1
|
Qiu J, Qin R, Zhi S, Liu L. Recent advance in macrolactams: Structure, bioactivity, and biosynthesis. Bioorg Chem 2025; 159:108406. [PMID: 40184666 DOI: 10.1016/j.bioorg.2025.108406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 03/10/2025] [Accepted: 03/23/2025] [Indexed: 04/07/2025]
Abstract
Macrolactams have garnered significant attention in recent years due to their diverse structures and remarkable biological activities. Despite the increasing number of new members being reported, a systematic discussion of recent advancements in this family is still lacking, particularly in areas such as structure-activity relationship and newly identified biosynthetic pathways that deviate from the traditional collinear rule. To address this gap, we compiled 105 macrolactams reported between 2004 and 2023, produced by microbial strains isolated from diverse environments, including marine sediments, soil, plants, and animals. This review not only highlights the sources, structures, and biological activities of these macrolactams but also delves into 17 known biosynthetic pathways. We provide an in-depth analysis of the associated biosynthetic gene clusters, the mechanisms of key enzymes, and their roles in the biosynthesis process. By offering these insights, this review serves as a valuable reference for the discovery of novel macrolactams and their sustainable production using synthetic biology approaches in the future.
Collapse
Affiliation(s)
- Jiawei Qiu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Ruochang Qin
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Shuai Zhi
- School of Public Health, Ningbo University, Ningbo, Zhejiang 315000, China
| | - Liwei Liu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
2
|
Yan Q, Shao Z, Yang C, Zhao G. Continuous carbon source supply is essential for high rifamycin productivity of Amycolatopsis mediterranei in nitrate-stimulated fermentation revealed by a metabolomic study. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 39849912 DOI: 10.3724/abbs.2024245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025] Open
Abstract
Amycolatopsis mediterranei U32 is an industrial strain capable of producing therapeutically useful rifamycin SV. In early days of fermentation studies, nitrate was found to increase the yield of rifamycin along with globally, affecting both carbon and nitrogen metabolism in favor of antibiotic biosynthesis; thus, the nitrate-stimulating effect (NSE) hypothesis was proposed. Although GlnR is likely the master regulator of the pleotropic effect of NSE, the global metabolism affected by NSE has never been systematically examined. In this study, we use mass spectrometry-based metabolomics to quantitatively monitor the metabolomic responses of A. mediterranei U32 to nitrate supplementation. The concentrations of many metabolites involved in central carbon metabolism, including glucose 6-phosphate, glucose 1-phosphate, UDP-glucose, and acetyl-coenzyme A, decrease significantly after the addition of 80 mM potassium nitrate to the medium. We find that the rifamycin SV production yield could be increased by the addition of glucose during the logarithmic growth phase. Moreover, at multiple time points during glucose supplementation in the mid- and late-exponential phases, the yield of rifamycin SV further increases, reaching 354.3%. Quantitative real-time PCR assays of the key genes corresponding to the synthesis of the rifamycin SV precursor combined with data from metabolomics analysis confirm that carbon source deficiency is compensated for after glucose supplementation and that the expression of genes involved in the pathway of 3-amino-5-hydroxybenzoic acid synthesis by UDP-glucose and glutamine is significantly increased. This preliminary exploration of dynamic metabolomic profiles has the potential to increase our understanding of the NSE.
Collapse
Affiliation(s)
- Qi Yan
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Zhihui Shao
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Chen Yang
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoping Zhao
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
3
|
Boukouvala S, Kontomina E, Olbasalis I, Patriarcheas D, Tzimotoudis D, Arvaniti K, Manolias A, Tsatiri MA, Basdani D, Zekkas S. Insights into the genomic and functional divergence of NAT gene family to serve microbial secondary metabolism. Sci Rep 2024; 14:14905. [PMID: 38942826 PMCID: PMC11213898 DOI: 10.1038/s41598-024-65342-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/19/2024] [Indexed: 06/30/2024] Open
Abstract
Microbial NAT enzymes, which employ acyl-CoA to acylate aromatic amines and hydrazines, have been well-studied for their role in xenobiotic metabolism. Some homologues have also been linked to secondary metabolism, but this function of NAT enzymes is not as well-known. For this comparative study, we surveyed sequenced microbial genomes to update the list of formally annotated NAT genes, adding over 4000 new sequences (mainly bacterial, but also archaeal, fungal and protist) and portraying a broad but not universal distribution of NATs in the microbiocosmos. Localization of NAT sequences within microbial gene clusters was not a rare finding, and this association was evident across all main types of biosynthetic gene clusters (BGCs) implicated in secondary metabolism. Interrogation of the MIBiG database for experimentally characterized clusters with NAT genes further supports that secondary metabolism must be a major function for microbial NAT enzymes and should not be overlooked by researchers in the field. We also show that NAT sequences can be associated with bacterial plasmids potentially involved in horizontal gene transfer. Combined, our computational predictions and MIBiG literature findings reveal the extraordinary functional diversification of microbial NAT genes, prompting further research into their role in predicted BGCs with as yet uncharacterized function.
Collapse
Affiliation(s)
- Sotiria Boukouvala
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece.
| | - Evanthia Kontomina
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Ioannis Olbasalis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Dionysios Patriarcheas
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Dimosthenis Tzimotoudis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Konstantina Arvaniti
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Aggelos Manolias
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Maria-Aggeliki Tsatiri
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Dimitra Basdani
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Sokratis Zekkas
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| |
Collapse
|
4
|
Müller M, Bialas E, Sturm I, Sood U, Lal R, Bechthold A. Genomic modifications for enhanced antibiotic production in rifamycin derivative-producing Amycolatopsis mediterranei S699 strains: focusing on rifQ and rifO genes. FRONTIERS IN ANTIBIOTICS 2024; 3:1399139. [PMID: 39816246 PMCID: PMC11732027 DOI: 10.3389/frabi.2024.1399139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/06/2024] [Indexed: 01/18/2025]
Abstract
Rifamycin and its derivatives are natural products that belong to the class of antibiotic-active polyketides and have significant therapeutic relevance within the therapy scheme of tuberculosis, a worldwide infectious disease caused by Mycobacterium tuberculosis. Improving the oral bioavailability of rifamycin B was achieved through semisynthetic modifications, leading to clinically effective derivatives such as rifampicin. Genetic manipulation of the rifamycin polyketide synthase gene cluster responsible for the production of rifamycin B in the Amycolatopsis mediterranei strain S699 represents a promising tool to generate new rifamycins. These new rifamycins have the potential to be further derivatized into new, ideally more effective, clinically usable compounds. However, the resulting genetically engineered strains only produce these new derivatives in low yields. One example is the strain DCO36, in which rifAT6 was replaced by rapAT2, resulting in the production of rifamycin B and the new derivative 24-desmethyl rifamycin B. Here we describe the successful method adaptation of the PCR-targeting Streptomyces gene replacement approach to Amycolatopsis mediterranei S699 and further on the implementation of genetic modifications that enable an increased production of the derivative 24-desmethyl rifamycin B in the mutant strain DCO36. The described genetic modifications resulted in a mutant strain of DCO36 with rifQ deletion showing a 62% increase in 24-desmethyl rifamycin B production, while a mutant with rifO overexpression showed a 27% increase.
Collapse
Affiliation(s)
- Moritz Müller
- Institute of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-Universität, Freiburg, Germany
| | - Elena Bialas
- Institute of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-Universität, Freiburg, Germany
| | - Irina Sturm
- Institute of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-Universität, Freiburg, Germany
| | - Utkarsh Sood
- Department of Zoology, Kirori Mal College, University of Delhi, Delhi, India
| | - Rup Lal
- Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Andreas Bechthold
- Institute of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-Universität, Freiburg, Germany
| |
Collapse
|
5
|
Haroon M, Ahmad S, Fawad Zahoor A, Javed S, Nadeem Ahmad M, Gul Khan S, Al-Mutairi AA, Irfan A, Al-Hussain SA, Zaki ME. Grignard Reaction: An ‘Old-Yet-Gold’ synthetic gadget toward the synthesis of natural Products: A review. ARAB J CHEM 2024; 17:105715. [DOI: 10.1016/j.arabjc.2024.105715] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
|
6
|
Abstract
Covering: 1997 to 2023The shikimate pathway is the metabolic process responsible for the biosynthesis of the aromatic amino acids phenylalanine, tyrosine, and tryptophan. Seven metabolic steps convert phosphoenolpyruvate (PEP) and erythrose 4-phosphate (E4P) into shikimate and ultimately chorismate, which serves as the branch point for dedicated aromatic amino acid biosynthesis. Bacteria, fungi, algae, and plants (yet not animals) biosynthesize chorismate and exploit its intermediates in their specialized metabolism. This review highlights the metabolic diversity derived from intermediates of the shikimate pathway along the seven steps from PEP and E4P to chorismate, as well as additional sections on compounds derived from prephenate, anthranilate and the synonymous aminoshikimate pathway. We discuss the genomic basis and biochemical support leading to shikimate-derived antibiotics, lipids, pigments, cofactors, and other metabolites across the tree of life.
Collapse
Affiliation(s)
- Vikram V Shende
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Katherine D Bauman
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Bradley S Moore
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
7
|
Sood U, Müller M, Lan T, Garg G, Singhvi N, Hira P, Singh P, Nigam A, Verma M, Lata P, Kaur H, Kumar A, Rawat CD, Lal S, Aldrich C, Bechthold A, Lal R. Amycolatopsis mediterranei: A Sixty-Year Journey from Strain Isolation to Unlocking Its Potential of Rifamycin Analogue Production by Combinatorial Biosynthesis. JOURNAL OF NATURAL PRODUCTS 2024; 87:424-438. [PMID: 38289177 DOI: 10.1021/acs.jnatprod.3c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Ever since the isolation of Amycolatopsis mediterranei in 1957, this strain has been the focus of research worldwide. In the last 60 years or more, our understanding of the taxonomy, development of cloning vectors and conjugation system, physiology, genetics, genomics, and biosynthetic pathway of rifamycin B production in A. mediterranei has substantially increased. In particular, the development of cloning vectors, transformation system, characterization of the rifamycin biosynthetic gene cluster, and the regulation of rifamycin B production by the pioneering work of Heinz Floss have made the rifamycin polyketide biosynthetic gene cluster (PKS) an attractive target for extensive genetic manipulations to produce rifamycin B analogues which could be effective against multi-drug-resistant tuberculosis. Additionally, a better understanding of the regulation of rifamycin B production and the application of newer genomics tools, including CRISPR-assisted genome editing systems, might prove useful to overcome the limitations associated with low production of rifamycin analogues.
