1
|
Zhang ZL, Xu HN, Gong CM, Li YZ, Song XM, Li YM, Zhang DD, Wang R. Microorganism-Derived Bisindole Alkaloids With Anticancer Potential and Their Mechanisms: A Comprehensive Review. Chem Biodivers 2025; 22:e202402398. [PMID: 39714457 DOI: 10.1002/cbdv.202402398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
Bisindole alkaloids constitute a significant class of natural compounds distinguished by their characteristic bisindole structure and renowned for their anticancer properties. Over the last six decades, researchers have isolated 425 microorganism-derived bisindole alkaloids (MDBAs). Among them, 187 MDBAs have demonstrated anticancer properties against various in vitro cancer cell lines, primarily by impeding the cell cycle, restraining cell proliferation, and inducing apoptosis and autophagy. These effects are mediated by regulating key targets and signaling pathways such as hypoxia-inducible factor (HIF)-1, MAPK, and phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR. This review provides a comprehensive examination of the sources, chemical diversity, and anticancer properties of these compounds. Furthermore, it summarizes the structure-activity relationship (SAR), druggability, and the mechanisms underlying MDBAs' anticancer effects. Ultimately, this article aims to furnish a thorough overview of the advancements in the investigation of microorganism-derived bisindole alkaloids for their continued development and utilization.
Collapse
Affiliation(s)
- Zi-Long Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
- School of Pharmacy, Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, P. R. China
| | - Hao-Nan Xu
- School of Pharmacy, Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, P. R. China
| | - Chuan-Ming Gong
- School of Pharmacy, Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, P. R. China
| | - Yu-Ze Li
- School of Pharmacy, Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, P. R. China
| | - Xiao-Mei Song
- School of Pharmacy, Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, P. R. China
| | - Yi-Ming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Dong-Dong Zhang
- School of Pharmacy, Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, P. R. China
| | - Rui Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| |
Collapse
|
2
|
Li TY, Xu LL, Wu DQ, Liu JJ, Yang Y, Miao Z, Xu DZ. Copper-Catalyzed Oxidative Arylation and Hydroxylation of Indolin-2-ones for Direct Construction of Tetrasubstituted Carbon Centers. J Org Chem 2025; 90:960-970. [PMID: 39746028 DOI: 10.1021/acs.joc.4c01364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
This study introduces a novel methodology for the direct construction of tetrasubstituted centers, utilizing secondary C(sp3)-H and C(sp2)-H substrates, specifically indolin-2-ones and indoles, through an innovative oxidative cross-coupling reaction. Facilitated by a straightforward copper salt catalyst, this reaction proceeds efficiently at a mild temperature of 40 °C under operationally streamlined conditions. Emphasizing sustainability, this method is notably enhanced by employing air (molecular oxygen) as an eco-friendly oxidant. In this approach, air (molecular oxygen) not only serves as the terminal oxidant but also as the oxygen donor in the synthesis of oxygen-containing compounds.
Collapse
Affiliation(s)
- Tian-Yu Li
- National Engineering Research Center of Pesticide, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lin-Lin Xu
- National Engineering Research Center of Pesticide, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Dan-Qing Wu
- National Engineering Research Center of Pesticide, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jia-Jun Liu
- National Engineering Research Center of Pesticide, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yin Yang
- National Engineering Research Center of Pesticide, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhiwei Miao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| | - Da-Zhen Xu
- National Engineering Research Center of Pesticide, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
3
|
Islam F, Dehbia Z, Zehravi M, Das R, Sivakumar M, Krishnan K, Billah AAM, Bose B, Ghosh A, Paul S, Nainu F, Ahmad I, Emran TB. Indole alkaloids from marine resources: Understandings from therapeutic point of view to treat cancers. Chem Biol Interact 2023; 383:110682. [PMID: 37648047 DOI: 10.1016/j.cbi.2023.110682] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/12/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Cancer is the leading cause of mortality all over the world. Scientific investigation has demonstrated that disruptions in the process of autophagy are frequently interrelated with the emergence of cancer. Hence, scientists are seeking permanent solutions to counter the deadly disease. Indole alkaloids have been extensively studied and are acknowledged to exhibit several bioactivities. The current state of disease necessitates novel pharmacophores development. In recent decades, indole alkaloids have become increasingly significant in cancer treatment and are also used as adjuvants. A substantial amount of pharmacologically active molecules come from indole alkaloids, which are widely distributed in nature. Indole alkaloids derived from marine organisms show immense potential for therapeutic applications and seem highly effective in cancer treatment. A couple of experiments have been conducted preclinically to investigate the possibility of indole alkaloids in cancer treatment. Marine-derived indole alkaloids possess the ability to exhibit anticancer properties through diverse antiproliferative mechanisms. Certain indole alkaloids, including vincristine and vinblastine, were verified in clinical trials or are presently undergoing clinical assessments for preventing and treating cancer. Indole alkaloids from marine resources hold a significant functionality in identifying new antitumor agents. The current literature highlights recent advancements in indole alkaloids that appear to be anticancer agents and the underlying mechanisms.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Zerrouki Dehbia
