1
|
Elanghovan P, Nguyen T, Spincemaille P, Gupta A, Wang Y, Cho J. Sensitivity assessment of QSM+qBOLD (or QQ) in detecting elevated oxygen extraction fraction (OEF) in physiological change. J Cereb Blood Flow Metab 2025; 45:735-745. [PMID: 39501700 PMCID: PMC11951439 DOI: 10.1177/0271678x241298584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 02/12/2025]
Abstract
The study investigated the sensitivity of a novel MRI-based OEF mapping, quantitative susceptibility mapping plus quantitative blood oxygen level-dependent imaging (QSM+qBOLD or QQ), to physiological changes, particularly increased oxygen extraction fraction (OEF) by using hyperventilation as a vasoconstrictive stimulus. While QQ's sensitivity to decreased OEF during hypercapnia has been demonstrated, its sensitivity to increased OEF levels, crucial for cerebrovascular disorders like vascular dementia and Parkinson's disease, remains unexplored. In comparison with a previous QSM-based OEF, we evaluated QQ's sensitivity to high OEF values. MRI data were obtained from 11 healthy subjects during resting state (RS) and hyperventilation state (HV) using a 3 T MRI with a three-dimensional multi-echo gradient echo sequence (mGRE) and arterial spin labeling (ASL). Region of interest (ROI) analysis and paired t-tests were used to compare OEF, CMRO2 and CBF between QQ and QSM. Similar to QSM, QQ showed higher OEF during HV compared to RS: in cortical gray matter, QQ-OEF and QSM-OEF was 36.4 ± 4.7% and 35.3 ± 12.5% at RS and 45.0 ± 11.6% and 45.0 ± 14.8% in HV, respectively. These findings demonstrate QQ's ability to detect physiological changes and suggest its potential in studying brain metabolism in neurological disorders.
Collapse
Affiliation(s)
- Praveena Elanghovan
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, USA
| | - Thanh Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | | | - Ajay Gupta
- Department of Radiology, Columbia University, New York, NY, USA
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Junghun Cho
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
2
|
Wehrli FW. Recent Advances in MR Imaging-based Quantification of Brain Oxygen Metabolism. Magn Reson Med Sci 2024; 23:377-403. [PMID: 38866481 PMCID: PMC11234951 DOI: 10.2463/mrms.rev.2024-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
The metabolic rate of oxygen (MRO2) is fundamental to tissue metabolism. Determination of MRO2 demands knowledge of the arterio-venous difference in hemoglobin-bound oxygen concentration, typically expressed as oxygen extraction fraction (OEF), and blood flow rate (BFR). MRI is uniquely suited for measurement of both these quantities, yielding MRO2 in absolute physiologic units of µmol O2 min-1/100 g tissue. Two approaches are discussed, both relying on hemoglobin magnetism. Emphasis will be on cerebral oxygen metabolism expressed in terms of the cerebral MRO2 (CMRO2), but translation of the relevant technologies to other organs, including kidney and placenta will be touched upon as well. The first class of methods exploits the blood's bulk magnetic susceptibility, which can be derived from field maps. The second is based on measurement of blood water T2, which is modulated by diffusion and exchange in the local-induced fields within and surrounding erythrocytes. Some whole-organ methods achieve temporal resolution adequate to permit time-series studies of brain energetics, for instance, during sleep in the scanner with concurrent electroencephalogram (EEG) sleep stage monitoring. Conversely, trading temporal for spatial resolution has led to techniques for spatially resolved approaches based on quantitative blood oxygen level dependent (BOLD) or calibrated BOLD models, allowing regional assessment of vascular-metabolic parameters, both also exploiting deoxyhemoglobin paramagnetism like their whole-organ counterparts.
Collapse
Affiliation(s)
- Felix W Wehrli
- Laboratory for Structural, Physiologic and Functional Imaging (LSPFI), Department of Radiology, Perelman School of Medicine, University Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Deshpande RS, Langham MC, Lee H, Kamona N, Wehrli FW. Quantification of whole-organ individual and bilateral renal metabolic rate of oxygen. Magn Reson Med 2024; 91:2057-2073. [PMID: 38146669 PMCID: PMC10950521 DOI: 10.1002/mrm.29981] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 12/27/2023]
Abstract
PURPOSE Renal metabolic rate of oxygen (rMRO2 ) is a potentially important biomarker of kidney function. The key parameters for rMRO2 quantification include blood flow rate (BFR) and venous oxygen saturation (SvO2 ) in a draining vessel. Previous approaches to quantify renal metabolism have focused on the single organ. Here, both kidneys are considered as one unit to quantify bilateral rMRO2 . A pulse sequence to facilitate bilateral rMRO2 quantification is introduced. METHODS To quantify bilateral rMRO2 , measurements of BFR and SvO2 are made along the inferior vena cava (IVC) at suprarenal and infrarenal locations. From the continuity equation, these four parameters can be related to derive an expression for bilateral rMRO2 . The recently reported K-MOTIVE pulse sequence was implemented at four locations: left kidney, right kidney, suprarenal IVC, and infrarenal IVC. A dual-band variant of K-MOTIVE (db-K-MOTIVE) was developed by incorporating simultaneous-multi-slice imaging principles. The sequence simultaneously measures BFR and SvO2 at suprarenal and infrarenal locations in a single pass of 21 s, yielding bilateral rMRO2 . RESULTS SvO2 and BFR are higher in suprarenal versus infrarenal IVC, and the renal veins are highly oxygenated (SvO2 >90%). Bilateral rMRO2 quantified in 10 healthy subjects (8 M, 30 ± 8 y) was found to be 291 ± 247 and 349 ± 300 (μmolO2 /min)/100 g, derived from K-MOTIVE and db-K-MOTIVE, respectively. In comparison, total rMRO2 from combining left and right was 329 ± 273 (μmolO2 /min)/100 g. CONCLUSION The present work demonstrates that bilateral rMRO2 quantification is feasible with fair reproducibility and physiological plausibility. The indirect method is a promising approach to compute bilateral rMRO2 when individual rMRO2 quantification is difficult.
Collapse
Affiliation(s)
- Rajiv S. Deshpande
- Laboratory for Structural Physiologic and Functional Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Michael C. Langham
- Laboratory for Structural Physiologic and Functional Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Hyunyeol Lee
- Laboratory for Structural Physiologic and Functional Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, PA, USA
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu, South Korea
| | - Nada Kamona
- Laboratory for Structural Physiologic and Functional Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Felix W. Wehrli
- Laboratory for Structural Physiologic and Functional Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| |
Collapse
|
4
|
Xu J, Wiemken A, Langham MC, Rao H, Nabbout M, Caporale AS, Schwab RJ, Detre JA, Wehrli FW. Sleep-stage-dependent alterations in cerebral oxygen metabolism quantified by magnetic resonance. J Neurosci Res 2024; 102:e25313. [PMID: 38415989 DOI: 10.1002/jnr.25313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/25/2024] [Accepted: 02/09/2024] [Indexed: 02/29/2024]
Abstract
A key function of sleep is to provide a regular period of reduced brain metabolism, which is critical for maintenance of healthy brain function. The purpose of this work was to quantify the sleep-stage-dependent changes in brain energetics in terms of cerebral metabolic rate of oxygen (CMRO2 ) as a function of sleep stage using quantitative magnetic resonance imaging (MRI) with concurrent electroencephalography (EEG) during sleep in the scanner. Twenty-two young and older subjects with regular sleep hygiene and Pittsburgh Sleep Quality Index (PSQI) in the normal range were recruited for the study. Cerebral blood flow (CBF) and venous oxygen saturation (SvO2 ) were obtained simultaneously at 3 Tesla field strength and 2.7-s temporal resolution during an 80-min time series using OxFlow, an in-house developed imaging sequence. The method yields whole-brain CMRO2 in absolute physiologic units via Fick's Principle. Nineteen subjects yielded evaluable data free of subject motion artifacts. Among these subjects, 10 achieved slow-wave (N3) sleep, 16 achieved N2 sleep, and 19 achieved N1 sleep while undergoing the MRI protocol during scanning. Mean CMRO2 was 98 ± 7(μmol min-1 )/100 g awake, declining progressively toward deepest sleep stage: 94 ± 10.8 (N1), 91 ± 11.4 (N2), and 76 ± 9.0 μmol min-1 /100 g (N3), with each level differing significantly from the wake state. The technology described is able to quantify cerebral oxygen metabolism in absolute physiologic units along with non-REM sleep stage, indicating brain oxygen consumption to be closely associated with depth of sleep, with deeper sleep stages exhibiting progressively lower CMRO2 levels.
Collapse
Affiliation(s)
- Jing Xu
- Laboratory for Structural, Physiological, and Functional Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrew Wiemken
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael C Langham
- Laboratory for Structural, Physiological, and Functional Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hengyi Rao
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marianne Nabbout
- Laboratory for Structural, Physiological, and Functional Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alessandra S Caporale
- Laboratory for Structural, Physiological, and Functional Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neurosciences, Imaging and Clinical Sciences, 'G. d'Annunzio University' of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), 'G. d'Annunzio University' of Chieti-Pescara, Chieti, Italy
| | - Richard J Schwab
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John A Detre
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Felix W Wehrli
- Laboratory for Structural, Physiological, and Functional Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Biondetti E, Chiarelli AM, Germuska M, Lipp I, Villani A, Caporale AS, Patitucci E, Murphy K, Tomassini V, Wise RG. Breath-hold BOLD fMRI without CO 2 sampling enables estimation of venous cerebral blood volume: potential use in normalization of stimulus-evoked BOLD fMRI data. Neuroimage 2024; 285:120492. [PMID: 38070840 DOI: 10.1016/j.neuroimage.2023.120492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 10/30/2023] [Accepted: 12/06/2023] [Indexed: 01/13/2024] Open
Abstract
BOLD fMRI signal has been used in conjunction with vasodilatory stimulation as a marker of cerebrovascular reactivity (CVR): the relative change in cerebral blood flow (CBF) arising from a unit change in the vasodilatory stimulus. Using numerical simulations, we demonstrate that the variability in the relative BOLD signal change induced by vasodilation is strongly influenced by the variability in deoxyhemoglobin-containing cerebral blood volume (CBV), as this source of variability is likely to be more prominent than that of CVR. It may, therefore, be more appropriate to describe the relative BOLD signal change induced by an isometabolic vasodilation as a proxy of deoxygenated CBV (CBVdHb) rather than CVR. With this in mind, a new method was implemented to map a marker of CBVdHb, termed BOLD-CBV, based on the normalization of voxel-wise BOLD signal variation by an estimate of the intravascular venous BOLD signal from voxels filled with venous blood. The intravascular venous BOLD signal variation, recorded during repeated breath-holding, was extracted from the superior sagittal sinus in a cohort of 27 healthy volunteers and used as a regressor across the whole brain, yielding maps of BOLD-CBV. In the same cohort, we demonstrated the potential use of BOLD-CBV for the normalization of stimulus-evoked BOLD fMRI by comparing group-level BOLD fMRI responses to a visuomotor learning task with and without the inclusion of voxel-wise vascular covariates of BOLD-CBV and the BOLD signal change per mmHg variation in end-tidal carbon dioxide (BOLD-CVR). The empirical measure of BOLD-CBV accounted for more between-subject variability in the motor task-induced BOLD responses than BOLD-CVR estimated from end-tidal carbon dioxide recordings. The new method can potentially increase the power of group fMRI studies by including a measure of vascular characteristics and has the strong practical advantage of not requiring experimental measurement of end-tidal carbon dioxide, unlike traditional methods to estimate BOLD-CVR. It also more closely represents a specific physiological characteristic of brain vasculature than BOLD-CVR, namely blood volume.