Collapse
Affiliation(s)
- Utkarsh Sood
- Department of Zoology, Kirori Mal College, University of Delhi, Delhi-110007, India
| | - Moritz Müller
- Institute of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-Universität, Stefan-Meier-Straße 19, 79104, Freiburg, Germany
| | - Tian Lan
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Gauri Garg
- Department of Zoology, Kirori Mal College, University of Delhi, Delhi-110007, India
| | - Nirjara Singhvi
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, Uttarakhand 248007, India
| | - Princy Hira
- Department of Zoology, Maitreyi College, University of Delhi, Delhi-110003, India
| | - Priya Singh
- Department of Zoology, Maitreyi College, University of Delhi, Delhi-110003, India
| | - Aeshna Nigam
- Department of Zoology, Shivaji College, University of Delhi, Delhi-110027, India
| | - Mansi Verma
- Department of Zoology, Hansraj College, University of Delhi, Delhi-110007, India
| | - Pushp Lata
- Department of Zoology, University of Delhi, Delhi-110007, India
| | - Hardeep Kaur
- Department of Zoology, Ramjas College, University of Delhi, Delhi-110007, India
| | - Abhilash Kumar
- Department of Zoology, Ramjas College, University of Delhi, Delhi-110007, India
| | - Charu Dogra Rawat
- Department of Zoology, Ramjas College, University of Delhi, Delhi-110007, India
| | - Sukanya Lal
- PhiXGen Private Limited, Gurugram, Haryana-122001, India
| | - Courtney Aldrich
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Andreas Bechthold
- Institute of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-Universität, Stefan-Meier-Straße 19, 79104, Freiburg, Germany
| | - Rup Lal
- PhiXGen Private Limited, Gurugram, Haryana-122001, India
- Acharya Narendra Dev College, University of Delhi, Delhi-110019, India
| |
Collapse
|
8
|
Yang M, Li W, Zhou L, Lin X, Zhang W, Shen Y, Deng H, Lin HW, Zhou Y. Biosynthesis of trialkyl-substituted aromatic polyketide NFAT-133 involves unusual P450 monooxygenase-mediating aromatization and a putative metallo-beta-lactamase fold hydrolase. Synth Syst Biotechnol 2023; 8:349-356. [PMID: 37325182 PMCID: PMC10265476 DOI: 10.1016/j.synbio.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
The bacterial trialkyl-substituted aromatic polyketides are structurally featured with the unusual aromatic core in the middle of polyketide chain such as TM-123 (1), veramycin A (2), NFAT-133 (3) and benwamycin I (4), which were discovered from Streptomyces species and demonstrated with antidiabetic and immunosuppressant activities. Though the biosynthetic pathway of 1-3 was reported as a type I polyketide synthase (PKS), the PKS assembly line was interpreted inconsistently, and it remains a mystery how the compound 3 was generated. Herein, the PKS assembly logic of 1-4 was revised by site-mutagenetic analysis of the PKS dehydratase domains. Based on gene deletion and complementation, the putative P450 monooxygenase nftE1 and metallo-beta-lactamase (MBL) fold hydrolase nftF1 were verified as essential genes for the biosynthesis of 1-4. The absence of nftE1 led to abolishment of 1-4 and accumulation of new products (5-8). Structural elucidation reveals 5-8 as the non-aromatic analogs of 1, suggesting the NftE1-catalyzed aromatic core formation. Deletion of nftF1 resulted in disappearance of 3 and 4 with the compounds 1 and 2 unaffected. As a rare MBL-fold hydrolase from type I PKSs, NftF1 potentially generates the compound 3 through two strategies: catalyze premature chain-offloading as a trans-acting thioesterase or hydrolyze the lactone-bond of compound 1 as an esterase.
Collapse
Affiliation(s)
- Ming Yang
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wanlu Li
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lin Zhou
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiao Lin
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Institute of Marine Drugs, Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, PR China
| | - Wenyu Zhang
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yaoyao Shen
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Hai Deng
- Department of Chemistry, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Hou-wen Lin
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yongjun Zhou
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
9
|
Guo ZK, Wang YC, Tan YZ, Abulaizi A, Xiong ZJ, Zhang SQ, Yang Y, Yang LY, Shi J. Nagimycins A and B, Antibacterial Ansamycin-Related Macrolactams from Streptomyces sp. NA07423. Org Lett 2023; 25:4203-4207. [PMID: 37232514 DOI: 10.1021/acs.orglett.3c01539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Chemical investigation of Streptomyces sp. NA07423 led to the discovery of two unreported macrolactams, nagimycins A (1) and B (2). Their structures were elucidated by NMR, HRESIMS, X-ray crystallography, and comparison of experimental and theoretical ECD spectra. The nagimycins have a unique butenolide moiety rarely found in ansamycin antibiotics. Genome analysis revealed the putative biosynthetic gene cluster for nagimycins, and a likely biosynthetic pathway was proposed. Notably, compounds 1 and 2 exhibited potent antibacterial activity against two pathogenic Xanthomonas bacteria.
Collapse
Affiliation(s)
- Zhi Kai Guo
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yong Chao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ying Zi Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ailiman Abulaizi
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zi Jun Xiong
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Shi Qing Zhang
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yang Yang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences & National Collection of Microbial Resource for Fertilizer (Hainan), Haikou 571101, China
| | - La Ying Yang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences & National Collection of Microbial Resource for Fertilizer (Hainan), Haikou 571101, China
| | - Jing Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
10
|
Yang H, Zhang Y, Chen W, Shi H, Huo L, Li J, Li H, Xie X, She X. Scalable Total Syntheses of (±)-Catellatolactams A and B. Org Lett 2023; 25:1003-1007. [PMID: 36748956 DOI: 10.1021/acs.orglett.3c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The first total syntheses of (±)-catellatolactams A and B, two novel ansamacrolactams, are described in 5 and 8 steps, respectively. The strategy relies on an amidation reaction to couple the acylated Meldrum's acid and an aryl amine, a regioselective C-H insertion to construct the γ-lactam moiety, and an RCM reaction to forge the macrocycles with E-olefin. This concise and scalable synthesis provided over 200 mg of the target molecules.
Collapse
Affiliation(s)
- Hesi Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 Gansu, P. R. China
| | - Yan Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 Gansu, P. R. China
| | - Wei Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 Gansu, P. R. China
| | - Hongliang Shi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 Gansu, P. R. China
| | - Liang Huo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 Gansu, P. R. China
| | - Jia Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 Gansu, P. R. China
| | - Huilin Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 Gansu, P. R. China
| | - Xingang Xie
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 Gansu, P. R. China
| | - Xuegong She
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 Gansu, P. R. China
| |
Collapse
|
11
|
Yang YM, Zhao EJ, Wei W, Xu ZF, Shi J, Wu X, Zhang B, Igarashi Y, Jiao RH, Liang Y, Tan RX, Ge HM. Cytochrome P450 Catalyzes Benzene Ring Formation in the Biosynthesis of Trialkyl-Substituted Aromatic Polyketides. Angew Chem Int Ed Engl 2023; 62:e202214026. [PMID: 36458944 DOI: 10.1002/anie.202214026] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/04/2022]
Abstract
Lorneic acid and related natural products are characterized by a trialkyl-substituted benzene ring. The formation of the aromatic core in the middle of the polyketide chain is unusual. We characterized a cytochrome P450 enzyme that can catalyze the hallmark benzene ring formation from an acyclic polyene substrate through genetic and biochemical analysis. Using this P450 as a beacon for genome mining, we obtained 12 homologous type I polyketide synthase (PKS) gene clusters, among which two gene clusters are activated and able to produce trialkyl-substituted aromatic polyketides. Quantum chemical calculations were performed to elucidate the plausible mechanism for P450-catalyzed benzene ring formation. Our work expands our knowledge of the catalytic diversity of cytochrome P450.
Collapse
Affiliation(s)
- Yu Meng Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Er Juan Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Wanqing Wei
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Centre (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zi Fei Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jing Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xuan Wu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Centre (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Bo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Toyama, 939-0398, Japan
| | - Rui Hua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Centre (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
12
|
Gao Q, Deng S, Jiang T. Recent developments in the identification and biosynthesis of antitumor drugs derived from microorganisms. ENGINEERING MICROBIOLOGY 2022; 2:100047. [PMID: 39628704 PMCID: PMC11611020 DOI: 10.1016/j.engmic.2022.100047] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 12/06/2024]
Abstract
Secondary metabolites in microorganisms represent a resource for drug discovery and development. In particular, microbial-derived antitumor agents are in clinical use worldwide. Herein, we provide an overview of the development of classical antitumor drugs derived from microorganisms. Currently used drugs and drug candidates are comprehensively described in terms of pharmacological activities, mechanisms of action, microbial sources, and biosynthesis. We further discuss recent studies that have demonstrated the utility of gene-editing technologies and synthetic biology tools for the identification of new gene clusters, expansion of natural products, and elucidation of biosynthetic pathways. This review summarizes recent progress in the discovery and development of microbial-derived anticancer compounds with emphasis on biosynthesis.
