1
|
Thevalingam D, Naik AA, Hrabe J, McCloskey DP, Hrabĕtová S. Brain extracellular space of the naked mole-rat expands and maintains normal diffusion under ischemic conditions. Brain Res 2021; 1771:147646. [PMID: 34499876 DOI: 10.1016/j.brainres.2021.147646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 10/20/2022]
Abstract
Brain extracellular space (ECS) forms a conduit for diffusion, an essential mode of molecular transport between brain vasculature, neurons and glia. ECS volume is reduced under conditions of hypoxia and ischemia, contributing to impaired extracellular diffusion and consequent neuronal dysfunction and death. We investigated the ECS volume fraction and diffusion permeability of the African naked mole-rat (NM-R; Heterocephalus Glaber), a rodent with a remarkably high tolerance for hypoxia and ischemia. Real-Time Iontophoretic and Integrative Optical Imaging methods were used to evaluate diffusion transport in cortical slices under normoxic and ischemic conditions, and results were compared to values previously collected in rats. NM-R brains under normoxic conditions had a smaller ECS volume fraction than rats, and a correspondingly decreased diffusion permeability for macromolecules. Surprisingly, and in sharp contrast to rats, the NM-R ECS responded to ischemic conditions at the center of thick brain slices by expanding, rather than shrinking, and preserving diffusion permeabilities for small and large molecules. The NM-R thick slices also showed a blunted accumulation of ECS potassium compared to rats. The remarkable dynamic response of the NM-R ECS to ischemia likely demonstrates an adaptation for NM-R to maintain brain function in their extreme nest environment.
Collapse
Affiliation(s)
- Donald Thevalingam
- PhD Program in Neuroscience, Graduate Center of The City University of New York, New York, NY, USA; Center for Developmental Neuroscience, College of Staten Island in The City University of New York, Staten Island, NY, USA
| | - Aditi A Naik
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA; Neural and Behavioral Science Graduate Program, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Jan Hrabe
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA; Medical Physics Laboratory, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute, Orangeburg, NY, USA
| | - Dan P McCloskey
- PhD Program in Neuroscience, Graduate Center of The City University of New York, New York, NY, USA; Center for Developmental Neuroscience, College of Staten Island in The City University of New York, Staten Island, NY, USA; Department of Psychology, College of Staten Island in The City University of New York, Staten Island, NY, USA.
| | - Sabina Hrabĕtová
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA; The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| |
Collapse
|
2
|
Loryan I, Hammarlund-Udenaes M, Syvänen S. Brain Distribution of Drugs: Pharmacokinetic Considerations. Handb Exp Pharmacol 2020; 273:121-150. [PMID: 33258066 DOI: 10.1007/164_2020_405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
It is crucial to understand the basic principles of drug transport, from the site of delivery to the site of action within the CNS, in order to evaluate the possible utility of a new drug candidate for CNS action, or possible CNS side effects of non-CNS targeting drugs. This includes pharmacokinetic aspects of drug concentration-time profiles in plasma and brain, blood-brain barrier transport and drug distribution within the brain parenchyma as well as elimination processes from the brain. Knowledge of anatomical and physiological aspects connected with drug delivery is crucial in this context. The chapter is intended for professionals working in the field of CNS drug development and summarizes key pharmacokinetic principles and state-of-the-art experimental methodologies to assess brain drug disposition. Key parameters, describing the extent of unbound (free) drug across brain barriers, in particular blood-brain and blood-cerebrospinal fluid barriers, are presented along with their application in drug development. Special emphasis is given to brain intracellular pharmacokinetics and its role in evaluating target engagement. Fundamental neuropharmacokinetic differences between small molecular drugs and biologicals are discussed and critical knowledge gaps are outlined.
Collapse
Affiliation(s)
- Irena Loryan
- Translational PKPD Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden.
