1
|
Adenosine 5'-Monophosphate Protects from Hypoxia by Lowering Mitochondrial Metabolism and Oxygen Demand. Shock 2021; 54:237-244. [PMID: 31460871 DOI: 10.1097/shk.0000000000001440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ischemia and reperfusion injury following severe trauma or cardiac arrest are major causes of organ damage in intensive care patients. The brain is particularly vulnerable because hypoxia rapidly damages neurons due to their heavy reliance on oxidative phosphorylation. Therapeutic hypothermia can reduce ischemia-induced brain damage, but cooling procedures are slow and technically difficult to perform in critical care settings. It has been previously reported that injection of naturally occurring adenosine 5'-monophosphate (AMP) can rapidly induce hypothermia in mice. We studied the underlying mechanisms and found that AMP transiently reduces the heart rate, respiratory rate, body temperature, and the consciousness of adult male and female C57BL/6J mice. Adding AMP to mouse or human neuronal cell cultures dose-dependently reduced the membrane potential (ΔΨm) and Ca signaling of mitochondria in these cells. AMP treatment increased intracellular AMP levels and activated AMP-activated protein kinase, which resulted in the inhibition of mammalian target of rapamycin complex 1 (mTORC1) and of mitochondrial and cytosolic Ca signaling in resting and stimulated neurons. Pretreatment with an intraperitoneal injection of AMP almost doubled the survival time of mice under hypoxic (6% O2) or anoxic (<1% O2) conditions when compared to untreated mice. These findings suggest that AMP induces a hypometabolic state that slows mitochondrial respiration, reduces oxygen demand, and delays the processes that damage mitochondria in the brain and other organs following hypoxia and reperfusion. Further examination of these mechanisms may lead to new treatments that preserve organ function in critical care patients.
Collapse
|
2
|
Ouchi Y, Yamato M, Chowdhury VS, Bungo T. Adenosine 5'-monophosphate induces hypothermia and alters gene expressions in the brain and liver of chicks. Brain Res Bull 2021; 172:14-21. [PMID: 33862124 DOI: 10.1016/j.brainresbull.2021.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/05/2021] [Accepted: 04/10/2021] [Indexed: 10/21/2022]
Abstract
The adenosine A1 receptor is important for body temperature regulation in mammals; however, little is known about its function in avian species. In this study, we investigated the effects of the adenosine A1 receptor agonist and antagonist (adenosine 5'-monophosphate [5'-AMP] and 8 p-sulfophenyl theophylline [8-SPT], respectively) on thermoregulation in chickens. Male chicks were used in this study. After administration of 5'-AMP and 8-SPT, the rectal temperature, plasma metabolites, and gene expressions in the hypothalamus and liver were measured. The rectal temperature was reduced by peripheral administration of 5'-AMP, and the hypothermic effect of 5'-AMP was attenuated by central injection of 8-SPT in chicks. In the hypothalamus, the mRNA level of the agouti-related protein (AgRP) was increased by 5'-AMP administration, whereas it was suppressed by 8-SPT. The plasma levels of free fatty acid were elevated in 5'-AMP-treated chicks and that elevation was suppressed by the 8-SPT treatment. The gene expression of proopiomelanocortin in the hypothalamus was affected by 8-SPT. Nevertheless, the gene expressions of the thermoregulation-related genes, such as the thyrotropin-releasing hormone, were not affected by 5'-AMP and 8-SPT. Hepatic gene expressions related to lipid intake and metabolism were suppressed by 5'-AMP. However, the gene expression of the uncoupling protein was upregulated by 5'-AMP. Based on these results, birds, like mammals, will undergo adenosine A1 receptor-induced hypothermia. In conclusion, it is suggested that 5'-AMP-mediated hypothermia via the adenosine A1 receptor may affect the central melanocortin system and suppress hepatic lipid metabolism in chickens.
Collapse
Affiliation(s)
- Yoshimitsu Ouchi
- Laboratory of Animal Behavior and Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi, Hiroshima, 739-8528, Japan
| | - Miko Yamato
- Faculty of Applied Biological Science, Hiroshima University, Higashi, Hiroshima, 739-8528, Japan
| | | | - Takashi Bungo
- Laboratory of Animal Behavior and Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi, Hiroshima, 739-8528, Japan.
| |
Collapse
|
3
|
Tupone D, Cetas JS. In a model of SAH-induced neurogenic fever, BAT thermogenesis is mediated by erythrocytes and blocked by agonism of adenosine A1 receptors. Sci Rep 2021; 11:2752. [PMID: 33531584 PMCID: PMC7854628 DOI: 10.1038/s41598-021-82407-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/20/2021] [Indexed: 11/09/2022] Open
Abstract
Neurogenic fever (NF) after subarachnoid hemorrhage (SAH) is a major cause of morbidity that is associated with poor outcomes and prolonged stay in the neurointensive care unit (NICU). Though SAH is a much more common cause of fever than sepsis in the NICU, it is often a diagnosis of exclusion, requiring significant effort to rule out an infectious source. NF does not respond to standard anti-pyretic medications such as COX inhibitors, and lack of good medical therapy has led to the introduction of external cooling systems that have their own associated problems. In a rodent model of SAH, we measured the effects of injecting whole blood, blood plasma, or erythrocytes on the sympathetic nerve activity to brown adipose tissue and on febrile thermogenesis. We demonstrate that following SAH the acute activation of brown adipose tissue leading to NF, is not dependent on PGE2, that subarachnoid space injection of whole blood or erythrocytes, but not plasma alone, is sufficient to trigger brown adipose tissue thermogenesis, and that activation of adenosine A1 receptors in the CNS can block the brown adipose tissue thermogenic component contributing to NF after SAH. These findings point to a distinct thermogenic mechanism for generating NF, compared to those due to infectious causes, and will hopefully lead to new therapies.