Collapse
Affiliation(s)
- Qi Gao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China
- School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Sizhe Deng
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China
- School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Tianyu Jiang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518000, Guangdong, China
| |
Collapse
|
13
|
Wei YF, Huang MS, Huang CH, Yeh YT, Hung CH. Impact of Gut Dysbiosis on the Risk of Non-Small-Cell Lung Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15991. [PMID: 36498063 PMCID: PMC9740010 DOI: 10.3390/ijerph192315991] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Background: The imbalance of gut microbiota, dysbiosis, is associated with various malignant diseases. This study aimed to identify the characteristics of gut microbiota in age-matched treatment-naïve non-small-cell lung cancer (NSCLC) patients and healthy individuals to investigate possible gut-microbe-related pathways involved in the development of NSCLC. Methods: We enrolled 34 age-matched NSCLC patients and 268 healthy individuals. Hypervariable V3−V4 amplicons of 16S rRNA in freshly collected fecal samples were sequenced. Diversity, microbial composition, functional pathways, smoking history, and gut-microbe-related comorbidities were analyzed to assess the factors associated with the risk of NSCLC. Results: Microbial alpha diversity was decreased in the patients with NSCLC, and beta diversity was significantly different between the patients and controls (p < 0.001). After adjustments for sex, smoking history, hypertension, diabetes mellitus, chronic obstructive pulmonary disease, and 11 abundant microbes with significant differences between the patients and controls, the enrichment of Anaerotruncus spp. and Bacteroides caccae was associated with an increased risk of NSCLC (p = 0.003 and 0.007, respectively). The areas under receiver operating characteristic curves were 71.4% and 66.9% for Anaerotruncus spp. and Bacteroides caccae, respectively (both p < 0.001). Furthermore, the abundance of Bacteroides caccae was positively correlated with steroid hormone biosynthesis (p < 0.001), N-glycan biosynthesis (p = 0.023), glycosaminoglycan degradation (p < 0.001), lipoic acid metabolism (p = 0.039), peroxisome (p < 0.001), and apoptosis (p < 0.001), but inversely related to glycerolipid metabolism (p < 0.001). Anaerotruncus spp. was positively associated with decreased biosynthesis of ansamycin only (p = 0.001). No overlapping signaling pathways were modulated by Bacteroides caccae or Anaerotruncus spp. Conclusions: Our results revealed that fecal Anaerotruncus spp. and Bacteroides caccae were abundant and may be associated with the risk of NSCLC regardless of sex, smoking history, and gut-microbe-related comorbidities. Further investigations on the mechanism underlying the potential association between gut dysbiosis and the development of NSCLC are warranted.
Collapse
Affiliation(s)
- Yu-Feng Wei
- Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung 84001, Taiwan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
- Department of Internal Medicine, E-Da Cancer Hospital, Kaohsiung 82445, Taiwan
| | - Ming-Shyan Huang
- Department of Internal Medicine, E-Da Cancer Hospital, Kaohsiung 82445, Taiwan
| | - Cheng-Hsieh Huang
- PhD Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung 83102, Taiwan
| | - Yao-Tsung Yeh
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung 83102, Taiwan
- Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung 83102, Taiwan
| | - Chih-Hsin Hung
- Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung 84001, Taiwan
| |
Collapse
|
14
|
Liu C, Zhang Z, Fukaya K, Urabe D, Harunari E, Oku N, Igarashi Y. Catellatolactams A-C, Plant Growth-Promoting Ansamacrolactams from a Rare Actinomycete of the Genus Catellatospora. JOURNAL OF NATURAL PRODUCTS 2022; 85:1993-1999. [PMID: 35948055 DOI: 10.1021/acs.jnatprod.2c00331] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Catellatolactams A-C (1-3), three novel ansamacrolactams, were isolated from the culture extract of an underexplored rare actinomycete of the genus Catellatospora. Spectroscopic and spectrometric analyses by NMR and MS elucidated the structure of 1 to be a lactamized pentaketide presumably extended on a 3-amino-5-hydroxybenzoic acid starter unit. Compounds 2 and 3 further received epoxidation and intramolecular cross-linking to incorporate a 2-indolinone unit, with a 3-amino-5-hydroxybenzoic acid pendant on 3. The absolute configurations of 2 and 3 were unequivocally established to both be 2S,6R,7R by comparison of the experimental NMR chemical shifts and ECD spectra with those predicted by DFT-based quantum chemical calculation. While 1-3 showed no appreciable antimicrobial activity or cytotoxicity, root elongation of germinated lettuce seeds was promoted by 2 and 3 at 1-10 μM.
Collapse
Affiliation(s)
- Chang Liu
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Zhiwei Zhang
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Keisuke Fukaya
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Daisuke Urabe
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Enjuro Harunari
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Naoya Oku
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
15
|
Kudo F, Eguchi T. Biosynthesis of cyclitols. Nat Prod Rep 2022; 39:1622-1642. [PMID: 35726901 DOI: 10.1039/d2np00024e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Review covering up to 2021Cyclitols derived from carbohydrates are naturally stable hydrophilic substances under ordinary physiological conditions, increasing the water solubility of whole molecules in cells. The stability of cyclitols is derived from their carbocyclic structures bearing no acetal groups, in contrast to sugar molecules. Therefore, carbocycle-forming reactions are critical for the biosynthesis of cyclitols. Herein, we review naturally occurring cyclitols that have been identified to date and categorize them according to the type of carbocycle-forming enzymatic reaction. Furthermore, the cyclitol-forming enzymatic reaction mechanisms and modification pathways of the initially generated cyclitols are reviewed.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro-ku, Tokyo, Japan.
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro-ku, Tokyo, Japan.
| |
Collapse
|
16
|
Skrzypczak N, Przybylski P. Structural diversity and biological relevance of benzenoid and atypical ansamycins and their congeners. Nat Prod Rep 2022; 39:1678-1704. [PMID: 35262153 DOI: 10.1039/d2np00004k] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: 2011 to 2021The structural division of ansamycins, including those of atypical cores and different lengths of the ansa chains, is presented. Recently discovered benzenoid and atypical ansamycin scaffolds are presented in relation to their natural source and biosynthetic routes realized in bacteria as well as their muta and semisynthetic modifications influencing biological properties. To better understand the structure-activity relationships among benzenoid ansamycins structural aspects together with mechanisms of action regarding different targets in cells, are discussed. The most promising directions for structural optimizations of benzenoid ansamycins, characterized by predominant anticancer properties, were discussed in view of their potential medical and pharmaceutical applications. The bibliography of the review covers mainly years from 2011 to 2021.
Collapse
Affiliation(s)
- Natalia Skrzypczak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland.
| | - Piotr Przybylski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland.
| |
Collapse
|
17
|
Skrzypczak N, Przybylski P. Modifications, biological origin and antibacterial activity of naphthalenoid ansamycins. Nat Prod Rep 2022; 39:1653-1677. [PMID: 35244668 DOI: 10.1039/d2np00002d] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: 2011 to 2021Structural division of natural naphthalenoid ansamycins, regarding the type of the core and length of the ansa chain, and their biosynthetic pathways in microorganisms are discussed. The great biosynthetic plasticity of natural naphthalenoid ansamycins is reflected in their structural variety due to the alterations within ansa bridge or naphthalenoid core portions. A comparison between the biological potency of natural and semisynthetic naphthalenoid ansamycins was performed and discussed in relation to the molecular targets in cells. The antibacterial potency of naphthalenoid ansamycins seems to be dependent on the ansa chain length and conformational flexibility - the higher flexibility of the ansa chain the better biological outcome is noted.
Collapse
Affiliation(s)
- Natalia Skrzypczak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland.
| | - Piotr Przybylski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland.
| |
Collapse
|
18
|
Caffrey P, Hogan M, Song Y. New Glycosylated Polyene Macrolides: Refining the Ore from Genome Mining. Antibiotics (Basel) 2022; 11:334. [PMID: 35326797 PMCID: PMC8944477 DOI: 10.3390/antibiotics11030334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 01/26/2023] Open
Abstract
Glycosylated polyene macrolides include effective antifungal agents, such as pimaricin, nystatin, candicidin, and amphotericin B. For the treatment of systemic mycoses, amphotericin B has been described as a gold-standard antibiotic because of its potent activity against a broad spectrum of fungal pathogens, which do not readily become resistant. However, amphotericin B has severe toxic side effects, and the development of safer alternatives remains an important objective. One approach towards obtaining such compounds is to discover new related natural products. Advances in next-generation sequencing have delivered a wealth of microbial genome sequences containing polyene biosynthetic gene clusters. These typically encode a modular polyketide synthase that catalyzes the assembly of the aglycone core, a cytochrome P450 that oxidizes a methyl branch to a carboxyl group, and additional enzymes for synthesis and attachment of a single mycosamine sugar residue. In some cases, further P450s catalyze epoxide formation or hydroxylation within the macrolactone. Bioinformatic analyses have identified over 250 of these clusters. Some are predicted to encode potentially valuable new polyenes that have not been uncovered by traditional screening methods. Recent experimental studies have characterized polyenes with new polyketide backbones, previously unknown late oxygenations, and additional sugar residues that increase water-solubility and reduce hemolytic activity. Here we review these studies and assess how this new knowledge can help to prioritize silent polyene clusters for further investigation. This approach should improve the chances of discovering better antifungal antibiotics.
Collapse
Affiliation(s)
- Patrick Caffrey
- School of Biomolecular and Biomedical Science, University College Dublin, D04 V1W8 Dublin, Ireland; (M.H.); (Y.S.)
| | | | | |
Collapse
|
19
|
Cofactor F420, an emerging redox power in biosynthesis of secondary metabolites. Biochem Soc Trans 2022; 50:253-267. [PMID: 35191491 DOI: 10.1042/bst20211286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 02/07/2023]
Abstract
Cofactor F420 is a low-potential hydride-transfer deazaflavin that mediates important oxidoreductive reactions in the primary metabolism of archaea and a wide range of bacteria. Over the past decade, biochemical studies have demonstrated another essential role for F420 in the biosynthesis of various classes of natural products. These studies have substantiated reports predating the structural determination of F420 that suggested a potential role for F420 in the biosynthesis of several antibiotics produced by Streptomyces. In this article, we focus on this exciting and emerging role of F420 in catalyzing the oxidoreductive transformation of various imine, ketone and enoate moieties in secondary metabolites. Given the extensive and increasing availability of genomic and metagenomic data, these F420-dependent transformations may lead to the discovery of novel secondary metabolites, providing an invaluable and untapped resource in various biotechnological applications.
