1
|
Silvaggio N, Stein KY, Sainbhi AS, Vakitbilir N, Bergmann T, Islam A, Hasan R, Hayat M, Zeiler FA. Relationship Between Signals from Cerebral near Infrared Spectroscopy Sensor Technology and Objectively Measured Cerebral Blood Volume: A Systematic Scoping Review. SENSORS (BASEL, SWITZERLAND) 2025; 25:908. [PMID: 39943547 PMCID: PMC11819900 DOI: 10.3390/s25030908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/31/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025]
Abstract
Cerebral blood volume (CBV) is an essential metric that indicates and evaluates various healthy and pathologic conditions. Most methods of CBV measurement are cumbersome and have a poor temporal resolution. Recently, it has been proposed that signals and derived metrics from cerebral near-infrared spectroscopy (NIRS), a non-invasive sensor, can be used to estimate CBV. However, this association remains vastly unexplored. As such, this scoping review aimed to examine the literature on the relationship between cerebral NIRS signals and CBV. A search of six databases was conducted conforming to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines to assess the following search question: What are the associations between various NIRS cerebral signals and CBV? The database search yielded 3350 unique results. Seven of these articles were included in this review based on the inclusion and exclusion criteria. An additional study was identified and included while examining the articles' reference sections. Overall, the literature for this systematic scoping review shows extreme variation in the association between cerebral NIRS signals and CBV, with few sources objectively documenting a true statistical association between the two. This review highlights the current critical knowledge gap and emphasizes the need for further research in the area.
Collapse
Affiliation(s)
- Noah Silvaggio
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Kevin Y. Stein
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (K.Y.S.); (A.S.S.); (N.V.); (T.B.); (A.I.); (R.H.); (F.A.Z.)
| | - Amanjyot Singh Sainbhi
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (K.Y.S.); (A.S.S.); (N.V.); (T.B.); (A.I.); (R.H.); (F.A.Z.)
| | - Nuray Vakitbilir
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (K.Y.S.); (A.S.S.); (N.V.); (T.B.); (A.I.); (R.H.); (F.A.Z.)
| | - Tobias Bergmann
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (K.Y.S.); (A.S.S.); (N.V.); (T.B.); (A.I.); (R.H.); (F.A.Z.)
| | - Abrar Islam
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (K.Y.S.); (A.S.S.); (N.V.); (T.B.); (A.I.); (R.H.); (F.A.Z.)
| | - Rakibul Hasan
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (K.Y.S.); (A.S.S.); (N.V.); (T.B.); (A.I.); (R.H.); (F.A.Z.)
| | - Mansoor Hayat
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Frederick A. Zeiler
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (K.Y.S.); (A.S.S.); (N.V.); (T.B.); (A.I.); (R.H.); (F.A.Z.)
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
- Pan Am Clinic Foundation, Winnipeg, MB R3M 3E4, Canada
| |
Collapse
|
2
|
Eyre B, Shaw K, Francis S, Howarth C, Berwick J. Voluntary locomotion induces an early and remote hemodynamic decrease in the large cerebral veins. NEUROPHOTONICS 2025; 12:S14609. [PMID: 40130194 PMCID: PMC11931294 DOI: 10.1117/1.nph.12.s1.s14609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/21/2025] [Accepted: 03/03/2025] [Indexed: 03/26/2025]
Abstract
Significance Behavior regulates dural and cerebral vessels, with spontaneous locomotion inducing dural vessel constriction and increasing stimulus-evoked cerebral hemodynamic responses. It is vital to investigate the function of different vascular network components, surrounding and within the brain, to better understand the role of the neurovascular unit in health and neurodegeneration. Aim We characterized locomotion-induced hemodynamic responses across vascular compartments of the whisker barrel cortex: artery, vein, parenchyma, draining, and meningeal vein. Approach Using 2D-OIS, hemodynamic responses during locomotion were recorded in 9- to 12-month-old awake mice: wild-type, Alzheimer's disease (AD), atherosclerosis, or mixed (atherosclerosis/AD) models. Within the somatosensory cortex, responses were taken from pial vessels inside the whisker barrel region [(WBR): "whisker artery" and "whisker vein"], a large vein from the sagittal sinus adjacent to the WBR (draining vein), and meningeal vessels from the dura mater (which do not penetrate cortical tissue). Results We demonstrate that locomotion evokes an initial decrease in total hemoglobin (HbT) within the draining vein before the increase in HbT within WBR vessels. The locomotion event size influences the magnitude of the HbT increase in the pial vessels of the WBR but not of the early HbT decrease within the draining veins. Following locomotion onset, an early HbT decrease was also observed in the overlying meningeal vessels, which unlike within the cortex did not go on to exceed baseline HbT levels during the remainder of the locomotion response. We show that locomotion-induced hemodynamic responses are altered in disease in the draining vein and whisker artery, suggesting this could be an important neurodegeneration biomarker. Conclusions This initial reduction in HbT within the draining and meningeal veins potentially serves as a "space-saving" mechanism, allowing for large increases in cortical HbT associated with locomotion. Given this mechanism is impacted by disease, it may provide an important target for vascular-based therapeutic interventions.
Collapse
Affiliation(s)
- Beth Eyre
- University of Sheffield, Sheffield Neurovascular Group, Department of Psychology, Sheffield, United Kingdom
- University of Sheffield, Neuroscience Institute, Sheffield, United Kingdom
- University of Sheffield, Healthy Lifespan Institute, Sheffield, United Kingdom
- Massachusetts General Hospital, Harvard Medical School, Department of Neurology, Boston, Massachusetts, United States
| | - Kira Shaw
- University of Sheffield, Sheffield Neurovascular Group, Department of Psychology, Sheffield, United Kingdom
- University of Sheffield, Neuroscience Institute, Sheffield, United Kingdom
- University of Sheffield, Healthy Lifespan Institute, Sheffield, United Kingdom
| | - Sheila Francis
- University of Sheffield, Neuroscience Institute, Sheffield, United Kingdom
- University of Sheffield, Healthy Lifespan Institute, Sheffield, United Kingdom
- University of Sheffield, School of Medicine and Population Health, Sheffield, United Kingdom
| | - Clare Howarth
- University of Sheffield, Sheffield Neurovascular Group, Department of Psychology, Sheffield, United Kingdom
- University of Sheffield, Neuroscience Institute, Sheffield, United Kingdom
- University of Sheffield, Healthy Lifespan Institute, Sheffield, United Kingdom
| | - Jason Berwick
- University of Sheffield, Sheffield Neurovascular Group, Department of Psychology, Sheffield, United Kingdom
- University of Sheffield, Neuroscience Institute, Sheffield, United Kingdom
- University of Sheffield, Healthy Lifespan Institute, Sheffield, United Kingdom
| |
Collapse
|
3
|
Varatharaj A, Jacob C, Darekar A, Yuen B, Cramer S, Larsson H, Galea I. Measurement variability of blood-brain barrier permeability using dynamic contrast-enhanced magnetic resonance imaging. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:1-16. [PMID: 39449749 PMCID: PMC11497077 DOI: 10.1162/imag_a_00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/15/2024] [Accepted: 09/11/2024] [Indexed: 10/26/2024]
Abstract
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is used to quantify the blood-brain barrier (BBB) permeability-surface area product. Serial measurements can indicate changes in BBB health, of interest to the study of normal physiology, neurological disease, and the effect of therapeutics. We performed a scan-rescan study to inform both sample size calculation for future studies and an appropriate reference change value for patient care. The final dataset included 28 healthy individuals (mean age 53.0 years, 82% female) scanned twice with mean interval 9.9 weeks. DCE-MRI was performed at 3T using a 3D gradient echo sequence with whole brain coverage, T1 mapping using variable flip angles, and a 16-min dynamic sequence with a 3.2-s time resolution. Segmentation of white and grey matter (WM/GM) was performed using a 3D magnetization-prepared gradient echo image. The influx constant Ki was calculated using the Patlak method. The primary outcome was the within-subject coefficient of variation (CV) of Ki in both WM and GM. Ki values followed biological expectations in relation to known GM/WM differences in cerebral blood volume (CBV) and consequently vascular surface area. Subject-derived arterial input functions showed marked within-subject variability which were significantly reduced by using a venous input function (CV of area under the curve 46 vs. 12%, p < 0.001). Use of the venous input function significantly improved the CV of Ki in both WM (30 vs. 59%, p < 0.001) and GM (21 vs. 53%, p < 0.001). Further improvement was obtained using motion correction, scaling the venous input function by the artery, and using the median rather than the mean of individual voxel data. The final method gave CV of 27% and 17% in WM and GM, respectively. No further improvement was obtained by replacing the subject-derived input function by one standard population input function. CV of Ki was shown to be highly sensitive to dynamic sequence duration, with shorter measurement periods giving marked deterioration especially in WM. In conclusion, measurement variability of 3D brain DCE-MRI is sensitive to analysis method and a large precision improvement is obtained using a venous input function.