| | | | - Stina Syvänen
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| |
Collapse
|
3
|
Cheng PC, Lin HY, Chen YS, Cheng RC, Su HC, Huang RC. The Na +/H +-Exchanger NHE1 Regulates Extra- and Intracellular pH and Nimodipine-sensitive [Ca 2+] i in the Suprachiasmatic Nucleus. Sci Rep 2019; 9:6430. [PMID: 31015514 PMCID: PMC6478949 DOI: 10.1038/s41598-019-42872-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023] Open
Abstract
The central clock in the suprachiasmatic nucleus (SCN) has higher metabolic activity than extra-SCN areas in the anterior hypothalamus. Here we investigated whether the Na+/H+ exchanger (NHE) may regulate extracellular pH (pHe), intracellular pH (pHi) and [Ca2+]i in the SCN. In hypothalamic slices bathed in HEPES-buffered solution a standing acidification of ~0.3 pH units was recorded with pH-sensitive microelectrodes in the SCN but not extra-SCN areas. The NHE blocker amiloride alkalinised the pHe. RT-PCR revealed mRNA for plasmalemmal-type NHE1, NHE4, and NHE5 isoforms, whereas the NHE1-specific antagonist cariporide alkalinised the pHe. Real-time PCR and western blotting failed to detect day-night variation in NHE1 mRNA and protein levels. Cariporide induced intracellular acidosis, increased basal [Ca2+]i, and decreased depolarisation-induced Ca2+ rise, with the latter two effects being abolished with nimodipine blocking the L-type Ca2+ channels. Immunofluorescent staining revealed high levels of punctate colocalisation of NHE1 with serotonin transporter (SERT) or CaV1.2, as well as triple staining of NHE1, CaV1.2, and SERT or the presynaptic marker Bassoon. Our results indicate that NHE1 actively extrudes H+ to regulate pHi and nimodipine-sensitive [Ca2+]i in the soma, and along with CaV1.2 may also regulate presynaptic Ca2+ levels and, perhaps at least serotonergic, neurotransmission in the SCN.
Collapse
Affiliation(s)
- Pi-Cheng Cheng
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, 33302, Taiwan
| | - Hsin-Yi Lin
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, 33302, Taiwan
| | - Ya-Shuan Chen
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, 33302, Taiwan
| | - Ruo-Ciao Cheng
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, 33302, Taiwan
| | - Hung-Che Su
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, 33302, Taiwan
| | - Rong-Chi Huang
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, 33302, Taiwan. .,Healthy Aging Research Center, Chang Gung University, Tao-Yuan, 33302, Taiwan. .,Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Tao-Yuan, 33305, Taiwan.
| |
Collapse
|
4
|
Ayata C, Lauritzen M. Spreading Depression, Spreading Depolarizations, and the Cerebral Vasculature. Physiol Rev 2015; 95:953-93. [PMID: 26133935 DOI: 10.1152/physrev.00027.2014] [Citation(s) in RCA: 386] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Spreading depression (SD) is a transient wave of near-complete neuronal and glial depolarization associated with massive transmembrane ionic and water shifts. It is evolutionarily conserved in the central nervous systems of a wide variety of species from locust to human. The depolarization spreads slowly at a rate of only millimeters per minute by way of grey matter contiguity, irrespective of functional or vascular divisions, and lasts up to a minute in otherwise normal tissue. As such, SD is a radically different breed of electrophysiological activity compared with everyday neural activity, such as action potentials and synaptic transmission. Seventy years after its discovery by Leão, the mechanisms of SD and its profound metabolic and hemodynamic effects are still debated. What we did learn of consequence, however, is that SD plays a central role in the pathophysiology of a number of diseases including migraine, ischemic stroke, intracranial hemorrhage, and traumatic brain injury. An intriguing overlap among them is that they are all neurovascular disorders. Therefore, the interplay between neurons and vascular elements is critical for our understanding of the impact of this homeostatic breakdown in patients. The challenges of translating experimental data into human pathophysiology notwithstanding, this review provides a detailed account of bidirectional interactions between brain parenchyma and the cerebral vasculature during SD and puts this in the context of neurovascular diseases.
Collapse
Affiliation(s)
- Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, and Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neuroscience and Pharmacology and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark; and Department of Clinical Neurophysiology, Glostrup Hospital, Glostrup, Denmark
| | - Martin Lauritzen
- Neurovascular Research Laboratory, Department of Radiology, and Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neuroscience and Pharmacology and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark; and Department of Clinical Neurophysiology, Glostrup Hospital, Glostrup, Denmark
| |
Collapse
|
5
|
Lindquist BE, Shuttleworth CW. Spreading depolarization-induced adenosine accumulation reflects metabolic status in vitro and in vivo. J Cereb Blood Flow Metab 2014; 34:1779-90. [PMID: 25160669 PMCID: PMC4269755 DOI: 10.1038/jcbfm.2014.146] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/09/2014] [Accepted: 07/22/2014] [Indexed: 01/03/2023]
Abstract
Spreading depolarization (SD), a pathologic feature of migraine, stroke and traumatic brain injury, is a propagating depolarization of neurons and glia causing profound metabolic demand. Adenosine, the low-energy metabolite of ATP, has been shown to be elevated after SD in brain slices and under conditions likely to trigger SD in vivo. The relationship between metabolic status and adenosine accumulation after SD was tested here, in brain slices and in vivo. In brain slices, metabolic impairment (assessed by nicotinamide adenine dinucleotide (phosphate) autofluorescence and O2 availability) was associated with prolonged extracellular direct current (DC) shifts indicating delayed repolarization, and increased adenosine accumulation. In vivo, adenosine accumulation was observed after SD even in otherwise healthy mice. As in brain slices, in vivo adenosine accumulation correlated with DC shift duration and increased when DC shifts were prolonged by metabolic impairment (i.e., hypoglycemia or middle cerebral artery occlusion). A striking pattern of adenosine dynamics was observed during focal ischemic stroke, with nearly all the observed adenosine signals in the periinfarct region occurring in association with SDs. These findings suggest that adenosine accumulation could serve as a biomarker of SD incidence and severity, in a range of clinical conditions.