Collapse
|
20
|
Pitakbut T, Spiteller M, Kayser O. Genome Mining and Gene Expression Reveal Maytansine Biosynthetic Genes from Endophytic Communities Living inside Gymnosporia heterophylla (Eckl. and Zeyh.) Loes. and the Relationship with the Plant Biosynthetic Gene, Friedelin Synthase. PLANTS (BASEL, SWITZERLAND) 2022; 11:321. [PMID: 35161302 PMCID: PMC8840412 DOI: 10.3390/plants11030321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/09/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Even though maytansine was first discovered from Celastraceae plants, it was later proven to be an endophytic bacterial metabolite. However, a pure bacterial culture cannot synthesize maytansine. Therefore, an exclusive interaction between plant and endophytes is required for maytansine production. Unfortunately, our understanding of plant-endophyte interaction is minimal, and critical questions remain. For example: how do endophytes synthesize maytansine inside their plant host, and what is the impact of maytansine production in plant secondary metabolites? Our study aimed to address these questions. We selected Gymnosporia heterophylla as our model and used amino-hydroxybenzoic acid (AHBA) synthase and halogenase genes as biomarkers, as these two genes respond to biosynthesize maytansine. As a result, we found a consortium of seven endophytes involved in maytansine production in G. heterophylla, based on genome mining and gene expression experiments. Subsequently, we evaluated the friedelin synthase (FRS) gene's expression level in response to biosynthesized 20-hydroxymaytenin in the plant. We found that the FRS expression level was elevated and linked with the expression of the maytansine biosynthetic genes. Thus, we achieved our goals and provided new evidence on endophyte-endophyte and plant-endophyte interactions, focusing on maytansine production and its impact on plant metabolite biosynthesis in G. heterophylla.
Collapse
Affiliation(s)
- Thanet Pitakbut
- Technical Biochemistry, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany;
| | - Michael Spiteller
- Department of Chemistry and Chemical Biology, Institute of Environmental Research (INFU), TU Dortmund University, 44227 Dortmund, Germany;
| | - Oliver Kayser
- Technical Biochemistry, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany;
| |
Collapse
|
21
|
Escalante A, Mendoza-Flores R, Gosset G, Bolívar F. The aminoshikimic acid pathway in bacteria as source of precursors for the synthesis of antibacterial and antiviral compounds. J Ind Microbiol Biotechnol 2021; 48:6347350. [PMID: 34374768 PMCID: PMC8788734 DOI: 10.1093/jimb/kuab053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022]
Abstract
The aminoshikimic acid (ASA) pathway comprises a series of reactions resulting in the synthesis of 3-amino-5-hydroxybenzoic acid (AHBA), present in bacteria such as Amycolatopsis mediterranei and Streptomyces. AHBA is the precursor for synthesizing the mC7N units, the characteristic structural component of ansamycins and mitomycins antibiotics, compounds with important antimicrobial and anticancer activities. Furthermore, aminoshikimic acid, another relevant intermediate of the ASA pathway, is an attractive candidate for a precursor for oseltamivir phosphate synthesis, the most potent anti-influenza neuraminidase inhibitor treatment of both seasonal and pandemic influenza. This review discusses the relevance of the key intermediate AHBA as a scaffold molecule to synthesize diverse ansamycins and mitomycins. We describe the structure and control of the expression of the model biosynthetic cluster rif in A. mediterranei to synthesize ansamycins and review several current pharmaceutical applications of these molecules. Additionally, we discuss some relevant strategies developed for overproducing these chemicals, focusing on the relevance of the ASA pathway intermediates kanosamine, AHAB, and ASA.
Collapse
Affiliation(s)
- Adelfo Escalante
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología. Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Rubén Mendoza-Flores
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología. Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Guillermo Gosset
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología. Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Francisco Bolívar
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología. Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, México
| |
Collapse
|
22
|
Determination of the Protein-Protein Interactions within Acyl Carrier Protein (MmcB)-Dependent Modifications in the Biosynthesis of Mitomycin. Molecules 2021; 26:molecules26226791. [PMID: 34833880 PMCID: PMC8621148 DOI: 10.3390/molecules26226791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 11/22/2022] Open
Abstract
Mitomycin has a unique chemical structure and contains densely assembled functionalities with extraordinary antitumor activity. The previously proposed mitomycin C biosynthetic pathway has caused great attention to decipher the enzymatic mechanisms for assembling the pharmaceutically unprecedented chemical scaffold. Herein, we focused on the determination of acyl carrier protein (ACP)-dependent modification steps and identification of the protein–protein interactions between MmcB (ACP) with the partners in the early-stage biosynthesis of mitomycin C. Based on the initial genetic manipulation consisting of gene disruption and complementation experiments, genes mitE, mmcB, mitB, and mitF were identified as the essential functional genes in the mitomycin C biosynthesis, respectively. Further integration of biochemical analysis elucidated that MitE catalyzed CoA ligation of 3-amino-5-hydroxy-bezonic acid (AHBA), MmcB-tethered AHBA triggered the biosynthesis of mitomycin C, and both MitB and MitF were MmcB-dependent tailoring enzymes involved in the assembly of mitosane. Aiming at understanding the poorly characterized protein–protein interactions, the in vitro pull-down assay was carried out by monitoring MmcB individually with MitB and MitF. The observed results displayed the clear interactions between MmcB and MitB and MitF. The surface plasmon resonance (SPR) biosensor analysis further confirmed the protein–protein interactions of MmcB with MitB and MitF, respectively. Taken together, the current genetic and biochemical analysis will facilitate the investigations of the unusual enzymatic mechanisms for the structurally unique compound assembly and inspire attempts to modify the chemical scaffold of mitomycin family antibiotics.
Collapse
|
23
|
Rifamycin antibiotics and the mechanisms of their failure. J Antibiot (Tokyo) 2021; 74:786-798. [PMID: 34400805 DOI: 10.1038/s41429-021-00462-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023]
Abstract
Rifamycins are a class of antibiotics that were first discovered in 1957 and are known for their use in treating tuberculosis (TB). Rifamycins exhibit bactericidal activity against many Gram-positive and Gram-negative bacteria by inhibiting RNA polymerase (RNAP); however, resistance is prevalent and the mechanisms range from primary target modification and antibiotic inactivation to cytoplasmic exclusion. Further, phenotypic resistance, in which only a subpopulation of bacteria grow in concentrations exceeding their minimum inhibitory concentration, and tolerance, which is characterized by reduced rates of bacterial cell death, have been identified as additional causes of rifamycin failure. Here we summarize current understanding and recent developments regarding this critical antibiotic class.
Collapse
|
24
|
Tandem Mass Tag-Based Quantitative Proteomics and Virulence Phenotype of Hemolymph-Treated Bacillus thuringiensis kurstaki Cells Reveal New Insights on Bacterial Pathogenesis in Insects. Microbiol Spectr 2021; 9:e0060421. [PMID: 34704785 PMCID: PMC8549738 DOI: 10.1128/spectrum.00604-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The spore-forming bacterium Bacillus thuringiensis (Bt) of the Bacillus cereus group uses toxin-opened breaches at the insect midgut epithelium to infest the hemolymph, where it can rapidly propagate despite antimicrobial host defenses and induce host death by acute septicemia. The response of Bt to host hemolymph and the latter's role in bacterial pathogenesis is an area that needs clarification. Here, we report a proteomic analysis of the Bt kurstaki strain HD73 (Btk) hemolymph stimulon showing significant changes in 60 (34 up- and 26 downregulated) differentially accumulated proteins (DAPs). Gene ontology (GO) enrichment analysis revealed that DAPs were mainly related to glutamate metabolism, transketolase activity, and ATP-dependent transmembrane transport. KEGG analysis disclosed that DAPs were highly enriched in the biosynthesis of bacterial secondary metabolites, ansamycins. Interestingly, about 30% of all DAPs were in silico predicted as putative virulence factors. Further characterization of hemolymph effects on Btk showed enhanced autoaggregation in liquid cultures and biofilm formation in microtiter polystyrene plates. Hemolymph-exposed Btk cells were less immunogenic in mice, suggesting epitope masking of selected surface proteins. Bioassays with intrahemocoelically infected Bombyx mori larvae showed that hemolymph preexposure significantly increased Btk toxicity and reproduction within the insect (spore count per cadaver) at low inoculum doses, possibly due to 'virulence priming'. Collectively, our findings suggest that the Btk hemolymph stimulon could be partially responsible for bacterial survival and propagation within the hemolymph of infected insects, contributing to its remarkable success as an entomopathogen. All mass spectrometry data are available via ProteomeXchange with identifier PXD021830. IMPORTANCE After ingestion by a susceptible insect and damaging its midgut epithelium, the bacterium Bacillus thuringiensis (Bt) reaches the insect blood (hemolymph), where it propagates despite the host's antimicrobial defenses and induces insect death by acute septicemia. Although the hemolymph stage of the Bt toxic pathway is determinant for the infested insects' fate, the response of Bt to hemolymph and the latter's role in bacterial pathogenesis has been poorly explored. In this study, we identified the bacterial proteins differentially expressed by Bt after hemolymph exposure. We found that about 30% of hemolymph-regulated Bt proteins were potential virulence factors, including manganese superoxide dismutase, a described inhibitor of hemocyte respiratory burst. Additionally, contact with hemolymph enhanced Bt virulence phenotypes, such as cell aggregation and biofilm formation, altered bacterial immunogenicity, and increased Bt toxicity to intrahemocoelically injected insects.