Collapse
Affiliation(s)
- Aravinthan Varatharaj
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Carmen Jacob
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Angela Darekar
- Medical Physics, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Brian Yuen
- Medical Statistics, Primary Care, Population Sciences and Medical Education, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Stig Cramer
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Glostrup, Denmark
| | - Henrik Larsson
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Glostrup, Denmark
| | - Ian Galea
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| |
Collapse
|
4
|
Presswala Z, Acharya S, Shah S. Addressing barriers in diffuse intrinsic pontine glioma: the transformative role of lipid nanoparticulate drug delivery. ADMET AND DMPK 2024; 12:403-429. [PMID: 39091904 PMCID: PMC11289511 DOI: 10.5599/admet.2214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/27/2024] [Indexed: 08/04/2024] Open
Abstract
Background and purpose The brainstem tumour known as diffuse intrinsic pontine glioma (DIPG), also known as pontine glioma, infiltrative brainstem glioma is uncommon and virtually always affects children. A pontine glioma develops in the brainstem's most vulnerable region (the "pons"), which regulates a number of vital processes like respiration and blood pressure. It is particularly challenging to treat due to its location and how it invades healthy brain tissue. The hunt for a solution is continually advancing thanks to advances in modern medicine, but the correct approach is still elusive. With a particular focus on brain tumours that are incurable or recur, research is ongoing to discover fresh, practical approaches to target particular areas of the brain. Experimental approach To successfully complete this task, a thorough literature search was carried out in reputable databases like Google Scholar, PubMed, and ScienceDirect. Key results The present article provides a comprehensive analysis of the notable advantages of lipid nanoparticles compared to alternative nanoparticle formulations. The article delves into the intricate realm of diverse lipid-based nanoparticulate delivery systems, which are used in Diffuse Intrinsic Pontine Glioma (DIPG) which thoroughly examines preclinical and clinical studies, providing a comprehensive analysis of the effectiveness and potential of lipid nanoparticles in driving therapeutic advancements for DIPG. Conclusion There is strong clinical data to support the promising method of using lipid-based nanoparticulate drug delivery for brain cancer treatment, which shows improved outcomes.
Collapse
Affiliation(s)
| | - Sheetal Acharya
- Department of Pharmaceutical Technology, L.J Institute of Pharmacy, Lok Jagruti University, L.J Campus, Near Sarkhej-Sanand Circle, Off. S.G. Road, Ahmedabad-382 210, India
| | | |
Collapse
|
5
|
Magnetic Particle Imaging in Vascular Imaging, Immunotherapy, Cell Tracking, and Noninvasive Diagnosis. Mol Imaging 2023. [DOI: 10.1155/2023/4131117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Magnetic particle imaging (MPI) is a new tracer-based imaging modality that is useful in diagnosing various pathophysiology related to the vascular system and for sensitive tracking of cytotherapies. MPI uses nonradioactive and easily assimilated nanometer-sized iron oxide particles as tracers. MPI images the nonlinear Langevin behavior of the iron oxide particles and has allowed for the sensitive detection of iron oxide-labeled therapeutic cells in the body. This review will provide an overview of MPI technology, the tracer, and its use in vascular imaging and cytotherapies using molecular targets.
Collapse
|
6
|
Blaney G, Fernandez C, Sassaroli A, Fantini S. Dual-slope imaging of cerebral hemodynamics with frequency-domain near-infrared spectroscopy. NEUROPHOTONICS 2023; 10:013508. [PMID: 36601543 PMCID: PMC9807277 DOI: 10.1117/1.nph.10.1.013508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Significance This work targets the contamination of optical signals by superficial hemodynamics, which is one of the chief hurdles in non-invasive optical measurements of the human brain. Aim To identify optimal source-detector distances for dual-slope (DS) measurements in frequency-domain (FD) near-infrared spectroscopy (NIRS) and demonstrate preferential sensitivity of DS imaging to deeper tissue (brain) versus superficial tissue (scalp). Approach Theoretical studies (in-silico) based on diffusion theory in two-layered and in homogeneous scattering media. In-vivo demonstrations of DS imaging of the human brain during visual stimulation and during systemic blood pressure oscillations. Results The mean distance (between the two source-detector distances needed for DS) is the key factor for depth sensitivity. In-vivo imaging of the human occipital lobe with FD NIRS and a mean distance of 31 mm indicated: (1) greater hemodynamic response to visual stimulation from FD phase versus intensity, and from DS versus single-distance (SD); (2) hemodynamics from FD phase and DS mainly driven by blood flow, and hemodynamics from SD intensity mainly driven by blood volume. Conclusions DS imaging with FD NIRS may suppress confounding contributions from superficial hemodynamics without relying on data at short source-detector distances. This capability can have significant implications for non-invasive optical measurements of the human brain.
Collapse
Affiliation(s)
- Giles Blaney
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - Cristianne Fernandez
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - Angelo Sassaroli
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - Sergio Fantini
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| |
Collapse
|
7
|
Pfaffenrot V, Koopmans PJ. Magnetization transfer weighted laminar fMRI with multi-echo FLASH. Neuroimage 2022; 264:119725. [PMID: 36328273 DOI: 10.1016/j.neuroimage.2022.119725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/13/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Laminar functional magnetic resonance imaging (fMRI) using the gradient echo (GRE) blood oxygenation level dependent (BOLD) contrast is prone to signal changes arising from large unspecific venous vessels. Alternatives based on changes of cerebral blood volume (CBV) become more popular since it is expected that this hemodynamic response is dominant in microvasculature. One approach to sensitize the signal toward changes in CBV, and to simultaneously reduce unwanted extravascular (EV) BOLD blurring, is to selectively reduce gray matter (GM) signal via magnetization transfer (MT). In this work, we use off-resonant MT-pulses with a 3D FLASH readout to perform MT-prepared (MT-prep) laminar fMRI of the primary visual cortex (V1) at multiple echo times at 7 T. With a GRE-BOLD contrast without additional MT-weighting as reference, we investigated the influence of the MT-preparation on the shape and the echo time dependency of laminar profiles. Through numerical simulations, we optimized the sequence parameters to increase the sensitivity toward signal changes induced by changes in arterial CBV and to delineate the contributions of different compartments to the signal. We show that at 7 T, GM signals can be reduced by 30 %. Our laminar fMRI responses exhibit an increased signal change in the parenchyma at very short TE compared to a BOLD-only reference as a result of reduced EV signal intensity. By varying echo times, we could show that MT-prep results in less sensitivity toward unwanted signal changes based on changes in T2*. We conclude that when accounting for nuclear overhauser enhancement effects in blood, off-resonant MT-prep combined with efficient short TE readouts can become a promising method to reduce unwanted EV venous contributions in GRE-BOLD and/or to allow scanning at much shorter echo times without incurring a sensitivity penalty in laminar fMRI.