Collapse
Affiliation(s)
- Britta E Lindquist
- Department of Neurosciences, University of New Mexico School of Medicine, 1 University of New Mexico, Albuquerque, New Mexico, USA
| | - C William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, 1 University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
6
|
Rae C, Balcar VJ. A Chip Off the Old Block: The Brain Slice as a Model for Metabolic Studies of Brain Compartmentation and Neuropharmacology. BRAIN ENERGY METABOLISM 2014. [DOI: 10.1007/978-1-4939-1059-5_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Metabolic signatures of amyotrophic lateral sclerosis reveal insights into disease pathogenesis. Proc Natl Acad Sci U S A 2013; 110:10812-7. [PMID: 23754387 DOI: 10.1073/pnas.1308421110] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Metabolic dysfunction is an important modulator of disease course in amyotrophic lateral sclerosis (ALS). We report here that a familial mouse model (transgenic mice over-expressing the G93A mutation of the Cu/Zn superoxide dismutase 1 gene) of ALS enters a progressive state of acidosis that is associated with several metabolic (hormonal) alternations that favor lipolysis. Extensive investigation of the major determinants of H(+) concentration (i.e., the strong ion difference and the strong ion gap) suggests that acidosis is also due in part to the presence of an unknown anion. Consistent with a compensatory response to avert pathological acidosis, ALS mice harbor increased accumulation of glycogen in CNS and visceral tissues. The altered glycogen is associated with fluctuations in lysosomal and neutral α-glucosidase activities. Disease-related changes in glycogen, glucose, and α-glucosidase activity are also found in spinal cord tissue samples of autopsied patients with ALS. Collectively, these data provide insights into the pathogenesis of ALS as well as potential targets for drug development.
Collapse
|
8
|
Fiber pathway pathology, synapse loss and decline of cortical function in schizophrenia. PLoS One 2013; 8:e60518. [PMID: 23593232 PMCID: PMC3620229 DOI: 10.1371/journal.pone.0060518] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 02/28/2013] [Indexed: 11/19/2022] Open
Abstract
A quantitative cortical model is developed, based on both computational and simulation approaches, which relates measured changes in cortical activity of gray matter with changes in the integrity of longitudinal fiber pathways. The model consists of modules of up to 5,000 neurons each, 80% excitatory and 20% inhibitory, with these having different degrees of synaptic connectiveness both within a module as well as between modules. It is shown that if the inter-modular synaptic connections are reduced to zero while maintaining the intra-modular synaptic connections constant, then activity in the modules is reduced by about 50%. This agrees with experimental observations in which cortical electrical activity in a region of interest, measured using the rate of oxidative glucose metabolism (CMRglc(ox)), is reduced by about 50% when the cortical region is isolated, either by surgical means or by transient cold block. There is also a 50% decrease in measured cortical activity following inactivation of the nucleus of Meynert and the intra-laminar nuclei of the thalamus, which arise either following appropriate lesions or in sleep. This occurs in the model if the inter-modular synaptic connections require input from these nuclei in order to function. In schizophrenia there is a 24% decrease in functional anisotropy of longitudinal fasciculi accompanied by a 7% decrease in cortical activity (CMRglc(ox)).The cortical model predicts this, namely for a 24% decrease in the functioning of the inter-modular connections, either through the complete loss of 24% of axons subserving the connections or due to such a decrease in the efficacy of all the inter-modular connections, there will be about a 7% decrease in the activity of the modules. This work suggests that deterioration of longitudinal fasciculi in schizophrenia explains the loss of activity in the gray matter.