Collapse
|
25
|
Nazli A, He D, Xu H, Wang ZP, He Y. A Comparative Insight on the Newly Emerging Rifamycins: Rifametane, Rifalazil, TNP-2092 and TNP-2198. Curr Med Chem 2021; 29:2846-2862. [PMID: 34365945 DOI: 10.2174/0929867328666210806114949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
Rifamycins are considered a milestone for tuberculosis (TB) treatment because of their proficient sterilizing ability. Currently, available TB treatments are complicated and need a long duration, which ultimately leads to failure of patient compliance. Some new rifamycin derivatives, i.e., rifametane, TNP-2092 (rifamycin-quinolizinonehybrid), and TNP-2198 (rifamycin-nitromidazole hybrid) are under clinical trials, which are attempting to overcome the problems associated with TB treatment. The undertaken review is intended to compare the pharmacokinetics, pharmacodynamics and safety profiles of these rifamycins, including rifalazil, another derivative terminated in phase II trials, and already approved rifamycins. The emerging resistance of microbes is an imperative consideration associated with antibiotics. Resistance development potential of microbial strains against rifamycins and an overview of chemistry, as well as structure-activity relationship (SAR) of rifamycins, are briefly described. Moreover, issues associated with rifamycins are discussed as well. We expect that newly emerging rifamycins shall appear as potential tools for TB treatment in the near future.
Collapse
Affiliation(s)
- Adila Nazli
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing. China
| | - David He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing. China
| | - Huacheng Xu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing. China
| | - Zhi-Peng Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing. China
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing. China
| |
Collapse
|
26
|
Dai LP, Li W, Wang HX, Lu CH. Three new polyketides from vasR2 gene over-expressed mutant strain of Verrucosispora sp. NS0172. Chin J Nat Med 2021; 19:536-539. [PMID: 34247777 DOI: 10.1016/s1875-5364(21)60053-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Indexed: 10/20/2022]
Abstract
Over-expression of the pathway specific positive regulator gene is an effective way to activate silent gene cluster. In the curret study, the SARP family regulatory gene, vasR2, was over-expressed in strain Verrucosispora sp. NS0172 and the cryptic gene cluster responsible for the biosynthesis of pentaketide ansamycin was partially activated. Two tetraketides (1 and 2) and a triketide (3) ansamycins, together with five known compounds (4-8), were isolated and elucidated from strain NS0172OEvasR2. Their NMR data were completely assigned by analysis of their HR-ESI-MS and 1H, 13C NMR, HMQC, HMBC and 1H-1H COSY spectra.
Collapse
Affiliation(s)
- Li-Ping Dai
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Wen Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Hao-Xin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Chun-Hua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
27
|
Vetter ND, Palmer DRJ. Substrate Substitution in Kanosamine Biosynthesis Using Phosphonates and Phosphite Rescue. Biochemistry 2021; 60:1926-1932. [PMID: 34096710 DOI: 10.1021/acs.biochem.1c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Kanosamine is an antibiotic and antifungal compound synthesized from glucose 6-phosphate (G6P) in Bacillus subtilis by the action of three enzymes: NtdC, which catalyzes NAD-dependent oxidation of the C3-hydroxyl; NtdA, a PLP-dependent aminotransferase; and NtdB, a phosphatase. We previously demonstrated that NtdC can also oxidize substrates such as glucose and xylose, though at much lower rates, suggesting that the phosphoryloxymethylene moiety of the substrate is critical for effective catalysis. To probe this, we synthesized two phosphonate analogues of G6P in which the bridging oxygen is replaced by methylene and difluoromethylene groups. These analogues are substrates for NtdC, with second-order rate constants an order of magnitude lower than those for G6P. NtdA converts the resulting 3-keto products to the corresponding kanosamine 6-phosphonate analogues. We compared the rates to the rate of NtdC oxidation of glucose and xylose and showed that the low reactivity of xylose could be rescued 4-fold by the presence of phosphite, mimicking G6P in two pieces. These results allow the evaluation of the individual energetic contributions to catalysis of the bridging oxygen, the bridging C6 methylene, the phosphodianion, and the entropic gain of one substrate versus two substrate pieces. Phosphite also rescued the reversible formation 3-amino-3-deoxy-d-xylose by NtdA, demonstrating that truncated and nonhydrolyzable analogues of kanosamine 6-phosphate can be generated enzymatically.
Collapse
Affiliation(s)
- Natasha D Vetter
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK, Canada S7N 5C9
| | - David R J Palmer
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK, Canada S7N 5C9
| |
Collapse
|
28
|
Sulheim S, Fossheim FA, Wentzel A, Almaas E. Automatic reconstruction of metabolic pathways from identified biosynthetic gene clusters. BMC Bioinformatics 2021; 22:81. [PMID: 33622234 PMCID: PMC7901079 DOI: 10.1186/s12859-021-03985-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/18/2021] [Indexed: 12/17/2022] Open
Abstract
Background A wide range of bioactive compounds is produced by enzymes and enzymatic complexes encoded in biosynthetic gene clusters (BGCs). These BGCs can be identified and functionally annotated based on their DNA sequence. Candidates for further research and development may be prioritized based on properties such as their functional annotation, (dis)similarity to known BGCs, and bioactivity assays. Production of the target compound in the native strain is often not achievable, rendering heterologous expression in an optimized host strain as a promising alternative. Genome-scale metabolic models are frequently used to guide strain development, but large-scale incorporation and testing of heterologous production of complex natural products in this framework is hampered by the amount of manual work required to translate annotated BGCs to metabolic pathways. To this end, we have developed a pipeline for an automated reconstruction of BGC associated metabolic pathways responsible for the synthesis of non-ribosomal peptides and polyketides, two of the dominant classes of bioactive compounds. Results The developed pipeline correctly predicts 72.8% of the metabolic reactions in a detailed evaluation of 8 different BGCs comprising 228 functional domains. By introducing the reconstructed pathways into a genome-scale metabolic model we demonstrate that this level of accuracy is sufficient to make reliable in silico predictions with respect to production rate and gene knockout targets. Furthermore, we apply the pipeline to a large BGC database and reconstruct 943 metabolic pathways. We identify 17 enzymatic reactions using high-throughput assessment of potential knockout targets for increasing the production of any of the associated compounds. However, the targets only provide a relative increase of up to 6% compared to wild-type production rates. Conclusion With this pipeline we pave the way for an extended use of genome-scale metabolic models in strain design of heterologous expression hosts. In this context, we identified generic knockout targets for the increased production of heterologous compounds. However, as the predicted increase is minor for any of the single-reaction knockout targets, these results indicate that more sophisticated strain-engineering strategies are necessary for the development of efficient BGC expression hosts.
Collapse
Affiliation(s)
- Snorre Sulheim
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Sem Sælands vei 8, 7034, Trondheim, Norway. .,Department of Biotechnology and Nanomedicine, SINTEF Industry, Richard Birkelands vei 3, 7034, Trondheim, Norway.
| | - Fredrik A Fossheim
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Sem Sælands vei 8, 7034, Trondheim, Norway
| | - Alexander Wentzel
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Richard Birkelands vei 3, 7034, Trondheim, Norway
| | - Eivind Almaas
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Sem Sælands vei 8, 7034, Trondheim, Norway.,K.G. Jebsen Center for Genetic Epidemiology, NTNU - Norwegian University of Science and Technology, Håkon Jarls gate 11, 7030, Trondheim, Norway
| |
Collapse
|
29
|
Wang X, Wei J, Xiao Y, Luan S, Ning X, Bai L. Efflux identification and engineering for ansamitocin P-3 production in Actinosynnema pretiosum. Appl Microbiol Biotechnol 2021; 105:695-706. [PMID: 33394151 DOI: 10.1007/s00253-020-11044-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/25/2020] [Accepted: 12/06/2020] [Indexed: 12/31/2022]
Abstract
Ansamitocin P-3 (AP-3) exhibits potent biological activities against various tumor cells. As an important drug precursor, reliable supply of AP-3 is limited by low fermentation yield. Although different strategies have been implemented to improve AP-3 yield, few have investigated the impact of efflux on AP-3 production. In this study, AP-3 efflux genes were identified through combined analysis of two sets of transcriptomes. The production-based transcriptome was implemented to search for efflux genes highly expressed in response to AP-3 accumulation during the fermentation process, while the resistance-based transcriptome was designed to screen for genes actively expressed in response to the exogenous supplementation of AP-3. After comprehensive analysis of two transcriptomes, six efflux genes outside the ansamitocin BGC were identified. Among the six genes, individual deletion of APASM_2704, APASM_6861, APASM_3193, and APASM_2805 resulted in decreased AP-3 production, and alternative overexpression led to AP-3 yield increase from 264.6 to 302.4, 320.4, 330.6, and 320.6 mg/L, respectively. Surprisingly, APASM_2704 was found to be responsible for exportation of AP-3 and another macro-lactam antibiotic pretilactam. Furthermore, growth of APASM_2704, APASM_3193, or APASM_2805 overexpression mutants was obviously improved under 300 mg/L AP-3 supplementation. In summary, our study has identified AP-3 efflux genes outside the ansamitocin BGC by comparative transcriptomic analysis, and has shown that enhancing the transcription of transporter genes can improve AP-3 production, shedding light on strategies used for exporter screening and antibiotic production improvement. KEY POINTS: • AP-3-related efflux genes were identified by transcriptomic analysis. • Deletion of the identified efflux genes led in AP-3 yield decrease. • Overexpression of the efflux genes resulted in increased AP-3 production.
Collapse
Affiliation(s)
- Xinran Wang
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes for Advanced Technology, Chinese Academy of Sciences, Shenzhen, China. .,State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Jianhua Wei
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yifan Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuhui Luan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinjuan Ning
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
30
|
Zhu JW, Zhang SJ, Wang WG, Jiang H. Strategies for Discovering New Antibiotics from Bacteria in the Post-Genomic Era. Curr Microbiol 2020; 77:3213-3223. [PMID: 32929578 DOI: 10.1007/s00284-020-02197-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
New antibiotics are urgently required in clinical treatment and agriculture with the development of antimicrobial resistance. However, products discovered by repeating previous strategies are either not antibiotics or already known antibiotics. There is a growing demand for efficient strategies to discover new antibiotics. With the continuous improvement of gene sequencing technology and genomic data, some mining strategies have emerged. These strategies are expected to alleviate the current dilemma of antibiotics. In this review, we discuss the recent advances in discovery of bacterial antibiotics from the following aspects: activation of silent gene clusters, genome mining and metagenome mining. In the future, we envision the discovery of natural antibiotic will be accelerated by the combination of these strategies.