Collapse
Affiliation(s)
- Emma Biondetti
- Department of Neurosciences, Imaging, and Clinical Sciences, 'G. D'Annunzio' University of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, 'G. D'Annunzio' University of Chieti-Pescara, Chieti, Italy.
| | - Antonio Maria Chiarelli
- Department of Neurosciences, Imaging, and Clinical Sciences, 'G. D'Annunzio' University of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, 'G. D'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | - Michael Germuska
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
| | - Ilona Lipp
- Department of Neurophysics, Max Planck Institute for Human Cognitive & Brain Sciences, Leipzig, Germany; Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Alessandro Villani
- Department of Neurosciences, Imaging, and Clinical Sciences, 'G. D'Annunzio' University of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, 'G. D'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | - Alessandra S Caporale
- Department of Neurosciences, Imaging, and Clinical Sciences, 'G. D'Annunzio' University of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, 'G. D'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | - Eleonora Patitucci
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Kevin Murphy
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
| | - Valentina Tomassini
- Department of Neurosciences, Imaging, and Clinical Sciences, 'G. D'Annunzio' University of Chieti-Pescara, Chieti, Italy; Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK; MS Centre, Neurology Unit, 'SS. Annunziata' University Hospital, Chieti, Italy; Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK; Helen Durham Centre for Neuroinflammation, University Hospital of Wales, Cardiff, UK
| | - Richard G Wise
- Department of Neurosciences, Imaging, and Clinical Sciences, 'G. D'Annunzio' University of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, 'G. D'Annunzio' University of Chieti-Pescara, Chieti, Italy; Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| |
Collapse
|
6
|
Caporale AS, Barclay AM, Xu J, Rao H, Lee H, Langham MC, Detre JA, Wehrli FW. Superior sagittal sinus flow as a proxy for tracking global cerebral blood flow dynamics during wakefulness and sleep. J Cereb Blood Flow Metab 2023; 43:1340-1350. [PMID: 36927172 PMCID: PMC10369151 DOI: 10.1177/0271678x231164423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/18/2023] [Accepted: 02/10/2023] [Indexed: 03/18/2023]
Abstract
Sleep, a state of reduced consciousness, affects brain oxygen metabolism and lowers cerebral metabolic rate of oxygen (CMRO2). Previously, we quantified CMRO2 during sleep via Fick's Principle, with a single-band MRI sequence measuring both hemoglobin O2 saturation (SvO2) and superior sagittal sinus (SSS) blood flow, which was upscaled to obtain total cerebral blood flow (tCBF). The procedure involves a brief initial calibration scan to determine the upscaling factor (fc), assumed state-invariant. Here, we used a dual-band sequence to simultaneously provide SvO2 in SSS and tCBF in the neck every 16 seconds, allowing quantification of fc dynamically. Ten healthy subjects were scanned by MRI with simultaneous EEG for 80 minutes, yielding 300 temporal image frames per subject. Four volunteers achieved slow-wave sleep (SWS), as evidenced by increased δ-wave activity (per American Academy of Sleep Medicine criteria). SWS was maintained for 13.5 ± 7.0 minutes, with CMRO2 28.6 ± 5.5% lower than pre-sleep wakefulness. Importantly, there was negligible bias between tCBF obtained by upscaling SSS-blood flow, and tCBF measured directly in the inflowing arteries of the neck (intra-class correlation 0.95 ± 0.04, averaged across all subjects), showing that the single-band approach is a valid substitute for quantifying tCBF, simplifying image data collection and analysis without sacrificing accuracy.
Collapse
Affiliation(s)
- Alessandra S Caporale
- Laboratory for Structural, Physiological, and Functional Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neuroscience, Imaging and Clinical Sciences, ‘G. d’Annunzio University’ of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), ‘G. d’Annunzio University’ of Chieti-Pescara, Chieti, Italy
| | - Alexander M Barclay
- Laboratory for Structural, Physiological, and Functional Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jing Xu
- Laboratory for Structural, Physiological, and Functional Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hengyi Rao
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Sleep and Chronobiology, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hyunyeol Lee
- Laboratory for Structural, Physiological, and Functional Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- School of Electronics Engineering, Kyungpook National University, Daegu, South Korea
| | - Michael C Langham
- Laboratory for Structural, Physiological, and Functional Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John A Detre
- Laboratory for Structural, Physiological, and Functional Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Felix W Wehrli
- Laboratory for Structural, Physiological, and Functional Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Biondetti E, Cho J, Lee H. Cerebral oxygen metabolism from MRI susceptibility. Neuroimage 2023; 276:120189. [PMID: 37230206 PMCID: PMC10335841 DOI: 10.1016/j.neuroimage.2023.120189] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/26/2023] [Accepted: 05/23/2023] [Indexed: 05/27/2023] Open
Abstract
This article provides an overview of MRI methods exploiting magnetic susceptibility properties of blood to assess cerebral oxygen metabolism, including the tissue oxygen extraction fraction (OEF) and the cerebral metabolic rate of oxygen (CMRO2). The first section is devoted to describing blood magnetic susceptibility and its effect on the MRI signal. Blood circulating in the vasculature can have diamagnetic (oxyhemoglobin) or paramagnetic properties (deoxyhemoglobin). The overall balance between oxygenated and deoxygenated hemoglobin determines the induced magnetic field which, in turn, modulates the transverse relaxation decay of the MRI signal via additional phase accumulation. The following sections of this review then illustrate the principles underpinning susceptibility-based techniques for quantifying OEF and CMRO2. Here, it is detailed whether these techniques provide global (OxFlow) or local (Quantitative Susceptibility Mapping - QSM, calibrated BOLD - cBOLD, quantitative BOLD - qBOLD, QSM+qBOLD) measurements of OEF or CMRO2, and what signal components (magnitude or phase) and tissue pools they consider (intravascular or extravascular). Validations studies and potential limitations of each method are also described. The latter include (but are not limited to) challenges in the experimental setup, the accuracy of signal modeling, and assumptions on the measured signal. The last section outlines the clinical uses of these techniques in healthy aging and neurodegenerative diseases and contextualizes these reports relative to results from gold-standard PET.
Collapse
Affiliation(s)
- Emma Biondetti
- Department of Neuroscience, Imaging and Clinical Sciences, "D'Annunzio University" of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, "D'Annunzio University" of Chieti-Pescara, Chieti, Italy
| | - Junghun Cho
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, New York, USA
| | - Hyunyeol Lee
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu, Republic of Korea; Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
8
|
Mahmud SZ, Bashir A. Repeatability assessment for simultaneous measurement of arterial blood flow, venous oxygen saturation, and muscle perfusion following dynamic exercise. NMR IN BIOMEDICINE 2023; 36:e4872. [PMID: 36349386 DOI: 10.1002/nbm.4872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The purpose of the present study was to demonstrate a new sequence and determine the repeatability of simultaneous dynamic measurements of blood flow, venous oxygen saturation (SvO2 ), and relative perfusion (change from resting perfusion) in calf muscle during recovery from plantar flexion exercise. The feasibility of near simultaneous measurement of bio-energetic parameters was also demonstrated. A sequence was developed to simultaneously measure arterial blood flow using flow-encoded projection, SvO2 using susceptibility-based oximetry, and relative perfusion using arterial spin labeling in combination with dynamic plantar flexion exercise. The parameters were determined at rest and during recovery from single leg plantar flexion exercise. Test-retest repeatability was analyzed using Bland-Altman analysis and intraclass correlation coefficients (ICC). The mitochondrial capacity of skeletal muscle was also measured immediately afterwards with dynamic phosphorus magnetic resonance spectroscopy. Eight healthy subjects participated in the study for test-retest repeatability. Popliteal artery blood flow at rest was 1.79 ± 0.58 ml/s and increased to 11.18 ± 3.02 ml/s immediately after exercise. Popliteal vein SvO2 decreased to 45.93% ± 6.5% from a resting value of 70.46% ± 4.76% following exercise. Relative perfusion (change from rest value) was 51.83 ± 15.00 ml/100 g/min at the cessation of exercise. The recovery of blood flow and SvO2 was modeled as a single exponential with time constants of 38.03 ± 6.91 and 71.19 ± 14.53 s, respectively. All the measured parameters exhibited good repeatability with ICC ranging from 0.8 to 0.95. Bioenergetics measurements were within normal range, demonstrating the feasibility of near simultaneous measurement of hemodynamic and energetic parameters. Clinical feasibility was assessed with Barth syndrome patients, demonstrating reduced oxygen extraction from the blood and reduced mitochondrial oxidative capacity compared with healthy controls. The proposed protocol allows rapid imaging of multiple parameters in skeletal muscle that might be affected in disease.
Collapse
Affiliation(s)
- Sultan Z Mahmud
- Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama, USA
| | - Adil Bashir
- Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
9
|
Driesen NR, Herman P, Rowland MA, Thompson G, Qiu M, He G, Fineberg S, Barron DS, Helgeson L, Lacadie C, Chow R, Gueorguieva R, Straun TC, Krystal JH, Hyder F. Ketamine Effects on Energy Metabolism, Functional Connectivity and Working Memory in Healthy Humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529425. [PMID: 36865249 PMCID: PMC9980048 DOI: 10.1101/2023.02.21.529425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Working memory (WM) is a crucial resource for temporary memory storage and the guiding of ongoing behavior. N-methyl-D-aspartate glutamate receptors (NMDARs) are thought to support the neural underpinnings of WM. Ketamine is an NMDAR antagonist that has cognitive and behavioral effects at subanesthetic doses. To shed light on subanesthetic ketamine effects on brain function, we employed a multimodal imaging design, combining gas-free calibrated functional magnetic resonance imaging (fMRI) measurement of oxidative metabolism (CMRO 2 ), resting-state cortical functional connectivity assessed with fMRI, and WM-related fMRI. Healthy subjects participated in two scan sessions in a randomized, double-blind, placebo-controlled design. Ketamine increased CMRO 2 and cerebral blood flow (CBF) in prefrontal cortex (PFC) and other cortical regions. However, resting-state cortical functional connectivity was not affected. Ketamine did not alter CBF-CMRO 2 coupling brain-wide. Higher levels of basal CMRO 2 were associated with lower task-related PFC activation and WM accuracy impairment under both saline and ketamine conditions. These observations suggest that CMRO 2 and resting-state functional connectivity index distinct dimensions of neural activity. Ketamine’s impairment of WM-related neural activity and performance appears to be related to its ability to produce cortical metabolic activation. This work illustrates the utility of direct measurement of CMRO 2 via calibrated fMRI in studies of drugs that potentially affect neurovascular and neurometabolic coupling.
Collapse
|
10
|
Lopez Kolkovsky AL, Carlier PG, Marty B, Meyerspeer M. Interleaved and simultaneous multi-nuclear magnetic resonance in vivo. Review of principles, applications and potential. NMR IN BIOMEDICINE 2022; 35:e4735. [PMID: 35352440 PMCID: PMC9542607 DOI: 10.1002/nbm.4735] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Magnetic resonance signals from different nuclei can be excited or received at the same time,rendering simultaneous or rapidly interleaved multi-nuclear acquisitions feasible. The advan-tages are a reduction of total scan time compared to sequential multi-nuclear acquisitions or that additional information from heteronuclear data is obtained at thesame time and anatomical position. Information content can be qualitatively increased by delivering a more comprehensive MR-based picture of a transient state (such as an exercise bout). Also, combiningnon-proton MR acquisitions with 1 Hinformation (e.g., dynamic shim updates and motion correction) can be used to improve data quality during long scans and benefits image coregistration. This work reviews the literature on interleaved and simultaneous multi-nuclear MRI and MRS in vivo. Prominent use cases for this methodology in clinical and research applications are brain and muscle, but studies have also been carried out in other targets, including the lung, knee, breast and heart. Simultaneous multi-nuclear measurements in the liver and kidney have also been performed, but exclusively in rodents. In this review, a consistent nomenclature is proposed, to help clarify the terminology used for this principle throughout the literature on in-vivo MR. An overview covers the basic principles, the technical requirements on the MR scanner and the implementations realised either by MR system vendors or research groups, from the early days until today. Considerations regarding the multi-tuned RF coils required and heteronuclear polarisation interactions are briefly discussed, and fields for future in-vivo applications for interleaved multi-nuclear MR pulse sequences are identified.