Collapse
|
9
|
Westerhout J, Danhof M, De Lange ECM. Preclinical prediction of human brain target site concentrations: considerations in extrapolating to the clinical setting. J Pharm Sci 2011; 100:3577-93. [PMID: 21544824 DOI: 10.1002/jps.22604] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/13/2011] [Accepted: 04/18/2011] [Indexed: 01/11/2023]
Abstract
The development of drugs for central nervous system (CNS) disorders has encountered high failure rates. In part, this has been due to the sole focus on blood-brain barrier permeability of drugs, without taking into account all other processes that determine drug concentrations at the brain target site. This review deals with an overview of the processes that determine the drug distribution into and within the CNS, followed by a description of in vivo techniques that can be used to provide information on CNS drug distribution. A plea follows for the need for more mechanistic understanding of the mechanisms involved in brain target site distribution, and the condition-dependent contributions of these mechanisms to ultimate drug effect. As future direction, such can be achieved by performing integrative cross-compare designed studies, in which mechanisms are systematically influenced (e.g., inhibition of an efflux transporter or induction of pathological state). With the use of advanced mathematical modeling procedures, we may dissect contributions of individual mechanisms in animals as links to the human situation.
Collapse
Affiliation(s)
- Joost Westerhout
- Department of Pharmacology, Leiden/Amsterdam Center for Drug Research, Leiden University, 2300 RA Leiden, the Netherlands
| | | | | |
Collapse
|
10
|
Suzuki T, Zaima C, Moriki Y, Fukami T, Tomono K. P-glycoprotein mediates brain-to-blood efflux transport of buprenorphine across the blood–brain barrier. J Drug Target 2008; 15:67-74. [PMID: 17365275 DOI: 10.1080/10611860601141606] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The involvement of P-glycoprotein (P-gp) in buprenorphine (BNP) transport at the blood-brain barrier (BBB) in rats was investigated in vivo by means of both the brain uptake index technique and the brain efflux index technique. P-gp inhibitors, such as cyclosporin A, quinidine and verapamil, enhanced the apparent brain uptake of [3H]BNP by 1.5-fold. The increment of the BNP uptake by the brain suggests the involvement of a P-gp efflux mechanism of BNP transport at the BBB. [3H]BNP was eliminated with an apparent elimination half-life of 27.5 min after microinjection into the parietal cortex area 2 regions of the rat brain. The apparent efflux clearance of [3H]BNP across the BBB was 0.154 ml/min/g brain, which was calculated from the elimination rate constant (2.52 x 10- 2 min- 1) and the distribution volume in the brain (6.11 ml/g brain). The efflux transport of [3H]BNP was inhibited by range from 32 to 64% in the presence of P-gp inhibitors. The present results suggest that BNP is transported from the brain across the BBB via a P-gp-mediated efflux transport system, at least in part.
Collapse
Affiliation(s)
- Toyofumi Suzuki
- Department of Pharmaceutics, College of Pharmacy, Nihon University. 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan.
| | | | | | | | | |
Collapse
|
11
|
Redzic ZB, Malatiali SA, Craik JD, Rakic ML, Isakovic AJ. Blood-brain barrier efflux transport of pyrimidine nucleosides and nucleobases in the rat. Neurochem Res 2008; 34:566-73. [PMID: 18751895 DOI: 10.1007/s11064-008-9823-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 08/05/2008] [Indexed: 11/25/2022]
Abstract
The brain efflux index (BEI), a measurement of blood-brain barrier (BBB) efflux transport, was estimated at 15 s, 30 s, 1 min, 3 min and 10 min after intracerebral injection of [14C]pyrimidines. An initial steep increase of the BEI values over time was observed for [14]uracil and [14C]thymine, followed by a more moderate increase after 1 min. For the corresponding nucleosides, [14C]uridine and [14C]thymidine, the increase of BEI values over time was less steep and linear between 30 s and 3 min. The apparent BBB efflux clearances for [14C]uridine, [14C]thymidine, [14C]uracil and [14C]thymine were (microl/min/g): 95.2 +/- 12.1, 125.3 +/- 18.4, 290.4 +/- 28 and 358.5 +/- 32.5, respectively, which is at least several folds higher than the predicted BBB influx clearances of uridine, uracil and thymidine. Quick depletion of brain parenchyma from brain microvasculature has revealed that [14C] radioactivity accumulated in brain microvessels after injection of nucleosides [14C]thymidine and [14C]uridine, but that was not observed when nucleobases, [14C]thymine and [14C]uracil, were injected. Reverse transcriptase-PCR revealed that the rat brain and liver (positive control) express dihydropyrimidine dehydrogenase, a key enzyme in pyrimidine nucleobase catabolism. Two bands representing spliced variants have been detected with the relative density of the bands (expressed relative to the density of glyceraldehyde3-phosphate dehydrogenase bands, mean +/- SEM from 3 separate samples) 0.16 +/- 0.06 and 0.04 +/- 0.01 (brain) and 0.49 +/- 0.1 and 0.07 +/- 0.01 (liver). Overall, these results indicate that the net direction of pyrimidine BBB transport is the efflux transport; rapid BBB efflux transport and metabolic breakdown of pyrimidine nucleobases appear to be important for brain homeostasis.
