1
|
Rowaiye A, Ibeanu GC, Bur D, Nnadi S, Morikwe U, Ogugua AJ, Chukwudi CU. Phyto-molecules show potentials to combat drug-resistance in bacterial cell membranes. Microb Pathog 2025; 205:107723. [PMID: 40398642 DOI: 10.1016/j.micpath.2025.107723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/17/2024] [Accepted: 05/19/2025] [Indexed: 05/23/2025]
Abstract
The global rise in antibiotic resistance and the emergence of infectious diseases have intensified the need for novel antimicrobial therapies. As a result, there is a growing demand to validate the ethnomedicinal claims that plant extracts possess antibacterial properties. This validation requires the characterization of specific phytoconstituents, including anti-infective compounds and antimicrobial peptides. This study explores the progress made in identifying and producing anti-infectives derived from plants, with a focus on their mechanisms of action, current applications, and future potentials. One key area of investigation is the therapeutic potential of phyto-molecules, that target bacterial cell membranes. These molecules which include phenols, alkaloids, terpenoids, saponins, and peptides, have shown significant ability to disrupt bacterial cell membranes through various molecular mechanisms. By impairing membrane integrity, inhibiting efflux pumps, and altering membrane permeability, phyto-molecules offer a novel strategy for combating drug-resistant bacterial strains. This disruption not only enhances the efficacy of conventional antibiotics but also provides standalone antimicrobial activity. In conclusion, phyto-molecules represent a promising solution to overcoming antibiotic resistance, with their ability to target structural and functional components of bacterial membranes offering new pathways for therapeutic development. However, further research is needed to assess the comparative effectiveness and safety of these plant-based molecules in relation to traditional membrane-disrupting antibiotics.
Collapse
Affiliation(s)
- Adekunle Rowaiye
- Department of Agricultural Biotechnology, National Biotechnology Research and Development Agency, Abuja, Nigeria; Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC, USA
| | - Gordon C Ibeanu
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC, USA
| | - Doofan Bur
- Department of Medical Biotechnology, National Biotechnology Research and Development Agency, Abuja, Nigeria
| | - Sandra Nnadi
- Plant Biology Department, University of Vermont, Burlington, VT, USA
| | - Ugonna Morikwe
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, 27411, USA; Department of Pharmaceutical Microbiology Biotechnology, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| | - Akwoba Joseph Ogugua
- Department of Veterinary Public Health and Preventive Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria; Vaccine Research Centre, University of Nigeria, 80 Coal City Garden Estate, Enugu, 400102, Nigeria.
| | - Chinwe Uzoma Chukwudi
- Vaccine Research Centre, University of Nigeria, 80 Coal City Garden Estate, Enugu, 400102, Nigeria; Department of Veterinary Pathology, University of Nigeria, Nsukka, Enugu State, Nigeria
| |
Collapse
|
2
|
Wang Z, Li X, Zhao L, Liu S, Du J, Jia X, Ge L, Xu J, Cui K, Ga Y, Wang J, Xia X. Matrine Restores Colistin Efficacy Against mcr-1-Carrying Escherichia coli. Molecules 2025; 30:2122. [PMID: 40430295 PMCID: PMC12113751 DOI: 10.3390/molecules30102122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 05/06/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
The emergence of mcr-1-mediated colistin resistance has become a critical global health concern, highlighting the urgent need for innovative approaches to restore colistin's therapeutic potential. In this study, we evaluated the antibacterial activity of four matrine-type alkaloids-namely, matrine, oxymatrine, sophocarpine, and sophoramine-against mcr-1-positive Escherichia coli. While these alkaloids showed limited efficacy when used alone, the combination of matrine with colistin exhibited remarkable synergistic effects, as demonstrated by checkerboard assays and time-kill curve analyses. The matrine-colistin combination caused minimal erythrocyte damage while effectively attenuating resistance development in vitro. This synergy was further corroborated in a murine infection model, where the combination significantly reduced bacterial loads in target tissues. Mechanistic studies revealed that the matrine-colistin combination enhances antimicrobial activity by disrupting bacterial membrane integrity, increasing intracellular colistin accumulation, and triggering reactive oxygen species-mediated oxidative damage. Collectively, these findings highlight the potential of matrine as a promising adjuvant to overcome colistin resistance, providing a novel therapeutic approach to address the challenge of infections cause by multidrug-resistant Gram-negative bacteria.