Collapse
Affiliation(s)
- Viktor Pfaffenrot
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, 45141 Essen, Germany; High Field and Hybrid MR Imaging, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany.
| | - Peter J Koopmans
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, 45141 Essen, Germany; High Field and Hybrid MR Imaging, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
8
|
Shahrestani S, Zada G, Tai YC. Development of computational models for microtesla-level magnetic brain scanning: a novel avenue for device development. BMC Biomed Eng 2022; 4:1. [PMID: 35073998 PMCID: PMC8785482 DOI: 10.1186/s42490-022-00058-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/15/2021] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Detection of locally increased blood concentration and perfusion is critical for assessment of functional cortical activity as well as diagnosis of conditions such as intracerebral hemorrhage (ICH). Current paradigms for assessment of regional blood concentration in the brain rely on computed tomography (CT), magnetic resonance imaging (MRI), and perfusion blood oxygen level dependent functional magnetic resonance imaging (BOLD-fMRI). RESULTS In this study, we developed computational models to test the feasibility of novel magnetic sensors capable of detecting hemodynamic changes within the brain on a microtesla-level. We show that low-field magnetic sensors can accurately detect changes in magnetic flux density and eddy current damping signals resulting from increases in local blood concentration. These models predicted that blood volume changes as small as 1.26 mL may be resolved by the sensors, implying potential use for diagnosis of ICH and assessment of regional blood flow as a proxy for cerebral metabolism and neuronal activity. We then translated findings from our computational model to demonstrate feasibility of accurate detection of modeled ICH in a simulated human cadaver setting. CONCLUSIONS Overall, microtesla-level magnetic scanning is feasible, safe, and has distinct advantages compared to current standards of care. Computational modeling may facilitate rapid prototype development and testing of novel medical devices with minimal risk to human participants prior to device construction and clinical trials.
Collapse
Affiliation(s)
- Shane Shahrestani
- grid.42505.360000 0001 2156 6853Department of Neurological Surgery, Keck School of Medicine, University of Southern California, CA Los Angeles, USA ,grid.20861.3d0000000107068890Department of Medical Engineering, California Institute of Technology, CA Pasadena, USA
| | - Gabriel Zada
- grid.42505.360000 0001 2156 6853Department of Neurological Surgery, Keck School of Medicine, University of Southern California, CA Los Angeles, USA
| | - Yu-Chong Tai
- grid.20861.3d0000000107068890Department of Medical Engineering, California Institute of Technology, CA Pasadena, USA
| |
Collapse
|
9
|
Polimeni JR, Lewis LD. Imaging faster neural dynamics with fast fMRI: A need for updated models of the hemodynamic response. Prog Neurobiol 2021; 207:102174. [PMID: 34525404 PMCID: PMC8688322 DOI: 10.1016/j.pneurobio.2021.102174] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 07/30/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022]
Abstract
Fast fMRI enables the detection of neural dynamics over timescales of hundreds of milliseconds, suggesting it may provide a new avenue for studying subsecond neural processes in the human brain. The magnitudes of these fast fMRI dynamics are far greater than predicted by canonical models of the hemodynamic response. Several studies have established nonlinear properties of the hemodynamic response that have significant implications for fast fMRI. We first review nonlinear properties of the hemodynamic response function that may underlie fast fMRI signals. We then illustrate the breakdown of canonical hemodynamic response models in the context of fast neural dynamics. We will then argue that the canonical hemodynamic response function is not likely to reflect the BOLD response to neuronal activity driven by sparse or naturalistic stimuli or perhaps to spontaneous neuronal fluctuations in the resting state. These properties suggest that fast fMRI is capable of tracking surprisingly fast neuronal dynamics, and we discuss the neuroscientific questions that could be addressed using this approach.
Collapse
Affiliation(s)
- Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA; Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Laura D Lewis
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
10
|
Pfaffenrot V, Voelker MN, Kashyap S, Koopmans PJ. Laminar fMRI using T 2-prepared multi-echo FLASH. Neuroimage 2021; 236:118163. [PMID: 34023449 DOI: 10.1016/j.neuroimage.2021.118163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/03/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) using blood oxygenation level dependent (BOLD) contrast at a sub-millimeter scale is a promising technique to probe neural activity at the level of cortical layers. While gradient echo (GRE) BOLD sequences exhibit the highest sensitivity, their signal is confounded by unspecific extravascular (EV) and intravascular (IV) effects of large intracortical ascending veins and pial veins leading to a downstream blurring effect of local signal changes. In contrast, spin echo (SE) fMRI promises higher specificity towards signal changes near the microvascular compartment. However, the T2-weighted signal is typically sampled with a gradient echo readout imposing additional T2'-weighting. In this work, we used a T2-prepared (T2-prep) sequence with short GRE readouts to investigate its capability to acquire laminar fMRI data during a visual task in humans at 7 T. By varying the T2-prep echo time (TEprep) and acquiring multiple gradient echoes (TEGRE) per excitation, we studied the specificity of the sequence and the influence of possible confounding contributions to the shape of laminar fMRI profiles. By fitting and extrapolating the multi-echo GRE data to a TEGRE = 0 ms condition, we show for the first time laminar profiles free of T2'-pollution, confined to gray matter. This finding is independent of TEprep, except for the shortest one (31 ms) where hints of a remaining intravascular component can be seen. For TEGRE > 0 ms a prominent peak at the pial surface is observed that increases with longer TEGRE and dominates the shape of the profiles independent of the amount of T2-weighting. Simulations show that the peak at the pial surface is a result of static EV dephasing around pial vessels in CSF visible in GM due to partial voluming. Additionally, another, weaker, static dephasing effect is observed throughout all layers of the cortex, which is particularly obvious in the data with shortest T2-prep echo time. Our simulations show that this cannot be explained by intravascular dephasing but that it is likely caused by extravascular effects of the intracortical and pial veins. We conclude that even for TEGRE as short as 2.3 ms, the T2'-weighting added to the T2-weighting is enough to dramatically affect the laminar specificity of the BOLD signal change. However, the bulk of this corruption stems from CSF partial volume effects which can in principle be addressed by increasing the spatial resolution of the acquisition.