Collapse
Affiliation(s)
- Zoran B Redzic
- Department of Physiology, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait.
| | | | | | | | | |
Collapse
|
12
|
An JH, Su Y, Radman T, Bikson M. Effects of glucose and glutamine concentration in the formulation of the artificial cerebrospinal fluid (ACSF). Brain Res 2008; 1218:77-86. [PMID: 18533132 DOI: 10.1016/j.brainres.2008.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 04/03/2008] [Accepted: 04/04/2008] [Indexed: 10/22/2022]
Abstract
The composition of the ACSF is fundamental in controlling the extracellular environment of the brain slice preparation. 'Typical' formulations lack amino acids and contain a higher concentration of glucose (10 mM) than in the cerebrospinal fluid (0.47-4.4 mM). We examined the effects of different concentrations of glutamine, the most abundant amino acid in the CSF, and glucose on rat hippocampal slice physiology. Bipolar paired-pulse stimulation was applied to the Schaffer collaterals and population spikes were monitored in the CA1 pyramidal layer for approximately 1 hour. Addition of glutamine (0.5 mM) to slices superfused with 10 mM of glucose did not enhance population spike amplitude. Higher concentration of glutamine (2-5 mM) resulted in spreading-depression. Decreasing glucose concentration from 10 mM to 5 mM, in the absence of glutamine, attenuated population spikes. Decreasing glucose to 2 mM, in the absence of glutamine, suppressed evoked population spikes. Superfusing brain slices with ACSF containing 'physiological' concentrations of both glucose (2 mM) and glutamine (0.5 mM) similarly suppressed population spikes. In separate experiments, during high-K+ induced epileptiform activity, glutamine (0.5 mM) did not affect the burst duration, frequency or waveform. These results suggest that the concentration of glucose in ACSF should conservatively be 10 mM in order to maximize paired-pulse population responses while the presence of physiological concentration of glutamine (0.5 mM) has minimal effects on paired-pulse responses and high-K+ induced epileptiform activity. These results are discussed in the context of fundamental differences between in vitro brain slice superfusion and in vivo brain perfusion.
Collapse
Affiliation(s)
- Je Hi An
- Department of Biomedical Engineering, The City College of New York, New York, NY 10031, USA
| | | | | | | |
Collapse
|
13
|
Hrabetová S, Chen KC, Masri D, Nicholson C. Water compartmentalization and spread of ischemic injury in thick-slice ischemia model. J Cereb Blood Flow Metab 2002; 22:80-8. [PMID: 11807397 DOI: 10.1097/00004647-200201000-00010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Water compartmentalization was studied in a thick-slice (1000 microm) model of ischemia by combining water-content measurements with extracellular diffusion analysis. Thick slices bathed in artificial cerebrospinal fluid continually gained water. Total tissue water content was increased by 67% after 6 hours of the incubation. Diffusion measurements using the tetramethylammonium method showed that the extracellular space, typically occupying 20% of brain tissue in vivo, was decreased to 10% at 30 minutes and 15% at 6 hours in both deep and superficial layers of thick slices. Quantification of water compartmentalization revealed that water moved initially from the extracellular space into the cells. Later, however, both compartments gained water. The initial cell swelling was accompanied by dramatic shifts in potassium. An initial rise of extracellular potassium to about 50 mmol/L was measured with a potassium-selective microelectrode positioned in the center of the thick slice; the concentration decreased slowly afterwards. Potassium content analysis revealed a 63% loss of tissue potassium within two hours of the incubation. In thick slices, ionic shifts, water redistribution, and a loss of synaptic transmission occur in both deep and superficial layers, indicating the spread of ischemic conditions even to areas with an unrestricted supply of nutrients.