Collapse
Affiliation(s)
- Zhinan Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Z.W.); (X.L.); (L.Z.); (S.L.); (J.D.); (X.J.); (L.G.); (J.X.); (K.C.); (Y.G.)
| | - Xiaowei Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Z.W.); (X.L.); (L.Z.); (S.L.); (J.D.); (X.J.); (L.G.); (J.X.); (K.C.); (Y.G.)
| | - Liang Zhao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Z.W.); (X.L.); (L.Z.); (S.L.); (J.D.); (X.J.); (L.G.); (J.X.); (K.C.); (Y.G.)
| | - Saiwa Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Z.W.); (X.L.); (L.Z.); (S.L.); (J.D.); (X.J.); (L.G.); (J.X.); (K.C.); (Y.G.)
| | - Jingjing Du
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Z.W.); (X.L.); (L.Z.); (S.L.); (J.D.); (X.J.); (L.G.); (J.X.); (K.C.); (Y.G.)
| | - Xi Jia
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Z.W.); (X.L.); (L.Z.); (S.L.); (J.D.); (X.J.); (L.G.); (J.X.); (K.C.); (Y.G.)
| | - Lirui Ge
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Z.W.); (X.L.); (L.Z.); (S.L.); (J.D.); (X.J.); (L.G.); (J.X.); (K.C.); (Y.G.)
| | - Jian Xu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Z.W.); (X.L.); (L.Z.); (S.L.); (J.D.); (X.J.); (L.G.); (J.X.); (K.C.); (Y.G.)
| | - Kexin Cui
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Z.W.); (X.L.); (L.Z.); (S.L.); (J.D.); (X.J.); (L.G.); (J.X.); (K.C.); (Y.G.)
| | - Yu Ga
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Z.W.); (X.L.); (L.Z.); (S.L.); (J.D.); (X.J.); (L.G.); (J.X.); (K.C.); (Y.G.)
| | - Jinxiu Wang
- Hainan Provincial Animal Disease Prevention and Control Center, Haikou 571100, China
| | - Xi Xia
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Z.W.); (X.L.); (L.Z.); (S.L.); (J.D.); (X.J.); (L.G.); (J.X.); (K.C.); (Y.G.)
| |
Collapse
|
3
|
Jayawickreme K, Świstak D, Ozimek E, Reszczyńska E, Rysiak A, Makuch-Kocka A, Hanaka A. Pyrrolizidine Alkaloids-Pros and Cons for Pharmaceutical and Medical Applications. Int J Mol Sci 2023; 24:16972. [PMID: 38069294 PMCID: PMC10706944 DOI: 10.3390/ijms242316972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Heterocyclic organic compounds named pyrrolizidine alkaloids (PAs) belong to a group of alkaloids and are synthesized by either plants or microorganisms. Therefore, they are naturally occurring secondary metabolites. They are found in species applied in the pharmaceutical and food industries, thus a thorough knowledge of their pharmacological properties and toxicology to humans is of great importance for their further safe employment. This review is original because it synthesizes knowledge of plant and microbial PAs, which is unusual in the scientific literature. We have focused on the Boraginaceae family, which is unique due to the exceptional richness and diversity of its PAs in plant species. We have also presented the microbial sources of PAs, both from fungi and bacteria. The structure and metabolism of PAs have been discussed. Our main aim was to summarize the effects of PAs on humans, including both negative, toxic ones, mainly concerning hepatotoxicity and carcinogenicity, as well as potentially positive ones for pharmacological and medical applications. We have collected the results of studies on the anticancer activity of PAs from plant and microbial sources (mainly Streptomyces strains) and on the antimicrobial activity of PAs on different strains of microorganisms (bacteria and fungi). Finally, we have suggested potential applications and future perspectives.
