1
|
Peters DG, Purnell CJ, Haaf MP, Yang QX, Connor JR, Meadowcroft MD. Dietary lipophilic iron accelerates regional brain iron-load in C57BL6 mice. Brain Struct Funct 2017; 223:1519-1536. [DOI: 10.1007/s00429-017-1565-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/07/2017] [Indexed: 11/29/2022]
|
2
|
Piché M, Uchida S, Hara S, Aikawa Y, Hotta H. Modulation of somatosensory-evoked cortical blood flow changes by GABAergic inhibition of the nucleus basalis of Meynert in urethane-anaesthetized rats. J Physiol 2010; 588:2163-71. [PMID: 20442268 DOI: 10.1113/jphysiol.2010.187633] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Vascular changes associated with brain functions are thought to be tightly coupled with neuronal activity through neuronal glucose consumption or the local release of vasoactive agents. In contrast, another view suggests that cortical blood flow is strongly regulated by the nucleus basalis of Meynert (NBM), independently of regional metabolism. Thus, although cortical regional cerebral blood flow (rCBF) variations induced by somatosensory stimulation are strongly linked to neuronal activity, they may also be partly controlled by the NBM. In the present study, cortical rCBF alterations in response to innocuous brushing of the hindlimb (HL) were investigated by laser speckle contrast imaging. The contribution of NBM to these changes was examined after injection of the GABAergic agonist muscimol into the right NBM, allowing comparison of somatosensory-evoked cortical rCBF modifications before and after NBM inactivation. As expected, HL brushing elicited a robust rCBF increase in the contralateral parietal cortex (PC), over the representation of the HL. However, these alterations were decreased, by approximately 40%, in the hemisphere ipsilateral to muscimol inactivation of NBM, whereas vehicle injection did not produce any significant variation. The results demonstrate that cortical rCBF changes induced by somatosensory stimulation are partly regulated by NBM.
Collapse
Affiliation(s)
- Mathieu Piché
- Department of Chiropractic, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | | | | | | | | |
Collapse
|
3
|
Ionov ID. Specific mechanism for blood inflow stimulation in brain area prone to Alzheimer's disease lesions. Int J Neurosci 2007; 117:1425-42. [PMID: 17729154 DOI: 10.1080/00207450601125733] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The present study describes the specific two-stage mechanism that intensifies blood supply to the brain area comprising amygdala, hippocampus, olfactory bulb, entorhinal cortex, and neocortex (AHBC). Cholinergic neurons from the nuclei of basal forebrain induce vasodilatory effect through release of acetylcholine. In physiological aging the efficacy of this neuronal system declines, while intensive formation of amyloidogenic peptides starts. These peptides at low, picomolar concentrations activate alpha7 nicotinic acetylcholine receptors, thus enhancing angiogenesis and in so doing restoring blood supply to the AHBC area.
Collapse
Affiliation(s)
- Ilya D Ionov
- Center on Theoretical Problems in Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
4
|
Ota K, Kitazono T, Ooboshi H, Kamouchi M, Katafuchi T, Aou S, Yamashita Y, Ibayashi S, Iida M. Role of substantia innominata in cerebral blood flow autoregulation. Brain Res 2007; 1135:146-53. [PMID: 17196949 DOI: 10.1016/j.brainres.2006.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 11/27/2006] [Accepted: 12/07/2006] [Indexed: 11/25/2022]
Abstract
Ascending projections from the substantia innominata (SI) may have an important role in the regulation of cerebral blood flow (CBF). However, several reports have suggested that unilateral lesion of the SI does not affect CBF autoregulation. On the other hand, it is also reported that several cortical and subcortical functions may be regulated not only by ipsilateral SI, but also by contralateral SI. Thus, the objective of this study is to test the hypothesis that bilateral lesions of the SI affect CBF autoregulation. Experiments were performed on anesthetized male Sprague-Dawley rats. Ibotenic acid or physiological saline was microinjected into bilateral SI. Rats were classified into four groups as follows: bilateral SI lesion rats (ibotenic acid was injected bilaterally), left or right SI lesion rats (ibotenic acid was injected into the unilateral SI and saline into the contralateral SI), and control rats (saline was injected bilaterally). Ten days after injection, CBF in the left frontal cortex was measured by laser-Doppler flowmetry during stepwise controlled hemorrhagic hypotension. In bilateral SI lesion rats, CBF was started to decrease significantly at 80 mm Hg (p<0.01). In the other three groups, CBF was well maintained until 50 mm Hg. Changes in CBF through stepwise hypotension in bilateral SI lesion rats were significantly different from the other groups (p<0.01). These results suggest that bilateral SI regulates cortical vasodilator mechanisms during hemorrhagic hypotension. Under unilateral SI lesion, some compensatory effects from the contralateral SI may maintain CBF autoregulation.