Collapse
Affiliation(s)
- Jia-Wei Zhu
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hang Zhou, China
| | - Si-Jia Zhang
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hang Zhou, China
| | - Wen-Guang Wang
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hang Zhou, China
| | - Hui Jiang
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hang Zhou, China.
| |
Collapse
|
31
|
Vetter ND, Jagdhane RC, Richter BJ, Palmer DRJ. Carbocyclic Substrate Analogues Reveal Kanosamine Biosynthesis Begins with the α-Anomer of Glucose 6-Phosphate. ACS Chem Biol 2020; 15:2205-2211. [PMID: 32786294 DOI: 10.1021/acschembio.0c00409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
NtdC is an NAD-dependent dehydrogenase that catalyzes the conversion of glucose 6-phosphate (G6P) to 3-oxo-glucose 6-phosphate (3oG6P), the first step in kanosamine biosynthesis in Bacillus subtilis and other closely-related bacteria. The NtdC-catalyzed reaction is unusual because 3oG6P undergoes rapid ring opening, resulting in a 1,3-dicarbonyl compound that is inherently unstable due to enolate formation. We have reported the steady-state kinetic behavior of NtdC, but many questions remain about the nature of this reaction, including whether it is the α-anomer, β-anomer, or open-chain form that is the substrate for the enzyme. Here, we report the synthesis of carbocyclic G6P analogues by two routes, one based upon the Ferrier II rearrangement to generate the carbocycle and one based upon a Claisen rearrangement. We were able to synthesize both pseudo-anomers of carbaglucose 6-phosphate (C6P) using the Ferrier approach, and activity assays revealed that the pseudo-α-anomer is a good substrate for NtdC, while the pseudo-β-anomer and the open-chain analogue, sorbitol 6-phosphate (S6P), are not substrates. A more efficient synthesis of α-C6P was achieved using the Claisen rearrangement approach, which allowed for a thorough evaluation of the NtdC-catalyzed oxidation of α-C6P. The requirement for the α-anomer indicates that NtdC and NtdA, the subsequent enzyme in the pathway, have co-evolved to recognize the α-anomer in order to avoid mutarotation between enzymatic steps.
Collapse
Affiliation(s)
- Natasha D. Vetter
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Rajendra C. Jagdhane
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Brett J. Richter
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - David R. J. Palmer
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| |
Collapse
|
32
|
Kudo F, Kitayama Y, Miyanaga A, Hirayama A, Eguchi T. Biochemical and Structural Analysis of a Dehydrogenase, KanD2, and an Aminotransferase, KanS2, That Are Responsible for the Construction of the Kanosamine Moiety in Kanamycin Biosynthesis. Biochemistry 2020; 59:1470-1473. [DOI: 10.1021/acs.biochem.0c00204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Yukinobu Kitayama
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Akimasa Miyanaga
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Akane Hirayama
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
33
|
Zhang C, Zhang H, Ju J. On-PKS Baeyer-Villiger-Type O-Atom Insertion Catalyzed by Luciferase-Like Monooxygenase OvmO during Olimycin Biosynthesis. Org Lett 2020; 22:1780-1784. [PMID: 32073277 DOI: 10.1021/acs.orglett.0c00076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A silent ansamycin biosynthetic gene cluster (ovm) was activated in Streptomyces olivaceus SCSIO T05 following mutagenesis and media optimization. A new shunt product, olimycin C (1a) was produced by the ovmO-inactivated mutant strain, along with a minor product, olimycin D (1b). The production of these linear olimycin counterparts suggest that luciferase-like monooxygenase (LLM) OvmO catalyzes an on-PKS Baeyer-Villiger-type oxidation during assembly of the olimycin A (2) linear polyketide backbone.
Collapse
Affiliation(s)
- Chunyan Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.,CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Huaran Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.,College of Oceanology, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.,College of Oceanology, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| |
Collapse
|
34
|
Liu X, Liu Y, Lei C, Zhao G, Wang J. GlnR Dominates Rifamycin Biosynthesis by Activating the rif Cluster Genes Transcription Both Directly and Indirectly in Amycolatopsis mediterranei. Front Microbiol 2020; 11:319. [PMID: 32194530 PMCID: PMC7062684 DOI: 10.3389/fmicb.2020.00319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/13/2020] [Indexed: 12/22/2022] Open
Abstract
Because of the remarkable efficacy in treating mycobacterial infections, rifamycin and its derivatives are still first-line antimycobacterial drugs. It has been intensely studied to increase rifamycin yield from Amycolatopsis mediterranei, and nitrate is found to provide a stable and remarkable stimulating effect on the rifamycin production, a phenomenon known as "nitrate-stimulating effect (NSE)". Although the NSE has been widely used for the industrial production of rifamycin, its detailed molecular mechanism remains ill-defined. And our previous study has established that the global nitrogen regulator GlnR may participate in the NSE, but the underlying mechanism is still enigmatic. Here, we demonstrate that GlnR directly controls rifamycin biosynthesis in A. mediterranei and thus plays an essential role in the NSE. Firstly, GlnR specifically binds to the upstream region of rifZ, which leads us to uncover that rifZ has its own promoter. As RifZ is a pathway-specific activator for the whole rif cluster, GlnR indirectly upregulates the whole rif cluster transcription by directly activating the rifZ expression. Secondly, GlnR specifically binds to the upstream region of rifK, which is also characterized to have its own promoter. It is well-known that RifK is a 3-amino-5-hydroxybenzoic acid (AHBA, the starter unit of rifamycin) synthase, thus GlnR can promote the supply of the rifamycin precursor by directly activating the rifK transcription. Notably, GlnR and RifZ independently activate the rifK transcription through binding to different sites in rifK promoter region, which suggests that the cells have a sophisticated regulatory mechanism to control the AHBA biosynthesis. Collectively, this study reveals that GlnR activates the rif cluster transcription in both direct (for rifZ and rifK) and indirect (for the whole rif cluster) manners, which well interprets the phenomenon that the NSE doesn't occur in the glnR null mutant. Furthermore, this study deepens our understanding about the molecular mechanism of the NSE.
Collapse
Affiliation(s)
- Xinqiang Liu
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Liu
- Shanghai Tolo Biotechnology Company Limited, Shanghai, China
| | - Chao Lei
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guoping Zhao
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Microbiology and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jin Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
35
|
Prasertanan T, Palmer DR. The kanosamine biosynthetic pathway in Bacillus cereus UW85: Functional and kinetic characterization of KabA, KabB, and KabC. Arch Biochem Biophys 2019; 676:108139. [DOI: 10.1016/j.abb.2019.108139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/06/2019] [Accepted: 10/09/2019] [Indexed: 10/25/2022]
|
36
|
Wei F, Wang Z, Lu C, Li Y, Zhu J, Wang H, Shen Y. Targeted Discovery of Pentaketide Ansamycin Aminoansamycins A–G. Org Lett 2019; 21:7818-7822. [DOI: 10.1021/acs.orglett.9b02804] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Feifei Wei
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Zishen Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Yaoyao Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Jing Zhu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Haoxin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Yuemao Shen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, P. R. China
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, P. R. China
| |
Collapse
|
37
|
Ali MA, Kaneko T. Syntheses of Aromatic/Heterocyclic Derived Bioplastics with High Thermal/Mechanical Performance. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00830] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mohammad Asif Ali
- Graduate School of Advanced Science and Technology, Energy and Environment Area, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923 1292, Japan
- Soft Matter Sciences and Engineering Laboratory, ESPCI Paris, PSL University, CNRS, 10 Rue Vauquelin, 75005 Paris, France
| | - Tatsuo Kaneko
- Graduate School of Advanced Science and Technology, Energy and Environment Area, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923 1292, Japan
| |
Collapse
|
38
|
Zhang Z, Cao P, Shang NN, Yang J, Wang L, Yan Y, Huang SX. Naphthomycin-derived macrolactams with two new carbon skeletons from endophytic Streptomyces. Org Chem Front 2019. [DOI: 10.1039/c8qo01107a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cytotoxic ansamycin class of natural products with two new carbon skeletons was isolated and characterized from endophytic Streptomyces.
Collapse
Affiliation(s)
- Zhouxin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- CAS Center for Excellence in Molecular Plant Sciences
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650204
| | - Pei Cao
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- CAS Center for Excellence in Molecular Plant Sciences
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650204
| | - Ning-Ning Shang
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- CAS Center for Excellence in Molecular Plant Sciences
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650204
| | - Jing Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- CAS Center for Excellence in Molecular Plant Sciences
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650204
| | - Li Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- CAS Center for Excellence in Molecular Plant Sciences
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650204
| | - Yijun Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- CAS Center for Excellence in Molecular Plant Sciences
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650204
| | - Sheng-Xiong Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- CAS Center for Excellence in Molecular Plant Sciences
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650204
| |
Collapse
|
39
|
Du YL, Ryan KS. Pyridoxal phosphate-dependent reactions in the biosynthesis of natural products. Nat Prod Rep 2019; 36:430-457. [DOI: 10.1039/c8np00049b] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We review reactions catalyzed by pyridoxal phosphate-dependent enzymes, highlighting enzymes reported in the recent natural product biosynthetic literature.