- Laboratory of Agro - Biotechnology and Nutrition in Semi-Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Al-Kharj, 11942, Saudi Arabia
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - M Sivakumar
- Department of Pharmacognosy, Faculty of Pharmacy, Sree Balaji Medical College and Hospital BIHER (DU), Chromepet, Chennai, 600044, India
| | - Karthickeyan Krishnan
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Pallavaram, Chennai, 600117, India
| | - Abdul Ajeed Mohathasim Billah
- Department of Pharmacy Practice, Sri Ramachandra Faculty of Pharmacy, SRIHER (DU), Porur, Chennai, Tamil Nadu, India
| | - Bharadhan Bose
- Department of Pharmacognosy, Karpagam College of Pharmacy, Coimbatore, Tamil Nadu, India
| | - Avoy Ghosh
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Shyamjit Paul
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
4
|
Arteaga Giraldo JJ, Lindsay AC, Seo RCY, Kilmartin PA, Sperry J. Electrochemical oxidation of 3-substituted indoles. Org Biomol Chem 2023. [PMID: 37366580 DOI: 10.1039/d3ob00831b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
2-Oxindoles are an abundant heteroaromatic motif in natural products and pharmaceuticals. An appealing method for accessing 2-oxindoles is by oxidation of the corresponding indole, a transformation currently executed using stoichiometric quantities of unsafe chemical oxidants that can also form unwanted side-products. Herein, we report that 3-substituted indoles undergo a logistically straightforward, electrochemical oxidation to the corresponding 2-oxindole in the presence of potassium bromide (>20 examples), with only traces of the oxidative dimer detected. Cyclic voltammetry and control studies infer that the reaction proceeds by electrochemical generation of elemental bromine (Br2) that upon reaction with indole, followed by hydrolysis, delivers the 2-oxindole. This procedure is an appealing alternative to existing methods used to access 2-oxindoles by oxidation of the parent indole.
Collapse
Affiliation(s)
- Juan J Arteaga Giraldo
- Centre for Green Chemical Science, School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand.
| | - Ashley C Lindsay
- Centre for Green Chemical Science, School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand.
| | - Rachel Chae-Young Seo
- Centre for Green Chemical Science, School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand.
| | - Paul A Kilmartin
- Centre for Green Chemical Science, School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand.
| | - Jonathan Sperry
- Centre for Green Chemical Science, School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand.
| |
Collapse
|
5
|
Yamashiro T, Tokushige K, Abe T. One-Pot Synthesis of Core Structure of Shewanelline C Using an Azidoindoline. J Org Chem 2023; 88:3992-3997. [PMID: 36888895 DOI: 10.1021/acs.joc.3c00013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
The unprecedented synthesis of the indolines bearing N3-quinazolin-2,4-dione moiety using an AZIN is reported. The concise synthesis features the tandem Staudinger/chemo-selective aza-Wittig/cyclization sequence of AZINs with isatoic anhydride by a one-pot protocol.
Collapse
Affiliation(s)
- Toshiki Yamashiro
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 7008530, Japan
| | - Keisuke Tokushige
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 7008530, Japan
| | - Takumi Abe
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 7008530, Japan
| |
Collapse
|
6
|
Kim S, Le TC, Han SA, Hillman PF, Hong A, Hwang S, Du YE, Kim H, Oh DC, Cha SS, Lee J, Nam SJ, Fenical W. Saccharobisindole, Neoasterric Methyl Ester, and 7-Chloro-4(1H)-quinolone: Three New Compounds Isolated from the Marine Bacterium Saccharomonospora sp. Mar Drugs 2021; 20:35. [PMID: 35049890 PMCID: PMC8778701 DOI: 10.3390/md20010035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 11/25/2022] Open
Abstract
Analysis of the chemical components from the culture broth of the marine bacterium Saccharomonospora sp. CNQ-490 has yielded three novel compounds: saccharobisindole (1), neoasterric methyl ester (2), and 7-chloro-4(1H)-quinolone (3), in addition to acremonidine E (4), pinselin (5), penicitrinon A (6), and penicitrinon E (7). The chemical structures of the three novel compounds were elucidated by the interpretation of 1D, 2D nuclear magnetic resonance (NMR), and high-resolution mass spectrometry (HRMS) data. Compound 2 generated weak inhibition activity against Bacillus subtilis KCTC2441 and Staphylococcus aureus KCTC1927 at concentrations of 32 μg/mL and 64 μg/mL, respectively, whereas compounds 1 and 3 did not have any observable effects. In addition, compound 2 displayed weak anti-quorum sensing (QS) effects against S. aureus KCTC1927 and Micrococcus luteus SCO560.
Collapse
Affiliation(s)
- Sohee Kim
- The Graduate School of Industrial Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea; (S.K.); (S.-A.H.); (A.H.)
| | - Tu Cam Le
- Laboratory of Advanced Materials Chemistry, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Sang-Ah Han
- The Graduate School of Industrial Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea; (S.K.); (S.-A.H.); (A.H.)
| | - Prima F. Hillman
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea; (P.F.H.); (S.-S.C.)
| | - Ahreum Hong
- The Graduate School of Industrial Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea; (S.K.); (S.-A.H.); (A.H.)