Collapse
Affiliation(s)
- Kavindi Jayawickreme
- Student Scientific Club of Phytochemists, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland
| | - Dawid Świstak
- Student Scientific Club of Phytochemists, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland
| | - Ewa Ozimek
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland
| | - Emilia Reszczyńska
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodźki St. 1, 20-093 Lublin, Poland
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland
| | - Anna Rysiak
- Department of Botany, Mycology, and Ecology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland
| | - Anna Makuch-Kocka
- Department of Pharmacology, Medical University of Lublin, Radziwiłłowska St. 11, 20-080 Lublin, Poland
| | - Agnieszka Hanaka
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland
| |
Collapse
|
4
|
Vásquez-Ocmín PG, Cojean S, Roumy V, Marti G, Pomel S, Gadea A, Leblanc K, Dennemont I, Ruiz-Vásquez L, Ricopa Cotrina H, Ruiz Mesia W, Bertani S, Ruiz Mesia L, Maciuk A. Deciphering anti-infectious compounds from Peruvian medicinal Cordoncillos extract library through multiplexed assays and chemical profiling. Front Pharmacol 2023; 14:1100542. [PMID: 37342590 PMCID: PMC10278888 DOI: 10.3389/fphar.2023.1100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/04/2023] [Indexed: 06/23/2023] Open
Abstract
High prevalence of parasitic or bacterial infectious diseases in some world areas is due to multiple reasons, including a lack of an appropriate health policy, challenging logistics and poverty. The support to research and development of new medicines to fight infectious diseases is one of the sustainable development goals promoted by World Health Organization (WHO). In this sense, the traditional medicinal knowledge substantiated by ethnopharmacology is a valuable starting point for drug discovery. This work aims at the scientific validation of the traditional use of Piper species ("Cordoncillos") as firsthand anti-infectious medicines. For this purpose, we adapted a computational statistical model to correlate the LCMS chemical profiles of 54 extracts from 19 Piper species to their corresponding anti-infectious assay results based on 37 microbial or parasites strains. We mainly identified two groups of bioactive compounds (called features as they are considered at the analytical level and are not formally isolated). Group 1 is composed of 11 features being highly correlated to an inhibiting activity on 21 bacteria (principally Gram-positive strains), one fungus (C. albicans), and one parasite (Trypanosoma brucei gambiense). The group 2 is composed of 9 features having a clear selectivity on Leishmania (all strains, both axenic and intramacrophagic). Bioactive features in group 1 were identified principally in the extracts of Piper strigosum and P. xanthostachyum. In group 2, bioactive features were distributed in the extracts of 14 Piper species. This multiplexed approach provided a broad picture of the metabolome as well as a map of compounds putatively associated to bioactivity. To our knowledge, the implementation of this type of metabolomics tools aimed at identifying bioactive compounds has not been used so far.