Collapse
Affiliation(s)
- Yi-Ling Du
- Institute of Pharmaceutical Biotechnology
- Zhejiang University School of Medicine
- Hangzhou
- China
| | - Katherine S. Ryan
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| |
Collapse
|
40
|
Hashimoto T, Hashimoto J, Kozone I, Amagai K, Kawahara T, Takahashi S, Ikeda H, Shin-ya K. Biosynthesis of Quinolidomicin, the Largest Known Macrolide of Terrestrial Origin: Identification and Heterologous Expression of a Biosynthetic Gene Cluster over 200 kb. Org Lett 2018; 20:7996-7999. [DOI: 10.1021/acs.orglett.8b03570] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Takuya Hashimoto
- National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Junko Hashimoto
- Japan Biological Informatics Consortium, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Ikuko Kozone
- Japan Biological Informatics Consortium, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Keita Amagai
- Technology Research Association for Next Generation Natural Products Chemistry, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
- RIKEN Center for Sustainable Resource Science, Natural Product Biosynthesis Research Unit, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Teppei Kawahara
- Japan Biological Informatics Consortium, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Shunji Takahashi
- RIKEN Center for Sustainable Resource Science, Natural Product Biosynthesis Research Unit, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Haruo Ikeda
- Kitasato Institute for Life Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Kazuo Shin-ya
- National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
- The Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
41
|
Peek J, Lilic M, Montiel D, Milshteyn A, Woodworth I, Biggins JB, Ternei MA, Calle PY, Danziger M, Warrier T, Saito K, Braffman N, Fay A, Glickman MS, Darst SA, Campbell EA, Brady SF. Rifamycin congeners kanglemycins are active against rifampicin-resistant bacteria via a distinct mechanism. Nat Commun 2018; 9:4147. [PMID: 30297823 PMCID: PMC6175910 DOI: 10.1038/s41467-018-06587-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/29/2018] [Indexed: 11/25/2022] Open
Abstract
Rifamycin antibiotics (Rifs) target bacterial RNA polymerases (RNAPs) and are widely used to treat infections including tuberculosis. The utility of these compounds is threatened by the increasing incidence of resistance (RifR). As resistance mechanisms found in clinical settings may also occur in natural environments, here we postulated that bacteria could have evolved to produce rifamycin congeners active against clinically relevant resistance phenotypes. We survey soil metagenomes and identify a tailoring enzyme-rich family of gene clusters encoding biosynthesis of rifamycin congeners (kanglemycins, Kangs) with potent in vivo and in vitro activity against the most common clinically relevant RifR mutations. Our structural and mechanistic analyses reveal the basis for Kang inhibition of RifR RNAP. Unlike Rifs, Kangs function through a mechanism that includes interfering with 5'-initiating substrate binding. Our results suggest that examining soil microbiomes for new analogues of clinically used antibiotics may uncover metabolites capable of circumventing clinically important resistance mechanisms.
Collapse
Affiliation(s)
- James Peek
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Mirjana Lilic
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Daniel Montiel
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Aleksandr Milshteyn
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Ian Woodworth
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - John B Biggins
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Melinda A Ternei
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Paula Y Calle
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Michael Danziger
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Thulasi Warrier
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Kohta Saito
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Nathaniel Braffman
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Allison Fay
- Immunology Program, Sloan-Kettering Institute, New York, NY, 10065, USA
| | | | - Seth A Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Elizabeth A Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| | - Sean F Brady
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
42
|
Braesel J, Crnkovic CM, Kunstman KJ, Green SJ, Maienschein-Cline M, Orjala J, Murphy BT, Eustáquio AS. Complete Genome of Micromonospora sp. Strain B006 Reveals Biosynthetic Potential of a Lake Michigan Actinomycete. JOURNAL OF NATURAL PRODUCTS 2018; 81:2057-2068. [PMID: 30110167 PMCID: PMC6174880 DOI: 10.1021/acs.jnatprod.8b00394] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Actinomycete bacteria isolated from freshwater environments are an unexplored source of natural products. Here we report the complete genome of the Great Lakes-derived Micromonospora sp. strain B006, revealing its potential for natural product biosynthesis. The 7-megabase pair chromosome of strain B006 was sequenced using Illumina and Oxford Nanopore technologies followed by Sanger sequencing to close remaining gaps. All identified biosynthetic gene clusters (BGCs) were manually curated. Five known BGCs were identified encoding desferrioxamine, alkyl- O-dihydrogeranylmethoxyhydroquinone, a spore pigment, sioxanthin, and diazepinomicin, which is currently in phase II clinical trials to treat Phelan-McDermid syndrome and co-morbid epilepsy. We report here that strain B006 is indeed a producer of diazepinomicin and at yields higher than previously reported. Moreover, 11 of the 16 identified BGCs are orphan, eight of which were transcriptionally active under the culture condition tested. Orphan BGCs include an enediyne polyketide synthase and an uncharacteristically large, 36-module polyketide synthase-nonribosomal peptide synthetase BGC. We developed a genetics system for Micromonospora sp. B006 that will contribute to deorphaning BGCs in the future. This study is one of the few attempts to report the biosynthetic capacity of a freshwater-derived actinomycete and highlights this resource as a potential reservoir for new natural products.
Collapse
Affiliation(s)
- Jana Braesel
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Camila M. Crnkovic
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
- CAPES Foundation, Ministry of Education of Brazil, Brasília, Federal District 70040-020, Brazil
| | - Kevin J. Kunstman
- DNA Services Facility, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Stefan J. Green
- DNA Services Facility, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Mark Maienschein-Cline
- Core for Research Informatics, University of Illinois at Chicago, Chicago, IL 60615, USA
| | - Jimmy Orjala
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Brian T. Murphy
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Alessandra S. Eustáquio
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
43
|
Yang YH, Yang DS, Li GH, Liu R, Huang XW, Zhang KQ, Zhao PJ. New secondary metabolites from an engineering mutant of endophytic Streptomyces sp. CS. Fitoterapia 2018; 130:17-25. [PMID: 30076887 DOI: 10.1016/j.fitote.2018.07.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/29/2018] [Accepted: 07/31/2018] [Indexed: 01/03/2023]
Abstract
In previous work, a series of bioactive natural products had been isolated from the plant endophytic Streptomyces sp. CS, which was isolated from Maytenus hookeri. To mine new active metabolites, we describe introducing an alien carbamoyltransferase (asm21) gene into the strain CS by conjugal transfer. As a result, three recombinatorial mutants named CS/asm21-1, CS/asm21-2 and CS/asm21-4 were successfully constructed. Three mutants and wild type CS were cultured on solid medium, and the extracts were detected and analyzed by liquid chromatography-mass spectrometry (LC-MS). The LC-MS profiles showed several unknown peaks that were present in the spectra of extracts of the CS/asm21-4 cultured on oatmeal solid medium. Then, three new naphthomycins O-Q (1-3), a new macrolide hookerolide (4) as well as nine known compounds were obtained from the solid cultured medium. Their structures were identified by spectra data. These new compounds showed moderate antimicrobial activities.
Collapse
Affiliation(s)
- Yin-He Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, PR China; Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, PR China
| | - Da-Song Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, PR China; Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, PR China
| | - Guo-Hong Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, PR China
| | - Rui Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, PR China
| | - Xiao-Wei Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, PR China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, PR China.
| | - Pei-Ji Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, PR China.
| |
Collapse
|
44
|
Natural product diversity of actinobacteria in the Atacama Desert. Antonie van Leeuwenhoek 2018; 111:1467-1477. [DOI: 10.1007/s10482-018-1030-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/25/2018] [Indexed: 11/26/2022]
|
45
|
The 'gifted' actinomycete Streptomyces leeuwenhoekii. Antonie van Leeuwenhoek 2018; 111:1433-1448. [PMID: 29397490 DOI: 10.1007/s10482-018-1034-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/28/2018] [Indexed: 10/18/2022]
Abstract
Streptomyces leeuwenhoekii strains C34T, C38, C58 and C79 were isolated from a soil sample collected from the Chaxa Lagoon, located in the Salar de Atacama in northern Chile. These streptomycetes produce a variety of new specialised metabolites with antibiotic, anti-cancer and anti-inflammatory activities. Moreover, genome mining performed on two of these strains has revealed the presence of biosynthetic gene clusters with the potential to produce new specialised metabolites. This review focusses on this new clade of Streptomyces strains, summarises the literature and presents new information on strain C34T.
Collapse
|
46
|
Carro L, Nouioui I, Sangal V, Meier-Kolthoff JP, Trujillo ME, Montero-Calasanz MDC, Sahin N, Smith DL, Kim KE, Peluso P, Deshpande S, Woyke T, Shapiro N, Kyrpides NC, Klenk HP, Göker M, Goodfellow M. Genome-based classification of micromonosporae with a focus on their biotechnological and ecological potential. Sci Rep 2018; 8:525. [PMID: 29323202 PMCID: PMC5765111 DOI: 10.1038/s41598-017-17392-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/08/2017] [Indexed: 12/14/2022] Open
Abstract
There is a need to clarify relationships within the actinobacterial genus Micromonospora, the type genus of the family Micromonosporaceae, given its biotechnological and ecological importance. Here, draft genomes of 40 Micromonospora type strains and two non-type strains are made available through the Genomic Encyclopedia of Bacteria and Archaea project and used to generate a phylogenomic tree which showed they could be assigned to well supported phyletic lines that were not evident in corresponding trees based on single and concatenated sequences of conserved genes. DNA G+C ratios derived from genome sequences showed that corresponding data from species descriptions were imprecise. Emended descriptions include precise base composition data and approximate genome sizes of the type strains. antiSMASH analyses of the draft genomes show that micromonosporae have a previously unrealised potential to synthesize novel specialized metabolites. Close to one thousand biosynthetic gene clusters were detected, including NRPS, PKS, terpenes and siderophores clusters that were discontinuously distributed thereby opening up the prospect of prioritising gifted strains for natural product discovery. The distribution of key stress related genes provide an insight into how micromonosporae adapt to key environmental variables. Genes associated with plant interactions highlight the potential use of micromonosporae in agriculture and biotechnology.