Collapse
Affiliation(s)
- Domenico Tupone
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126, Bologna, Italy. .,Department of Neurological Surgery, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA.
| | - Justin S Cetas
- Department of Neurological Surgery, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA.,Portland VA Health Care System, Portland, OR, USA
| |
Collapse
|
4
|
Laughlin BW, Bailey IR, Rice SA, Barati Z, Bogren LK, Drew KL. Precise Control of Target Temperature Using N 6-Cyclohexyladenosine and Real-Time Control of Surface Temperature. Ther Hypothermia Temp Manag 2018; 8:108-116. [PMID: 29480748 DOI: 10.1089/ther.2017.0020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Targeted temperature management is standard of care for cardiac arrest and is in clinical trials for stroke. N6-cyclohexyladenosine (CHA), an A1 adenosine receptor (A1AR) agonist, inhibits thermogenesis and induces onset of hibernation in hibernating species. Despite promising thermolytic efficacy of CHA, prior work has failed to achieve and maintain a prescribed target core body temperature (Tb) between 32°C and 34°C for 24 hours. We instrumented Sprague-Dawley rats (n = 19) with indwelling arterial and venous cannulae and a transmitter for monitoring Tb and ECG, then administered CHA via continuous IV infusion or intraperitoneal (IP) injection. In the first experiment (n = 11), we modulated ambient temperature and increased the dose of CHA in an attempt to manage Tb. In the second experiment (n = 8), we administered CHA (0.25 mg/[kg·h]) via continuous IV infusion and modulated cage surface temperature to control Tb. We rewarmed animals by increasing surface temperature at 1°C h-1 and discontinued CHA after Tb reached 36.5°C. Tb, brain temperature (Tbrain), heart rate, blood gas, and electrolytes were also monitored. Results show that titrating dose to adjust for individual variation in response to CHA led to tolerance and failed to manage a prescribed Tb. Starting with a dose (0.25 mg/[kg·h]) and modulating surface temperature to prevent overcooling proved to be an effective means to achieve and maintain Tb between 32°C and 34°C for 24 hours. Increasing surface temperature to 37°C during CHA administration brought Tb back to normothermic levels. All animals treated in this way rewarmed without incident. During the initiation of cooling, we observed bradycardia within 30 minutes of the start of IV infusion, transient hyperglycemia, and a mild hypercapnia; the latter normalized via metabolic compensation. In conclusion, we describe an intravenous delivery protocol for CHA at 0.25 mg/(kg·h) that, when coupled with conductive cooling, achieves and maintains a prescribed and consistent target Tb between 32°C and 34°C for 24 hours.
Collapse
Affiliation(s)
- Bernard W Laughlin
- 1 Institute of Arctic Biology, University of Alaska Fairbanks College of Natural Science and Mathematics , Fairbanks, Alaska.,2 Department of Chemistry and Biochemistry, University of Alaska Fairbanks College of Natural Science and Mathematics , Fairbanks, Alaska
| | - Isaac R Bailey
- 1 Institute of Arctic Biology, University of Alaska Fairbanks College of Natural Science and Mathematics , Fairbanks, Alaska.,2 Department of Chemistry and Biochemistry, University of Alaska Fairbanks College of Natural Science and Mathematics , Fairbanks, Alaska
| | - Sarah A Rice
- 1 Institute of Arctic Biology, University of Alaska Fairbanks College of Natural Science and Mathematics , Fairbanks, Alaska.,2 Department of Chemistry and Biochemistry, University of Alaska Fairbanks College of Natural Science and Mathematics , Fairbanks, Alaska
| | - Zeinab Barati
- 1 Institute of Arctic Biology, University of Alaska Fairbanks College of Natural Science and Mathematics , Fairbanks, Alaska
| | - Lori K Bogren
- 1 Institute of Arctic Biology, University of Alaska Fairbanks College of Natural Science and Mathematics , Fairbanks, Alaska
| | - Kelly L Drew
- 1 Institute of Arctic Biology, University of Alaska Fairbanks College of Natural Science and Mathematics , Fairbanks, Alaska.,2 Department of Chemistry and Biochemistry, University of Alaska Fairbanks College of Natural Science and Mathematics , Fairbanks, Alaska
| |
Collapse
|
5
|
Yu D, Wang X, Zhou F, Wang L, Yang G, Zhong W, Li Y, Zhou Z, Wang A, Zhou Y. Mild hypothermia modulates the expression of nestin and caspase-3 in the sub-granular zone and improves neurological outcomes in rats with ischemic stroke. Oncotarget 2017; 8:109191-109200. [PMID: 29312600 PMCID: PMC5752513 DOI: 10.18632/oncotarget.22647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/30/2017] [Indexed: 12/13/2022] Open
Abstract
We assessed neurological outcomes, infarct volume, and the expression of nestin and caspase-3 in the hippocampal dentate gyrus following middle cerebral artery occlusion (MCAO) followed by reperfusion, with mild hypothermia (MH) treatment at the onset of ischemia in a MCAO rat model. Reperfusion began 2 hours after the MCAO model was set-up. MH treatment began at the onset of ischemia and was maintained for 4 hours. We evaluated neurological deficit score, brain infarct volumes, along with the immunohistochemical staining of nestin and caspase-3 in the sub-granular zone of the injured hemisphere on the 1st, 3rd, 7th, and 14th day after the onset of ischemia. Correlations between the number of nestin-positive (nestin+) cells, caspase-3-positive (caspase-3+) cells with infarct volume, as well as neurological deficit scores, were evaluated by linear regression. MH significantly promoted survival, reduced mortality, improved neurological deficit score, reduced brain infarct volume, increased the number of neural stem/progenitor cells and inhibited neuronal apoptosis in the sub-granular zone of the injured hemisphere. The number of nestin+ cells correlated with neurological deficit score in the normothermic group, and with infarct volume in the hypothermia group except for the first day after the onset of ischemia. The number of caspase-3+ cells correlated with the neurological deficit score but not infarct volume. The neuroprotective effects of MH may be mediated by modulating neural stem/progenitor cells and neuronal apoptotic cells in the sub-granular zone of the injured hemisphere during cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Dan Yu