Collapse
Affiliation(s)
| | - Sandrine Cojean
- Université Paris-Saclay, CNRS, BioCIS, Orsay, France
- CNR Du Paludisme, AP-HP, Hôpital Bichat–Claude Bernard, Paris, France
| | - Vincent Roumy
- Joint Research Unit 1158 BioEcoAgro, University Lille, JUNIA, INRAE, University Liège, UPJV, University Artois, ULCO, VilleneuveD’Ascq, France
| | - Guillaume Marti
- Laboratoire de Recherche en Sciences Végétales (UMR 5546), CNRS, Université de Toulouse, Toulouse, France
- MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | | | - Alice Gadea
- UMR152 PHARMADEV, IRD, UPS, Université de Toulouse, Toulouse, France
| | | | | | - Liliana Ruiz-Vásquez
- Facultad de Farmacia y Bioquímica, Universidad Nacional de la Amazonía Peruana (UNAP), Iquitos, Peru
- Centro de Investigación de Recursos Naturales, Universidad Nacional de la Amazonía Peruana (UNAP), Iquitos, Peru
| | - Hivelli Ricopa Cotrina
- Centro de Investigación de Recursos Naturales, Universidad Nacional de la Amazonía Peruana (UNAP), Iquitos, Peru
| | - Wilfredo Ruiz Mesia
- Facultad de Ingeniería Química, Universidad Nacional de la Amazonía Peruana (UNAP), Iquitos, Peru
| | - Stéphane Bertani
- UMR152 PHARMADEV, IRD, UPS, Université de Toulouse, Toulouse, France
- International Joint Laboratory of Molecular Anthropological Oncology (LOAM), National Cancer Institute, Lima, Perú
| | - Lastenia Ruiz Mesia
- Centro de Investigación de Recursos Naturales, Universidad Nacional de la Amazonía Peruana (UNAP), Iquitos, Peru
- Facultad de Ingeniería Química, Universidad Nacional de la Amazonía Peruana (UNAP), Iquitos, Peru
| | | |
Collapse
|
5
|
Consoli GML, Granata G, Ginestra G, Marino A, Toscano G, Nostro A. Antibacterial Nanoassembled Calix[4]arene Exposing Choline Units Inhibits Biofilm and Motility of Gram Negative Bacteria. ACS Med Chem Lett 2022; 13:916-922. [DOI: 10.1021/acsmedchemlett.2c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/06/2022] [Indexed: 11/01/2022] Open
Affiliation(s)
| | - Giuseppe Granata
- Institute of Biomolecular Chemistry-C.N.R., Catania 95126, Italy
| | - Giovanna Ginestra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98122, Italy
| | - Andreana Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98122, Italy
| | - Giovanni Toscano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98122, Italy
| | - Antonia Nostro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98122, Italy
| |
Collapse
|
6
|
Liang W, Cheng J, Zhang J, Xiong Q, Jin M, Zhao J. pH-Responsive On-Demand Alkaloids Release from Core-Shell ZnO@ZIF-8 Nanosphere for Synergistic Control of Bacterial Wilt Disease. ACS NANO 2022; 16:2762-2773. [PMID: 35135193 DOI: 10.1021/acsnano.1c09724] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Developing an effective and safe technology to control severe bacterial diseases in agriculture has attracted significant attention. Here, ZnO nanosphere and ZIF-8 are employed as core and shell, respectively, and then a pH-responsive core-shell nanocarrier (ZnO-Z) was prepared by in situ crystal growth strategy. The bactericide berberine (Ber) was further loaded to form Ber-loaded ZnO-Z (Ber@ZnO-Z) for control of tomato bacterial wilt disease. Results demonstrated that Ber@ZnO-Z could release Ber rapidly in an acidic environment, which corresponded to the pH of the soil where the tomato bacterial wilt disease often outbreak. In vitro experiments showed that the antibacterial activity of Ber@ZnO-Z was about 4.5 times and 1.8 times higher than that of Ber and ZnO-Z, respectively. It was because Ber@ZnO-Z could induce ROS generation, resulting in DNA damage, cytoplasm leakage, and membrane permeability changes so the released Ber without penetrability more easily penetrated the bacteria to achieve an efficient synergistic bactericidal effect with ZnO-Z carriers after combining with DNA. Pot experiments also showed that Ber@ZnO-Z significantly reduced disease severity with a wilt index of 45.8% on day 14 after inoculation, compared to 94.4% for the commercial berberine aqueous solution. More importantly, ZnO-Z carriers did not accumulate in aboveground parts of plants and did not affect plant growth in a short period. This work provides guidance for the effective control of soil-borne bacterial diseases and the development of sustainable agriculture.