- Laboratories of Marine New Drugs, REDONE Seoul, Seoul 08594, Korea
| | - Sunghoon Hwang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.H.); (Y.E.D.); (D.-C.O.)
| | - Young Eun Du
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.H.); (Y.E.D.); (D.-C.O.)
| | - Hiyoung Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea;
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.H.); (Y.E.D.); (D.-C.O.)
| | - Sun-Shin Cha
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea; (P.F.H.); (S.-S.C.)
| | - Jihye Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea; (P.F.H.); (S.-S.C.)
- Laboratories of Marine New Drugs, REDONE Seoul, Seoul 08594, Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea; (P.F.H.); (S.-S.C.)
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California-San Diego, La Jolla, CA 92093-0204, USA
| |
Collapse
|
7
|
Saito Y, Kobayashi S. Chiral Heterogeneous Scandium Lewis Acid Catalysts for Continuous‐Flow Enantioselective Friedel–Crafts Carbon–Carbon Bond‐Forming Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuki Saito
- Department of Chemistry School of Science The University of Tokyo 7-3-1, Hongo, Bunkyo-ku Tokyo Japan
| | - Shū Kobayashi
- Department of Chemistry School of Science The University of Tokyo 7-3-1, Hongo, Bunkyo-ku Tokyo Japan
| |
Collapse
|
8
|
Saito Y, Kobayashi S. Chiral Heterogeneous Scandium Lewis Acid Catalysts for Continuous-Flow Enantioselective Friedel-Crafts Carbon-Carbon Bond-Forming Reactions. Angew Chem Int Ed Engl 2021; 60:26566-26570. [PMID: 34661969 DOI: 10.1002/anie.202112797] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/17/2021] [Indexed: 11/11/2022]
Abstract
While continuous-flow reactions with chiral heterogeneous catalysts provide a highly efficient method to synthesize optically active compounds, chiral heterogeneous Lewis acid catalysis has been less extensively explored. We have developed the first example of chiral heterogeneous Sc catalysts, which demonstrated excellent activity and selectivity for continuous-flow enantioselective Friedel-Crafts reactions of isatins with indoles. Noncovalent interactions between chiral Sc complexes and heteropoly acid-anchored amine-functionalized SiO2 as support were utilized for the synthesis. The heteropoly acid was found to be crucial for the preparation, activity, and selectivity of the catalysts. The chiral ligand could be easily tuned without chemical modification and the continuous-flow synthesis of a biologically active compound was achieved.
Collapse
Affiliation(s)
- Yuki Saito
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Shū Kobayashi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
9
|
Wati FA, Santoso M, Moussa Z, Fatmawati S, Fadlan A, Judeh ZMA. Chemistry of trisindolines: natural occurrence, synthesis and bioactivity. RSC Adv 2021; 11:25381-25421. [PMID: 35478918 PMCID: PMC9037102 DOI: 10.1039/d1ra03091d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/11/2021] [Indexed: 01/18/2023] Open
Abstract
Heterocyclic nitrogen compounds are privileged structures with many applications in the pharmaceutical and nutraceutical industries since they possess wide bioactivities. Trisindolines are heterocyclic nitrogen compounds consisting of an isatin core bearing two indole moieties. Trisindolines have been synthesized by reacting isatins with indoles using various routes and the yield greatly depends on the catalyst used, reaction conditions, and the substituents on both the isatin and indole moieties. Amongst the synthetic routes, acid-catalyzed condensation reaction between isatins and indoles are the most useful due to high yield, wide scope and short reaction times. Trisindolines are biologically active compounds and show anticancer, antimicrobial, antitubercular, antifungal, anticonvulsant, spermicidal, and antioxidant activities, among others. Trisindolines have not previously been reviewed. Therefore, this review aims to provide a comprehensive account of trisindolines including their natural occurrence, routes of synthesis, and biological activities. It aims to inspire the discovery of lead trisindoline drug candidates for further development. This in-depth review of trisindolines covers their natural occurrence in addition to several routes of synthesis and catalysts used. The biological activities of trisindolines have been discussed with a special emphasis on the structure–activity relationship.![]()
Collapse
Affiliation(s)
- First Ambar Wati
- Department of Chemistry, Institut Teknologi Sepuluh Nopember Kampus ITS, Sukolilo Surabaya 60111 Indonesia
| | - Mardi Santoso
- Department of Chemistry, Institut Teknologi Sepuluh Nopember Kampus ITS, Sukolilo Surabaya 60111 Indonesia
| | - Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University P. O. Box 15551 Al Ain United Arab Emirates
| | - Sri Fatmawati
- Department of Chemistry, Institut Teknologi Sepuluh Nopember Kampus ITS, Sukolilo Surabaya 60111 Indonesia
| | - Arif Fadlan
- Department of Chemistry, Institut Teknologi Sepuluh Nopember Kampus ITS, Sukolilo Surabaya 60111 Indonesia
| | - Zaher M A Judeh
- School of Chemical and Biomedical Engineering, Nanyang Technological University 62 Nanyang Drive, N1.2-B1-14 Singapore 637459 Singapore
| |
Collapse
|
10
|
Rajput CS, Srivastava S, Kumar A, Pathak A. Mukaiyama’s reagent promoted mild protocol for one-pot metal-free synthesis of dihydro quinazolinones. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Ma C, Sheng FT, Wang HQ, Deng S, Zhang YC, Jiao Y, Tan W, Shi F. Atroposelective Access to Oxindole-Based Axially Chiral Styrenes via the Strategy of Catalytic Kinetic Resolution. J Am Chem Soc 2020; 142:15686-15696. [DOI: 10.1021/jacs.0c00208] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chun Ma