Collapse
Affiliation(s)
- Kazuki Ota
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Araya R, Noguchi T, Yuhki M, Kitamura N, Higuchi M, Saido TC, Seki K, Itohara S, Kawano M, Tanemura K, Takashima A, Yamada K, Kondoh Y, Kanno I, Wess J, Yamada M. Loss of M5 muscarinic acetylcholine receptors leads to cerebrovascular and neuronal abnormalities and cognitive deficits in mice. Neurobiol Dis 2006; 24:334-44. [PMID: 16956767 DOI: 10.1016/j.nbd.2006.07.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 06/13/2006] [Accepted: 07/17/2006] [Indexed: 10/24/2022] Open
Abstract
The M5 muscarinic acetylcholine receptor (M5R) has been shown to play a crucial role in mediating acetylcholine-dependent dilation of cerebral blood vessels. We show that male M5R-/- mice displayed constitutive constriction of cerebral arteries using magnetic resonance angiography in vivo. Male M5R-/- mice exhibited a significantly reduced cerebral blood flow (CBF) in the cerebral cortex, hippocampus, basal ganglia, and thalamus. Cortical and hippocampal pyramidal neurons from M5R-/- mice showed neuronal atrophy. Hippocampus-dependent spatial and nonspatial memory was also impaired in M5R-/- mice. In M5R-/- mice, CA3 pyramidal cells displayed a significantly attenuated frequency of the spontaneous postsynaptic current and long-term potentiation was significantly impaired at the mossy fiber-CA3 synapse. Our findings suggest that impaired M5R signaling may play a role in the pathophysiology of cerebrovascular deficits. The M5 receptor may represent an attractive novel therapeutic target to ameliorate memory deficits caused by impaired cerebrovascular function.
Collapse
Affiliation(s)
- Runa Araya
- Yamada Research Unit, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
The aging of the central nervous system and the development of incapacitating neurological diseases like Alzheimer's disease (AD) are generally associated with a wide range of histological and pathophysiological changes eventually leading to a compromised cognitive status. Although the diverse triggers of the neurodegenerative processes and their interactions are still the topic of extensive debate, the possible contribution of cerebrovascular deficiencies has been vigorously promoted in recent years. Various forms of cerebrovascular insufficiency such as reduced blood supply to the brain or disrupted microvascular integrity in cortical regions may occupy an initiating or intermediate position in the chain of events ending with cognitive failure. When, for example, vasoconstriction takes over a dominating role in the cerebral vessels, the perfusion rate of the brain can considerably decrease causing directly or through structural vascular damage a drop in cerebral glucose utilization. Consequently, cerebral metabolism can suffer a setback leading to neuronal damage and a concomitant suboptimal cognitive capacity. The present review focuses on the microvascular aspects of neurodegenerative processes in aging and AD with special attention to cerebral blood flow, neural metabolic changes and the abnormalities in microvascular ultrastructure. In this context, a few of the specific triggers leading to the prominent cerebrovascular pathology, as well as the potential neurological outcome of the compromised cerebral microvascular system are also going to be touched upon to a certain extent, without aiming at total comprehensiveness. Finally, a set of animal models are going to be presented that are frequently used to uncover the functional relationship between cerebrovascular factors and the damage to neural networks.