Collapse
Affiliation(s)
- Viktor Pfaffenrot
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, 45141 Essen, Germany; High-Field and Hybrid MR Imaging, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany.
| | - Maximilian N Voelker
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, 45141 Essen, Germany; High-Field and Hybrid MR Imaging, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Sriranga Kashyap
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 Maastricht, Netherlands
| | - Peter J Koopmans
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, 45141 Essen, Germany; High-Field and Hybrid MR Imaging, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
11
|
Markuerkiaga I, Marques JP, Gallagher TE, Norris DG. Estimation of laminar BOLD activation profiles using deconvolution with a physiological point spread function. J Neurosci Methods 2021; 353:109095. [PMID: 33549635 DOI: 10.1016/j.jneumeth.2021.109095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/30/2020] [Accepted: 01/31/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND The specificity of gradient echo (GE)-BOLD laminar fMRI activation profiles is degraded by intracortical veins that drain blood from lower to upper cortical layers, propagating activation signal in the same direction. This work describes an approach to obtain layer specific profiles by deconvolving the measured profiles with a physiological Point Spread Function (PSF). NEW METHOD It is shown that the PSF can be characterised by a TE-dependent peak to tail (p2t) value that is independent of cortical depth and can be estimated by simulation. An experimental estimation of individual p2t values and the sensitivity of the deconvolved profiles to variations in p2t is obtained using laminar data measured with a multi-echo 3D-FLASH sequence. These profiles are echo time dependent, but the underlying neuronal response is the same, allowing a data-based estimation of the PSF. RESULTS The deconvolved profiles are highly similar to the gold-standard obtained from extremely high resolution 3D-EPI data, for a range of p2t values of 5-9, which covers both the empirically determined value (6.8) and the value obtained by simulation (6.3). -Comparison with Existing Method(s) Corrected profiles show a flatter shape across the cortex and a high level of similarity with the gold-standard, defined as a subset of profiles that are unaffected by intracortical veins. CONCLUSIONS We conclude that deconvolution is a robust approach for removing the effect of signal propagation through intracortical veins. This makes it possible to obtain profiles with high laminar specificity while benefitting from the higher efficiency of GE-BOLD sequences.
Collapse
Affiliation(s)
- Irati Markuerkiaga
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands
| | - José P Marques
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands
| | - Tara E Gallagher
- Department of Physics and Astronomy, Dartmouth College, Hanover, NH, USA
| | - David G Norris
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands; Erwin L. Hahn Institute for Magnetic Resonance Imaging, 45141, Essen, Germany.
| |
Collapse
|
12
|
Chandrasekharan P, Tay ZW, Zhou XY, Yu EY, Fung BK, Colson C, Fellows BD, Lu Y, Huynh Q, Saayujya C, Keselman P, Hensley D, Lu K, Orendorff R, Konkle J, Saritas EU, Zheng B, Goodwill P, Conolly S. Magnetic Particle Imaging for Vascular, Cellular and Molecular Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
13
|
Function Based Brain Modeling and Simulation of an Ischemic Region in Post-Stroke Patients using the Bidomain. J Neurosci Methods 2020; 331:108464. [PMID: 31738941 DOI: 10.1016/j.jneumeth.2019.108464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/16/2019] [Accepted: 10/13/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND Several studies have shown that post-stroke patients develop divergent activity in the sensorimotor areas of the affected hemisphere of the brain compared to healthy people during motor tasks. Proper mathematical models will help us understand this activity and clarify the associated underlying mechanisms. New Method. This research describes an anatomically based brain computer model in post-stroke patients. We simulate an ischemic region for arm motion using the bidomain approach. Two scenarios are considered: a healthy subject and a post-stroke patient with motion impairment. Next, we limit the volume of propagation considering only the sensorimotor area of the brain. Comparison with existing methods. In comparison to existing methods, we combine the use of the bidomain for modeling the propagation of the electrical activity across the brain volume with functional information to limit the volume of propagation and the position of the expected stimuli, given a specific task. Whereas just using the bidomain without limiting the functional volume, propagates the electrical activity into non-expected areas. RESULTS To validate the simulation, we compare the activity with patient measurements using functional near-infrared spectroscopy during arm motion (n=5) against controls (n=3). The results are consistent with empirical measurements and previous research and show that there is a disparity between position and number of spikes in post-stroke patients in contrast to healthy subjects. CONCLUSIONS These results hold promise in improving the understanding of brain deterioration in stroke patients and the re-arrangement of brain networks. Furthermore, shows the use of functionality based brain modeling.
Collapse
|
14
|
Blaney G, Sassaroli A, Pham T, Fernandez C, Fantini S. Phase dual-slopes in frequency-domain near-infrared spectroscopy for enhanced sensitivity to brain tissue: First applications to human subjects. JOURNAL OF BIOPHOTONICS 2020; 13:e201960018. [PMID: 31479582 PMCID: PMC9219023 DOI: 10.1002/jbio.201960018] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/14/2019] [Accepted: 08/29/2019] [Indexed: 05/05/2023]
Abstract
We present a first in vivo application of phase dual-slopes (DSϕ), measured with frequency-domain near-infrared spectroscopy on four healthy human subjects, to demonstrate their enhanced sensitivity to cerebral hemodynamics. During arterial blood pressure oscillations elicited at a frequency of 0.1 Hz, we compare three different ways to analyze either intensity (I) or phase (ϕ) data collected on the subject's forehead at multiple source-detector distances: Single-distance, single-slope and DS. Theoretical calculations based on diffusion theory show that the method with the deepest maximal sensitivity (at about 11 mm) is DSϕ. The in vivo results indicate a qualitative difference of phase data (especially DSϕ) and intensity data (especially single-distance intensity [SDI]), which we assign to stronger contributions from scalp hemodynamics to SDI and from cortical hemodynamics to DSϕ. Our findings suggest that scalp hemodynamic oscillations may be dominated by blood volume dynamics, whereas cortical hemodynamics may be dominated by blood flow velocity dynamics.
Collapse
Affiliation(s)
- Giles Blaney
- Department of Biomedical Engineering Tufts University, Medford MA, USA
| | - Angelo Sassaroli
- Department of Biomedical Engineering Tufts University, Medford MA, USA
| | - Thao Pham
- Department of Biomedical Engineering Tufts University, Medford MA, USA
| | | | - Sergio Fantini
- Department of Biomedical Engineering Tufts University, Medford MA, USA
| |
Collapse
|
15
|
Non-BOLD contrast for laminar fMRI in humans: CBF, CBV, and CMRO2. Neuroimage 2019; 197:742-760. [DOI: 10.1016/j.neuroimage.2017.07.041] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 07/10/2017] [Accepted: 07/19/2017] [Indexed: 12/22/2022] Open
|
16
|
Blaney G, Sassaroli A, Pham T, Krishnamurthy N, Fantini S. Multi-distance frequency-domain optical measurements of coherent cerebral hemodynamics. PHOTONICS 2019; 6:83. [PMID: 34079837 PMCID: PMC8168742 DOI: 10.3390/photonics6030083] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We report non-invasive, bilateral optical measurements on the forehead of five healthy human subjects, of 0.1 Hz oscillatory hemodynamics elicited either by cyclic inflation of pneumatic thigh cuffs, or by paced breathing. Optical intensity and the phase of photon-density waves were collected with frequency-domain near-infrared spectroscopy at seven source-detector distances (11-40 mm). Coherent hemodynamic oscillations are represented by phasors of oxyhemoglobin (O) and deoxyhemoglobin (D) concentrations, and by the vector D/O that represents the amplitude ratio and phase difference of D and O. We found that, on average, the amplitude ratio (|D/O|) and the phase difference (∠(D/O)) obtained with single-distance intensity at 11-40 mm increase from 0.1 and -330°, to 0.2 and -200°, respectively. Single-distance phase and the intensity slope featured a weaker dependence on source-detector separation, and yielded |D/O| and ∠(D/O) values of about 0.5 and -200°, respectively, at distances greater than 20 mm. The key findings are: (1) single-distance phase and intensity slope are sensitive to deeper tissue compared to single-distance intensity; (2) deeper tissue hemodynamic oscillations, which more closely represent the brain, feature D and O phasors that are consistent with a greater relative flow-to-volume contributions in brain tissue compared to extracerebral, superficial tissue.