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Feng-Tao Sheng
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Hai-Qing Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Shuang Deng
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yu-Chen Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Yinchun Jiao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Wei Tan
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Feng Shi
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
12
|
Lemaire ON, Méjean V, Iobbi-Nivol C. The Shewanella genus: ubiquitous organisms sustaining and preserving aquatic ecosystems. FEMS Microbiol Rev 2020; 44:155-170. [DOI: 10.1093/femsre/fuz031] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 01/09/2020] [Indexed: 12/16/2022] Open
Abstract
ABSTRACT
The Gram-negative Shewanella bacterial genus currently includes about 70 species of mostly aquatic γ-proteobacteria, which were isolated around the globe in a multitude of environments such as surface freshwater and the deepest marine trenches. Their survival in such a wide range of ecological niches is due to their impressive physiological and respiratory versatility. Some strains are among the organisms with the highest number of respiratory systems, depending on a complex and rich metabolic network. Implicated in the recycling of organic and inorganic matter, they are important components of organism-rich oxic/anoxic interfaces, but they also belong to the microflora of a broad group of eukaryotes from metazoans to green algae. Examples of long-term biological interactions like mutualism or pathogeny have been described, although molecular determinants of such symbioses are still poorly understood. Some of these bacteria are key organisms for various biotechnological applications, especially the bioremediation of hydrocarbons and metallic pollutants. The natural ability of these prokaryotes to thrive and detoxify deleterious compounds explains their use in wastewater treatment, their use in energy generation by microbial fuel cells and their importance for resilience of aquatic ecosystems.
Collapse
Affiliation(s)
- Olivier N Lemaire
- Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR 7281, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, 13402 Marseille, France
| | - Vincent Méjean
- Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR 7281, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, 13402 Marseille, France
| | - Chantal Iobbi-Nivol
- Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR 7281, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, 13402 Marseille, France
| |
Collapse
|
13
|
Lafzi F, Kilic H, Saracoglu N. Protocols for the Syntheses of 2,2'-Bis(indolyl)arylmethanes, 2-Benzylated Indoles, and 5,7-Dihydroindolo[2,3- b]carbazoles. J Org Chem 2019; 84:12120-12130. [PMID: 31454241 DOI: 10.1021/acs.joc.9b02124] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electrophilic substitution reaction of 4,7-dihydroindole with aryl-aldehydes as an electrophilic partner followed by an oxidation step to deliver 2,2'-bis(indolyl)arylmethanes was studied for the first time. The reaction afforded regioselectivity at the 2,2'-positions of indole in an operationally simple and inexpensive procedure with a variety of substrates. To the best of our knowledge, this is the first set of examples of 2,2'-bis(indolyl)arylmethanes obtained in a substituent-free manner. A facile method from dipyrromethanes to the corresponding 2-benzylindoles was also reported. In addition, 2,2'-bis(indolyl)arylmethanes were converted to 5,7-dihydroindolo[2,3-b]carbazoles.
Collapse
Affiliation(s)
- Ferruh Lafzi
- Department of Chemistry, Faculty of Sciences , Atatürk University , Erzurum 25240 , Turkey
| | - Haydar Kilic
- Department of Chemistry, Faculty of Sciences , Atatürk University , Erzurum 25240 , Turkey.,Oltu Vocational Training School , Atatürk University , Erzurum 25400 , Turkey
| | - Nurullah Saracoglu
- Department of Chemistry, Faculty of Sciences , Atatürk University , Erzurum 25240 , Turkey
| |
Collapse
|
14
|
Tang XX, Liu SZ, Yan X, Tang BW, Fang MJ, Wang XM, Wu Z, Qiu YK. Two New Cytotoxic Compounds from a Deep-Sea Penicillum citreonigrum XT20-134. Mar Drugs 2019; 17:md17090509. [PMID: 31470583 PMCID: PMC6780507 DOI: 10.3390/md17090509] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 01/03/2023] Open
Abstract
Penicillum citreonigrum XT20-134 (MCCC 3A00956) is a fungus with cytotoxic activity, derived from deep-sea sediment. Five new compounds, adeninylpyrenocine (1), 2-hydroxyl-3-pyrenocine-thio propanoic acid (2), ozazino-cyclo-(2,3-dihydroxyl-trp-tyr) (3), 5,5-dichloro-1-(3,5-dimethoxyphenyl)-1,4-dihydroxypentan-2-one (4), and 2,3,4-trihydroxybutyl cinnamate (5), together with 19 known compounds (6-24), were isolated from an ethyl acetate (EtOAc) extract of its fermentation. The structures of the new compounds were comprehensively characterized by high-resolution electrospray ionization-mass spectrometry (HR-ESI-MS), 1D and 2D nuclear magnetic resonance (NMR). All isolates were evaluated for their cytotoxic activities. The heteroatom-containing new compounds 2 and 4 showed potent cytotoxicity to the human hepatoma tumor cell Bel7402 with IC50 values of 7.63 ± 1.46, 13.14 ± 1.41 μM and the human fibrosarcoma tumor cell HT1080 with IC50 values of 10.22 ± 1.32, 16.53 ± 1.67 μM, respectively.