Collapse
Affiliation(s)
- E Farkas
- Department of Animal Physiology, Graduate School of Behavioral and Cognitive Neurosciences, University of Groningen, P.O. Box 14, 9750 AA Haren, The Netherlands.
| | | |
Collapse
|
7
|
Abstract
Functional neuroimaging using positron emission tomography has recently yielded original data on the functional neuroanatomy of human sleep. This paper attempts to describe the possibilities and limitations of the technique and clarify its usefulness in sleep research. A short overview of the methods of acquisition and statistical analysis (statistical parametric mapping, SPM) is presented before the results of PET sleep studies are reviewed. The discussion attempts to integrate the functional neuroimaging data into the body of knowledge already acquired on sleep in animals and humans using various other techniques (intracellular recordings, in situ neurophysiology, lesional and pharmacological trials, scalp EEG recordings, behavioural or psychological description). The published PET data describe a very reproducible functional neuroanatomy in sleep. The core characteristics of this 'canonical' sleep may be summarized as follows. In slow-wave sleep, most deactivated areas are located in the dorsal pons and mesencephalon, cerebellum, thalami, basal ganglia, basal forebrain/hypothalamus, prefrontal cortex, anterior cingulate cortex, precuneus and in the mesial aspect of the temporal lobe. During rapid-eye movement sleep, significant activations were found in the pontine tegmentum, thalamic nuclei, limbic areas (amygdaloid complexes, hippocampal formation, anterior cingulate cortex) and in the posterior cortices (temporo-occipital areas). In contrast, the dorso-lateral prefrontal cortex, parietal cortex, as well as the posterior cingulate cortex and precuneus, were the least active brain regions. These preliminary studies open up a whole field in sleep research. More detailed explorations of sleep in humans are now accessible to experimental challenges using PET and other neuroimaging techniques. These new methods will contribute to a better understanding of sleep functions.
Collapse
Affiliation(s)
- P Maquet
- Cyclotron Research Centre, University of Liège, Liège, Belgium
| |
Collapse
|
8
|
Miyamoto M, Goto G. Preclinical Pharmacology of TAK-147, a Novel Acetylcholinesterase Inhibitor, as a Potential Therapeutic Drug for Alzheimer's Disease. CNS DRUG REVIEWS 1997. [DOI: 10.1111/j.1527-3458.1997.tb00330.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Osborne PG. Hippocampal and striatal blood flow during behavior in rats: chronic laser Doppler flowmetry study. Physiol Behav 1997; 61:485-92. [PMID: 9108565 DOI: 10.1016/s0031-9384(96)00460-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A technique is described for the chronic measurement of cerebral blood flow in conscious, unrestrained rodents, utilizing laser doppler flowmetry (LDF) removably coupled to an optical fiber permanently implanted into brain tissue by established stereotaxic procedures. Changes in relative blood flow in response to a range of pharmacological and behavioral challenges were measured in the hippocampus (HBF) and striatum (StBF) 24-72 h and up to 28-32 days after surgical implantation of the optical fiber. Intraseptal microinfusion of L-glutamate in artificial cerebrospinal fluid 48-96 h and 28-32 days after surgery increased HBF. Pentobarbital (Nembutal) and urethane anesthesia decreased HBF. On the day of euthanasia under urethane anesthesia, HBF was demonstrated to be responsive to alteration of blood CO2 via hyper/hypocapnia, and autoregulation was demonstrated in response to hypovolemic hypotension. In behavioral experiments, blood flow was found to increase with activity and locomotion, as well as during paradoxical (PS) and slow-wave sleep (SWS). The greatest increase in CBF was measured during PS. Although basal levels of blood flow were similar between regions, the increase in blood flow during PS was greater in the hippocampus. This simple procedure enables real-time measurement of qualitative changes in regional cerebral blood flow during behaviors in conscious, unrestrained animals. The observation that constancy of measurements was obtained for 1 month enables within-subject analysis in longitudinal studies and reduces the number of animals required for investigations.