Collapse
Affiliation(s)
- Alfredo L. Lopez Kolkovsky
- NMR Laboratory, Neuromuscular Investigation CenterInstitute of MyologyParisFrance
- NMR laboratoryCEA, DRF, IBFJParisFrance
| | - Pierre G. Carlier
- NMR Laboratory, Neuromuscular Investigation CenterInstitute of MyologyParisFrance
- NMR laboratoryCEA, DRF, IBFJParisFrance
| | - Benjamin Marty
- NMR Laboratory, Neuromuscular Investigation CenterInstitute of MyologyParisFrance
- NMR laboratoryCEA, DRF, IBFJParisFrance
| | - Martin Meyerspeer
- High‐Field MR Center, Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
| |
Collapse
|
11
|
Jain V, de Godoy LL, Mohan S, Chawla S, Learned K, Jain G, Wehrli FW, Alonso-Basanta M. Cerebral hemodynamic and metabolic dysregulation in the postradiation brain. J Neuroimaging 2022; 32:1027-1043. [PMID: 36156829 DOI: 10.1111/jon.13053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022] Open
Abstract
Technological advances in the delivery of radiation and other novel cancer therapies have significantly improved the 5-year survival rates over the last few decades. Although recent developments have helped to better manage the acute effects of radiation, the late effects such as impairment in cognition continue to remain of concern. Accruing data in the literature have implicated derangements in hemodynamic parameters and metabolic activity of the irradiated normal brain as predictive of cognitive impairment. Multiparametric imaging modalities have allowed us to precisely quantify functional and metabolic information, enhancing the anatomic and morphologic data provided by conventional MRI sequences, thereby contributing as noninvasive imaging-based biomarkers of radiation-induced brain injury. In this review, we have elaborated on the mechanisms of radiation-induced brain injury and discussed several novel imaging modalities, including MR spectroscopy, MR perfusion imaging, functional MR, SPECT, and PET that provide pathophysiological and functional insights into the postradiation brain, and its correlation with radiation dose as well as clinical neurocognitive outcomes. Additionally, we explored some innovative imaging modalities, such as quantitative blood oxygenation level-dependent imaging, susceptibility-based oxygenation measurement, and T2-based oxygenation measurement, that hold promise in delineating the potential mechanisms underlying deleterious neurocognitive changes seen in the postradiation setting. We aim that this comprehensive review of a range of imaging modalities will help elucidate the hemodynamic and metabolic injury mechanisms underlying cognitive impairment in the irradiated normal brain in order to optimize treatment regimens and improve the quality of life for these patients.
Collapse
Affiliation(s)
- Varsha Jain
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Radiation Oncology, Jefferson University Hospital, 111 South 11th Street, Philadelphia, PA, 19107, USA
| | - Laiz Laura de Godoy
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Suyash Mohan
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kim Learned
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gaurav Jain
- Department of Neurological Surgery, Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Felix W Wehrli
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michelle Alonso-Basanta
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Chen JJ, Uthayakumar B, Hyder F. Mapping oxidative metabolism in the human brain with calibrated fMRI in health and disease. J Cereb Blood Flow Metab 2022; 42:1139-1162. [PMID: 35296177 PMCID: PMC9207484 DOI: 10.1177/0271678x221077338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Conventional functional MRI (fMRI) with blood-oxygenation level dependent (BOLD) contrast is an important tool for mapping human brain activity non-invasively. Recent interest in quantitative fMRI has renewed the importance of oxidative neuroenergetics as reflected by cerebral metabolic rate of oxygen consumption (CMRO2) to support brain function. Dynamic CMRO2 mapping by calibrated fMRI require multi-modal measurements of BOLD signal along with cerebral blood flow (CBF) and/or volume (CBV). In human subjects this "calibration" is typically performed using a gas mixture containing small amounts of carbon dioxide and/or oxygen-enriched medical air, which are thought to produce changes in CBF (and CBV) and BOLD signal with minimal or no CMRO2 changes. However non-human studies have demonstrated that the "calibration" can also be achieved without gases, revealing good agreement between CMRO2 changes and underlying neuronal activity (e.g., multi-unit activity and local field potential). Given the simpler set-up of gas-free calibrated fMRI, there is evidence of recent clinical applications for this less intrusive direction. This up-to-date review emphasizes technological advances for such translational gas-free calibrated fMRI experiments, also covering historical progression of the calibrated fMRI field that is impacting neurological and neurodegenerative investigations of the human brain.
Collapse
Affiliation(s)
- J Jean Chen
- Medical Biophysics, University of Toronto, Toronto, Canada.,Rotman Research Institute, Baycrest, Toronto, Canada
| | - Biranavan Uthayakumar
- Medical Biophysics, University of Toronto, Toronto, Canada.,Sunnybrook Research Institute, Toronto, Canada
| | - Fahmeed Hyder
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, Connecticut, USA.,Department of Radiology, Yale University, New Haven, Connecticut, USA.,Quantitative Neuroscience with Magnetic Resonance (QNMR) Research Program, Yale University, New Haven, Connecticut, USA.,Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
13
|
Subclinical cognitive deficits are associated with reduced cerebrovascular response to visual stimulation in mid-sixties men. GeroScience 2022; 44:1905-1923. [PMID: 35648331 DOI: 10.1007/s11357-022-00596-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/22/2022] [Indexed: 11/04/2022] Open
Abstract
Reduced cerebrovascular response to neuronal activation is observed in patients with neurodegenerative disease. In the present study, we examined the correlation between reduced cerebrovascular response to visual activation (ΔCBFVis.Act) and subclinical cognitive deficits in a human population of mid-sixties individuals without neurodegenerative disease. Such a correlation would suggest that impaired cerebrovascular function occurs before overt neurodegenerative disease. A total of 187 subjects (age 64-67 years) of the Metropolit Danish Male Birth Cohort participated in the study. ΔCBFVis.Act was measured using arterial spin labelling (ASL) MRI. ΔCBFVis.Act correlated positively with cognitive performance in: Global cognition (p = 0.046), paired associative memory (p = 0.025), spatial recognition (p = 0.026), planning (p = 0.016), simple processing speed (p < 0.01), and with highly significant correlations with current intelligence (p < 10-5), and more complex processing speed (p < 10-3), the latter two explaining approximately 11-13% of the variance. Reduced ΔCBFVis.Act was independent of brain atrophy. Our findings suggest that inhibited cerebrovascular response to neuronal activation is an early deficit in the ageing brain and associated with subclinical cognitive deficits. Cerebrovascular dysfunction could be an early sign of a trajectory pointing towards the development of neurodegenerative disease. Future efforts should elucidate if maintenance of a healthy cerebrovascular function can protect against the development of dementia.
Collapse
|
14
|
Wu PH, Rodríguez-Soto AE, Wiemken A, Englund EK, Rodgers ZB, Langham MC, Schwab RJ, Detre JA, Guo W, Wehrli FW. MRI evaluation of cerebral metabolic rate of oxygen (CMRO 2) in obstructive sleep apnea. J Cereb Blood Flow Metab 2022; 42:1049-1060. [PMID: 34994242 PMCID: PMC9125486 DOI: 10.1177/0271678x211071018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/15/2021] [Accepted: 12/10/2021] [Indexed: 01/09/2023]
Abstract
Patients with obstructive sleep apnea (OSA) are at elevated risk of developing systemic vascular disease and cognitive dysfunction. Here, cerebral oxygen metabolism was assessed in patients with OSA by means of a magnetic resonance-based method involving simultaneous measurements of cerebral blood flow rate and venous oxygen saturation in the superior sagittal sinus for a period of 10 minutes at an effective temporal resolution of 1.3 seconds before, during, and after repeated 24-second breath-holds mimicking spontaneous apneas, yielding, along with pulse oximetry-derived arterial saturation, whole-brain CMRO2 via Fick's Principle. Enrolled subjects were classified based on their apnea-hypopnea indices into OSA (N = 31) and non-sleep apnea reference subjects (NSA = 21), and further compared with young healthy subjects (YH, N = 10). OSA and NSA subjects were matched for age and body mass index. CMRO2 was lower in OSA than in the YH group during normal breathing (105.6 ± 14.1 versus 123.7 ± 22.8 μmol O2/min/100g, P = 0.01). Further, the fractional change in CMRO2 in response to a breath-hold challenge was larger in OSA than in the YH group (15.2 ± 9.2 versus 8.5 ± 3.4%, P = 0.04). However, there was no significant difference in CMRO2 between OSA and NSA subjects. The data suggest altered brain oxygen metabolism in OSA and possibly in NSA as well.
Collapse
Affiliation(s)
- Pei-Hsin Wu
- Department of Radiology, University of Pennsylvania, University of Pennsylvania, Philadelphia, PA, USA
- Department of Electrical Engineering, National Sun Yat-sen University, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ana E Rodríguez-Soto
- Department of Radiology, University of Pennsylvania, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew Wiemken
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erin K Englund
- Department of Radiology, University of Pennsylvania, University of Pennsylvania, Philadelphia, PA, USA
| | - Zachary B Rodgers
- Department of Radiology, University of Pennsylvania, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael C Langham
- Department of Radiology, University of Pennsylvania, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard J Schwab
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John A Detre
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Wensheng Guo
- Department of Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA, USA
| | - Felix W Wehrli
- Department of Radiology, University of Pennsylvania, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
15
|
Jiang D, Lu H. Cerebral oxygen extraction fraction MRI: Techniques and applications. Magn Reson Med 2022; 88:575-600. [PMID: 35510696 PMCID: PMC9233013 DOI: 10.1002/mrm.29272] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/20/2022] [Accepted: 03/29/2022] [Indexed: 12/20/2022]
Abstract
The human brain constitutes 2% of the body's total mass but uses 20% of the oxygen. The rate of the brain's oxygen utilization can be derived from a knowledge of cerebral blood flow and the oxygen extraction fraction (OEF). Therefore, OEF is a key physiological parameter of the brain's function and metabolism. OEF has been suggested to be a useful biomarker in a number of brain diseases. With recent advances in MRI techniques, several MRI-based methods have been developed to measure OEF in the human brain. These MRI OEF techniques are based on the T2 of blood, the blood signal phase, the magnetic susceptibility of blood-containing voxels, the effect of deoxyhemoglobin on signal behavior in extravascular tissue, and the calibration of the BOLD signal using gas inhalation. Compared to 15 O PET, which is considered the "gold standard" for OEF measurement, MRI-based techniques are non-invasive, radiation-free, and are more widely available. This article provides a review of these emerging MRI-based OEF techniques. We first briefly introduce the role of OEF in brain oxygen homeostasis. We then review the methodological aspects of different categories of MRI OEF techniques, including their signal mechanisms, acquisition methods, and data analyses. The strengths and limitations of the techniques are discussed. Finally, we review key applications of these techniques in physiological and pathological conditions.