Collapse
Affiliation(s)
- Sabina Hrabetová
- Department of Physiology and Neuroscience, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | |
Collapse
|
14
|
Kakee A, Takanaga H, Terasaki T, Naito M, Tsuruo T, Sugiyama Y. Efflux of a suppressive neurotransmitter, GABA, across the blood-brain barrier. J Neurochem 2001; 79:110-8. [PMID: 11595763 DOI: 10.1046/j.1471-4159.2001.00540.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study, GABA efflux transport from brain to blood was estimated by using the brain efflux index (BEI) method. [3H]GABA microinjected into parietal cortex area 2 (Par2) of the rat brain was eliminated from the brain with an apparent elimination half-life of 16.9 min. The blood-brain barrier (BBB) efflux clearance of [3H]GABA was at least 0.153 mL/min/g brain, which was calculated from the elimination rate constant (7.14 x 10(-2) x min(-1)) and the distribution volume in the brain (2.14 mL/g brain). Direct comparison of the apparent BBB influx clearance [3H]GABA (9.29 microL/min/g brain) and the apparent efflux clearance (153 microL/min/g brain) indicated that the efflux clearance was at least 16-fold greater than the influx clearance. In order to reduce the effect of metabolism in the neuronal cells following intracerebral microinjection, we determined the apparent efflux of [3H]GABA in the presence of nipecotic acid, a GABA transport inhibitor in parenchymal cells, using the BEI method. Under such conditions, the elimination of [3H]GABA across the BBB showed saturation and inhibition by probenecid in the presence of nipecotic acid. Furthermore, the uptake of [3H]GABA by MBEC4 cells was inhibited by GABA, taurine, beta-alanine and nipecotic acid in a concentration-dependent manner. It is likely that GABA inhibits the first step in the abluminal membrane uptake by brain endothelial cells, and that probenecid selectively inhibits the luminal membrane efflux transport process from the brain capillary endothelial cells based on the in vivo and in vitro evidence. The BBB acts as the efflux pump for GABA to reduce the brain interstitial fluid concentration.
Collapse
Affiliation(s)
- A Kakee
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
This review is directed at understanding how neuronal death occurs in two distinct insults, global ischemia and focal ischemia. These are the two principal rodent models for human disease. Cell death occurs by a necrotic pathway characterized by either ischemic/homogenizing cell change or edematous cell change. Death also occurs via an apoptotic-like pathway that is characterized, minimally, by DNA laddering and a dependence on caspase activity and, optimally, by those properties, additional characteristic protein and phospholipid changes, and morphological attributes of apoptosis. Death may also occur by autophagocytosis. The cell death process has four major stages. The first, the induction stage, includes several changes initiated by ischemia and reperfusion that are very likely to play major roles in cell death. These include inhibition (and subsequent reactivation) of electron transport, decreased ATP, decreased pH, increased cell Ca(2+), release of glutamate, increased arachidonic acid, and also gene activation leading to cytokine synthesis, synthesis of enzymes involved in free radical production, and accumulation of leukocytes. These changes lead to the activation of five damaging events, termed perpetrators. These are the damaging actions of free radicals and their product peroxynitrite, the actions of the Ca(2+)-dependent protease calpain, the activity of phospholipases, the activity of poly-ADPribose polymerase (PARP), and the activation of the apoptotic pathway. The second stage of cell death involves the long-term changes in macromolecules or key metabolites that are caused by the perpetrators. The third stage of cell death involves long-term damaging effects of these macromolecular and metabolite changes, and of some of the induction processes, on critical cell functions and structures that lead to the defined end stages of cell damage. These targeted functions and structures include the plasmalemma, the mitochondria, the cytoskeleton, protein synthesis, and kinase activities. The fourth stage is the progression to the morphological and biochemical end stages of cell death. Of these four stages, the last two are the least well understood. Quite little is known of how the perpetrators affect the structures and functions and whether and how each of these changes contribute to cell death. According to this description, the key step in ischemic cell death is adequate activation of the perpetrators, and thus a major unifying thread of the review is a consideration of how the changes occurring during and after ischemia, including gene activation and synthesis of new proteins, conspire to produce damaging levels of free radicals and peroxynitrite, to activate calpain and other Ca(2+)-driven processes that are damaging, and to initiate the apoptotic process. Although it is not fully established for all cases, the major driving force for the necrotic cell death process, and very possibly the other processes, appears to be the generation of free radicals and peroxynitrite. Effects of a large number of damaging changes can be explained on the basis of their ability to generate free radicals in early or late stages of damage. Several important issues are defined for future study. These include determining the triggers for apoptosis and autophagocytosis and establishing greater confidence in most of the cellular changes that are hypothesized to be involved in cell death. A very important outstanding issue is identifying the critical functional and structural changes caused by the perpetrators of cell death. These changes are responsible for cell death, and their identity and mechanisms of action are almost completely unknown.