Collapse
Affiliation(s)
- P G Osborne
- Department of the Autonomic Nervous System, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
10
|
Ogawa M, Fukuyama H, Ouchi Y, Yamauchi H, Matsuzaki S, Kimura J, Tsukada H. Uncoupling between cortical glucose metabolism and blood flow after ibotenate lesion of the rat basal forebrain: a PET study. Neurosci Lett 1996; 204:193-6. [PMID: 8938263 DOI: 10.1016/0304-3940(96)12355-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We evaluated the cerebral metabolic rate of glucose (CMRGlu) and cerebral blood flow (CBF) after unilateral lesioning of the rat basal forebrain cholinergic projection system using ibotenic acid. Using positron emission tomography, we measured CMRGlu and CBF with [18F]-2-fluoro-2-deoxy-D-glucose (FDG) and with H2(15)O, respectively. Three days after surgery, CMRGlu and k3* (the rate constant for the phosphorylation of FDG) were reduced in the frontal cortex on the ibotenic acid-injected side, whereas CBF and K1* (the rate constant for the FDG transport from the plasma to brain) in the same rats remained in the normal range. It is concluded that the decreased cortical CMRGlu after the lesion of the cholinergic system projecting from the basal forebrain is due to the diminished neural activity rather than to decreased CBF.
Collapse
Affiliation(s)
- M Ogawa
- Department of Neurology, Faculty of Medicine, Kyoto University, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Ouchi Y, Fukuyama H, Ogawa M, Yamauchi H, Kimura J, Magata Y, Yonekura Y, Konishi J. Cholinergic projection from the basal forebrain and cerebral glucose metabolism in rats: a dynamic PET study. J Cereb Blood Flow Metab 1996; 16:34-41. [PMID: 8530553 DOI: 10.1097/00004647-199601000-00004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To investigate the influence of cholinergic projections from the basal forebrain on cerebral cortex metabolism, we evaluated the cerebral metabolic rate of glucose (CMRGlu) after selective inhibition of cholinergic neurons in the rat basal forebrain using the pyruvate dehydrogenase complex inhibitor 3-bromopyruvic acid (BPA), and compared the results with those obtained after lesioning the basal forebrain with ibotenic acid, as well as with those from a sham-operated control group. CMRGlu was measured using positron emission tomography (PET) with [18F]-2-fluoro-2-deoxy-D-glucose (FDG). Three days after surgery, CMRGlu and k3 (phosphorylation of FDG) were reduced similarly in the frontal cortex on the BPA-injected side and in the ibotenic acid-treated group, whereas K1 (transport rate of FDG from the plasma to brain) showed no marked changes. At 3 weeks postoperatively, the CMRGlu and k3 of the frontal cortex in both groups recovered to levels similar to those of the sham-operated group. The main difference between the BPA and ibotenic acid groups was that CMRGlu showed mild reduction on the side contralateral to the operation in the former, while such reduction was confined to the ipsilateral hemisphere in the latter. The present results indicate that the cholinergic system in the basal forebrain regulates cerebral cortex glucose metabolism through direct excitation of cortical neurons.
Collapse
Affiliation(s)
- Y Ouchi
- Department of Neurology, Faculty of Medicine, Kyoto University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Dauphin F, MacKenzie ET. Cholinergic and vasoactive intestinal polypeptidergic innervation of the cerebral arteries. Pharmacol Ther 1995; 67:385-417. [PMID: 8577823 DOI: 10.1016/0163-7258(95)00022-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Acetylcholine and vasoactive intestinal polypeptide are not only two vasoactive agonists that predominantly induce a vasodilatation of the cerebral arteries, but also correspond to neurotransmitters that innervate the various anatomical segments of the cerebral vasculature. The distinct patterns of the cerebrovascular cholinergic and vasoactive intestinal polypeptidergic innervation, their neurochemistry, in vitro and in vivo pharmacology, as well as the putative pathophysiological implications of these neurotransmission systems are critically summarized on the basis of the most recently published literature.