Collapse
Affiliation(s)
- Wenlong Liang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jingli Cheng
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jiadong Zhang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, P.R. China
| | - Qiuyu Xiong
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, P.R. China
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Jinhao Zhao
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, P.R. China
| |
Collapse
|
7
|
Evaluation of antimicrobial activity of the extract of Streptomyces euryhalinus isolated from the Indian Sundarbans. Arch Microbiol 2021; 204:34. [PMID: 34927220 DOI: 10.1007/s00203-021-02698-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
The discovery of new antimicrobials is the prime target in the fight against antimicrobial resistance. The continuous search for new lead compounds from bacteria of untapped and extreme ecosystems such as mangroves is currently being undertaken. This study describes the metabolite profiling of the Streptomyces euryhalinus culture extract. Previously, Streptomyces euryhalinus was isolated from the mangrove forest of Indian Sundarbans as a novel microorganism. The antimicrobial mechanism of action of Streptomyces euryhalinus culture extract against bacteria and fungi has been analyzed in this study. The gas chromatography-mass spectrometry profile of the ethyl acetate extract bacterial culture displayed the presence of several bioactive compounds with antibacterial, antifungal and antioxidant properties. The bacterial extract showed significant antimicrobial activity in terms of zone of inhibition, minimum inhibitory concentration, minimum bactericidal concentration, and minimum fungicidal concentration. Moreover, substantial capacity to alter or damage the inner membrane as well as the outer membrane of the gram-positive and gram-negative bacteria was exhibited by the bacterial extract. This membrane alteration or damaging potential of the extract is the mechanism of action. Biofilm formation inhibition property of the extract also signified its antimicrobial action, and possible use against resistant bacteria. The extract has shown notable activity against the virulence factors like prevention of hemolysis in bacteria and inhibition of secreted aspartyl proteinase in fungi. These functions of the bacterial extract have revealed the extent of its action in the prevention of infection by terminating the secretory virulence factors and by damaging the tissue.
Collapse
|
8
|
Latypova DK, Shmakov SV, Pechkovskaya SA, Filatov AS, Stepakov AV, Knyazev NA, Boitsov VM. Identification of Spiro-Fused Pyrrolo[3,4- a]pyrrolizines and Tryptanthrines as Potential Antitumor Agents: Synthesis and In Vitro Evaluation. Int J Mol Sci 2021; 22:ijms222111997. [PMID: 34769424 PMCID: PMC8584944 DOI: 10.3390/ijms222111997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 01/01/2023] Open
Abstract
A series of heterocyclic compounds containing a spiro-fused pyrrolo[3,4-a]pyrrolizine and tryptanthrin framework have been synthesized and studied as potential antitumor agents. Cytotoxicity of products was screened against human erythroleukemia (K562) and human cervical carcinoma (HeLa) cell lines. Among the screened compounds. 4a, 4b and 5a were active against human erythroleukemia (K562) cell line, while 4a and 5a were active against cervical carcinoma (HeLa) cell line. In agreement with the DNA cytometry studies, the tested compounds have achieved significant cell-cycle perturbation with higher accumulation of cells in G2/M phase and induced apoptosis. Using confocal microscopy, we found that with 4a and 5a treatment of HeLa cells, actin filaments disappeared, and granular actin was distributed diffusely in the cytoplasm in 76–91% of cells. We discovered that HeLa cells after treatment with compounds 4a and 5a significantly reduced the number of cells with filopodium-like membrane protrusions (from 63 % in control cells to 29% after treatment) and a decrease in cell motility.