Collapse
Affiliation(s)
- Xi-Xiang Tang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography State Oceanic Administration, Xiamen 361005, China
| | - Shun-Zhi Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen 361102, China
| | - Xia Yan
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315832, China
| | - Bo-Wen Tang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen 361102, China
| | - Mei-Juan Fang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen 361102, China
| | - Xiu-Min Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen 361102, China
| | - Zhen Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen 361102, China.
| | - Ying-Kun Qiu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen 361102, China.
| |
Collapse
|
15
|
El-Hawary SS, Sayed AM, Mohammed R, Hassan HM, Rateb ME, Amin E, Mohammed TA, El-Mesery M, Bin Muhsinah A, Alsayari A, Wajant H, Anany MA, Abdelmohsen UR. Bioactive Brominated Oxindole Alkaloids from the Red Sea Sponge Callyspongia siphonella. Mar Drugs 2019; 17:md17080465. [PMID: 31395834 PMCID: PMC6723499 DOI: 10.3390/md17080465] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/20/2019] [Accepted: 07/23/2019] [Indexed: 11/16/2022] Open
Abstract
In the present study, LC-HRESIMS-assisted dereplication along with bioactivity-guided isolation led to targeting two brominated oxindole alkaloids (compounds 1 and 2) which probably play a key role in the previously reported antibacterial, antibiofilm, and cytotoxicity of Callyspongia siphonella crude extracts. Both metabolites showed potent antibacterial activity against Gram-positive bacteria, Staphylococcus aureus (minimum inhibitory concentration (MIC) = 8 and 4 µg/mL) and Bacillus subtilis (MIC = 16 and 4 µg/mL), respectively. Furthermore, they displayed moderate biofilm inhibitory activity in Pseudomonasaeruginosa (49.32% and 41.76% inhibition, respectively), and moderate in vitro antitrypanosomal activity (13.47 and 10.27 µM, respectively). In addition, they revealed a strong cytotoxic effect toward different human cancer cell lines, supposedly through induction of necrosis. This study sheds light on the possible role of these metabolites (compounds 1 and 2) in keeping fouling organisms away from the sponge outer surface, and the possible applications of these defensive molecules in the development of new anti-infective agents.
Collapse
Affiliation(s)
- Seham S El-Hawary
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, 11787 Cairo, Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, 62513 Beni-Suef, Egypt
| | - Rabab Mohammed
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, 62514 Beni-Suef, Egypt
| | - Hossam M Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, 62514 Beni-Suef, Egypt
| | - Mostafa E Rateb
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, 62514 Beni-Suef, Egypt
- Marine Biodiscovery Centre, School of Natural and Computing Sciences, University of Aberdeen, Scotland AB24 3UE, UK
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Elham Amin
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, 62514 Beni-Suef, Egypt
| | - Tarek A Mohammed
- Marine Invertebrates, National Institute of Oceanography and Fisheries, Red Sea Branch, 84511 Hurghada, Egypt
| | - Mohamed El-Mesery
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Grombühlstr. 12, 97080 Würzburg, Germany
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| | - Abdullatif Bin Muhsinah
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Grombühlstr. 12, 97080 Würzburg, Germany
| | - Mohamed A Anany
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Grombühlstr. 12, 97080 Würzburg, Germany.
- Division of Genetic Engineering and Biotechnology, Department of Microbial Biotechnology, National Research Centre, El Buhouth Street, Dokki, 12622 Giza, Egypt.
| | | |
Collapse
|
16
|
Liu Y, Wang CL, Xia HM, Wang Z, Wang YF. Direct Csp 3-H methylenation of 2-arylacetamides using DMF/Me 2NH-BH 3 as the methylene source. Org Biomol Chem 2019; 17:6153-6157. [PMID: 31169277 DOI: 10.1039/c9ob00875f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A direct Csp3-H methylenation of 2-arylacetamides using DMF/Me2NH-BH3 as the methylene source was developed. The formyl group of DMF delivered the carbon and one hydrogen atoms, and the Me2NH-BH3 donated the remaining one hydrogen atom. This protocol offers a new alternative to make useful 2-arylacrylamides from simple starting materials.
Collapse
Affiliation(s)
- Yuting Liu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | | | | | | | | |
Collapse
|
17
|
Sun W, Wu W, Liu X, Zaleta-Pinet DA, Clark BR. Bioactive Compounds Isolated from Marine-Derived Microbes in China: 2009-2018. Mar Drugs 2019; 17:E339. [PMID: 31174259 PMCID: PMC6628246 DOI: 10.3390/md17060339] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 11/16/2022] Open
Abstract
This review outlines the research that was carried out regarding the isolation of bioactive compounds from marine-derived bacteria and fungi by China-based research groups from 2009-2018, with 897 publications being surveyed. Endophytic organisms featured heavily, with endophytes from mangroves, marine invertebrates, and marine algae making up more than 60% of the microbial strains investigated. There was also a strong focus on fungi as a source of active compounds, with 80% of publications focusing on this area. The rapid increase in the number of publications in the field is perhaps most notable, which have increased more than sevenfold over the past decade, and suggests that China-based researchers will play a major role in marine microbial natural products drug discovery in years to come.