Collapse
Affiliation(s)
- Giles Blaney
- Tufts University, Department of Biomedical Engineering
| | | | - Thao Pham
- Tufts University, Department of Biomedical Engineering
| | | | | |
Collapse
|
17
|
Hua J, Liu P, Kim T, Donahue M, Rane S, Chen JJ, Qin Q, Kim SG. MRI techniques to measure arterial and venous cerebral blood volume. Neuroimage 2019; 187:17-31. [PMID: 29458187 PMCID: PMC6095829 DOI: 10.1016/j.neuroimage.2018.02.027] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 12/14/2022] Open
Abstract
The measurement of cerebral blood volume (CBV) has been the topic of numerous neuroimaging studies. To date, however, most in vivo imaging approaches can only measure CBV summed over all types of blood vessels, including arterial, capillary and venous vessels in the microvasculature (i.e. total CBV or CBVtot). As different types of blood vessels have intrinsically different anatomy, function and physiology, the ability to quantify CBV in different segments of the microvascular tree may furnish information that is not obtainable from CBVtot, and may provide a more sensitive and specific measure for the underlying physiology. This review attempts to summarize major efforts in the development of MRI techniques to measure arterial (CBVa) and venous CBV (CBVv) separately. Advantages and disadvantages of each type of method are discussed. Applications of some of the methods in the investigation of flow-volume coupling in healthy brains, and in the detection of pathophysiological abnormalities in brain diseases such as arterial steno-occlusive disease, brain tumors, schizophrenia, Huntington's disease, Alzheimer's disease, and hypertension are demonstrated. We believe that the continual development of MRI approaches for the measurement of compartment-specific CBV will likely provide essential imaging tools for the advancement and refinement of our knowledge on the exquisite details of the microvasculature in healthy and diseased brains.
Collapse
Affiliation(s)
- Jun Hua
- Neurosection, Div. of MRI Research, Dept. of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
| | - Peiying Liu
- Neurosection, Div. of MRI Research, Dept. of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Tae Kim
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Manus Donahue
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Swati Rane
- Radiology, University of Washington Medical Center, Seattle, WA, USA
| | - J Jean Chen
- Rotman Research Institute, Baycrest Centre, Canada; Department of Medical Biophysics, University of Toronto, Canada
| | - Qin Qin
- Neurosection, Div. of MRI Research, Dept. of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, South Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
18
|
Feasibility of functional MRI at ultralow magnetic field via changes in cerebral blood volume. Neuroimage 2018; 186:185-191. [PMID: 30394329 DOI: 10.1016/j.neuroimage.2018.10.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 11/23/2022] Open
Abstract
We investigate the feasibility of performing functional MRI (fMRI) at ultralow field (ULF) with a Superconducting QUantum Interference Device (SQUID), as used for detecting magnetoencephalography (MEG) signals from the human head. While there is negligible magnetic susceptibility variation to produce blood oxygenation level-dependent (BOLD) contrast at ULF, changes in cerebral blood volume (CBV) may be a sensitive mechanism for fMRI given the five-fold spread in spin-lattice relaxation time (T1) values across the constituents of the human brain. We undertook simulations of functional signal strength for a simplified brain model involving activation of a primary cortical region in a manner consistent with a blocked task experiment. Our simulations involve measured values of T1 at ULF and experimental parameters for the performance of an upgraded ULFMRI scanner. Under ideal experimental conditions we predict a functional signal-to-noise ratio of between 3.1 and 7.1 for an imaging time of 30 min, or between 1.5 and 3.5 for a blocked task experiment lasting 7.5 min. Our simulations suggest it may be feasible to perform fMRI using a ULFMRI system designed to perform MRI and MEG in situ.
Collapse
|
19
|
Yang J, Wu D, Tang Y, Jiang H. Photoacoustic microscopy of electronic acupuncture (EA) effect in small animals. JOURNAL OF BIOPHOTONICS 2017; 10:217-223. [PMID: 27753225 DOI: 10.1002/jbio.201600210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/21/2016] [Accepted: 09/28/2016] [Indexed: 06/06/2023]
Abstract
Acupuncture has been an effective treatment for various pain in China for several thousand years. However, the mechanisms underlying this mysterious ancient healing are still largely unknown. Here we applied photoacoustic microscopy (PAM) to investigate brain hemodynamic changes in response to electronic acupuncture (EA) at ST36 (Zusanli). Due to the high optical absorption of blood at 532 nm, PAM could sensitively probe changes in hemoglobin concentration (HbT, i.e., cerebral blood volume [CBV]) of cortical regions in high resolution. Six healthy mice were stimulated at the acupoint and three healthy mice were stimulated at sham points. Remarkable CBV changes in sensorimotor and retrosplenial agranular cortex were observed. Results showed the potential of PAM as a visualization tool to study the acupuncture effect on brain hemodynamics in animal models. (a) Schematic showing the stimulation points. (b) B-scan images overlaid with mouse atlas. (c) & (d) Statistical results of CBV changes from cortical regions.
Collapse
Affiliation(s)
- Jinge Yang
- School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, China
- Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dan Wu
- School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, China
- Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yong Tang
- School of Acupuncture and Tuina, Chengdu University of TCM, Chengdu, China
| | - Huabei Jiang
- School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, China
- Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
20
|
Effects of Voluntary Locomotion and Calcitonin Gene-Related Peptide on the Dynamics of Single Dural Vessels in Awake Mice. J Neurosci 2016; 36:2503-16. [PMID: 26911696 DOI: 10.1523/jneurosci.3665-15.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The dura mater is a vascularized membrane surrounding the brain and is heavily innervated by sensory nerves. Our knowledge of the dural vasculature has been limited to pathological conditions, such as headaches, but little is known about the dural blood flow regulation during behavior. To better understand the dynamics of dural vessels during behavior, we used two-photon laser scanning microscopy (2PLSM) to measure the diameter changes of single dural and pial vessels in the awake mouse during voluntary locomotion. Surprisingly, we found that voluntary locomotion drove the constriction of dural vessels, and the dynamics of these constrictions could be captured with a linear convolution model. Dural vessel constrictions did not mirror the large increases in intracranial pressure (ICP) during locomotion, indicating that dural vessel constriction was not caused passively by compression. To study how behaviorally driven dynamics of dural vessels might be altered in pathological states, we injected the vasodilator calcitonin gene-related peptide (CGRP), which induces headache in humans. CGRP dilated dural, but not pial, vessels and significantly reduced spontaneous locomotion but did not block locomotion-induced constrictions in dural vessels. Sumatriptan, a drug commonly used to treat headaches, blocked the vascular and behavioral the effects of CGRP. These findings suggest that, in the awake animal, the diameters of dural vessels are regulated dynamically during behavior and during drug-induced pathological states.
Collapse
|
21
|
Goense J, Bohraus Y, Logothetis NK. fMRI at High Spatial Resolution: Implications for BOLD-Models. Front Comput Neurosci 2016; 10:66. [PMID: 27445782 PMCID: PMC4923185 DOI: 10.3389/fncom.2016.00066] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 06/15/2016] [Indexed: 11/13/2022] Open
Abstract
As high-resolution functional magnetic resonance imaging (fMRI) and fMRI of cortical layers become more widely used, the question how well high-resolution fMRI signals reflect the underlying neural processing, and how to interpret laminar fMRI data becomes more and more relevant. High-resolution fMRI has shown laminar differences in cerebral blood flow (CBF), volume (CBV), and neurovascular coupling. Features and processes that were previously lumped into a single voxel become spatially distinct at high resolution. These features can be vascular compartments such as veins, arteries, and capillaries, or cortical layers and columns, which can have differences in metabolism. Mesoscopic models of the blood oxygenation level dependent (BOLD) response therefore need to be expanded, for instance, to incorporate laminar differences in the coupling between neural activity, metabolism and the hemodynamic response. Here we discuss biological and methodological factors that affect the modeling and interpretation of high-resolution fMRI data. We also illustrate with examples from neuropharmacology and the negative BOLD response how combining BOLD with CBF- and CBV-based fMRI methods can provide additional information about neurovascular coupling, and can aid modeling and interpretation of high-resolution fMRI.