Collapse
Affiliation(s)
- Dengrong Jiang
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Caporale A, Lee H, Lei H, Rao H, Langham MC, Detre JA, Wu PH, Wehrli FW. Cerebral metabolic rate of oxygen during transition from wakefulness to sleep measured with high temporal resolution OxFlow MRI with concurrent EEG. J Cereb Blood Flow Metab 2021; 41:780-792. [PMID: 32538283 PMCID: PMC7983504 DOI: 10.1177/0271678x20919287] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/03/2020] [Accepted: 03/20/2020] [Indexed: 01/29/2023]
Abstract
During slow-wave sleep, synaptic transmissions are reduced with a concomitant reduction in brain energy consumption. We used 3 Tesla MRI to noninvasively quantify changes in the cerebral metabolic rate of O2 (CMRO2) during wakefulness and sleep, leveraging the 'OxFlow' method, which provides venous O2 saturation (SvO2) along with cerebral blood flow (CBF). Twelve healthy subjects (31.3 ± 5.6 years, eight males) underwent 45-60 min of continuous scanning during wakefulness and sleep, yielding one image set every 3.4 s. Concurrent electroencephalography (EEG) data were available in eight subjects. Mean values of the metabolic parameters measured during wakefulness were stable, with coefficients of variation below 7% (average values: CMRO2 = 118 ± 12 µmol O2/min/100 g, SvO2 = 67.0 ± 3.7% HbO2, CBF = 50.6 ±4.3 ml/min/100 g). During sleep, on average, CMRO2 decreased 21% (range: 14%-32%; average nadir = 98 ± 16 µmol O2/min/100 g), while EEG slow-wave activity, expressed in terms of δ -power, increased commensurately. Following sleep onset, CMRO2 was found to correlate negatively with relative δ -power (r = -0.6 to -0.8, P < 0.005), and positively with heart rate (r = 0.5 to 0.8, P < 0.0005). The data demonstrate that OxFlow MRI can noninvasively measure dynamic changes in cerebral metabolism associated with sleep, which should open new opportunities to study sleep physiology in health and disease.
Collapse
Affiliation(s)
- Alessandra Caporale
- Laboratory for Structural Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania Perelman School of Medicine, PA, USA
| | - Hyunyeol Lee
- Laboratory for Structural Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania Perelman School of Medicine, PA, USA
| | - Hui Lei
- Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Hengyi Rao
- Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Michael C Langham
- Laboratory for Structural Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania Perelman School of Medicine, PA, USA
| | - John A Detre
- Laboratory for Structural Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania Perelman School of Medicine, PA, USA
- Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Pei-Hsin Wu
- Laboratory for Structural Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania Perelman School of Medicine, PA, USA
| | - Felix W Wehrli
- Laboratory for Structural Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania Perelman School of Medicine, PA, USA
| |
Collapse
|
17
|
Chatterjee S, Caporale A, Tao JQ, Guo W, Johncola A, Strasser AA, Leone FT, Langham MC, Wehrli FW. Acute e-cig inhalation impacts vascular health: a study in smoking naïve subjects. Am J Physiol Heart Circ Physiol 2020; 320:H144-H158. [PMID: 33216614 DOI: 10.1152/ajpheart.00628.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This study was designed to investigate the acute effects of nonnicotinized e-cigarette (e-cig) aerosol inhalation in nonsmokers both in terms of blood-based markers of inflammation and oxidative stress and evaluate their association with hemodynamic-metabolic MRI parameters quantifying peripheral vascular reactivity, cerebrovascular reactivity, and aortic stiffness. Thirty-one healthy nonsmokers were subjected to two blood draws and two identical MRI protocols, each one before and after a standardized e-cig vaping session. After vaping, the serum levels of C-reactive protein, soluble intercellular adhesion molecule, and the danger signal machinery high-mobility group box 1 (HMGB1) and its downstream effector and the NLR family pyrin domain containing 3 (NLRP3) inflammasome (as monitored by its adaptor protein ASC) increased significantly relative to the respective baseline (prevaping) values. Moreover, nitric oxide metabolites and reactive oxygen species production decreased and increased, respectively. These observations were paralleled by impaired peripheral vascular reactivity (with reduced flow-mediated dilation and attenuated hyperemic response after a cuff-occlusion test) and metabolic alterations expressed by decreased venous oxygen saturation, postvaping. The current results suggest propagation of inflammation signaling via activation of the danger signaling axis (HMGB1-NLRP3). The findings indicate that a single episode of vaping has adverse impacts on vascular inflammation and function.NEW & NOTWORTHY Endothelial cell signaling and blood biomarkers were found to correlate with functional vascular changes in a single episode e-cigarettes inhalation in healthy adults. This is indicative of the potential of e-cigarettes (even when inhaled acutely) to lead of vascular dysfunction.
Collapse
Affiliation(s)
- Shampa Chatterjee
- Institute for Environmental Medicine and Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Alessandra Caporale
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology
| | - Jian Qin Tao
- Institute for Environmental Medicine and Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Wensheng Guo
- Department of Biostatistics and Epidemiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Alyssa Johncola
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology
| | - Andrew A Strasser
- Department of Psychiatry and Center for Interdisciplinary Research on Nicotine Addiction, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Frank T Leone
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Michael C Langham
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology
| | - Felix W Wehrli
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology
| |
Collapse
|
18
|
Murali K, Varma HM. Multi-speckle diffuse correlation spectroscopy to measure cerebral blood flow. BIOMEDICAL OPTICS EXPRESS 2020; 11:6699-6709. [PMID: 33282518 PMCID: PMC7687951 DOI: 10.1364/boe.401702] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 05/07/2023]
Abstract
We present a multi-speckle diffuse correlation spectroscopy (DCS) system for measuring cerebral blood flow in the healthy adult human brain. In contrast to the need for a high frame rate camera to measure the multi-speckle intensity auto-correlation, we employ a low frame rate camera to measure the auto-correlation using the recently introduced multi-step volterra integral method (MVIM). The results are validated by comparison against the blood flow measured using standard DCS system.
Collapse
|
19
|
Cheng CM, Chou CC, Yeh TC, Chung HW. Measurements of venous oxygen saturation in the superior sagittal sinus using conventional 3D multiple gradient-echo MRI: Effects of flow velocity and acceleration. Magn Reson Med 2020; 85:995-1003. [PMID: 32815571 DOI: 10.1002/mrm.28474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/02/2020] [Accepted: 07/23/2020] [Indexed: 11/07/2022]
Abstract
PURPOSE This work investigates the effects of flow acceleration in the superior sagittal sinus on slice-dependent variations in venous oxygen saturation (SvO2 ) estimations using susceptibility-based MR oximetry. METHODS Three-dimensional multiple gradient-echo images, with first-order flow compensation along the anterior-posterior readout direction for the first echo, were acquired twice from 15 healthy volunteers. For all slices, phases within the superior sagittal sinus were fitted using linear regression across four TEs to obtain the Pearson's correlation coefficients (PCCs), the largest of which corresponded to minimum acceleration influence. SvO2 derived from odd echoes on this slice was used to assess interscan difference, and compared with the central 15th slice for slice-dependent difference, both using Bland-Altman analysis. Within-scan interslice SvO2 consistency was examined versus PCC. Multislice-averaged SvO2 values were then computed from slices with PCCs above a certain threshold. RESULTS Slice-dependent difference in SvO2 varied from -16.2% to 21.5% at two SDs, in agreement with a recent report, and about twice larger than interscan differences for the automatically selected slice (-7.5% to 10.3%) and for the central 15th slice (-8.0% to 8.8%). For slices with PCCs higher than -0.98, interslice SvO2 deviations were all found to be less than 5.0%. Multislice-averaged SvO2 with PCCs higher than -0.98 further reduced interscan difference to -4.7% to 8.2%. CONCLUSION Slice-dependent variations in SvO2 may partly be explained by the effects of flow acceleration. Our method may enable conventional 3D multiple gradient echo to be used for SvO2 estimations in the presence of pulsatile flow.
Collapse
Affiliation(s)
- Chou-Ming Cheng
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chih-Che Chou
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tzu-Chen Yeh
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hsiao-Wen Chung
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
20
|
Hougaard A, Younis S, Iljazi A, Haanes KA, Lindberg U, Vestergaard MB, Amin FM, Sugimoto K, Kruse LS, Ayata C, Ashina M. Cerebrovascular effects of endothelin-1 investigated using high-resolution magnetic resonance imaging in healthy volunteers. J Cereb Blood Flow Metab 2020; 40:1685-1694. [PMID: 31500524 PMCID: PMC7370364 DOI: 10.1177/0271678x19874295] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endothelin-1 (ET-1) is a highly potent vasoconstrictor peptide released from vascular endothelium. ET-1 plays a major role in cerebrovascular disorders and likely worsens the outcome of acute ischaemic stroke and aneurismal subarachnoid haemorrhage through vasoconstriction and cerebral blood flow (CBF) reduction. Disorders that increase the risk of stroke, including hypertension, diabetes mellitus, and acute myocardial infarction, are associated with increased plasma levels of ET-1. The in vivo human cerebrovascular effects of systemic ET-1 infusion have not previously been investigated. In a two-way crossover, randomized, double-blind design, we used advanced 3 tesla MRI methods to investigate the effects of high-dose intravenous ET-1 on intra- and extracranial artery circumferences, global and regional CBF, and cerebral metabolic rate of oxygen (CMRO2) in 14 healthy volunteers. Following ET-1 infusion, we observed a 14% increase of mean arterial blood pressure, a 5% decrease of middle cerebral artery (MCA) circumference, but no effects on extracerebral arteries and no effects on CBF or CMRO2. Collectively, the findings indicate MCA constriction secondarily to blood pressure increase and not due to a direct vasoconstrictor effect of ET-1. We suggest that, as opposed to ET-1 in the subarachnoid space, intravascular ET-1 does not exert direct cerebrovascular effects in humans.
Collapse
Affiliation(s)
- Anders Hougaard
- Department of Neurology, Danish Headache Center, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Samaira Younis
- Department of Neurology, Danish Headache Center, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Afrim Iljazi
- Department of Neurology, Danish Headache Center, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Kristian A Haanes
- Department of Clinical Experimental Research, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Ulrich Lindberg
- Department of Clinical Physiology, Functional Imaging Unit, Nuclear Medicine and PET, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Mark B Vestergaard
- Department of Clinical Physiology, Functional Imaging Unit, Nuclear Medicine and PET, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Faisal M Amin
- Department of Neurology, Danish Headache Center, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Kazutaka Sugimoto
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA.,Department of Neurosurgery, Yamaguchi University School of Medicine, Yamaguchi, Japan
| | - Lars S Kruse
- Department of Clinical Experimental Research, Rigshospitalet Glostrup, Glostrup, Denmark.,Department of Biochemistry, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Cenk Ayata
- Stroke Service, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Messoud Ashina
- Department of Neurology, Danish Headache Center, Rigshospitalet Glostrup, Glostrup, Denmark
| |
Collapse
|
21
|
Englund EK, Fernández-Seara MA, Rodríguez-Soto AE, Lee H, Rodgers ZB, Vidorreta M, Detre JA, Wehrli FW. Calibrated fMRI for dynamic mapping of CMRO 2 responses using MR-based measurements of whole-brain venous oxygen saturation. J Cereb Blood Flow Metab 2020; 40:1501-1516. [PMID: 31394960 PMCID: PMC7308517 DOI: 10.1177/0271678x19867276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Functional MRI (fMRI) can identify active foci in response to stimuli through BOLD signal fluctuations, which represent a complex interplay between blood flow and cerebral metabolic rate of oxygen (CMRO2) changes. Calibrated fMRI can disentangle the underlying contributions, allowing quantification of the CMRO2 response. Here, whole-brain venous oxygen saturation (Yv) was computed alongside ASL-measured CBF and BOLD-weighted data to derive the calibration constant, M, using the proposed Yv-based calibration. Data were collected from 10 subjects at 3T with a three-part interleaved sequence comprising background-suppressed 3D-pCASL, 2D BOLD-weighted, and single-slice dual-echo GRE (to measure Yv via susceptometry-based oximetry) acquisitions while subjects breathed normocapnic/normoxic, hyperoxic, and hypercapnic gases, and during a motor task. M was computed via Yv-based calibration from both hypercapnia and hyperoxia stimulus data, and results were compared to conventional hypercapnia or hyperoxia calibration methods. Mean M in gray matter did not significantly differ between calibration methods, ranging from 8.5 ± 2.8% (conventional hyperoxia calibration) to 11.7 ± 4.5% (Yv-based calibration in response to hyperoxia), with hypercapnia-based M values between (p = 0.56). Relative CMRO2 changes from finger tapping were computed from each M map. CMRO2 increased by ∼20% in the motor cortex, and good agreement was observed between the conventional and proposed calibration methods.