Collapse
Affiliation(s)
- Diana K. Latypova
- Saint-Petersburg National Research Academic University of the Russian Academy of Sciences, 194021 Saint-Petersburg, Russia; (D.K.L.); (S.V.S.)
| | - Stanislav V. Shmakov
- Saint-Petersburg National Research Academic University of the Russian Academy of Sciences, 194021 Saint-Petersburg, Russia; (D.K.L.); (S.V.S.)
| | - Sofya A. Pechkovskaya
- Institute of Cytology, Russian Academy of Sciences, 194064 Saint-Petersburg, Russia;
| | - Alexander S. Filatov
- Department of Chemistry, Saint-Petersburg State University, 199034 Saint Petersburg, Russia; (A.S.F.); (A.V.S.)
| | - Alexander V. Stepakov
- Department of Chemistry, Saint-Petersburg State University, 199034 Saint Petersburg, Russia; (A.S.F.); (A.V.S.)
- Department of Organic Chemistry, Saint Petersburg State Institute of Technology, 190013 Saint-Petersburg, Russia
| | - Nickolay A. Knyazev
- Institute of Cytology, Russian Academy of Sciences, 194064 Saint-Petersburg, Russia;
- Saint-Petersburg Clinical Scientific and Practical Center for Specialized Types of Medical Care (Oncological), 197758 Saint-Petersburg, Russia
- Correspondence: (N.A.K.); (V.M.B.)
| | - Vitali M. Boitsov
- Saint-Petersburg National Research Academic University of the Russian Academy of Sciences, 194021 Saint-Petersburg, Russia; (D.K.L.); (S.V.S.)
- Correspondence: (N.A.K.); (V.M.B.)
| |
Collapse
|
9
|
Current Knowledge and Perspectives of Pyrrolizidine Alkaloids in Pharmacological Applications: A Mini-Review. Molecules 2021; 26:molecules26071970. [PMID: 33807368 PMCID: PMC8037423 DOI: 10.3390/molecules26071970] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/21/2021] [Accepted: 03/27/2021] [Indexed: 12/20/2022] Open
Abstract
Pyrrolizidine alkaloids (PAs) are a widespread group of secondary metabolites in plants. PAs are notorious for their acute hepatotoxicity, genotoxicity and neurological damage to humans and animals. In recent decades, the application of PAs for beneficial biological activities to cure disease has drawn greater attention. Here, we review the current knowledge regarding the pharmacological properties of PAs and discuss PAs as promising prototypes for the development of new drugs.
Collapse
|
10
|
Yan Y, Li X, Zhang C, Lv L, Gao B, Li M. Research Progress on Antibacterial Activities and Mechanisms of Natural Alkaloids: A Review. Antibiotics (Basel) 2021; 10:antibiotics10030318. [PMID: 33808601 PMCID: PMC8003525 DOI: 10.3390/antibiotics10030318] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/29/2022] Open
Abstract
Alkaloids are nitrogen-containing heterocyclic compounds typically isolated from plants. They represent one of the most important types of natural products because of their large number and structural diversity and complexity. Based on their chemical core structures, alkaloids are classified as isoquinolines, quinolines, indoles, piperidine alkaloids, etc. In-depth analyses of alkaloids have revealed their antibacterial activities. To date, due to the widespread use of antibiotics, the problem of drug-resistant bacterial infections has been gradually increasing, which severely affects the clinical efficacy of antibacterial therapies and patient safety. Therefore, significant research efforts are focused on alkaloids because they represent a potentially new type of natural antibiotic with a wide antibacterial spectrum, rare adverse reactions, and a low tendency to produce drug resistance. Their main antibacterial mechanisms include inhibition of bacterial cell wall synthesis, change in cell membrane permeability, inhibition of bacterial metabolism, and inhibition of nucleic acid and protein synthesis. This article reviews recent reports about the chemical structures and the antibacterial activities and mechanisms of alkaloids. The purpose is to solve the problem of bacterial resistance and to provide a certain theoretical basis and research ideas for the development of new antibacterial drugs.
Collapse
Affiliation(s)
- Yumei Yan
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (Y.Y.); (X.L.); (C.Z.)
| | - Xing Li
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (Y.Y.); (X.L.); (C.Z.)
| | - Chunhong Zhang
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (Y.Y.); (X.L.); (C.Z.)
