaces can be attractive methods for interference with bacterial growth. Here, we report a convenient method for the synthesis of such nisin conjugates and show that these nisin derivatives retain both their antimicrobial activity and their membrane permeabilizing properties. The synthesis is based on the Cu(I)-catalyzed alkyne-azide cycloaddition reaction (CuAAC) as a bioorthogonal ligation method for large and unprotected peptides in which nisin was C-terminally modified with propargylamine and subsequently efficiently conjugated to a series of functionalized azides. Two fluorescently labeled nisin conjugates together with a dimeric nisin construct were prepared while membrane insertion as well as antimicrobial activity were unaffected by these modifications. This study shows that C-terminal modification of nisin does not deteriorate biological activity in sharp contrast to N-terminal modification and therefore C-terminally modified nisin analogues are valuable tools to study the antibacterial mode of action of nisin. Furthermore, the ability to use stoichiometric amounts of the azide containing molecule opens up possibilities for surface tethering and more complex multivalent structures.
Collapse
Affiliation(s)
- Jack C Slootweg
- Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University , P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
49
|
Dosler S, Mataraci E. In vitro pharmacokinetics of antimicrobial cationic peptides alone and in combination with antibiotics against methicillin resistant Staphylococcus aureus biofilms. Peptides 2013; 49:53-8. [PMID: 23988790 DOI: 10.1016/j.peptides.2013.08.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/07/2013] [Accepted: 08/07/2013] [Indexed: 12/15/2022]
Abstract
Antibiotic therapy for methicillin-resistant Staphylococcus aureus (MRSA) infections is becoming more difficult in hospitals and communities because of strong biofilm-forming properties and multidrug resistance. Biofilm-associated MRSA is not affected by therapeutically achievable concentrations of antibiotics. Therefore, we investigated the in vitro pharmacokinetic activities of antimicrobial cationic peptides (AMPs; indolicidin, cecropin [1-7]-melittin A [2-9] amide [CAMA], and nisin), either alone or in combination with antibiotics (daptomycin, linezolid, teicoplanin, ciprofloxacin, and azithromycin), against standard and 2 clinically obtained MRSA biofilms. The minimum inhibitory concentrations (MIC) and minimum biofilm-eradication concentrations (MBEC) were determined by microbroth dilution technique. The time-kill curve (TKC) method was used to determine the bactericidal activities of the AMPs alone and in combination with the antibiotics against standard and clinically obtained MRSA biofilms. The MIC values of the AMPs and antibiotics ranged between 2 to 16 and 0.25 to 512 mg/L, and their MBEC values were 640 and 512 to 5120 mg/L, respectively. The TKC studies demonstrated that synergistic interactions occurred most frequently when using nisin+daptomycin/ciprofloxacin, indolicidin+teicoplanin, and CAMA+ciprofloxacin combinations. No antagonism was observed with any combination. AMPs appear to be good candidates for the treatment of MRSA biofilms, as they act as both enhancers of anti-biofilm activities and help to prevent or delay the emergence of resistance when used either alone or in combination with antibiotics.
Collapse
Affiliation(s)
- Sibel Dosler
- Department of Pharmaceutical Microbiology Faculty of Pharmacy, Istanbul University, 34116, Beyazit, Istanbul, Turkiye.
| | | |
Collapse
|
50
|
Lipid-II forms potential "landing terrain" for lantibiotics in simulated bacterial membrane. Sci Rep 2013; 3:1678. [PMID: 23588060 PMCID: PMC3627190 DOI: 10.1038/srep01678] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/04/2013] [Indexed: 11/22/2022] Open
Abstract
Bacterial cell wall is targeted by many antibiotics. Among them are lantibiotics, which realize their function via interaction with plasma membrane lipid-II molecule — a chemically conserved part of the cell wall synthesis pathway. To investigate structural and dynamic properties of this molecule, we have performed a series of nearly microsecond-long molecular dynamics simulations of lipid-II and some of its analogs in zwitterionic single component and charged mixed simulated phospholipid bilayers (the reference and the mimic of the bacterial plasma membrane, respectively). Extensive analysis revealed that lipid-II forms a unique “amphiphilic pattern” exclusively on the surface of the simulated bacterial membrane (and not in the reference one). We hypothesize that many lantibiotics exploit the conserved features of lipid-II along with characteristic modulation of the bacterial membrane as the “landing site”. This putative recognition mechanism opens new opportunities for studies on lantibiotics action and design of novel armament against resistant bacterial strains.
Collapse
|