Collapse
Affiliation(s)
- Jozien Goense
- Department of Psychology, Institute of Neuroscience and Psychology, University of Glasgow Glasgow, UK
| | - Yvette Bohraus
- Department of Physiology of Cognitive Processes, Max-Planck Institute for Biological Cybernetics Tübingen, Germany
| | - Nikos K Logothetis
- Department of Physiology of Cognitive Processes, Max-Planck Institute for Biological CyberneticsTübingen, Germany; Divison of Imaging Science and Biomedical Engineering, University of ManchesterManchester, UK
| |
Collapse
|
22
|
Kim KH, Choi SH, Park SH. Feasibility of Quantifying Arterial Cerebral Blood Volume Using Multiphase Alternate Ascending/Descending Directional Navigation (ALADDIN). PLoS One 2016; 11:e0156687. [PMID: 27257674 PMCID: PMC4892492 DOI: 10.1371/journal.pone.0156687] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 05/18/2016] [Indexed: 11/18/2022] Open
Abstract
Arterial cerebral blood volume (aCBV) is associated with many physiologic and pathologic conditions. Recently, multiphase balanced steady state free precession (bSSFP) readout was introduced to measure labeled blood signals in the arterial compartment, based on the fact that signal difference between labeled and unlabeled blood decreases with the number of RF pulses that is affected by blood velocity. In this study, we evaluated the feasibility of a new 2D inter-slice bSSFP-based arterial spin labeling (ASL) technique termed, alternate ascending/descending directional navigation (ALADDIN), to quantify aCBV using multiphase acquisition in six healthy subjects. A new kinetic model considering bSSFP RF perturbations was proposed to describe the multiphase data and thus to quantify aCBV. Since the inter-slice time delay (TD) and gap affected the distribution of labeled blood spins in the arterial and tissue compartments, we performed the experiments with two TDs (0 and 500 ms) and two gaps (300% and 450% of slice thickness) to evaluate their roles in quantifying aCBV. Comparison studies using our technique and an existing method termed arterial volume using arterial spin tagging (AVAST) were also separately performed in five subjects. At 300% gap or 500-ms TD, significant tissue perfusion signals were demonstrated, while tissue perfusion signals were minimized and arterial signals were maximized at 450% gap and 0-ms TD. ALADDIN has an advantage of visualizing bi-directional flow effects (ascending/descending) in a single experiment. Labeling efficiency (α) of inter-slice blood flow effects could be measured in the superior sagittal sinus (SSS) (20.8±3.7%.) and was used for aCBV quantification. As a result of fitting to the proposed model, aCBV values in gray matter (1.4-2.3 mL/100 mL) were in good agreement with those from literature. Our technique showed high correlation with AVAST, especially when arterial signals were accentuated (i.e., when TD = 0 ms) (r = 0.53). The bi-directional perfusion imaging with multiphase ALADDIN approach can be an alternative to existing techniques for quantification of aCBV.
Collapse
Affiliation(s)
- Ki Hwan Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seung Hong Choi
- Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea
| | - Sung-Hong Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- * E-mail:
| |
Collapse
|
23
|
Ciris PA, Qiu M, Constable RT. Non-invasive quantification of absolute cerebral blood volume during functional activation applicable to the whole human brain. Magn Reson Med 2016; 71:580-90. [PMID: 23475774 DOI: 10.1002/mrm.24694] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
PURPOSE Cerebral blood volume (CBV) changes in many diverse pathologic conditions, and in response to functional challenges along with changes in blood flow, blood oxygenation, and the cerebral metabolic rate of oxygen. The feasibility of a new method for non-invasive quantification of absolute cerebral blood volume that can be applicable to the whole human brain was investigated. METHODS Multi-slice data were acquired at 3 T using a novel inversion recovery echo planar imaging (IR-EPI) pulse sequence with varying contrast weightings and an efficient rotating slice acquisition order, at rest and during visual activation. A biophysical model was used to estimate absolute cerebral blood volume at rest and during activation, and oxygenation during activation, on data from 13 normal human subjects. RESULTS Cerebral blood volume increased by 21.7% from 6.6 ± 0.8 mL/100 mL of brain parenchyma at rest to 8.0 ± 1.3 mL/100 mL of brain parenchyma in the occipital cortex during visual activation, with average blood oxygenation of 84 ± 2.1% during activation, comparing well with literature. CONCLUSION The method is feasible, and could foster improved understanding of the fundamental physiological relationship between neuronal activity, hemodynamic changes, and metabolism underlying brain activation; complement existing methods for estimating compartmental changes; and potentially find utility in evaluating vascular health.
Collapse
Affiliation(s)
- Pelin Aksit Ciris
- Department of Biomedical Engineering, Yale University, School of Medicine, Magnetic Resonance Research Center, New Haven, Connecticut, USA
| | | | | |
Collapse
|
24
|
Gao YR, Greene SE, Drew PJ. Mechanical restriction of intracortical vessel dilation by brain tissue sculpts the hemodynamic response. Neuroimage 2015; 115:162-76. [PMID: 25953632 PMCID: PMC4470397 DOI: 10.1016/j.neuroimage.2015.04.054] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/28/2015] [Accepted: 04/27/2015] [Indexed: 12/22/2022] Open
Abstract
Understanding the spatial dynamics of dilation in the cerebral vasculature is essential for deciphering the vascular basis of hemodynamic signals in the brain. We used two-photon microscopy to image neural activity and vascular dynamics in the somatosensory cortex of awake behaving mice during voluntary locomotion. Arterial dilations within the histologically-defined forelimb/hindlimb (FL/HL) representation were larger than arterial dilations in the somatosensory cortex immediately outside the FL/HL representation, demonstrating that the vascular response during natural behaviors was spatially localized. Surprisingly, we found that locomotion drove dilations in surface vessels that were nearly three times the amplitude of intracortical vessel dilations. The smaller dilations of the intracortical arterioles were not due to saturation of dilation. Anatomical imaging revealed that, unlike surface vessels, intracortical vessels were tightly enclosed by brain tissue. A mathematical model showed that mechanical restriction by the brain tissue surrounding intracortical vessels could account for the reduced amplitude of intracortical vessel dilation relative to surface vessels. Thus, under normal conditions, the mechanical properties of the brain may play an important role in sculpting the laminar differences of hemodynamic responses.