- Department of Neurology, Haikou Municipal Hospital, Xiangya Medical College, Central South University, Haikou 570208, Hainan, P. R. China
| | - Xueying Wang
- Department of Neurology, Affiliated Hospital, Chifeng College, Chifeng 024005, Inner Mongolia, P. R. China
| | - Feng Zhou
- Department of Neurology, Haikou Municipal Hospital, Xiangya Medical College, Central South University, Haikou 570208, Hainan, P. R. China
| | - Liang Wang
- Department of Neurology, Haikou Municipal Hospital, Xiangya Medical College, Central South University, Haikou 570208, Hainan, P. R. China
| | - Guoshuai Yang
- Department of Neurology, Haikou Municipal Hospital, Xiangya Medical College, Central South University, Haikou 570208, Hainan, P. R. China
| | - Wei Zhong
- Department of Neurology, Haikou Municipal Hospital, Xiangya Medical College, Central South University, Haikou 570208, Hainan, P. R. China
| | - Ying Li
- Department of Neurology, Haikou Municipal Hospital, Xiangya Medical College, Central South University, Haikou 570208, Hainan, P. R. China
| | - Zhiping Zhou
- Department of Neurology, Haikou Municipal Hospital, Xiangya Medical College, Central South University, Haikou 570208, Hainan, P. R. China
| | - Aiyue Wang
- Department of Neurology, Haikou Municipal Hospital, Xiangya Medical College, Central South University, Haikou 570208, Hainan, P. R. China
| | - Yanhui Zhou
- Department of Neurology, Haikou Municipal Hospital, Xiangya Medical College, Central South University, Haikou 570208, Hainan, P. R. China
| |
Collapse
|
6
|
Pharmacologically induced reversible hypometabolic state mitigates radiation induced lethality in mice. Sci Rep 2017; 7:14900. [PMID: 29097738 PMCID: PMC5668348 DOI: 10.1038/s41598-017-15002-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/19/2017] [Indexed: 02/08/2023] Open
Abstract
Therapeutic hypothermia has proven benefits in critical care of a number of diseased states, where inflammation and oxidative stress are the key players. Here, we report that adenosine monophosphate (AMP) triggered hypometabolic state (HMS), 1–3 hours after lethal total body irradiation (TBI) for a duration of 6 hours, rescue mice from radiation-induced lethality and this effect is mediated by the persistent hypothermia. Studies with caffeine and 6N-cyclohexyladenosine, a non-selective antagonist and a selective agonist of adenosine A1 receptor (A1AR) respectively, indicated the involvement of adenosine receptor (AR) signaling. Intracerebroventricular injection of AMP also suggested possible involvement of central activation of AR signaling. AMP, induced HMS in a strain and age independent fashion and did not affect the behavioural and reproductive capacities. AMP induced HMS, mitigated radiation-induced oxidative DNA damage and loss of HSPCs. The increase in IL-6 and IL-10 levels and a shift towards anti-inflammatory milieu during the first 3–4 hours seems to be responsible for the augmented survival of HSPCs. The syngeneic bone marrow transplantation (BMT) studies further supported the role of radiation-induced inflammation in loss of bone marrow cellularity after TBI. We also showed that the clinically plausible mild hypothermia effectively mitigates TBI induced lethality in mice.
Collapse
|
7
|
Dugbartey GJ, Hardenberg MC, Kok WF, Boerema AS, Carey HV, Staples JF, Henning RH, Bouma HR. Renal Mitochondrial Response to Low Temperature in Non-Hibernating and Hibernating Species. Antioxid Redox Signal 2017; 27:599-617. [PMID: 28322600 DOI: 10.1089/ars.2016.6705] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
SIGNIFICANCE Therapeutic hypothermia is commonly applied to limit ischemic injury in organ transplantation, during cardiac and brain surgery and after cardiopulmonary resuscitation. In these procedures, the kidneys are particularly at risk for ischemia/reperfusion injury (IRI), likely due to their high rate of metabolism. Although hypothermia mitigates ischemic kidney injury, it is not a panacea. Residual mitochondrial failure is believed to be a key event triggering loss of cellular homeostasis, and potentially cell death. Subsequent rewarming generates large amounts of reactive oxygen species that aggravate organ injury. Recent Advances: Hibernators are able to withstand periods of profoundly reduced metabolism and body temperature ("torpor"), interspersed by brief periods of rewarming ("arousal") without signs of organ injury. Specific adaptations allow maintenance of mitochondrial homeostasis, limit oxidative stress, and protect against cell death. These adaptations consist of active suppression of mitochondrial function and upregulation of anti-oxidant enzymes and anti-apoptotic pathways. CRITICAL ISSUES Unraveling the precise molecular mechanisms that allow hibernators to cycle through torpor and arousal without precipitating organ injury may translate into novel pharmacological approaches to limit IRI in patients. FUTURE DIRECTIONS Although the precise signaling routes involved in natural hibernation are not yet fully understood, torpor-like hypothermic states with increased resistance to ischemia/reperfusion can be induced pharmacologically by 5'-adenosine monophosphate (5'-AMP), adenosine, and hydrogen sulfide (H2S) in non-hibernators. In this review, we compare the molecular effects of hypothermia in non-hibernators with natural and pharmacologically induced torpor, to delineate how safe and reversible metabolic suppression may provide resistance to renal IRI. Antioxid. Redox Signal. 27, 599-617.