Collapse
Affiliation(s)
- Weiwei Sun
- School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| | - Wenhui Wu
- School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| | - Xueling Liu
- School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| | - Diana A Zaleta-Pinet
- School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| | - Benjamin R Clark
- School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| |
Collapse
|
18
|
Liu XL, Yue J, Chen S, Liu HH, Yang KM, Feng TT, Zhou Y. Thermal-mediated catalyst-free heterolytic cleavage of 3-halooxindoles: rapid access to 3-functionalized-2-oxindoles. Org Chem Front 2019. [DOI: 10.1039/c8qo01222a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Herein a previously unreported catalyst-free SN1 reaction of the 3-halooxindoles to build 3-functionalized-2-oxindoles is described.
Collapse
Affiliation(s)
- Xiong-Li Liu
- College of Pharmaceutical Sciences
- Guizhou University of Chinese Medicine
- Guiyang
- P. R. China
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine
| | - Jing Yue
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine
- Guizhou University
- Guiyang
- P. R. China
| | - Shuang Chen
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine
- Guizhou University
- Guiyang
- P. R. China
| | - Huan-Huan Liu
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine
- Guizhou University
- Guiyang
- P. R. China
| | - Kai-Mo Yang
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine
- Guizhou University
- Guiyang
- P. R. China
| | - Ting-Ting Feng
- College of Pharmaceutical Sciences
- Guizhou University of Chinese Medicine
- Guiyang
- P. R. China
| | - Ying Zhou
- College of Pharmaceutical Sciences
- Guizhou University of Chinese Medicine
- Guiyang
- P. R. China
| |
Collapse
|
19
|
Zhao X, Jia Y, Li J, Dong R, Zhang J, Ma C, Wang H, Rui Y, Jiang X. Indole Derivative-Capped Gold Nanoparticles as an Effective Bactericide in Vivo. ACS APPLIED MATERIALS & INTERFACES 2018; 10:29398-29406. [PMID: 30085652 DOI: 10.1021/acsami.8b11980] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We synthesize indole derivative-capped gold nanoparticles (Au_IDs) via a straightforward route to fight multidrug-resistant (MDR) bacteria. When gold nanoparticles are modified with two indole derivatives, tryptophan and 5-aminoindole, they exhibit excellent antibacterial activities against both laboratory antibiotic-sensitive and MDR bacteria. Au_IDs possess remarkable bactericidal activities against MDR bacteria killing 99.9% of MDR Escherichia coli and polymyxin-resistant Klebsiella pneumoniae after 0.5 h of incubation, which are superior to clinical antibiotics including polymyxin B and cefotaxime. By evaluating the potential of Au_IDs in wound cure, Au_IDs show outstanding capability in MDR bacterial wound infection. Our findings provide new candidates for the development of bactericides and the fabrication of wound dressings for treating MDR infection.
Collapse
Affiliation(s)
- Xiaohui Zhao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences , China Agricultural University , Beijing 100193 , China
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for NanoScience and Technology , No. 11 Zhongguancun Beiyitiao , Beijing 100190 , P. R. China
| | - Yuexiao Jia
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for NanoScience and Technology , No. 11 Zhongguancun Beiyitiao , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , 19 A Yuquan Road , Shijingshan District, Beijing 100049 , P. R. China
| | - Juanjuan Li
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for NanoScience and Technology , No. 11 Zhongguancun Beiyitiao , Beijing 100190 , P. R. China
| | - Ruihua Dong
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for NanoScience and Technology , No. 11 Zhongguancun Beiyitiao , Beijing 100190 , P. R. China
| | - Jiangjiang Zhang
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for NanoScience and Technology , No. 11 Zhongguancun Beiyitiao , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , 19 A Yuquan Road , Shijingshan District, Beijing 100049 , P. R. China
| | - Chuanxin Ma
- Department of Analytical Chemistry , The Connecticut Agricultural Experiment Station , New Haven , Connecticut 06504 , United States
| | - Hui Wang
- Department of Clinical Laboratory , Peking University People's Hospital , Beijing 100044 , China
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences , China Agricultural University , Beijing 100193 , China
| | - Xingyu Jiang
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for NanoScience and Technology , No. 11 Zhongguancun Beiyitiao , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , 19 A Yuquan Road , Shijingshan District, Beijing 100049 , P. R. China
| |
Collapse
|
20
|