Collapse
Affiliation(s)
- P Lipton
- Department of Physiology, University of Wisconsin School of Medicine, Madison, Wisconsin, USA
| |
Collapse
|
16
|
Hosoya K, Sugawara M, Asaba H, Terasaki T. Blood-brain barrier produces significant efflux of L-aspartic acid but not D-aspartic acid: in vivo evidence using the brain efflux index method. J Neurochem 1999; 73:1206-11. [PMID: 10461913 DOI: 10.1046/j.1471-4159.1999.0731206.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The brain efflux index method has been used to clarify the mechanism of efflux transport of acidic amino acids such as L-aspartic acid (L-Asp), L-glutamic acid (L-Glu), and D-aspartic acid (D-Asp) across the blood-brain barrier (BBB). About 85% of L-[3H]Asp and 40% of L-[3H]Glu was eliminated from the ipsilateral cerebrum within, respectively, 10 and 20 min of microinjection into the brain. The efflux rate constant of L-[3H]Asp and L-[3H]Glu was 0.207 and 0.0346 min(-1), respectively. However, D-[3H]Asp was not eliminated from brain over a 20-min period. The efflux of L-[3H]Asp and L-[3H]Glu was inhibited in the presence of excess unlabeled L-Asp and L-Glu, whereas D-Asp did not inhibit either form of efflux transport. Aspartic acid efflux across the BBB appears to be stereospecific. Using a combination of TLC and the bioimaging analysis, attempts were made to detect the metabolites of L-[3H]Asp and L-[3H]Glu in the ipsilateral cerebrum and jugular vein plasma following a microinjection into parietal cortex, area 2. Significant amounts of intact L-[3H]Asp and L-[3H]Glu were found in all samples examined, including jugular vein plasma, providing direct evidence that at least a part of the L-Asp and L-Glu in the brain interstitial fluid is transported across the BBB in the intact form. To compare the transport of acidic amino acids using brain parenchymal cells, brain slice uptake studies were performed. Although the slice-to-medium ratio of D-[3H]Asp was the highest, followed by L-[3H]Glu and L-[3H]Asp, the initial uptake rate did not differ for both L-[3H]Asp and D-[3H]Asp, suggesting that the uptake of aspartic acid in brain parenchymal cells is not stereospecific. These results provide evidence that the BBB may act as an efflux pump for L-Asp and L-Glu to reduce the brain interstitial fluid concentration and act as a static wall for D-Asp.
Collapse
Affiliation(s)
- K Hosoya
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | | | |
Collapse
|
17
|
Patlak CS, Hospod FE, Trowbridge SD, Newman GC. Diffusion of radiotracers in normal and ischemic brain slices. J Cereb Blood Flow Metab 1998; 18:776-802. [PMID: 9663508 DOI: 10.1097/00004647-199807000-00009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Diffusion in the extracellular space (ECS) is important in physiologic and pathologic brain processes but remains poorly understood. To learn more about factors influencing tissue diffusion and the role of diffusion in solute-tissue interactions, particularly during cerebral ischemia, we have studied the kinetics of several radiotracers in control and hypoxic 450-microm hippocampal slices and in 1,050-microm thick slices that model the ischemic penumbra. Kinetics were analyzed by nonlinear least squares methods using models that combine extracellular diffusion with tissue compartments in series or in parallel. Studies with 14C-polyethylene glycol confirmed prior measurements of extracellular volume and that ECS shrinks during ischemia. Separating diffusion from transport also revealed large amounts of 45Ca that bind to or enter brain as well as demonstrating a small, irreversibly bound compartment during ischemia. The rapidity of 3H2O entry into cells made it impossible for us to distinguish intracellular from extracellular diffusion. The diffusion-compartment analysis of 3-O-methylglucose data appears to indicate that 5 mmol/L glucose is inadequate to support glycolysis fully in thick slices. Unexpectedly, the diffusion coefficient for all four tracers rose in thick slices compared with thin slices, suggesting that ECS becomes less tortuous in the penumbra.