Collapse
Affiliation(s)
- George J Dugbartey
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, the Netherlands .,2 Division of Cardiology, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Maarten C Hardenberg
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, the Netherlands
| | - Wendelinde F Kok
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, the Netherlands
| | - Ate S Boerema
- 3 Groningen Institute for Evolutionary Life Sciences, University of Groningen , Groningen, the Netherlands .,4 Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen , Groningen, the Netherlands
| | - Hannah V Carey
- 5 Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin , Madison, Wisconsin
| | - James F Staples
- 6 Department of Biology, University of Western Ontario , London, Canada
| | - Robert H Henning
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, the Netherlands
| | - Hjalmar R Bouma
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, the Netherlands .,7 Department of Internal Medicine, University Medical Center Groningen, University of Groningen , Groningen, the Netherlands
| |
Collapse
|
8
|
O’Brien WG, Ling HS, Zhao Z, Lee CC. New insights on the regulation of the adenine nucleotide pool of erythrocytes in mouse models. PLoS One 2017; 12:e0180948. [PMID: 28746349 PMCID: PMC5528878 DOI: 10.1371/journal.pone.0180948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/13/2017] [Indexed: 11/18/2022] Open
Abstract
The observation that induced torpor in non-hibernating mammals could result from an increased AMP concentration in circulation led our investigation to reveal that the added AMP altered oxygen transport of erythrocytes. To further study the effect of AMP in regulation of erythrocyte function and systemic metabolism, we generated mouse models deficient in key erythrocyte enzymes in AMP metabolism. We have previously reported altered erythrocyte adenine nucleotide levels corresponding to altered oxygen saturation in mice deficient in both CD73 and AMPD3. Here we further investigate how these Ampd3-/-/Cd73-/- mice respond to the administered dose of AMP in comparison with the control models of single enzyme deficiency and wild type. We found that Ampd3-/-/Cd73-/- mice are more sensitive to AMP-induced hypometabolism than mice with a single enzyme deficiency, which are more sensitive than wild type. A dose-dependent rightward shift of erythrocyte p50 values in response to increasing amounts of extracellular AMP was observed. We provide further evidence for the direct uptake of AMP by erythrocytes that is insensitive to dipyridamole, a blocker for ENT1. The uptake of AMP by the erythrocytes remained linear at the highest concentration tested, 10mM. We also observed competitive inhibition of AMP uptake by ATP and ADP but not by the other nucleotides and metabolites tested. Importantly, our studies suggest that AMP uptake is associated with an erythrocyte ATP release that is partially sensitive to inhibition by TRO19622 and Ca++ ion. Taken together, our study suggests a novel mechanism by which erythrocytes recycle and maintain their adenine nucleotide pool through AMP uptake and ATP release.
Collapse
Affiliation(s)
- William G. O’Brien
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Han Shawn Ling
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Zhaoyang Zhao
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, United States of America
- * E-mail:
| | - Cheng Chi Lee
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, United States of America
| |
Collapse
|
9
|
Liu K, Khan H, Geng X, Zhang J, Ding Y. Pharmacological hypothermia: a potential for future stroke therapy? Neurol Res 2017; 38:478-90. [PMID: 27320243 DOI: 10.1080/01616412.2016.1187826] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Mild physical hypothermia after stroke has been associated with positive outcomes. Despite the well-studied beneficial effects of hypothermia in the treatment of stroke, lack of precise temperature control, intolerance for the patient, and immunosuppression are some of the reasons which limit its clinical translation. Pharmacologically induced hypothermia has been explored as a possible treatment option following stroke in animal models. Currently, there are eight classes of pharmacological agents/agonists with hypothermic effects affecting a multitude of systems including cannabinoid, opioid, transient receptor potential vanilloid 1 (TRPV1), neurotensin, thyroxine derivatives, dopamine, gas, and adenosine derivatives. Interestingly, drugs in the TRPV1, neurotensin, and thyroxine families have been shown to have effects in thermoregulatory control in decreasing the compensatory hypothermic response during cooling. This review will briefly present drugs in the eight classes by summarizing their proposed mechanisms of action as well as side effects. Reported thermoregulatory effects of the drugs will also be presented. This review offers the opinion that these agents may be useful in combination therapies with physical hypothermia to achieve faster and more stable temperature control in hypothermia.