Ma C, Zhou JY, Zhang YZ, Jiao Y, Mei GJ, Shi F. Synergistic-Catalysis-Enabled Reaction of 2-Indolymethanols with Oxonium Ylides for the Construction of 3-Indolyl-3-Alkoxy Oxindole Frameworks. Chem Asian J 2018; 13:2549-2558. [DOI: 10.1002/asia.201800620] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 05/23/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Chun Ma
- School of Chemistry and Materials Science; Jiangsu Normal University; Xuzhou 221116 P. R. China
| | - Jia-Yu Zhou
- School of Chemistry and Materials Science; Jiangsu Normal University; Xuzhou 221116 P. R. China
| | - Yi-Zhu Zhang
- School of Chemistry and Materials Science; Jiangsu Normal University; Xuzhou 221116 P. R. China
| | - Yinchun Jiao
- School of Chemistry and Chemical Engineering; Hunan University of Science and Technology; Xiangtan 411201 P. R. China
| | - Guang-Jian Mei
- School of Chemistry and Materials Science; Jiangsu Normal University; Xuzhou 221116 P. R. China
| | - Feng Shi
- School of Chemistry and Materials Science; Jiangsu Normal University; Xuzhou 221116 P. R. China
| |
Collapse
|
21
|
Badolato M, Aiello F, Neamati N. 2,3-Dihydroquinazolin-4(1 H)-one as a privileged scaffold in drug design. RSC Adv 2018; 8:20894-20921. [PMID: 35542353 PMCID: PMC9080947 DOI: 10.1039/c8ra02827c] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/29/2018] [Indexed: 01/14/2023] Open
Abstract
2,3-Dihydroquinazolin-4-one (DHQ) belongs to the class of nitrogen-containing heterocyclic compounds representing a core structural component in various biologically active compounds. In the past decades, several methodologies have been developed for the synthesis of the DHQ framework, especially the 2-substituted derivatives. Unfortunately, multistep syntheses, harsh reaction conditions, and the use of toxic reagents and solvents have limited their full potential as a versatile fragment. Recently, use of green chemistry and alternative strategies are being explored to prepare diverse DHQ derivatives. This fragment is used as a synthon for the preparation of biologically active quinazolinones and as a functional substrate for the synthesis of modified DHQ derivatives exhibiting different biological properties. In this review, we provide a comprehensive assessment of the synthesis and biological evaluations of DHQ derivatives.
Collapse
Affiliation(s)
- Mariateresa Badolato
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria Ed. Polifunzionale 87036 Arcavacata di Rende CS Italy
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, North Campus Research Complex 1600 Huron Parkway Ann Arbor MI 48109 USA
| | - Francesca Aiello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria Ed. Polifunzionale 87036 Arcavacata di Rende CS Italy
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, North Campus Research Complex 1600 Huron Parkway Ann Arbor MI 48109 USA
| |
Collapse
|
22
|
Alcohols as Substrates and Solvents for the Construction of 3-Alkoxylated-2-Oxindoles by Direct Alkoxylation of 3-Halooxindoles. Molecules 2017; 22:molecules22050801. [PMID: 28505098 PMCID: PMC6154289 DOI: 10.3390/molecules22050801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 11/17/2022] Open
Abstract
Described herein is an environmentally benign method for the synthesis of multisubstituted 3-alkoxylated-2-oxindoles 3 via direct alkoxylation of 3-halooxindoles 1. A wide variety of such multisubstituted 3-alkoxylated-2-oxindole scaffolds were smoothly obtained in good yields (up to 94%) by heating in an oil bath at 35 °C for 24 h. A particularly valuable feature of this method was the development of environment-friendly chemistry using alcohols 2 as both the substrates and solvents in the presence of a catalytic amount of base.
Collapse
|
23
|
He YY, Sun XX, Li GH, Mei GJ, Shi F. Substrate-Controlled Regioselective Arylations of 2-Indolylmethanols with Indoles: Synthesis of Bis(indolyl)methane and 3,3′-Bisindole Derivatives. J Org Chem 2017; 82:2462-2471. [DOI: 10.1021/acs.joc.6b02850] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ying-Ying He
- School of Chemistry & Chemical Engineering, and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, China
| | - Xiao-Xue Sun
- School of Chemistry & Chemical Engineering, and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, China
| | - Guo-Hao Li
- School of Chemistry & Chemical Engineering, and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, China
| | - Guang-Jian Mei
- School of Chemistry & Chemical Engineering, and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, China
| | - Feng Shi
- School of Chemistry & Chemical Engineering, and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, China
| |
Collapse
|
24
|
Etayo P, Escudero-Adán EC, Pericàs MA. 5,5′-Bistriazoles as axially chiral, multidentate ligands: synthesis, configurational stability and catalytic application of their scandium(iii) complexes. Catal Sci Technol 2017. [DOI: 10.1039/c7cy01518f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design and development of 5,5′-bistriazoles featuring aminomethyl substituents is discussed.