Collapse
Affiliation(s)
- Erin K Englund
- Laboratory for Structural, Physiologic and Functional Imaging (LSPFI), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ana E Rodríguez-Soto
- Laboratory for Structural, Physiologic and Functional Imaging (LSPFI), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Hyunyeol Lee
- Laboratory for Structural, Physiologic and Functional Imaging (LSPFI), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Zachary B Rodgers
- Laboratory for Structural, Physiologic and Functional Imaging (LSPFI), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA.,Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marta Vidorreta
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA.,Siemens Healthineers, Madrid, Spain
| | - John A Detre
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Felix W Wehrli
- Laboratory for Structural, Physiologic and Functional Imaging (LSPFI), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
22
|
Wu PH, Rodríguez-Soto AE, Rodgers ZB, Englund EK, Wiemken A, Langham MC, Detre JA, Schwab RJ, Guo W, Wehrli FW. MRI evaluation of cerebrovascular reactivity in obstructive sleep apnea. J Cereb Blood Flow Metab 2020; 40:1328-1337. [PMID: 31307289 PMCID: PMC7238371 DOI: 10.1177/0271678x19862182] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Obstructive sleep apnea (OSA) is characterized by intermittent obstruction of the airways during sleep. Cerebrovascular reactivity (CVR) is an index of cerebral vessels' ability to respond to a vasoactive stimulus, such as increased CO2. We hypothesized that OSA alters CVR, expressed as a breath-hold index (BHI) defined as the rate of change in CBF or BOLD signal during a controlled breath-hold stimulus mimicking spontaneous apneas by being both hypercapnic and hypoxic. In 37 OSA and 23 matched non sleep apnea (NSA) subjects, we obtained high temporal resolution CBF and BOLD MRI data before, during, and between five consecutive BH stimuli of 24 s, each averaged to yield a single BHI value. Greater BHI was observed in OSA relative to NSA as derived from whole-brain CBF (78.6 ± 29.6 vs. 60.0 ± 20.0 mL/min2/100 g, P = 0.010) as well as from flow velocity in the superior sagittal sinus (0.48 ± 0.18 vs. 0.36 ± 0.10 cm/s2, P = 0.014). Similarly, BOLD-based BHI was greater in OSA in whole brain (0.19 ± 0.08 vs. 0.15 ± 0.03%/s, P = 0.009), gray matter (0.22 ± 0.09 vs. 0.17 ± 0.03%/s, P = 0.011), and white matter (0.14 ± 0.06 vs. 0.10 ± 0.02%/s, P = 0.010). The greater CVR is not currently understood but may represent a compensatory mechanism of the brain to maintain oxygen supply during intermittent apneas.
Collapse
Affiliation(s)
- Pei-Hsin Wu
- Department of Radiology, University of Pennsylvania Health System, Philadelphia, PA, USA
| | - Ana E Rodríguez-Soto
- Department of Radiology, University of Pennsylvania Health System, Philadelphia, PA, USA
| | - Zachary B Rodgers
- Department of Radiology, University of Pennsylvania Health System, Philadelphia, PA, USA
| | - Erin K Englund
- Department of Radiology, University of Pennsylvania Health System, Philadelphia, PA, USA
| | - Andrew Wiemken
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania Health System, Philadelphia, PA, USA
| | - Michael C Langham
- Department of Radiology, University of Pennsylvania Health System, Philadelphia, PA, USA
| | - John A Detre
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard J Schwab
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania Health System, Philadelphia, PA, USA
| | - Wensheng Guo
- Department of Biostatistics and Epidemiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Felix W Wehrli
- Department of Radiology, University of Pennsylvania Health System, Philadelphia, PA, USA
| |
Collapse
|
23
|
Chan ST, Evans KC, Song TY, Selb J, van der Kouwe A, Rosen BR, Zheng YP, Ahn A, Kwong KK. Cerebrovascular reactivity assessment with O2-CO2 exchange ratio under brief breath hold challenge. PLoS One 2020; 15:e0225915. [PMID: 32208415 PMCID: PMC7092994 DOI: 10.1371/journal.pone.0225915] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 02/27/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Hypercapnia during breath holding is believed to be the dominant driver behind the modulation of cerebral blood flow (CBF). However, increasing evidence show that mild hypoxia and mild hypercapnia in breath hold (BH) could work synergistically to enhance CBF response. We hypothesized that breath-by-breath O2-CO2 exchange ratio (bER), defined as the ratio of the change in partial pressure of oxygen (ΔPO2) to that of carbon dioxide (ΔPCO2) between end inspiration and end expiration, would be able to better correlate with the global and regional cerebral hemodynamic responses (CHR) to BH challenge. We aimed to investigate whether bER is a more useful index than end-tidal PCO2 to characterize cerebrovascular reactivity (CVR) under BH challenge. METHODS We used transcranial Doppler ultrasound (TCD) to evaluate CHR under BH challenge by measuring cerebral blood flow velocity (CBFv) in the middle cerebral arteries. Regional changes in CHR to BH and exogenous CO2 challenges were mapped with blood oxygenation level dependent (BOLD) signal changes using functional magnetic resonance imaging (fMRI). We correlated respiratory gas exchange (RGE) metrics (bER, ΔPO2, ΔPCO2, end-tidal PCO2 and PO2, and time of breaths) with CHR (CBFv and BOLD) to BH challenge. Temporal features and frequency characteristics of RGE metrics and their coherence with CHR were examined. RESULTS CHR to brief BH epochs and free breathing were coupled with both ΔPO2 and ΔPCO2. We found that bER was superior to either ΔPO2 or ΔPCO2 alone in coupling with the changes of CBFv and BOLD signals under breath hold challenge. The regional CVR results derived by regressing BOLD signal changes on bER under BH challenge resembled those derived by regressing BOLD signal changes on end-tidal PCO2 under exogenous CO2 challenge. CONCLUSION Our findings provide a novel insight on the potential of using bER to better quantify CVR changes under BH challenge.
Collapse
Affiliation(s)
- Suk-tak Chan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Karleyton C. Evans
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Tian-yue Song
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Juliette Selb
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Andre van der Kouwe
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Bruce R. Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Yong-ping Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Andrew Ahn
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Kenneth K. Kwong
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| |
Collapse
|
24
|
Miao X, Nayak KS, Wood JC. In vivo validation of T2- and susceptibility-based S v O 2 measurements with jugular vein catheterization under hypoxia and hypercapnia. Magn Reson Med 2019; 82:2188-2198. [PMID: 31250481 DOI: 10.1002/mrm.27871] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/26/2019] [Accepted: 05/27/2019] [Indexed: 01/23/2023]
Abstract
PURPOSE To investigate the mutual agreement of T2-based and susceptibility-based methods as well as their agreement with jugular catheterization, for quantifying venous oxygen saturation (Sv O2 ) at a broad range of brain oxygenation levels. METHODS Sv O2 measurements using T2-relaxation-under-spin-tagging (TRUST) and susceptibility-based oximetry (SBO) were performed in 13 healthy subjects under room air, hypoxia, and hypercapnia conditions. Agreement between TRUST and SBO was quantitatively evaluated. In two of the subjects, TRUST and SBO were compared against the clinical gold standard, co-oximeter measurement via internal jugular vein catheterization. RESULTS Absolute Sv O2 measurements using TRUST and SBO were highly correlated across a range of saturations from 45% to 84% (Pearson r = 0.91, P < .0001). Sv O2 -TRUST was significantly lower than Sv O2 -SBO under hypoxia and room air conditions, but the two were comparable under hypercapnia. TRUST demonstrated a larger Sv O2 increase under hypercapnia than SBO and had good agreement with jugular catheterization under hypercapnia but significantly underestimated Sv O2 under room air and hypoxia. The agreement between Sv O2 -SBO and the reference did not depend on the physiological state. CONCLUSION A systematic bias was observed between T2-based and susceptibility-based methods that depended on the oxygenation state. In vivo validation with jugular catheterization indicated potential underestimation of TRUST under room air and hypoxia conditions. Our findings suggested that caution should be employed in comparison of absolute Sv O2 measurements using either TRUST or SBO.
Collapse
Affiliation(s)
- Xin Miao
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California
| | - Krishna S Nayak
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California.,Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California
| | - John C Wood
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California.,Division of Cardiology, Children's Hospital Los Angeles, Los Angeles, California
| |
Collapse
|
25
|
Vestergaard MB, Larsson HB. Cerebral metabolism and vascular reactivity during breath-hold and hypoxic challenge in freedivers and healthy controls. J Cereb Blood Flow Metab 2019; 39:834-848. [PMID: 29099292 PMCID: PMC6498754 DOI: 10.1177/0271678x17737909] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The goal of the present study was to examine the cerebral metabolism and vascular reactivity during extended breath-holds (ranging from 2 min 32 s to 7 min 0 s) and during a hypoxic challenge in freedivers and non-diver controls. Magnetic resonance imaging was used to measure the global cerebral blood flow (CBF) and metabolic rate of oxygen (CMRO2), and magnetic resonance spectroscopy was used to measure the cerebral lactate, glutamate+glutamine, N-acetylaspartate and phosphocreatine+creatine concentrations in the occipital lobe. Fifteen freedivers and seventeen non-diver controls participated. The freedivers showed remarkable increases in CBF (107%) during the breath-holds, compensating for arterial desaturation, and sustained cerebral oxygen delivery (CDO2). CMRO2 was unaffected throughout the breath-holds. During the hypoxic challenge, the freedivers had larger increases in blood flow in the sagittal sinus than the non-divers, and could sustain normal CDO2. No differences were found in lactate production, global CBF or CMRO2. We conclude that the mechanism for sustaining brain function during breath-holding in freedivers involves an extraordinary increase in perfusion, and that freedivers present evidence for higher cerebrovascular reactivity, but not for higher lactate-producing glycolysis during a hypoxic challenge compared to controls.