Collapse
Affiliation(s)
- Lorena Carro
- School of Biology, Newcastle University, Newcastle upon Tyne, UK.
| | - Imen Nouioui
- School of Biology, Newcastle University, Newcastle upon Tyne, UK
| | - Vartul Sangal
- Department of Biomedical Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Jan P Meier-Kolthoff
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, Braunschweig, Germany
| | - Martha E Trujillo
- Departamento de Microbiologia y Genetica, Lab 214, Universidad de Salamanca, Salamanca, Spain
| | | | - Nevzat Sahin
- Department of Biology, Faculty of Art and Science, Ondokuz Mayis University, Kurupelit-Samsun, Turkey
| | - Darren Lee Smith
- Department of Biomedical Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Kristi E Kim
- Pacific Biosciences, 1380 Willow Rd, Menlo Park, California, USA
| | - Paul Peluso
- Pacific Biosciences, 1380 Willow Rd, Menlo Park, California, USA
| | | | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Nicole Shapiro
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | - Hans-Peter Klenk
- School of Biology, Newcastle University, Newcastle upon Tyne, UK.
| | - Markus Göker
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, Braunschweig, Germany
| | | |
Collapse
|
47
|
Hirayama A, Chu J, Goto E, Kudo F, Eguchi T. NAD+
-Dependent Dehydrogenase PctP and Pyridoxal 5′-Phosphate Dependent Aminotransferase PctC Catalyze the First Postglycosylation Modification of the Sugar Intermediate in Pactamycin Biosynthesis. Chembiochem 2017; 19:126-130. [DOI: 10.1002/cbic.201700483] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Akane Hirayama
- Department of Chemistry; Tokyo Institute of Technology; 2-12-1 O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Jinmiao Chu
- Department of Chemistry; Tokyo Institute of Technology; 2-12-1 O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Ena Goto
- Department of Chemistry; Tokyo Institute of Technology; 2-12-1 O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Fumitaka Kudo
- Department of Chemistry; Tokyo Institute of Technology; 2-12-1 O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Tadashi Eguchi
- Department of Chemistry; Tokyo Institute of Technology; 2-12-1 O-okayama Meguro-ku Tokyo 152-8551 Japan
| |
Collapse
|
48
|
Osborn AR, Kean KM, Alseud KM, Almabruk KH, Asamizu S, Lee JA, Karplus PA, Mahmud T. Evolution and Distribution of C 7-Cyclitol Synthases in Prokaryotes and Eukaryotes. ACS Chem Biol 2017; 12:979-988. [PMID: 28182402 DOI: 10.1021/acschembio.7b00066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
2-Epi-5-epi-valiolone synthase (EEVS), a C7-sugar phosphate cyclase (SPC) homologous to 3-dehydroquinate synthase (DHQS), was discovered during studies of the biosynthesis of the C7N-aminocyclitol family of natural products. EEVS was originally thought to be present only in certain actinomycetes, but analyses of genome sequences showed that it is broadly distributed in both prokaryotes and eukaryotes, including vertebrates. Another SPC, desmethyl-4-deoxygadusol synthase (DDGS), was later discovered as being involved in the biosynthesis of mycosporine-like amino acid sunscreen compounds. Current database annotations are quite unreliable, with many EEVSs reported as DHQS, and most DDGSs reported as EEVS, DHQS, or simply hypothetical proteins. Here, we identify sequence features useful for distinguishing these enzymes, report a crystal structure of a representative DDGS showing the high similarity of the EEVS and DDGS enzymes, identify notable active site differences, and demonstrate the importance of two of these active site residues for catalysis by point mutations. Further, we functionally characterized two representatives of a distinct clade equidistant from known EEVS and known DDGS groups and show them to be authentic EEVSs. Moreover, we document and discuss the distribution of genes that encode EEVS and DDGS in various prokaryotes and eukaryotes, including pathogenic bacteria, plant symbionts, nitrogen-fixing bacteria, myxobacteria, cyanobacteria, fungi, stramenopiles, and animals, suggesting their broad potential biological roles in nature.
Collapse
Affiliation(s)
- Andrew R. Osborn
- Department
of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331-3507, United States
| | - Kelsey M. Kean
- Department
of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331-3507, United States
| | - Khaled M. Alseud
- Department
of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331-3507, United States
| | - Khaled H. Almabruk
- Department
of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331-3507, United States
| | - Shumpei Asamizu
- Department
of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331-3507, United States
| | - Janet A. Lee
- Department
of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331-3507, United States
| | - P. Andrew Karplus
- Department
of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331-3507, United States
| | - Taifo Mahmud
- Department
of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331-3507, United States
| |
Collapse
|
49
|
Vetter ND, Palmer DRJ. Simultaneous Measurement of Glucose-6-phosphate 3-Dehydrogenase (NtdC) Catalysis and the Nonenzymatic Reaction of Its Product: Kinetics and Isotope Effects on the First Step in Kanosamine Biosynthesis. Biochemistry 2017; 56:2001-2009. [PMID: 28353336 DOI: 10.1021/acs.biochem.7b00079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glucose-6-phosphate 3-dehydrogenase (NtdC) is an NAD-dependent oxidoreductase encoded in the NTD operon of Bacillus subtilis. The oxidation of glucose 6-phosphate by NtdC is the first step in kanosamine biosynthesis. The product, 3-oxo-d-glucose 6-phosphate (3oG6P), has never been synthesized or isolated. The NtdC-catalyzed reaction is very slow at low and neutral pH, and its rate increases to a maximum near pH 9.5. However, under alkaline conditions, the product is not stable because of ring opening followed by deprotonation of the 1,3-dicarbonyl compound. The absorbance band due to this enolate at 310 nm overlaps with that of the other enzymatic product, NADH, complicating kinetic measurements. We report the deconvolution of the resulting spectra of the reaction to determine the rate constants and likely kinetic mechanism. In doing so, we were able to determine the extinction coefficient of the enolate of 3oG6P (23000 M-1 cm-1), which allowed the measurement of the first-order rate constant (5.51 × 10-3 s-1) and activation energy (93 kJ mol-1) of nonenzymatic enolate formation. Using deuterium-labeled substrates, we show that hydride transfer from carbon 3 is partially rate-limiting in the enzymatic reaction, and deuterium substitution on carbon 2 has no significant effect on the enzymatic reaction but lowers the rate of deprotonation of 3oG6P 4-fold. These experiments clearly establish the regiochemistry of the reactions. Coupling of the NtdC reaction with the subsequent step in the pathway, NtdA-catalyzed glutamate-dependent amino transfer, has a small but significant effect on the rate of NAD reduction, consistent with these enzymes working together to process the unstable metabolite.
Collapse
Affiliation(s)
- Natasha D Vetter
- Department of Chemistry, University of Saskatchewan , 110 Science Place, Saskatoon, SK, Canada S7N 5C9
| | - David R J Palmer
- Department of Chemistry, University of Saskatchewan , 110 Science Place, Saskatoon, SK, Canada S7N 5C9
| |
Collapse
|
50
|
Greule A, Marolt M, Deubel D, Peintner I, Zhang S, Jessen-Trefzer C, De Ford C, Burschel S, Li SM, Friedrich T, Merfort I, Lüdeke S, Bisel P, Müller M, Paululat T, Bechthold A. Wide Distribution of Foxicin Biosynthetic Gene Clusters in Streptomyces Strains - An Unusual Secondary Metabolite with Various Properties. Front Microbiol 2017; 8:221. [PMID: 28270798 PMCID: PMC5318452 DOI: 10.3389/fmicb.2017.00221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/31/2017] [Indexed: 01/13/2023] Open
Abstract
Streptomyces diastatochromogenes Tü6028 is known to produce the polyketide antibiotic polyketomycin. The deletion of the pokOIV oxygenase gene led to a non-polyketomycin-producing mutant. Instead, novel compounds were produced by the mutant, which have not been detected before in the wild type strain. Four different compounds were identified and named foxicins A–D. Foxicin A was isolated and its structure was elucidated as an unusual nitrogen-containing quinone derivative using various spectroscopic methods. Through genome mining, the foxicin biosynthetic gene cluster was identified in the draft genome sequence of S. diastatochromogenes. The cluster spans 57 kb and encodes three PKS type I modules, one NRPS module and 41 additional enzymes. A foxBII gene-inactivated mutant of S. diastatochromogenes Tü6028 ΔpokOIV is unable to produce foxicins. Homologous fox biosynthetic gene clusters were found in more than 20 additional Streptomyces strains, overall in about 2.6% of all sequenced Streptomyces genomes. However, the production of foxicin-like compounds in these strains has never been described indicating that the clusters are expressed at a very low level or are silent under fermentation conditions. Foxicin A acts as a siderophore through interacting with ferric ions. Furthermore, it is a weak inhibitor of the Escherichia coli aerobic respiratory chain and shows moderate antibiotic activity. The wide distribution of the cluster and the various properties of the compound indicate a major role of foxicins in Streptomyces strains.
Collapse
Affiliation(s)
- Anja Greule
- Department of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University of Freiburg Freiburg im Breisgau, Germany
| | - Marija Marolt
- Department of Pharmaceutical and Medical Chemistry, Albert-Ludwigs-University of Freiburg Freiburg im Breisgau, Germany
| | - Denise Deubel
- Department of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University of Freiburg Freiburg im Breisgau, Germany
| | - Iris Peintner
- Department of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University of Freiburg Freiburg im Breisgau, Germany
| | - Songya Zhang
- Department of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University of Freiburg Freiburg im Breisgau, Germany
| | - Claudia Jessen-Trefzer
- Department of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University of Freiburg Freiburg im Breisgau, Germany
| | - Christian De Ford
- Department of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University of FreiburgFreiburg im Breisgau, Germany; Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University of FreiburgFreiburg im Breisgau, Germany
| | - Sabrina Burschel
- Institute of Biochemistry, Albert-Ludwigs-University of Freiburg Freiburg im Breisgau, Germany
| | - Shu-Ming Li
- Department of Pharmaceutical Biology, Philipps-University Marburg Marburg, Germany
| | - Thorsten Friedrich
- Institute of Biochemistry, Albert-Ludwigs-University of Freiburg Freiburg im Breisgau, Germany
| | - Irmgard Merfort
- Department of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University of Freiburg Freiburg im Breisgau, Germany
| | - Steffen Lüdeke
- Department of Pharmaceutical and Medical Chemistry, Albert-Ludwigs-University of Freiburg Freiburg im Breisgau, Germany
| | - Philippe Bisel
- Department of Pharmaceutical and Medical Chemistry, Albert-Ludwigs-University of Freiburg Freiburg im Breisgau, Germany
| | - Michael Müller
- Department of Pharmaceutical and Medical Chemistry, Albert-Ludwigs-University of Freiburg Freiburg im Breisgau, Germany
| | - Thomas Paululat
- Department of Chemistry and Biology, University of Siegen Siegen, Germany
| | - Andreas Bechthold
- Department of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University of Freiburg Freiburg im Breisgau, Germany
| |
Collapse
|