Collapse
Affiliation(s)
- Pablo Etayo
- Institute of Chemical Research of Catalonia (ICIQ)
- The Barcelona Institute of Science and Technology (BIST)
- E-43007 Tarragona
- Spain
| | - Eduardo C. Escudero-Adán
- Institute of Chemical Research of Catalonia (ICIQ)
- The Barcelona Institute of Science and Technology (BIST)
- E-43007 Tarragona
- Spain
| | - Miquel A. Pericàs
- Institute of Chemical Research of Catalonia (ICIQ)
- The Barcelona Institute of Science and Technology (BIST)
- E-43007 Tarragona
- Spain
- Departament de Química Inorgànica i Orgànica
| |
Collapse
|
25
|
Zhou Y, Li R, Wang X, He L, Guan M, Wu Y. Facile synthesis of unsymmetrical N-aryl-2,2-di(1H-indol-3-yl) acetamide derivatives. Chem Res Chin Univ 2016. [DOI: 10.1007/s40242-016-6233-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Wang CS, Fan T, Zhang HH, Li C, Shen Y, Mei GJ, Shi F. Gallium Bromide-Promoted Dearomative Indole Insertion in 3-Indolylmethanols: Chemoselective and (Z/E)-Selective Synthesis of 3,3′-Bisindole Derivatives. J Org Chem 2016; 81:11734-11742. [DOI: 10.1021/acs.joc.6b02201] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Cong-Shuai Wang
- School of Chemistry & Chemical Engineering, and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| | - Tao Fan
- School of Chemistry & Chemical Engineering, and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| | - Hong-Hao Zhang
- School of Chemistry & Chemical Engineering, and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| | - Can Li
- School of Chemistry & Chemical Engineering, and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| | - Yang Shen
- School of Chemistry & Chemical Engineering, and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| | - Guang-Jian Mei
- School of Chemistry & Chemical Engineering, and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| | - Feng Shi
- School of Chemistry & Chemical Engineering, and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
27
|
Biosynthetic Functional Gene Analysis of Bis-Indole Metabolites from 25D7, a Clone Derived from a Deep-Sea Sediment Metagenomic Library. Mar Drugs 2016; 14:md14060107. [PMID: 27258289 PMCID: PMC4926066 DOI: 10.3390/md14060107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 05/10/2016] [Accepted: 05/13/2016] [Indexed: 01/09/2023] Open
Abstract
This work investigated the metabolites and their biosynthetic functional hydroxylase genes of the deep-sea sediment metagenomic clone 25D7. 5-Bromoindole was added to the 25D7 clone derived Escherichia coli fermentation broth. The new-generated metabolites and their biosynthetic byproducts were located through LC-MS, in which the isotope peaks of brominated products emerged. Two new brominated bis-indole metabolites, 5-bromometagenediindole B (1), and 5-bromometagenediindole C (2) were separated under the guidance of LC-MS. Their structures were elucidated on the basis of 1D and 2D NMR spectra (COSY, HSQC, and HMBC). The biosynthetic functional genes of the two new compounds were revealed through LC-MS and transposon mutagenesis analysis. 5-Bromometagenediindole B (1) also demonstrated moderately cytotoxic activity against MCF7, B16, CNE2, Bel7402, and HT1080 tumor cell lines in vitro.
Collapse
|
28
|
Abstract
This review covers the literature published in 2014 for marine natural products (MNPs), with 1116 citations (753 for the period January to December 2014) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1378 in 456 papers for 2014), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
29
|
Fe-catalyzed regioselective Friedel–Crafts hydroxyalkylation of N -substituted glyoxylamide with indoles. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2015.09.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
30
|
Abstract
Marine indole alkaloids comprise a large and steadily growing group of secondary metabolites. Their diverse biological activities make many compounds of this class attractive starting points for pharmaceutical development. Several marine-derived indoles were found to possess cytotoxic, antineoplastic, antibacterial and antimicrobial activities, in addition to the action on human enzymes and receptors. The newly isolated indole alkaloids of marine origin since the last comprehensive review in 2003 are reported, and biological aspects will be discussed.
Collapse
Affiliation(s)
- Natalie Netz
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Till Opatz
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| |
Collapse
|
31
|
Liu YF, Chen MH, Wang XL, Guo QL, Zhu CG, Lin S, Xu CB, Jiang YP, Li YH, Jiang JD, Li Y, Shi JG. Antiviral enantiomers of a bisindole alkaloid with a new carbon skeleton from the roots of Isatis indigotica. CHINESE CHEM LETT 2015. [DOI: 10.1016/j.cclet.2015.05.052] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Sun XX, Du BX, Zhang HH, Ji L, Shi F. Catalytic Asymmetric Arylation of 3-Indolylmethanols: Enantioselective Synthesis of 3,3′-Bis(indolyl)oxindoles with High Atom Economy. ChemCatChem 2015. [DOI: 10.1002/cctc.201500093] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
33
|
Wang X, Liu J, Xu L, Hao Z, Wang L, Xiao J. Friedel–Crafts alkylation of heteroarenes and arenes with indolyl alcohols for construction of 3,3-disubstituted oxindoles. RSC Adv 2015. [DOI: 10.1039/c5ra21919a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
An intriguing camphorsulfonic acid catalyzed Friedel–Crafts alkylation of arenes with indolyl alcohols has been developed featuring mild reaction conditions, wide substrate scope and high yields.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- College of Chemical Engineering
- Qingdao University of Science and Technology
- Qingdao
- China
| | - Jian Liu
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao
- China
| | - Lubin Xu
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao
- China
| | - Zhihui Hao
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao
- China
| | - Liang Wang
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao
- China
| | - Jian Xiao
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao
- China
| |
Collapse
|