Collapse
Affiliation(s)
- Mark B Vestergaard
- 1 Department of Clinical Physiology, Nuclear Medicine and PET, Functional Imaging Unit, Copenhagen University Hospital, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Henrik Bw Larsson
- 1 Department of Clinical Physiology, Nuclear Medicine and PET, Functional Imaging Unit, Copenhagen University Hospital, Rigshospitalet Glostrup, Glostrup, Denmark.,2 Institute of Clinical Medicine, The Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Vasung L, Abaci Turk E, Ferradal SL, Sutin J, Stout JN, Ahtam B, Lin PY, Grant PE. Exploring early human brain development with structural and physiological neuroimaging. Neuroimage 2019; 187:226-254. [PMID: 30041061 PMCID: PMC6537870 DOI: 10.1016/j.neuroimage.2018.07.041] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 12/11/2022] Open
Abstract
Early brain development, from the embryonic period to infancy, is characterized by rapid structural and functional changes. These changes can be studied using structural and physiological neuroimaging methods. In order to optimally acquire and accurately interpret this data, concepts from adult neuroimaging cannot be directly transferred. Instead, one must have a basic understanding of fetal and neonatal structural and physiological brain development, and the important modulators of this process. Here, we first review the major developmental milestones of transient cerebral structures and structural connectivity (axonal connectivity) followed by a summary of the contributions from ex vivo and in vivo MRI. Next, we discuss the basic biology of neuronal circuitry development (synaptic connectivity, i.e. ensemble of direct chemical and electrical connections between neurons), physiology of neurovascular coupling, baseline metabolic needs of the fetus and the infant, and functional connectivity (defined as statistical dependence of low-frequency spontaneous fluctuations seen with functional magnetic resonance imaging (fMRI)). The complementary roles of magnetic resonance imaging (MRI), electroencephalography (EEG), magnetoencephalography (MEG), and near-infrared spectroscopy (NIRS) are discussed. We include a section on modulators of brain development where we focus on the placenta and emerging placental MRI approaches. In each section we discuss key technical limitations of the imaging modalities and some of the limitations arising due to the biology of the system. Although neuroimaging approaches have contributed significantly to our understanding of early brain development, there is much yet to be done and a dire need for technical innovations and scientific discoveries to realize the future potential of early fetal and infant interventions to avert long term disease.
Collapse
Affiliation(s)
- Lana Vasung
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Esra Abaci Turk
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Silvina L Ferradal
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Jason Sutin
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Jeffrey N Stout
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Banu Ahtam
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Pei-Yi Lin
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - P Ellen Grant
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
27
|
Jensen MLF, Vestergaard MB, Tønnesen P, Larsson HBW, Jennum PJ. Cerebral blood flow, oxygen metabolism, and lactate during hypoxia in patients with obstructive sleep apnea. Sleep 2019; 41:4788814. [PMID: 29309697 DOI: 10.1093/sleep/zsy001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Study Objectives Obstructive sleep apnea (OSA) is associated with increased risk of stroke but the underlying mechanism is poorly understood. We suspect that the normal cerebrovascular response to hypoxia is disturbed in patients with OSA. Methods Global cerebral blood flow (CBF), cerebral metabolic rate of oxygen (CMRO2), and lactate concentration during hypoxia were measured in patients with OSA and matched controls. Twenty-eight patients (82.1% males, mean age 52.3 ± 10.0 years) with moderate-to-severe OSA assessed by partial polysomnography were examined and compared with 19 controls (73.7% males, mean age 51.8 ± 10.1 years). Patients and controls underwent magnetic resonance imaging (MRI) during 35 min of normoxia followed by 35 min inhaling hypoxic air (10%-12% O2). After 3 months of continuous positive airway pressure (CPAP) treatment, 22 patients were rescanned. Results During hypoxia, CBF significantly increased with decreasing arterial blood oxygen concentration (4.53 mL (blood)/100 g/min per -1 mmol(O2)/L, p < 0.001) in the control group, but was unchanged (0.89 mL (blood)/100 g/min per -1 mmol(O2)/L, p = 0.289) in the patient group before CPAP treatment. The CBF response to hypoxia was significantly weaker in patients than in controls (p = 0.003). After 3 months of CPAP treatment the CBF response normalized, showing a significant increase during hypoxia (5.15 mL (blood)/100 g/min per -1 mmol(O2)/L, p < 0.001). There was no difference in CMRO2 or cerebral lactate concentration between patients and controls, and no effect of CPAP treatment. Conclusions Patients with OSA exhibit reduced CBF in response to hypoxia. CPAP treatment normalized these patterns.
Collapse
Affiliation(s)
- M L F Jensen
- Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Rigshospitalet, University of Copenhagen, Glostrup, Denmark
| | - M B Vestergaard
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Glostrup, Denmark
| | - P Tønnesen
- Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Rigshospitalet, University of Copenhagen, Glostrup, Denmark
| | - H B W Larsson
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Glostrup, Denmark
| | - Poul J Jennum
- Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Rigshospitalet, University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
28
|
Henriksen OM, Vestergaard MB, Lindberg U, Aachmann-Andersen NJ, Lisbjerg K, Christensen SJ, Rasmussen P, Olsen NV, Forman JL, Larsson HBW, Law I. Interindividual and regional relationship between cerebral blood flow and glucose metabolism in the resting brain. J Appl Physiol (1985) 2018; 125:1080-1089. [PMID: 29975605 DOI: 10.1152/japplphysiol.00276.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Studies of the resting brain measurements of cerebral blood flow (CBF) show large interindividual and regional variability, but the metabolic basis of this variability is not fully established. The aim of the present study was to reassess regional and interindividual relationships between cerebral perfusion and glucose metabolism in the resting brain. Regional quantitative measurements of CBF and cerebral metabolic rate of glucose (CMRglc) were obtained in 24 healthy young men using dynamic [15O]H2O and [18F]fluorodeoxyglucose positron emission tomography (PET). Magnetic resonance imaging measurements of global oxygen extraction fraction (gOEF) and metabolic rate of oxygen ([Formula: see text]) were obtained by combined susceptometry-based sagittal sinus oximetry and phase contrast mapping. No significant interindividual associations between global CBF, global CMRglc, and [Formula: see text] were observed. Linear mixed-model analysis showed a highly significant association of CBF with CMRglc regionally. Compared with neocortex significantly higher CBF values than explained by CMRglc were demonstrated in infratentorial structures, thalami, and mesial temporal cortex, and lower values were found in the striatum and cerebral white matter. The present study shows that absolute quantitative global CBF measurements appear not to be a valid surrogate measure of global cerebral glucose or oxygen consumption, and further demonstrates regionally variable relationship between perfusion and glucose metabolism in the resting brain that could suggest regional differences in energy substrate metabolism. NEW & NOTEWORTHY Using method-independent techniques the study cannot confirm direct interindividual correlations of absolute global values of perfusion with oxygen or glucose metabolism in the resting brain, and absolute global perfusion measurements appear not to be valid surrogate measures of cerebral metabolism. The ratio of both perfusion and oxygen delivery to glucose metabolism varies regionally, also when accounting for known methodological regional bias in quantification of glucose metabolism.
Collapse
Affiliation(s)
- Otto M Henriksen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen , Denmark
| | - Mark B Vestergaard
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Glostrup, Denmark
| | - Ulrich Lindberg
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Glostrup, Denmark
| | | | - Kristian Lisbjerg
- Department of Neuroanaesthesiology, The Neuroscience Centre, Rigshospitalet, Copenhagen , Denmark
| | - Søren J Christensen
- Department of Neuroanaesthesiology, The Neuroscience Centre, Rigshospitalet, Copenhagen , Denmark
| | - Peter Rasmussen
- Department of Neuroscience and Pharmacology, The Faculty of Health Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Niels V Olsen
- Department of Neuroanaesthesiology, The Neuroscience Centre, Rigshospitalet, Copenhagen , Denmark.,Department of Neuroscience and Pharmacology, The Faculty of Health Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Julie L Forman
- Section of Biostatistics, University of Copenhagen, The Faculty of Health Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Henrik B W Larsson
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Glostrup, Denmark.,Institute of Clinical Medicine, The Faculty of Health Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen , Denmark.,Institute of Clinical Medicine, The Faculty of Health Sciences, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
29
|
Rodríguez-Soto AE, Abdulmalik O, Langham MC, Schwartz N, Lee H, Wehrli FW. T 2 -prepared balanced steady-state free precession (bSSFP) for quantifying whole-blood oxygen saturation at 1.5T. Magn Reson Med 2018; 79:1893-1900. [PMID: 28718522 PMCID: PMC5771982 DOI: 10.1002/mrm.26835] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/06/2017] [Accepted: 06/21/2017] [Indexed: 11/11/2022]
Abstract
PURPOSE To establish a calibration equation to convert human blood T2 to the full range of oxygen saturation levels (HbO2 ) and physiologic hematocrit (Hct) values using a T2 -prepared balanced steady-state free precession sequence (T2 -SSFP) at 1.5T. METHODS Blood drawn from 10 healthy donors (29.1 ± 3.9 years old) was prepared into samples of varying HbO2 and Hct (n = 79), and imaged using T2 -SSFP sequence at 37°C and interrefocusing interval τ180 = 12 ms. The relationship between blood T2 , HbO2 , and Hct was established based on the model R2=R2,plasma+Hct (R2,RBC-R2,plasma)+k·Hct·(1-Hct)·(1-HbO2)2. Measured R2 and HbO2 levels were fit by the model yielding values of R2,plasma, R2,RBC, and k. T2 -SSFP and the established calibration equation were applied to extract HbO2 at the superior sagittal sinus (SSS) in vivo and were compared with susceptometry-based oximetry. RESULTS Constants derived from the fit were: k = 74.2 [s-1 ], R2,plasma = 1.5 [s-1 ], R2,RBC = 11.6 [s-1 ], the R2 of the fit was 0.95. Average HbO2 at the SSS in seven healthy volunteers was 65% ± 7% and 66% ± 7% via T2 - and susceptometry-based oximetry, respectively. Bland-Altman analysis indicated agreement between the two oximetric methods with no significant bias. CONCLUSION The calibration constants presented here should ensure improved accuracy for whole-blood oximetry based on T2 -SSFP at 1.5T. Magn Reson Med 79:1893-1900, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Ana E. Rodríguez-Soto
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | - Osheiza Abdulmalik
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Michael C. Langham
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | - Nadav Schwartz
- Maternal and Child Health Research Program, Department of OBGYN, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Hyunyeol Lee
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | - Felix W. Wehrli
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
30
|
Combining images and anatomical knowledge to improve automated vein segmentation in MRI. Neuroimage 2018; 165:294-305. [DOI: 10.1016/j.neuroimage.2017.10.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/19/2017] [Accepted: 10/23/2017] [Indexed: 11/20/2022] Open
|
31
|
Dragojević T, Hollmann JL, Tamborini D, Portaluppi D, Buttafava M, Culver JP, Villa F, Durduran T. Compact, multi-exposure speckle contrast optical spectroscopy (SCOS) device for measuring deep tissue blood flow. BIOMEDICAL OPTICS EXPRESS 2018; 9:322-334. [PMID: 29359106 PMCID: PMC5772585 DOI: 10.1364/boe.9.000322] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/14/2017] [Accepted: 12/14/2017] [Indexed: 05/19/2023]
Abstract
Speckle contrast optical spectroscopy (SCOS) measures absolute blood flow in deep tissue, by taking advantage of multi-distance (previously reported in the literature) or multi-exposure (reported here) approach. This method promises to use inexpensive detectors to obtain good signal-to-noise ratio, but it has not yet been implemented in a suitable manner for a mass production. Here we present a new, compact, low power consumption, 32 by 2 single photon avalanche diode (SPAD) array that has no readout noise, low dead time and has high sensitivity in low light conditions, such as in vivo measurements. To demonstrate the capability to measure blood flow in deep tissue, healthy volunteers were measured, showing no significant differences from the diffuse correlation spectroscopy. In the future, this array can be miniaturized to a low-cost, robust, battery operated wireless device paving the way for measuring blood flow in a wide-range of applications from sport injury recovery and training to, on-field concussion detection to wearables.