Collapse
Affiliation(s)
- Yu-Rong Gao
- Center for Neural Engineering, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA; Neuroscience Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Stephanie E Greene
- Center for Neural Engineering, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
| | - Patrick J Drew
- Center for Neural Engineering, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA; Neuroscience Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA; Department of Neurosurgery, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
25
|
Modeling the role of osmotic forces in the cerebrovascular response to CO2. Med Hypotheses 2015; 85:25-36. [PMID: 25858437 DOI: 10.1016/j.mehy.2015.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 03/06/2015] [Accepted: 03/12/2015] [Indexed: 12/15/2022]
Abstract
Increases in blood osmolarity have been shown to exert a vasodilatory effect on cerebral and other vasculature, with accompanying increases in blood flow. It has also been shown that, through an influence on blood concentration of the bicarbonate ion and pH, changes in blood levels of CO2 can alter blood osmolarity sufficiently to have an impact on vessel diameter. We propose here that this phenomenon plays a previously unappreciated role in CO2-mediated vasodilation, and present a biophysical model of osmotically driven vasodilation. Our model, which is based on literature data describing CO2-dependent changes in blood osmolarity and hydraulic conductivity (Lp) of the blood-brain barrier, is used to predict the change in cerebral blood flow (CBF) associated with osmotic forces arising from a specific hypercapnic challenge. Modeled changes were then compared with actual CBF changes determined using arterial spin-labeling (ASL) MRI. For changes in the arterial partial pressure of CO2 (PaCO2) of 20 mmHg, our model predicted increases of 80% from baseline CBF with a temporal evolution that was comparable to the measured hemodynamic responses. Our modeling results suggest that osmotic forces could play a significant role in the cerebrovascular response to CO2.
Collapse
|
26
|
Lin X, Miao P, Mu Z, Jiang Z, Lu Y, Guan Y, Chen X, Xiao T, Wang Y, Yang GY. Development of functional in vivo imaging of cerebral lenticulostriate artery using novel synchrotron radiation angiography. Phys Med Biol 2015; 60:1655-65. [PMID: 25632958 DOI: 10.1088/0031-9155/60/4/1655] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The lenticulostriate artery plays a vital role in the onset and development of cerebral ischemia. However, current imaging techniques cannot assess the in vivo functioning of small arteries such as the lenticulostriate artery in the brain of rats. Here, we report a novel method to achieve a high resolution multi-functional imaging of the cerebrovascular system using synchrotron radiation angiography, which is based on spatio-temporal analysis of contrast density in the arterial cross section. This method provides a unique tool for studying the sub-cortical vascular elasticity after cerebral ischemia in rats. Using this technique, we demonstrated that the vascular elasticity of the lenticulostriate artery decreased from day 1 to day 7 after transient middle cerebral artery occlusion in rats and recovered from day 7 to day 28 compared to the controls (p < 0.001), which paralleled with brain edema formation and inversely correlated with blood flow velocity (p < 0.05). Our results demonstrated that the change of vascular elasticity was related to the levels of brain edema and the velocity of focal blood flow, suggesting that reducing brain edema is important for the improvement of the function of the lenticulostriate artery in the ischemic brain.
Collapse
Affiliation(s)
- Xiaojie Lin
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Johnson CP, Heo HY, Thedens DR, Wemmie JA, Magnotta VA. Rapid acquisition strategy for functional T1ρ mapping of the brain. Magn Reson Imaging 2014; 32:1067-77. [PMID: 25093630 PMCID: PMC4171198 DOI: 10.1016/j.mri.2014.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 05/27/2014] [Accepted: 07/25/2014] [Indexed: 11/29/2022]
Abstract
Functional T1ρ mapping has been proposed as a method to assess pH and metabolism dynamics in the brain with high spatial and temporal resolution. The purpose of this work is to describe and evaluate a variant of the spin-locked echo-planar imaging sequence for functional T1ρ mapping at 3T. The proposed sequence rapidly acquires a time series of T1ρ maps with 4.0second temporal resolution and 10 slices of volumetric coverage. Simulation, phantom, and in vivo experiments are used to evaluate many aspects of the sequence and its implementation including fidelity of measured T1ρ dynamics, potential confounds to the T1ρ response, imaging parameter tradeoffs, time series analysis approaches, and differences compared to blood oxygen level dependent functional magnetic resonance imaging. It is shown that the high temporal resolution and volumetric coverage of the sequence are obtained with some expense including underestimation of the T1ρ response, sensitivity to T1 dynamics, and reduced signal-to-noise ratio. In vivo studies using a flashing checkerboard functional magnetic resonance imaging paradigm suggest differences between T1ρ and blood oxygen level dependent activation patterns. Possible sources of the functional T1ρ response and potential sequence improvements are discussed. The capability of T1ρ to map whole-brain pH and metabolism dynamics with high temporal and spatial resolution is potentially unique and warrants further investigation and development.
Collapse
Affiliation(s)
| | - Hye-Young Heo
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA
| | | | - John A Wemmie
- Department of Psychiatry, University of Iowa, Iowa City, IA; Department of Veterans Affairs Medical Center, Iowa City, IA
| | - Vincent A Magnotta
- Department of Radiology, University of Iowa, Iowa City, IA; Department of Biomedical Engineering, University of Iowa, Iowa City, IA; Department of Psychiatry, University of Iowa, Iowa City, IA
| |
Collapse
|
28
|
Effect of selected manual therapy interventions for mechanical neck pain on vertebral and internal carotid arterial blood flow and cerebral inflow. Phys Ther 2013; 93:1563-74. [PMID: 23813088 DOI: 10.2522/ptj.20120477] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Manual therapy of the cervical spine has occasionally been associated with serious adverse events involving compromise of the craniocervical arteries. Ultrasound studies have shown certain neck positions can alter craniocervical arterial blood flow velocities; however, findings are conflicting. Knowledge about the effects of neck position on blood flow may assist clinicians in avoiding potentially hazardous practices. OBJECTIVE The purpose of this study was to examine the effects of selected manual therapeutic interventions on blood flow in the craniocervical arteries and blood supply to the brain using magnetic resonance angiography (MRA). DESIGN This was an experimental, observational magnetic resonance imaging study. METHOD Twenty adult participants who were healthy and had a mean age of 33 years were imaged using MRA in the following neck positions: neutral, rotation, rotation/distraction (similar to a Cyriax manipulation), C1-C2 rotation (similar to a Maitland or osteopathic manipulation), and distraction. RESULTS The participants were imaged using 3T MRA. All participants had normal vascular anatomy. Average inflow to the brain in neutral was 6.98 mL/s and was not significantly changed by any of the test positions. There was no significant difference in flow in any of the 4 arteries in any position from neutral, despite large individual variations. LIMITATIONS Only individuals who were asymptomatic were investigated, and a short section of the arteries only were imaged. CONCLUSIONS Blood flow to the brain does not appear to be compromised by positions commonly used in manual therapy. Positions using end-range neck rotation and distraction do not appear to be more hazardous to cerebral circulation than more segmentally localized techniques.
Collapse
|
29
|
Ciris PA, Qiu M, Constable RT. Noninvasive MRI measurement of the absolute cerebral blood volume-cerebral blood flow relationship during visual stimulation in healthy humans. Magn Reson Med 2013; 72:864-75. [PMID: 24151246 DOI: 10.1002/mrm.24984] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 08/12/2013] [Accepted: 09/13/2013] [Indexed: 01/02/2023]
Abstract
PURPOSE The relationship between cerebral blood volume (CBV) and cerebral blood flow (CBF) underlies blood oxygenation level-dependent functional MRI signal. This study investigates the potential for improved characterization of the CBV-CBF relationship in humans, and examines sex effects as well as spatial variations in the CBV-CBF relationship. METHODS Healthy subjects were imaged noninvasively at rest and during visual stimulation, constituting the first MRI measurement of the absolute CBV-CBF relationship in humans with complete coverage of the functional areas of interest. RESULTS CBV and CBF estimates were consistent with the literature, and their relationship varied both spatially and with sex. In a region of interest with stimulus-induced activation in CBV and CBF at a significance level of the P < 0.05, a power function fit resulted in CBV = 2.1 CBF(0.32) across all subjects, CBV = 0.8 CBF(0.51) in females and CBV = 4.4 CBF(0.15) in males. Exponents decreased in both sexes as ROIs were expanded to include less significantly activated regions. CONCLUSION Consideration for potential sex-related differences, as well as regional variations under a range of physiological states, may reconcile some of the variation across literature and advance our understanding of the underlying cerebrovascular physiology.