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou 014040, China
- Inner Mongolia Engineering Research Center of the Planting and Development of Astragalus Membranaceus of the Geoherbs, Baotou Medical College, Baotou 014040, China
| | - Lijuan Lv
- Department of Basic Science, Tianjin Agricultural University, Tianjin 300384, China;
| | - Bing Gao
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (Y.Y.); (X.L.); (C.Z.)
- Correspondence: (B.G.); (M.L.)
| | - Minhui Li
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (Y.Y.); (X.L.); (C.Z.)
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou 014040, China
- Inner Mongolia Engineering Research Center of the Planting and Development of Astragalus Membranaceus of the Geoherbs, Baotou Medical College, Baotou 014040, China
- Pharmaceutical Laboratory, Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot 010020, China
- Correspondence: (B.G.); (M.L.)
| |
Collapse
|
11
|
Li Y, Yin YM, Wang XY, Wu H, Ge XZ. Evaluation of berberine as a natural fungicide: biodegradation and antimicrobial mechanism. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2018; 20:148-162. [PMID: 28534425 DOI: 10.1080/10286020.2017.1329300] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 05/08/2017] [Indexed: 05/28/2023]
Abstract
Berberine (BBR) is a traditional Chinese medicine which recently was applied as a biological pesticide. Here, we studied the antimicrobial mode of BBR and its impact on soil bacterial diversity. BBR was more effective against fungi than bacteria due to the specific interaction between BBR and glucan. Also, BBR was degraded rapidly in soil, leading to the limited effect on soil bacterial diversity. Collectively, BBR is an environment-friendly pesticide and it is promising in dealing with fungal plant diseases.
Collapse
Affiliation(s)
- Ying Li
- a Beijing Key Laboratory of Biomass Waste Resource Utilization , Biochemical Engineering College, Beijing Union University , Beijing 100023 , China
| | - Yi-Ming Yin
- a Beijing Key Laboratory of Biomass Waste Resource Utilization , Biochemical Engineering College, Beijing Union University , Beijing 100023 , China
| | - Xin-Yue Wang
- a Beijing Key Laboratory of Biomass Waste Resource Utilization , Biochemical Engineering College, Beijing Union University , Beijing 100023 , China
| | - Hao Wu
- a Beijing Key Laboratory of Biomass Waste Resource Utilization , Biochemical Engineering College, Beijing Union University , Beijing 100023 , China
| | - Xi-Zhen Ge
- a Beijing Key Laboratory of Biomass Waste Resource Utilization , Biochemical Engineering College, Beijing Union University , Beijing 100023 , China
| |
Collapse
|
12
|
Khan R, Baeshen MN, Saini KS, Bora RS, Al-Hejin AM, Baeshen NA. Antibacterial activities of Rhazya stricta leaf extracts against multidrug-resistant human pathogens. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2016.1209087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Raziuddin Khan
- Faculty of Sciences, Department of Biology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed N. Baeshen
- Faculty of Sciences, Department of Biology, University of Jeddah, Saudi Arabia
- Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kulvinder S. Saini
- Faculty of Sciences, Department of Biology, King Abdulaziz University, Jeddah, Saudi Arabia
- School of Biotechnology, Eternal University, Baru Sahib, India
| | - Roop S. Bora
- Faculty of Sciences, Department of Biology, King Abdulaziz University, Jeddah, Saudi Arabia
- School of Biotechnology, Eternal University, Baru Sahib, India
| | - Ahmed M. Al-Hejin
- Faculty of Sciences, Department of Biology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabih A. Baeshen
- Faculty of Sciences, Department of Biology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Identification of an iridium(III) complex with anti-bacterial and anti-cancer activity. Sci Rep 2015; 5:14544. [PMID: 26416333 PMCID: PMC4586517 DOI: 10.1038/srep14544] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 06/03/2015] [Indexed: 12/25/2022] Open
Abstract
Group 9 transition metal complexes have been widely explored as therapeutic agents due to their unique geometry, their propensity to undergo ligand exchanges with biomolecules and their diverse steric and electronic properties. These metal complexes can offer distinct modes of action in living organisms compared to carbon-based molecules. In this study, we investigated the antimicrobial and anti-proliferative abilities of a series of cyclometallated iridium(III) complexes. The iridium(III) complex 1 inhibited the growth of S. aureus with MIC and MBC values of 3.60 and 7.19 μM, respectively, indicating its potent bactericidal activity. Moreover, complex 1 also exhibited cytotoxicity against a number of cancer cell lines, with particular potency against ovarian, cervical and melanoma cells. This cyclometallated iridium(III) complex is the first example of a substitutionally-inert, Group 9 organometallic compound utilized as a direct and selective inhibitor of S. aureus.