Collapse
Affiliation(s)
- Tanja Dragojević
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss, 3, Castelldefels (Barcelona), 08860,
Spain
| | - Joseph L. Hollmann
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss, 3, Castelldefels (Barcelona), 08860,
Spain
| | - Davide Tamborini
- Politecnico di Milano, Dipartimento di Elettronica, Informatione e Bioingegneria, Piazza Leonardo Da Vinci 32, Milan, 20133,
Italy
| | - Davide Portaluppi
- Politecnico di Milano, Dipartimento di Elettronica, Informatione e Bioingegneria, Piazza Leonardo Da Vinci 32, Milan, 20133,
Italy
| | - Mauro Buttafava
- Politecnico di Milano, Dipartimento di Elettronica, Informatione e Bioingegneria, Piazza Leonardo Da Vinci 32, Milan, 20133,
Italy
| | - Joseph P. Culver
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110,
USA
- Department of Physics, Washington University, St. Louis, MO 63130,
USA
| | - Federica Villa
- Politecnico di Milano, Dipartimento di Elettronica, Informatione e Bioingegneria, Piazza Leonardo Da Vinci 32, Milan, 20133,
Italy
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss, 3, Castelldefels (Barcelona), 08860,
Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08015 Barcelona,
Spain
| |
Collapse
|
32
|
Englund EK, Rodgers ZB, Langham MC, Mohler ER, Floyd TF, Wehrli FW. Simultaneous measurement of macro- and microvascular blood flow and oxygen saturation for quantification of muscle oxygen consumption. Magn Reson Med 2017; 79:846-855. [PMID: 28497497 DOI: 10.1002/mrm.26744] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/12/2017] [Accepted: 04/12/2017] [Indexed: 11/06/2022]
Abstract
PURPOSE To investigate the relationship between blood flow and oxygen consumption in skeletal muscle, a technique called "Velocity and Perfusion, Intravascular Venous Oxygen saturation and T2*" (vPIVOT) is presented. vPIVOT allows the quantification of feeding artery blood flow velocity, perfusion, draining vein oxygen saturation, and muscle T2*, all at 4-s temporal resolution. Together, the measurement of blood flow and oxygen extraction can yield muscle oxygen consumption ( V˙O2) via the Fick principle. METHODS In five subjects, vPIVOT-derived results were compared with those obtained from stand-alone sequences during separate ischemia-reperfusion paradigms to investigate the presence of measurement bias. Subsequently, in 10 subjects, vPIVOT was applied to assess muscle hemodynamics and V˙O2 following a bout of dynamic plantar flexion contractions. RESULTS From the ischemia-reperfusion paradigm, no significant differences were observed between data from vPIVOT and comparison sequences. After exercise, the macrovascular flow response reached a maximum 8 ± 3 s after relaxation; however, perfusion in the gastrocnemius muscle continued to rise for 101 ± 53 s. Peak V˙O2 calculated based on mass-normalized arterial blood flow or perfusion was 15.2 ± 6.7 mL O2 /min/100 g or 6.0 ± 1.9 mL O2 /min/100 g, respectively. CONCLUSIONS vPIVOT is a new method to measure blood flow and oxygen saturation, and therefore to quantify muscle oxygen consumption. Magn Reson Med 79:846-855, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Erin K Englund
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zachary B Rodgers
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael C Langham
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Emile R Mohler
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Thomas F Floyd
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York, USA
| | - Felix W Wehrli
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
33
|
McDaniel P, Bilgic B, Fan A, Stout J, Adalsteinsson E. Mitigation of partial volume effects in susceptibility-based oxygenation measurements by joint utilization of magnitude and phase (JUMP). Magn Reson Med 2017; 77:1713-1727. [PMID: 27059521 PMCID: PMC5052095 DOI: 10.1002/mrm.26227] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 02/25/2016] [Accepted: 03/04/2016] [Indexed: 01/31/2023]
Abstract
PURPOSE Susceptibility-based blood oxygenation measurements in small vessels of the brain derive from gradient echo (GRE) phase and can provide localized assessment of brain function and pathology. However, when vessel diameter becomes smaller than the acquisition voxel size, partial volume effects compromise these measurements. The purpose of this study was to develop a technique to improve the reliability of vessel oxygenation estimates in the presence of partial volume effects. METHODS Intravoxel susceptibility variations are present when a vessel and parenchyma experience partial volume effects, modifying the voxel's GRE phase signal and attenuating the GRE magnitude signal. Using joint utilization of magnitude and phase (JUMP), both vessel susceptibility and voxel partial volume fraction can be estimated, providing measurements of venous oxygen saturation ( Yv) in straight, nearly vertical vessels that have improved robustness to partial volume effects. RESULTS JUMP was demonstrated by estimating vessel Yv in numerical and in vivo experiments. Deviations from ground truth of Yv measurements in vessels tilted up to 30° from B0 were reduced by over 50% when using JUMP compared with phase-only techniques. CONCLUSION JUMP exploits both magnitude and phase data in GRE imaging to mitigate partial volume effects in estimation of vessel oxygenation. Magn Reson Med 77:1713-1727, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Patrick McDaniel
- Dept of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Berkin Bilgic
- A. A. Martinos Center for Biomedical Imaging, Dept of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Audrey Fan
- Richard M. Lucas Center for Imaging, Stanford University, Stanford, CA, USA
| | - Jeffrey Stout
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| | - Elfar Adalsteinsson
- Dept of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| |
Collapse
|
34
|
Wehrli FW, Fan AP, Rodgers ZB, Englund EK, Langham MC. Susceptibility-based time-resolved whole-organ and regional tissue oximetry. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3495. [PMID: 26918319 PMCID: PMC5001941 DOI: 10.1002/nbm.3495] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/18/2015] [Accepted: 01/06/2016] [Indexed: 05/15/2023]
Abstract
The magnetism of hemoglobin - being paramagnetic in its deoxy and diamagnetic in its oxy state - offers unique opportunities to probe oxygen metabolism in blood and tissues. The magnetic susceptibility χ of blood scales linearly with blood oxygen saturation, which can be obtained by measuring the magnetic field ΔB of the intravascular MR signal relative to tissue. In contrast to χ, the induced field ΔB is non-local. Therefore, to obtain the intravascular susceptibility Δχ relative to adjoining tissue from the measured ΔB demands solution of an inverse problem. Fortunately, for ellipsoidal structures, to which a straight, cylindrically shaped blood vessel segment conforms, the solution is trivial. The article reviews the principle of MR susceptometry-based blood oximetry. It then discusses applications for quantification of whole-brain oxygen extraction - typically on the basis of a measurement in the superior sagittal sinus - and, in conjunction with total cerebral blood flow, the cerebral metabolic rate of oxygen (CMRO2 ). By simultaneously measuring flow and venous oxygen saturation (SvO2 ) a temporal resolution of a few seconds can be achieved, allowing the study of the response to non-steady-state challenges such as volitional apnea. Extensions to regional measurements in smaller cerebral veins are also possible, as well as voxelwise quantification of venous blood saturation in cerebral veins accomplished by quantitative susceptibility mapping (QSM) techniques. Applications of susceptometry-based oximetry to studies of metabolic and degenerative disorders of the brain are reviewed. Lastly, the technique is shown to be applicable to other organ systems such as the extremities using SvO2 as a dynamic tracer to monitor the kinetics of the microvascular response to induced ischemia. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Felix W Wehrli
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania
| | - Audrey P Fan
- Lucas Center for Imaging, Department of Radiology, Stanford University, James H. Clark Center, 318 Campus Drive, Suite S170, Stanford, CA 94305
| | - Zachary B Rodgers
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania
| | - Erin K Englund
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania
| | - Michael C Langham
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania
| |
Collapse
|
35
|
Cao W, Chang YV, Englund EK, Song HK, Barhoum S, Rodgers ZB, Langham MC, Wehrli FW. High-speed whole-brain oximetry by golden-angle radial MRI. Magn Reson Med 2017; 79:217-223. [PMID: 28342212 DOI: 10.1002/mrm.26666] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 01/18/2017] [Accepted: 02/11/2017] [Indexed: 11/08/2022]
Abstract
PURPOSE To determine whole-brain cerebral metabolic rate of oxygen (CMRO2 ), an improved imaging approach, based on radial encoding, termed radial OxFlow (rOxFlow), was developed to simultaneously quantify draining vein venous oxygen saturation (SvO2 ) and total cerebral blood flow (tCBF). METHODS To evaluate the efficiency and precision of the rOxFlow sequence, 10 subjects were studied during a paradigm of repeated breath-holds with both rOxFlow and Cartesian OxFlow (cOxFlow) sequences. CMRO2 was calculated at baseline from OxFlow-measured data assuming an arterial O2 saturation of 97%, and the SvO2 and tCBF breath-hold responses were quantified. RESULTS Average neurometabolic-vascular parameters across the 10 subjects for cOxFlow and rOxFlow were, respectively: SvO2 (%) baseline: 64.6 ± 8.0 versus 64.2 ± 6.6; SvO2 peak: 70.5 ± 8.5 versus 72.6 ± 5.4; tCBF (mL/min/100 g) baseline: 39.2 ± 3.8 versus 40.6 ± 8.0; tCBF peak: 53.2 ± 5.1 versus 56.1 ± 11.7; CMRO2 (µmol O2 /min/100 g) baseline: 111.5 ± 26.8 versus 120.1 ± 19.6. The above measures were not significantly different between sequences (P > 0.05). CONCLUSION There was good agreement between the two methods in terms of the physiological responses measured. Comparing the two, rOxFlow provided higher temporal resolution and greater flexibility for reconstruction while maintaining high SNR. Magn Reson Med 79:217-223, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Wen Cao
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yulin V Chang
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Erin K Englund
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hee Kwon Song
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Suliman Barhoum
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zachary B Rodgers
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael C Langham
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Felix W Wehrli
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
36
|
Lee H, Langham MC, Rodriguez-Soto AE, Wehrli FW. Multiplexed MRI methods for rapid estimation of global cerebral metabolic rate of oxygen consumption. Neuroimage 2017; 149:393-403. [PMID: 28179195 DOI: 10.1016/j.neuroimage.2017.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/17/2017] [Accepted: 02/04/2017] [Indexed: 10/20/2022] Open
Abstract
The global cerebral metabolic rate of oxygen (CMRO2), which reflects metabolic activity of the brain under various physiologic conditions, can be quantified using a method, referred to as 'OxFlow', which simultaneously measures hemoglobin oxygen saturation in a draining vein (Yv) and total cerebral blood flow (tCBF). Conventional OxFlow (Conv-OxFlow) entails four interleaves incorporated in a single pulse sequence - two for phase-contrast based measurement of tCBF in the supplying arteries of the neck, and two to measure the intra- to extravascular phase difference in the superior sagittal sinus to derive Yv [Jain et al., JCBFM 2010]. However, this approach limits achievable temporal resolution thus precluding capture of rapid changes of brain metabolic states such as the response to apneic stimuli. Here, we developed a time-efficient, multiplexed OxFlow method and evaluated its potential for measuring dynamic alterations in global CMRO2 during a breath-hold challenge. Two different implementations of multiplexed OxFlow were investigated: 1) simultaneous-echo-refocusing based OxFlow (SER-OxFlow) and 2) simultaneous-multi-slice imaging-based dual-band OxFlow (DB-OxFlow). The two sequences were implemented on 3T scanners (Siemens TIM Trio and Prisma) and their performance was evaluated in comparison to Conv-OxFlow in ten healthy subjects for baseline CMRO2 quantification. Comparison of measured parameters (Yv, tCBF, CMRO2) revealed no significant bias of SER-OxFlow and DB-OxFlow, with respect to the reference Conv-OxFlow while improving temporal resolution two-fold (12.5 versus 25s). Further acceleration shortened scan time to 8 and 6s for SER and DB-OxFlow, respectively, for time-resolved CMRO2 measurement. The two sequences were able of capturing smooth transitions of Yv, tCBF, and CMRO2 over the time course consisting of 30s of normal breathing, 30s of volitional apnea, and 90s of recovery. While both SER- and DB-OxFlow techniques provide significantly improved temporal resolution (by a factor of 3 - 4 relative to Conv-OxFlow), DB-OxFlow was found to be superior for the study of short physiologic stimuli.