Collapse
Affiliation(s)
- Pelin Aksit Ciris
- Department of Biomedical Engineering, Yale University, School of Medicine, Magnetic Resonance Research Center, New Haven, Connecticut, USA
| | | | | |
Collapse
|
30
|
Phillips DJ, Schei JL, Rector DM. Vascular compliance limits during sleep deprivation and recovery sleep. Sleep 2013; 36:1459-70. [PMID: 24082305 DOI: 10.5665/sleep.3036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Our previous studies showed that evoked hemodynamic responses are smaller during wake compared to sleep; suggesting neural activity is associated with vascular expansion and decreased compliance. We explored whether prolonged activity during sleep deprivation may exacerbate vascular expansion and blunt hemodynamic responses. DESIGN Evoked auditory responses were generated with periodic 65 dB speaker clicks over a 72-h period and measured with cortical electrodes. Evoked hemodynamic responses were measured simultaneously with optical techniques using three light-emitting diodes, and a photodiode. SETTING Animals were housed in separate 30×30×80 cm enclosures, tethered to a commutator system and maintained on a 12-h light/dark cycle. Food and water were available ad libitum. PATIENTS OR PARTICIPANTS Seven adult female Sprague-Dawley rats. INTERVENTIONS Following a 24-h baseline recording, sleep deprivation was initiated for 0 to 10 h by gentle handling, followed by a 24-h recovery sleep recording. Evoked electrical and hemodynamic responses were measured before, during, and after sleep deprivation. MEASUREMENTS AND RESULTS Following deprivation, evoked hemodynamic amplitudes were blunted. Steady-state oxyhemoglobin concentration increased during deprivation and remained high during the initial recovery period before returning to baseline levels after approximately 9-h. CONCLUSIONS Sleep deprivation resulted in blood vessel expansion and decreased compliance while lower basal neural activity during recovery sleep may allow blood vessel compliance to recover. Chronic sleep restriction or sleep deprivation could push the vasculature to critical levels, limiting blood delivery, and leading to metabolic deficits with the potential for neural trauma.
Collapse
Affiliation(s)
- Derrick J Phillips
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, WA
| | | | | |
Collapse
|
31
|
Lu H, Hua J, van Zijl PCM. Noninvasive functional imaging of cerebral blood volume with vascular-space-occupancy (VASO) MRI. NMR IN BIOMEDICINE 2013; 26:932-948. [PMID: 23355392 PMCID: PMC3659207 DOI: 10.1002/nbm.2905] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/29/2012] [Accepted: 11/18/2012] [Indexed: 06/01/2023]
Abstract
Functional MRI (fMRI) based on changes in cerebral blood volume (CBV) can probe directly vasodilatation and vasoconstriction during brain activation or physiologic challenges, and can provide important insights into the mechanism of blood oxygenation level-dependent (BOLD) signal changes. At present, the most widely used CBV fMRI technique in humans is called vascular-space-occupancy (VASO) MRI, and this article provides a technical review of this method. VASO MRI utilizes T1 differences between blood and tissue to distinguish between these two compartments within a voxel, and employs a blood-nulling inversion recovery sequence to yield an MR signal proportional to 1 - CBV. As such, vasodilatation will result in a VASO signal decrease and vasoconstriction will have the reverse effect. The VASO technique can be performed dynamically with a temporal resolution comparable with several other fMRI methods, such as BOLD or arterial spin labeling (ASL), and is particularly powerful when conducted in conjunction with these complementary techniques. The pulse sequence and imaging parameters of VASO can be optimized such that the signal change is predominantly of CBV origin, but careful considerations should be taken to minimize other contributions, such as those from the BOLD effect, cerebral blood flow (CBF) and cerebrospinal fluid (CSF). The sensitivity of the VASO technique is the primary disadvantage when compared with BOLD, but this technique is increasingly demonstrating its utility in neuroscientific and clinical applications.
Collapse
Affiliation(s)
- Hanzhang Lu
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | | | | |
Collapse
|
32
|
Sandrone S, Bacigaluppi M, Galloni MR, Cappa SF, Moro A, Catani M, Filippi M, Monti MM, Perani D, Martino G. Weighing brain activity with the balance: Angelo Mosso's original manuscripts come to light. ACTA ACUST UNITED AC 2013; 137:621-33. [PMID: 23687118 DOI: 10.1093/brain/awt091] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Neuroimaging techniques, such as positron emission tomography and functional magnetic resonance imaging are essential tools for the analysis of organized neural systems in working and resting states, both in physiological and pathological conditions. They provide evidence of coupled metabolic and cerebral local blood flow changes that strictly depend upon cellular activity. In 1890, Charles Smart Roy and Charles Scott Sherrington suggested a link between brain circulation and metabolism. In the same year William James, in his introduction of the concept of brain blood flow variations during mental activities, briefly reported the studies of the Italian physiologist Angelo Mosso, a multifaceted researcher interested in the human circulatory system. James focused on Mosso's recordings of brain pulsations in patients with skull breaches, and in the process only briefly referred to another invention of Mosso's, the 'human circulation balance', which could non-invasively measure the redistribution of blood during emotional and intellectual activity. However, the details and precise workings of this instrument and the experiments Mosso performed with it have remained largely unknown. Having found Mosso's original manuscripts in the archives, we remind the scientific community of his experiments with the 'human circulation balance' and of his establishment of the conceptual basis of non-invasive functional neuroimaging techniques. Mosso unearthed and investigated several critical variables that are still relevant in modern neuroimaging such as the 'signal-to-noise ratio', the appropriate choice of the experimental paradigm and the need for the simultaneous recording of differing physiological parameters.
Collapse
|
33
|
Lindvere L, Janik R, Dorr A, Chartash D, Sahota B, Sled JG, Stefanovic B. Cerebral microvascular network geometry changes in response to functional stimulation. Neuroimage 2013; 71:248-59. [PMID: 23353600 DOI: 10.1016/j.neuroimage.2013.01.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 01/02/2013] [Accepted: 01/08/2013] [Indexed: 01/28/2023] Open
Abstract
The cortical microvessels are organized in an intricate, hierarchical, three-dimensional network. Superimposed on this anatomical complexity is the highly complicated signaling that drives the focal blood flow adjustments following a rise in the activity of surrounding neurons. The microvascular response to neuronal activation remains incompletely understood. We developed a custom two photon fluorescence microscopy acquisition and analysis to obtain 3D maps of neuronal activation-induced changes in the geometry of the microvascular network of the primary somatosensory cortex of anesthetized rats. An automated, model-based tracking algorithm was employed to reconstruct the 3D microvascular topology and represent it as a graph. The changes in the geometry of this network were then tracked, over time, in the course of electrical stimulation of the contralateral forepaw. Both dilatory and constrictory responses were observed across the network. Early dilatory and late constrictory responses propagated from deeper to more superficial cortical layers while the response of the vertices that showed initial constriction followed by later dilation spread from cortical surface toward increasing cortical depths. Overall, larger caliber adjustments were observed deeper inside the cortex. This work yields the first characterization of the spatiotemporal pattern of geometric changes on the level of the cortical microvascular network as a whole and provides the basis for bottom-up modeling of the hemodynamically-weighted neuroimaging signals.
Collapse
Affiliation(s)
- Liis Lindvere
- Imaging Research, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, Canada M4N 3M5
| | | | | | | | | | | | | |
Collapse
|