Collapse
Affiliation(s)
- F Dauphin
- Université de Caen, URA 1829 CNRS, Centre Cyceron, France
| | | |
Collapse
|
13
|
Lanens D, Spanoghe M, Van Audekerke J, Oksendal A, Van der Linden A, Dommisse R. Complementary use of T2-weighted and postcontrast T1- and T2*-weighted imaging to distinguish sites of reversible and irreversible brain damage in focal ischemic lesions in the rat brain. Magn Reson Imaging 1995; 13:185-92. [PMID: 7739359 DOI: 10.1016/0730-725x(94)00106-d] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The evolution of a photochemically induced cortical infarct was monitored using T2-, postcontrast (GdDOTA) T1-, and postcontrast (DyDTPA-BMA) T2*-weighted NMR imaging techniques. Data acquired with these different NMR imaging types were compared, both qualitatively and quantitatively. The T2*-weighted NMR images after spordiamide injection (DyDTPA-BMA) were perfusion-weighted images that allowed the differentiation between several infarct-related areas in terms of different degrees of perfusion deficiency. No quantitative information on cerebral blood flow (CBF) was obtained. A clear distinction was made between areas with a complete lack of CBF located in the core of the lesion and temporary CBF insufficiencies in the rim surrounding this core. Concomitant observations on T2-weighted and postcontrast T1-weighted images revealed the same temporary rim characterized by an increased water content, and an intact blood-brain barrier (BBB), as well as by reduced perfusion. This rim appeared within the first hours after infarct induction, reached a maximum 24 h later, and lasted between 3-5 days, when its size gradually decreased until complete disappearance. These observations suggest the existence of an area at risk. Only on postcontrast T1-weighted images, the core of the lesion remained visible during the whole experimental period (10 days) and reflected in all likelihood the irreversibly damaged ischemic central core. The combined application of different NMR imaging techniques when studying focal cerebral infarctions in the rat brain allowed us to distinguish, in terms of NMR characteristics, zones of reversible from irreversible brain damage and to estimate the severity of the damage. This might offer an appropriate experimental setup for the screening of cerebroprotective compounds.
Collapse
Affiliation(s)
- D Lanens
- Department of Medicine, University of Antwerp, Belgium
| | | | | | | | | | | |
Collapse
|
14
|
Sato A, Sato Y. Regulation of regional cerebral blood flow by cholinergic fibers originating in the basal forebrain. Neurosci Res 1992; 14:242-74. [PMID: 1334245 DOI: 10.1016/0168-0102(92)90071-j] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We review mainly recent studies on vasodilative regulation of cortex and hippocampus by central cholinergic nerves originating in the basal forebrain. We also briefly review the influence of other central noradrenergic fibers originating in the locus ceruleus, serotonergic fibers originating in the dorsal raphe nucleus, dopaminergic fibers originating in the substantia nigra, and peripheral sympathetic and parasympathetic nerve fibers upon regulation of regional cerebral blood flow. Local metabolites have long been considered to play an important physiological role in regulating regional cerebral blood flow. However, the evidence reviewed here emphasizes that the regulation of regional cerebral blood flow by these central cholinergic nerves is independent of regional metabolism. We propose through this review that although studies investigating neural regulation of cortical and hippocampal blood flow by cholinergic fibers originating in the basal forebrain have added much to the understanding of regulation of regional cerebral blood flow further studies are needed to determine the physiological relevance of regional cerebral blood flow in relation to higher nervous functions such as memory, learning, and personality, and changes in these cognitive functions with aging and pathology such as Alzheimer's disease.
Collapse
Affiliation(s)
- A Sato
- Department of Autonomic Nervous System, Tokyo Metropolitan Institute of Gerontology, Japan
| | | |
Collapse
|