Collapse
Affiliation(s)
- Kaiyin Liu
- a Department of Neurological Surgery , Wayne State University School of Medicine , Detroit , MI , USA
| | - Hajra Khan
- a Department of Neurological Surgery , Wayne State University School of Medicine , Detroit , MI , USA
| | - Xiaokun Geng
- a Department of Neurological Surgery , Wayne State University School of Medicine , Detroit , MI , USA.,b Department of Neurology, Beijing Luhe Hospital , Capital Medical University , Beijing , China
| | - Jun Zhang
- c China-America Institute of Neuroscience, Xuanwu Hospital , Capital Medical University , Beijing , China
| | - Yuchuan Ding
- a Department of Neurological Surgery , Wayne State University School of Medicine , Detroit , MI , USA.,b Department of Neurology, Beijing Luhe Hospital , Capital Medical University , Beijing , China
| |
Collapse
|
10
|
Muzzi M, Buonvicino D, Chiarugi A. Therapeutic hypothermia: Turning humans into cold-blooded ectotherms via adenosine receptors. Neuropharmacology 2017; 116:441-443. [PMID: 28089845 DOI: 10.1016/j.neuropharm.2016.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2016] [Indexed: 10/20/2022]
Affiliation(s)
- Mirko Muzzi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Daniela Buonvicino
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Alberto Chiarugi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy.
| |
Collapse
|
11
|
Drew KL, Frare C, Rice SA. Neural Signaling Metabolites May Modulate Energy Use in Hibernation. Neurochem Res 2017; 42:141-150. [PMID: 27878659 PMCID: PMC5284051 DOI: 10.1007/s11064-016-2109-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/05/2016] [Accepted: 11/11/2016] [Indexed: 12/23/2022]
Abstract
Despite an epidemic in obesity and metabolic syndrome limited means exist to effect adiposity or metabolic rate other than life style changes. Here we review evidence that neural signaling metabolites may modulate thermoregulatory pathways and offer novel means to fine tune energy use. We extend prior reviews on mechanisms that regulate thermogenesis and energy use in hibernation by focusing primarily on the neural signaling metabolites adenosine, AMP and glutamate.
Collapse
Affiliation(s)
- Kelly L Drew
- Department of Chemistry and Biochemistry, Institute of Arctic Biology, University of Alaska Fairbanks, 902 N. Koyukuk Drive, Fairbanks, AK, 99775, USA.
| | - Carla Frare
- Department of Chemistry and Biochemistry, Institute of Arctic Biology, University of Alaska Fairbanks, 902 N. Koyukuk Drive, Fairbanks, AK, 99775, USA
| | - Sarah A Rice
- Department of Chemistry and Biochemistry, Institute of Arctic Biology, University of Alaska Fairbanks, 902 N. Koyukuk Drive, Fairbanks, AK, 99775, USA
| |
Collapse
|
12
|
Lee JH, Zhang J, Yu SP. Neuroprotective mechanisms and translational potential of therapeutic hypothermia in the treatment of ischemic stroke. Neural Regen Res 2017; 12:341-350. [PMID: 28469636 PMCID: PMC5399699 DOI: 10.4103/1673-5374.202915] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Stroke is a leading cause of disability and death, yet effective treatments for acute stroke has been very limited. Thus far, tissue plasminogen activator has been the only FDA-approved drug for thrombolytic treatment of ischemic stroke patients, yet its application is only applicable to less than 4–5% of stroke patients due to the narrow therapeutic window (< 4.5 hours after the onset of stroke) and the high risk of hemorrhagic transformation. Emerging evidence from basic and clinical studies has shown that therapeutic hypothermia, also known as targeted temperature management, can be a promising therapy for patients with different types of stroke. Moreover, the success in animal models using pharmacologically induced hypothermia (PIH) has gained increasing momentum for clinical translation of hypothermic therapy. This review provides an updated overview of the mechanisms and protective effects of therapeutic hypothermia, as well as the recent development and findings behind PIH treatment. It is expected that a safe and effective hypothermic therapy has a high translational potential for clinical treatment of patients with stroke and other CNS injuries.
Collapse
Affiliation(s)
- Jin Hwan Lee
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA; Veteran's Affair Medical Center, Center for Visual and Neurocognitive Rehabilitation, Atlanta, GA, USA
| | - James Zhang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA; Veteran's Affair Medical Center, Center for Visual and Neurocognitive Rehabilitation, Atlanta, GA, USA
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA; Veteran's Affair Medical Center, Center for Visual and Neurocognitive Rehabilitation, Atlanta, GA, USA
| |
Collapse
|
13
|
Pedata F, Dettori I, Coppi E, Melani A, Fusco I, Corradetti R, Pugliese AM. Purinergic signalling in brain ischemia. Neuropharmacology 2015; 104:105-30. [PMID: 26581499 DOI: 10.1016/j.neuropharm.2015.11.007] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/04/2015] [Accepted: 11/06/2015] [Indexed: 12/18/2022]
Abstract
Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia a primary damage due to the early massive increase of extracellular glutamate is followed by activation of resident immune cells, i.e microglia, and production or activation of inflammation mediators. Protracted neuroinflammation is now recognized as the predominant mechanism of secondary brain injury progression. Extracellular concentrations of ATP and adenosine in the brain increase dramatically during ischemia in concentrations able to stimulate their respective specific P2 and P1 receptors. Both ATP P2 and adenosine P1 receptor subtypes exert important roles in ischemia. Although adenosine exerts a clear neuroprotective effect through A1 receptors during ischemia, the use of selective A1 agonists is hampered by undesirable peripheral effects. Evidence up to now in literature indicate that A2A receptor antagonists provide protection centrally by reducing excitotoxicity, while agonists at A2A (and possibly also A2B) and A3 receptors provide protection by controlling massive infiltration and neuroinflammation in the hours and days after brain ischemia. Among P2X receptors most evidence indicate that P2X7 receptor contribute to the damage induced by the ischemic insult due to intracellular Ca(2+) loading in central cells and facilitation of glutamate release. Antagonism of P2X7 receptors might represent a new treatment to attenuate brain damage and to promote proliferation and maturation of brain immature resident cells that can promote tissue repair following cerebral ischemia. Among P2Y receptors, antagonists of P2Y12 receptors are of value because of their antiplatelet activity and possibly because of additional anti-inflammatory effects. Moreover strategies that modify adenosine or ATP concentrations at injury sites might be of value to limit damage after ischemia. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Felicita Pedata
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy.