Collapse
Affiliation(s)
- C S Patlak
- Department of Surgery, State University of New York at Stony Brook, 11794-8121, USA
| | | | | | | |
Collapse
|
18
|
Cancela JM, Bralet J, Beley A. Effects of iron-induced lipid peroxidation and of acidosis on choline uptake by synaptosomes. Neurochem Res 1994; 19:833-7. [PMID: 7969753 DOI: 10.1007/bf00967452] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The effects of iron-induced lipid peroxidation and of lactic acidosis on [3H]choline uptake were investigated on crude synaptosomes prepared from rat cerebral cortices. Fe(2+)-induced lipid peroxidation as evidenced from the production of thiobarbituric acid reactives substances (TBARS) was correlated with a decrease in high-affinity choline uptake (HACU). Trolox C, a free radical scavenger, prevented both Fe(2+)-induced TBARS production and decrease in HACU. Lactic acidosis (pH 6.0 for 30 or 60 min) increased the TBARS production with concomitant decrease in HACU (-48%, -78%, respectively). The acidosis dependent decrease was not reversible following pH 7.4 readjustment after 60 min acidosis. It was not prevented by trolox C, although trolox C inhibited the acidosis-induced production of TBARS. The results suggest that the contribution of acidosis to peroxidative damages is probably of less importance in comparison to other cytotoxic mechanisms.
Collapse
Affiliation(s)
- J M Cancela
- Laboratoire de Pharmacodynamie, Faculté de Pharmacie, Dijon, France
| | | | | |
Collapse
|
19
|
Gault LM, Lin CW, LaManna JC, Lust WD. Changes in energy metabolites, cGMP and intracellular pH during cortical spreading depression. Brain Res 1994; 641:176-80. [PMID: 8019846 DOI: 10.1016/0006-8993(94)91835-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The spatial and temporal distribution of cerebral metabolites and pHi were examined in the cortex during spreading depression. Acidification and marked depression in the energy status of the tissue was evident at the wavefront of spreading depression. In its aftermath, the residual activation of glycolysis and accumulation of cGMP persisted for minutes after a relatively rapid restoration of high-energy phosphates and pHi.
Collapse
Affiliation(s)
- L M Gault
- Laboratory of Experimental Neurological Surgery, University Hospitals of Cleveland, OH
| | | | | | | |
Collapse
|
20
|
Ting YL, Degani H. Energetics and glucose metabolism in hippocampal slices during depolarization: 31P and 13C NMR studies. Brain Res 1993; 610:16-23. [PMID: 8518924 DOI: 10.1016/0006-8993(93)91211-a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Alterations in the energy state and glucose metabolism of hippocampal slices exposed to high extracellular K+ ([K+]o) were monitored using 31P and 13C NMR spectroscopy. Slices were perfused (37 degrees C) continuously within the NMR spectrometer and tissue viability and metabolic activity were maintained for at least 18 h. 31P spectra showed that upon exposure to 40 mM [K+]o, there was a rapid compromise in tissue energetics where, by 15 min of exposure, the ratio of phosphocreatine and of nucleoside triphosphates to inorganic phosphate (extra- and intracellular) decreased 30-50% relative to pre-exposure values. This was accompanied by a pH decrease of approximately 0.3 units in both the intra and extracellular environments. A lower but stable energy state was reached at approximately 15 min of exposure and full recovery was observed by 30 min following the removal of high [K+]o. Utilizing 13C NMR in the presence of [1-13C]glucose, an immediate and dramatic acceleration in tissue glycolysis was observed when slices were exposed to 40 mM [K+]o: the rates of both [1-13C]glucose consumption and [3-13C] acetate synthesis increased by approximately 20 fold. By 60 min following the removal of high-[K+]o, pre-exposure rates of tissue glycolysis were restored. The results indicated that the rapid and dramatic induction of energy production via glycolysis probably accounts for the ability of hippocampal slices to maintain viability and recuperate from brief but intense depolarizing conditions which are reminiscent of seizure states in vivo.
Collapse
Affiliation(s)
- Y L Ting
- Chemical Physics Department, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
21
|
Newman GC, Qi H, Hospod FE, Grundmann K. Preservation of hippocampal brain slices with in vivo or in vitro hypothermia. Brain Res 1992; 575:159-63. [PMID: 1504777 DOI: 10.1016/0006-8993(92)90438-f] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hippocampal brain slices show CA1 injury similar to that seen after global ischemia in vivo. Cooling rats to 31 degrees C prior to sacrifice or cooling slices to 21 degrees C for 45 min increased the percentage of normal CA1 pyramidal cells after 5 h in vitro from 30% to over 80%. Brain slices also show a unique, consistent injury in dentate which is lessened by transient cooling to 21 degrees C but not by cooling the animal.
Collapse
Affiliation(s)
- G C Newman
- Neurology Service, Veterans Administration Medical Center, Northport, NY 11768
| | | | | | | |
Collapse
|