Collapse
|
14
|
Xue J, Michael Davidson P, Zhong Q. Antimicrobial activity of thyme oil co-nanoemulsified with sodium caseinate and lecithin. Int J Food Microbiol 2015; 210:1-8. [PMID: 26082324 DOI: 10.1016/j.ijfoodmicro.2015.06.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 06/02/2015] [Accepted: 06/07/2015] [Indexed: 11/26/2022]
Abstract
Emulsions of essential oils are investigated as potential intervention strategies to improve food safety and are preferably prepared from generally-recognized-as-safe emulsifiers. Stable thyme oil nanoemulsions can be prepared using combinations of sodium caseinate (NaCas) and soy lecithin. The objective of the present research was to study the antimicrobial activity of these nanoemulsions and understand the impacts of emulsifier concentrations. 10 g/L thyme oil was emulsified using combinations of (A) 4% w/v NaCas and 0.5% w/v lecithin or (B) 2% w/v NaCas and 0.25% w/v lecithin by high shear homogenization. Combination A resulted in a transparent emulsion with a mean droplet diameter of 82.5 nm, while it was turbid for the Combination B with an average diameter of 125.5 nm. Nanoemulsified thyme oil exhibited quicker initial reductions of bacteria than free thyme oil in tryptic soy broth (TSB) and 2% reduced fat milk at 21 °C, due to the improved dispersibility of thyme oil. In TSB with 0.3 g/L thyme oil, it took less than 4 and 8 h for two nanoemulsions and free oil, respectively, to reduce Escherichia coli O157:H7 and Listeria monocytogenes to be below the detection limit. The emulsified thyme oil also demonstrated more significant reductions of bacteria initially (4 and 8 h) in 2% reduced fat milk than free thyme oil. Especially, with 4 g/L thyme oil, the nanoemulsion prepared with Combination A reduced L. monocytogenes to be below the detection limit after 72 h, while the free thyme oil treatment was only bacteriostatic and the turbid nanoemulsion treatment with Combination B resulted in about 1 log CFU/mL reduction. However, E. coli O157:H7 treated with 3 g/L emulsified thyme oil and Salmonella Enteritidis treated with 4 g/L emulsified thyme oil recovered to a higher extent in milk than free thyme oil treatments. The increased concentration of emulsifiers in Combination A apparently reduced the antimicrobials available to alter bacteria membrane permeability as tested by the crystal violet assay at low antimicrobial concentrations and short time (1 h). The findings suggest that nanoemulsions can be potentially used to incorporate thyme oil for use as antimicrobial preservatives in foods.
Collapse
Affiliation(s)
- Jia Xue
- Department of Food Science and Technology, University of Tennessee, Knoxville, TN 37996, United States
| | - P Michael Davidson
- Department of Food Science and Technology, University of Tennessee, Knoxville, TN 37996, United States
| | - Qixin Zhong
- Department of Food Science and Technology, University of Tennessee, Knoxville, TN 37996, United States.
| |
Collapse
|