| | - Ilaria Dettori
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Elisabetta Coppi
- Department of Health Sciences, University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Alessia Melani
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Irene Fusco
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Renato Corradetti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Anna Maria Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| |
Collapse
|
14
|
Feketa VV, Marrelli SP. Systemic Administration of the TRPV3 Ion Channel Agonist Carvacrol Induces Hypothermia in Conscious Rodents. PLoS One 2015; 10:e0141994. [PMID: 26528923 PMCID: PMC4631363 DOI: 10.1371/journal.pone.0141994] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/15/2015] [Indexed: 11/19/2022] Open
Abstract
Therapeutic hypothermia is a promising new strategy for neuroprotection. However, the methods for safe and effective hypothermia induction in conscious patients are lacking. The current study explored the Transient Receptor Potential Vanilloid 3 (TRPV3) channel activation by the agonist carvacrol as a potential hypothermic strategy. It was found that carvacrol lowers core temperature after intraperitoneal and intravenous administration in mice and rats. However, the hypothermic effect at safe doses was modest, while higher intravenous doses of carvacrol induced a pronounced drop in blood pressure and substantial toxicity. Experiments on the mechanism of the hypothermic effect in mice revealed that it was associated with a decrease in whole-body heat generation, but not with a change in cold-seeking behaviors. In addition, the hypothermic effect was lost at cold ambient temperature. Our findings suggest that although TRPV3 agonism induces hypothermia in rodents, it may have a limited potential as a novel pharmacological method for induction of hypothermia in conscious patients due to suboptimal effectiveness and high toxicity.
Collapse
Affiliation(s)
- Viktor V. Feketa
- Department of Molecular Physiology and Biophysics Graduate Program, Cardiovascular Sciences Track, Baylor College of Medicine, Houston, Texas, United States of America
| | - Sean P. Marrelli
- Department of Molecular Physiology and Biophysics Graduate Program, Cardiovascular Sciences Track, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Anesthesiology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
15
|
Zhang Y, O'Brien WG, Zhao Z, Lee CC. 5'-adenosine monophosphate mediated cooling treatment enhances ΔF508-Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) stability in vivo. J Biomed Sci 2015; 22:72. [PMID: 26335336 PMCID: PMC4559075 DOI: 10.1186/s12929-015-0178-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/20/2015] [Indexed: 12/26/2022] Open
Abstract
Background Gene mutations that produce misprocessed proteins are linked to many human disorders. Interestingly, some misprocessed proteins retained their biological function when stabilized by low temperature treatment of cultured cells in vitro. Here we investigate whether low temperature treatment in vivo can rescue misfolded proteins by applying 5’-AMP mediated whole body cooling to a Cystic Fibrosis (CF) mouse model carrying a mutant cystic fibrosis transmembrane conductance regulator (CFTR) with a deletion of the phenylalanine residue in position 508 (ΔF508-CFTR). Low temperature treatment of cultured cells was previously shown to be able to alleviate the processing defect of ΔF508-CFTR, enhancing its plasma membrane localization and its function in mediating chloride ion transport. Results Here, we report that whole body cooling enhanced the retention of ΔF508-CFTR in intestinal epithelial cells. Functional analysis based on β-adrenergic dependent salivary secretion and post-natal mortality rate revealed a moderate but significant improvement in treated compared with untreated CF mice. Conclusions Our findings demonstrate that temperature sensitive processing of mutant proteins can be responsive to low temperature treatment in vivo.
Collapse
Affiliation(s)
- Yueqiang Zhang
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - William G O'Brien
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Zhaoyang Zhao
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Cheng Chi Lee
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
16
|
Jinka TR, Combs VM, Drew KL. Translating drug-induced hibernation to therapeutic hypothermia. ACS Chem Neurosci 2015; 6:899-904. [PMID: 25812681 DOI: 10.1021/acschemneuro.5b00056] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Therapeutic hypothermia (TH) improves prognosis after cardiac arrest; however, thermoregulatory responses such as shivering complicate cooling. Hibernators exhibit a profound and safe reversible hypothermia without any cardiovascular side effects by lowering the shivering threshold at low ambient temperatures (Ta). Activation of adenosine A1 receptors (A1ARs) in the central nervous system (CNS) induces hibernation in hibernating species and a hibernation-like state in rats, principally by attenuating thermogenesis. Thus, we tested the hypothesis that targeted activation of the central A1AR combined with a lower Ta would provide a means of managing core body temperature (Tb) below 37 °C for therapeutic purposes. We targeted the A1AR within the CNS by combining systemic delivery of the A1AR agonist (6)N-cyclohexyladenosine (CHA) with 8-(p-sulfophenyl)theophylline (8-SPT), a nonspecific adenosine receptor antagonist that does not readily cross the blood-brain barrier. Results show that CHA (1 mg/kg) and 8-SPT (25 mg/kg), administered intraperitoneally every 4 h for 20 h at a Ta of 16 °C, induce and maintain the Tb between 29 and 31 °C for 24 h in both naïve rats and rats subjected to asphyxial cardiac arrest for 8 min. Faster and more stable hypothermia was achieved by continuous infusion of CHA delivered subcutaneously via minipumps. Animals subjected to cardiac arrest and cooled by CHA survived better and showed less neuronal cell death than normothermic control animals. Central A1AR activation in combination with a thermal gradient shows promise as a novel and effective pharmacological adjunct for inducing safe and reversible targeted temperature management.
Collapse
Affiliation(s)
- Tulasi R. Jinka
- University of Alaska Fairbanks, 902 North Koyukuk Drive, Fairbanks, Alaska 99775-7000, United States
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Velva M. Combs
- University of Alaska Fairbanks, 902 North Koyukuk Drive, Fairbanks, Alaska 99775-7000, United States
| | - Kelly L. Drew
- University of Alaska Fairbanks, 902 North Koyukuk Drive, Fairbanks, Alaska 99775-7000, United States
| |
Collapse
|
17
|
Feketa VV, Marrelli SP. Induction of therapeutic hypothermia by pharmacological modulation of temperature-sensitive TRP channels: theoretical framework and practical considerations. Temperature (Austin) 2015; 2:244-57. [PMID: 27227027 PMCID: PMC4844121 DOI: 10.1080/23328940.2015.1024383] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/25/2015] [Accepted: 02/25/2015] [Indexed: 12/22/2022] Open
Abstract
Therapeutic hypothermia has emerged as a remarkably effective method of neuroprotection from ischemia and is being increasingly used in clinics. Accordingly, it is also a subject of considerable attention from a basic scientific research perspective. One of the fundamental problems, with which current studies are concerned, is the optimal method of inducing hypothermia. This review seeks to provide a broad theoretical framework for approaching this problem, and to discuss how a novel promising strategy of pharmacological modulation of the thermosensitive ion channels fits into this framework. Various physical, anatomical, physiological and molecular aspects of thermoregulation, which provide the foundation for this text, have been comprehensively reviewed and will not be discussed exhaustively here. Instead, the first part of the current review, which may be helpful for a broader readership outside of thermoregulation research, will build on this existing knowledge to outline possible opportunities and research directions aimed at controlling body temperature. The second part, aimed at a more specialist audience, will highlight the conceptual advantages and practical limitations of novel molecular agents targeting thermosensitive Transient Receptor Potential (TRP) channels in achieving this goal. Two particularly promising members of this channel family, namely TRP melastatin 8 (TRPM8) and TRP vanilloid 1 (TRPV1), will be discussed in greater detail.
Collapse
Key Words
- DMH, dorso-medial hypothalamus
- MPA, medial preoptic area of hypothalamus
- TRP, Transient Receptor Potential
- TRPA1, Transient Receptor Potential cation channel, subfamily A, member 1
- TRPM8, Transient Receptor Potential cation channel, subfamily M, member 8
- TRPV1, Transient Receptor Potential cation channel, subfamily V, member 1
- TRPV2, Transient Receptor Potential cation channel, subfamily V, member 2
- TRPV3, Transient Receptor Potential cation channel, subfamily V, member 3
- TRPV4, Transient Receptor Potential cation channel, subfamily V, member 4
- ThermoTRPs
- ThermoTRPs, Thermosensitive Transient Receptor Potential cation channels
- body temperature
- core temperature
- pharmacological hypothermia
- physical cooling
- rMR, rostral medullary raphe region
- therapeutic hypothermia
- thermopharmacology
- thermoregulation
- thermosensitive ion channels
Collapse
Affiliation(s)
- Viktor V Feketa
- Department of Molecular Physiology and Biophysics Graduate Program; Cardiovascular Sciences Track; Baylor College of Medicine , Houston, TX, USA
| | - Sean P Marrelli
- Department of Molecular Physiology and Biophysics Graduate Program; Cardiovascular Sciences Track; Baylor College of Medicine, Houston, TX, USA; Department of Anesthesiology; Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
18
|
5'-adenosine monophosphate-induced hypothermia attenuates brain ischemia/reperfusion injury in a rat model by inhibiting the inflammatory response. Mediators Inflamm 2015; 2015:520745. [PMID: 25873763 PMCID: PMC4385688 DOI: 10.1155/2015/520745] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/03/2014] [Accepted: 10/22/2014] [Indexed: 12/24/2022] Open
Abstract
Hypothermia treatment is a promising therapeutic strategy for brain injury. We previously demonstrated that 5′-adenosine monophosphate (5′-AMP), a ribonucleic acid nucleotide, produces reversible deep hypothermia in rats when the ambient temperature is appropriately controlled. Thus, we hypothesized that 5′-AMP-induced hypothermia (AIH) may attenuate brain ischemia/reperfusion injury. Transient cerebral ischemia was induced by using the middle cerebral artery occlusion (MCAO) model in rats. Rats that underwent AIH treatment exhibited a significant reduction in neutrophil elastase infiltration into neuronal cells and matrix metalloproteinase 9 (MMP-9), interleukin-1 receptor (IL-1R), tumor necrosis factor receptor (TNFR), and Toll-like receptor (TLR) protein expression in the infarcted area compared to euthermic controls. AIH treatment also decreased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling- (TUNEL-) positive neuronal cells. The overall infarct volume was significantly smaller in AIH-treated rats, and neurological function was improved. By contrast, rats with ischemic brain injury that were administered 5′-AMP without inducing hypothermia had ischemia/reperfusion injuries similar to those in euthermic controls. Thus, the neuroprotective effects of AIH were primarily related to hypothermia.
Collapse
|
19
|
Siebel AM, Menezes FP, Capiotti KM, Kist LW, da Costa Schaefer I, Frantz JZ, Bogo MR, Da Silva RS, Bonan CD. Role of adenosine signaling on pentylenetetrazole-induced seizures in zebrafish. Zebrafish 2015; 12:127-36. [PMID: 25560904 DOI: 10.1089/zeb.2014.1004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Adenosine is a well-known endogenous modulator of neuronal excitability with anticonvulsant properties. Thus, the modulation exerted by adenosine might be an effective tool to control seizures. In this study, we investigated the effects of drugs that are able to modulate adenosinergic signaling on pentylenetetrazole (PTZ)-induced seizures in adult zebrafish. The adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) decreased the latency to the onset of the tonic-clonic seizure stage. The adenosine A1 receptor agonist cyclopentyladenosine (CPA) increased the latency to reach the tonic-clonic seizure stage. Both the adenosine A2A receptor agonist and antagonist, CGS 21680 and ZM 241385, respectively, did not promote changes in seizure parameters. Pretreatment with the ecto-5'nucleotidase inhibitor adenosine 5'-(α,β-methylene) diphosphate (AMPCP) decreased the latency to the onset of the tonic-clonic seizure stage. However, when pretreated with the adenosine deaminase (ADA) inhibitor, erythro-9-(2-hydroxy-3-nonyl)-adenine (EHNA), or with the nucleoside transporter (NT) inhibitors, dipyridamole and S-(4-Nitrobenzyl)-6-thioinosine (NBTI), animals showed longer latency to reach the tonic-clonic seizure status. Finally, our molecular analysis of the c-fos gene expression corroborates these behavioral results. Our findings indicate that the activation of adenosine A1 receptors is an important mechanism to control the development of seizures in zebrafish. Furthermore, the actions of ecto-5'-nucleotidase, ADA, and NTs are directly involved in the control of extracellular adenosine levels and have an important role in the development of seizure episodes in zebrafish.
Collapse
Affiliation(s)
- Anna Maria Siebel
- 1 Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul , Porto Alegre, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Muzzi M, Coppi E, Pugliese AM, Chiarugi A. Anticonvulsant effect of AMP by direct activation of adenosine A1 receptor. Exp Neurol 2013; 250:189-93. [PMID: 24056265 DOI: 10.1016/j.expneurol.2013.09.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/26/2013] [Accepted: 09/11/2013] [Indexed: 12/19/2022]
Abstract
Purinergic neurotransmission mediated by adenosine (Ado) type 1 receptors (A1Rs) plays pivotal roles in negative modulation of epileptic seizures, and Ado is thought to be a key endogenous anticonvulsant. Recent evidence, however, indicates that AMP, the metabolic precursor of Ado, also activate A1Rs. Here, we evaluated the antiepileptic effects of AMP adopting in vitro and in vivo models of epilepsy. We report that AMP reversed the increase in population spike (PS) amplitude and the decrease in PS latency induced by a Mg(2+)-free extracellular solution in CA1 neurons of mouse hippocampal slices. The AMP effects were inhibited by the A1R antagonist DPCPX, but not prevented by inhibiting conversion of AMP into Ado, indicating that AMP inhibited per se sustained hippocampal excitatory neurotransmission by directly activating A1Rs. AMP also reduced seizure severity and mortality in a model of audiogenic convulsion. Of note, the anticonvulsant effects of AMP were potentiated by preventing its conversion into Ado and inhibited by DPCPX. When tested in a model of kainate-induced seizure, AMP prolonged latency of convulsions but had no effects on seizure severity and mortality. Data provide the first evidence that AMP is an endogenous anticonvulsant acting at A1Rs.
Collapse
Affiliation(s)
- Mirko Muzzi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy.
| | | | | | | |
Collapse
|
21
|
Wang D, Zhao Y, Zhang Y, Zhang T, Shang X, Wang J, Liu Y, Kong Q, Sun B, Mu L, Liu X, Wang G, Li H. Hypothermia protects against oxygen-glucose deprivation-induced neuronal injury by down-regulating the reverse transport of glutamate by astrocytes as mediated by neurons. Neuroscience 2013; 237:130-8. [PMID: 23402854 DOI: 10.1016/j.neuroscience.2013.01.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 01/25/2013] [Accepted: 01/27/2013] [Indexed: 11/29/2022]
Abstract
Glutamate is the major mediator of excitotoxic neuronal death following cerebral ischemia. Under severe ischemic conditions, glutamate transporters can functionally reverse to release glutamate, thereby inducing further neuronal injury. Hypothermia has been shown to protect neurons from brain ischemia. However, the mechanism(s) involved remain unclear. Therefore, the aim of this study was to investigate the mechanism(s) mediating glutamate release during brain ischemia-reperfusion injury under hypothermic conditions. Neuron/astrocyte co-cultures were exposed to oxygen-glucose deprivation (OGD) at various temperatures for 2h, and cell viability was assayed 12h after reoxygenation. PI and MAP-2 staining demonstrated that hypothermia significantly decreased neuronal injury. Furthermore, [(3)H]-glutamate uptake assays showed that hypothermia protected rat primary cortical cultures against OGD reoxygenation-induced injury. Protein levels of the astrocytic glutamate transporter, GLT-1, which is primarily responsible for the clearance of extracellular glutamate, were also found to be reduced in a temperature-dependent manner. In contrast, expression of GLT-1 in astrocyte-enriched cultures was found to significantly increase following the addition of neuron-conditioned medium maintained at 37 °C, and to a lesser extent with neuron-conditioned medium at 33 °C. In conclusion, the neuroprotective effects of hypothermia against brain ischemia-reperfusion injury involve down-regulation of astrocytic GLT-1, which mediates the reverse transport of glutamate. Moreover, this process may be regulated by molecules secreted by stressed neurons.
Collapse
Affiliation(s)
- D Wang
- Department of Neurobiology, Harbin Medical University Provincial Key Lab of Neurobiology, Harbin Medical University, Heilongjiang, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|