Collapse
Affiliation(s)
- Hyunyeol Lee
- Laboratory for Structural, Physiologic, and Functional Imaging, Department of Radiology, University of Pennsylvania Medical Center, 1 Founders Building, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Michael C Langham
- Laboratory for Structural, Physiologic, and Functional Imaging, Department of Radiology, University of Pennsylvania Medical Center, 1 Founders Building, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Ana E Rodriguez-Soto
- Laboratory for Structural, Physiologic, and Functional Imaging, Department of Radiology, University of Pennsylvania Medical Center, 1 Founders Building, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Felix W Wehrli
- Laboratory for Structural, Physiologic, and Functional Imaging, Department of Radiology, University of Pennsylvania Medical Center, 1 Founders Building, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
37
|
Peng SL, Ravi H, Sheng M, Thomas BP, Lu H. Searching for a truly "iso-metabolic" gas challenge in physiological MRI. J Cereb Blood Flow Metab 2017; 37:715-725. [PMID: 26980756 PMCID: PMC5381460 DOI: 10.1177/0271678x16638103] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 01/14/2016] [Accepted: 01/25/2016] [Indexed: 11/16/2022]
Abstract
Hypercapnia challenge (e.g. inhalation of CO2) has been used in calibrated fMRI as well as in the mapping of vascular reactivity in cerebrovascular diseases. An important assumption underlying these measurements is that CO2 is a pure vascular challenge but does not alter neural activity. However, recent reports have suggested that CO2 inhalation may suppress neural activity and brain metabolic rate. Therefore, the goal of this study is to propose and test a gas challenge that is truly "iso-metabolic," by adding a hypoxic component to the hypercapnic challenge, since hypoxia has been shown to enhance cerebral metabolic rate of oxygen (CMRO2). Measurement of global CMRO2 under various gas challenge conditions revealed that, while hypercapnia (P = 0.002) and hypoxia (P = 0.002) individually altered CMRO2 (by -7.6 ± 1.7% and 16.7 ± 4.1%, respectively), inhalation of hypercapnic-hypoxia gas (5% CO2/13% O2) did not change brain metabolism (CMRO2 change: 1.5 ± 3.9%, P = 0.92). Moreover, cerebral blood flow response to the hypercapnic-hypoxia challenge (in terms of % change per mmHg CO2 change) was even greater than that to hypercapnia alone (P = 0.007). Findings in this study suggest that hypercapnic-hypoxia gas challenge may be a useful maneuver in physiological MRI as it preserves vasodilatory response yet does not alter brain metabolism.
Collapse
Affiliation(s)
- Shin-Lei Peng
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, USA
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, USA
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Harshan Ravi
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, USA
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, USA
- Department of Bioengineering, UT Arlington, Arlington, USA
| | - Min Sheng
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, USA
| | - Binu P Thomas
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, USA
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, USA
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, USA
| |
Collapse
|
38
|
Rodgers ZB, Detre JA, Wehrli FW. MRI-based methods for quantification of the cerebral metabolic rate of oxygen. J Cereb Blood Flow Metab 2016; 36:1165-85. [PMID: 27089912 PMCID: PMC4929705 DOI: 10.1177/0271678x16643090] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/22/2016] [Indexed: 11/16/2022]
Abstract
The brain depends almost entirely on oxidative metabolism to meet its significant energy requirements. As such, the cerebral metabolic rate of oxygen (CMRO2) represents a key measure of brain function. Quantification of CMRO2 has helped elucidate brain functional physiology and holds potential as a clinical tool for evaluating neurological disorders including stroke, brain tumors, Alzheimer's disease, and obstructive sleep apnea. In recent years, a variety of magnetic resonance imaging (MRI)-based CMRO2 quantification methods have emerged. Unlike positron emission tomography - the current "gold standard" for measurement and mapping of CMRO2 - MRI is non-invasive, relatively inexpensive, and ubiquitously available in modern medical centers. All MRI-based CMRO2 methods are based on modeling the effect of paramagnetic deoxyhemoglobin on the magnetic resonance signal. The various methods can be classified in terms of the MRI contrast mechanism used to quantify CMRO2: T2*, T2', T2, or magnetic susceptibility. This review article provides an overview of MRI-based CMRO2 quantification techniques. After a brief historical discussion motivating the need for improved CMRO2 methodology, current state-of-the-art MRI-based methods are critically appraised in terms of their respective tradeoffs between spatial resolution, temporal resolution, and robustness, all of critical importance given the spatially heterogeneous and temporally dynamic nature of brain energy requirements.
Collapse
Affiliation(s)
- Zachary B Rodgers
- University of Pennsylvania Medical Center, Philadelphia, PA, USA Laboratory for Structural, Physiologic, and Functional Imaging, Department of Radiology, Philadelphia, PA, USA
| | - John A Detre
- University of Pennsylvania Medical Center, Philadelphia, PA, USA Center for Functional Neuroimaging, Department of Neurology, Philadelphia, PA, USA
| | - Felix W Wehrli
- University of Pennsylvania Medical Center, Philadelphia, PA, USA
| |
Collapse
|
39
|
Vestergaard MB, Lindberg U, Aachmann-Andersen NJ, Lisbjerg K, Christensen SJ, Law I, Rasmussen P, Olsen NV, Larsson HBW. Acute hypoxia increases the cerebral metabolic rate - a magnetic resonance imaging study. J Cereb Blood Flow Metab 2016; 36:1046-58. [PMID: 26661163 PMCID: PMC4904346 DOI: 10.1177/0271678x15606460] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/10/2015] [Indexed: 11/15/2022]
Abstract
The aim of the present study was to examine changes in cerebral metabolism by magnetic resonance imaging of healthy subjects during inhalation of 10% O2 hypoxic air. Hypoxic exposure elevates cerebral perfusion, but its effect on energy metabolism has been less investigated. Magnetic resonance imaging techniques were used to measure global cerebral blood flow and the venous oxygen saturation in the sagittal sinus. Global cerebral metabolic rate of oxygen was quantified from cerebral blood flow and arteriovenous oxygen saturation difference. Concentrations of lactate, glutamate, N-acetylaspartate, creatine and phosphocreatine were measured in the visual cortex by magnetic resonance spectroscopy. Twenty-three young healthy males were scanned for 60 min during normoxia, followed by 40 min of breathing hypoxic air. Inhalation of hypoxic air resulted in an increase in cerebral blood flow of 15.5% (p = 0.058), and an increase in cerebral metabolic rate of oxygen of 8.5% (p = 0.035). Cerebral lactate concentration increased by 180.3% ([Formula: see text]), glutamate increased by 4.7% ([Formula: see text]) and creatine and phosphocreatine decreased by 15.2% (p[Formula: see text]). The N-acetylaspartate concentration was unchanged (p = 0.36). In conclusion, acute hypoxia in healthy subjects increased perfusion and metabolic rate, which could represent an increase in neuronal activity. We conclude that marked changes in brain homeostasis occur in the healthy human brain during exposure to acute hypoxia.
Collapse
Affiliation(s)
- Mark B Vestergaard
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Glostrup, Denmark
| | - Ulrich Lindberg
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Glostrup, Denmark
| | - Niels Jacob Aachmann-Andersen
- Department of Neuroscience and Pharmacology, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Lisbjerg
- Department of Neuroscience and Pharmacology, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Just Christensen
- Department of Neuroscience and Pharmacology, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ian Law
- Institute of Clinical Medicine, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Peter Rasmussen
- Department of Neuroscience and Pharmacology, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels V Olsen
- Department of Neuroscience and Pharmacology, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark Department of Neuroanaesthesia, The Neuroscience Centre, Rigshospitalet, Copenhagen, Denmark
| | - Henrik B W Larsson
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Glostrup, Denmark Institute of Clinical Medicine, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
40
|
Zhang J, Zhou D, Nguyen TD, Spincemaille P, Gupta A, Wang Y. Cerebral metabolic rate of oxygen (CMRO2) mapping with hyperventilation challenge using quantitative susceptibility mapping (QSM). Magn Reson Med 2016; 77:1762-1773. [DOI: 10.1002/mrm.26253] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 03/06/2016] [Accepted: 03/31/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Jingwei Zhang
- Department of Biomedical EngineeringCornell University301 Weill HallIthaca New York, USA
- Department of RadiologyWeill Cornell Medical College515 East 71st St, Suite 104New York, USA
| | - Dong Zhou
- Department of RadiologyWeill Cornell Medical College515 East 71st St, Suite 104New York, USA
| | - Thanh D. Nguyen
- Department of RadiologyWeill Cornell Medical College515 East 71st St, Suite 104New York, USA
| | - Pascal Spincemaille
- Department of RadiologyWeill Cornell Medical College515 East 71st St, Suite 104New York, USA
| | - Ajay Gupta
- Department of RadiologyWeill Cornell Medical College515 East 71st St, Suite 104New York, USA
| | - Yi Wang
- Department of Biomedical EngineeringCornell University301 Weill HallIthaca New York, USA
- Department of RadiologyWeill Cornell Medical College515 East 71st St, Suite 104New York, USA
| |
Collapse
|
41
|
Rodgers ZB, Leinwand SE, Keenan BT, Kini LG, Schwab RJ, Wehrli FW. Cerebral metabolic rate of oxygen in obstructive sleep apnea at rest and in response to breath-hold challenge. J Cereb Blood Flow Metab 2016; 36:755-67. [PMID: 26661146 PMCID: PMC4821016 DOI: 10.1177/0271678x15605855] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/15/2015] [Indexed: 01/06/2023]
Abstract
Obstructive sleep apnea (OSA) is associated with extensive neurologic comorbidities. It is hypothesized that the repeated nocturnal apneas experienced in patients with OSA may inhibit the normal apneic response, resulting in hypoxic brain injury and subsequent neurologic dysfunction. In this study, we applied the recently developedOxFlowMRI method for rapid quantification of cerebral metabolic rate of oxygen (CMRO2) during a volitional apnea paradigm. MRI data were analyzed in 11 OSA subjects and 10 controls (mean ± SD apnea-hypopnea index (AHI): 43.9 ± 18.1 vs. 2.9 ± 1.6 events/hour,P < 0.0001; age: 53.8 ± 8.2 vs. 45.3 ± 8.5 years,P = 0.027; BMI: 36.6 ± 4.4 vs. 31.9 ± 2.2 kg/m(2),P = 0.0064). Although total cerebral blood flow and arteriovenous oxygen difference were not significantly different between apneics and controls (P > 0.05), apneics displayed reduced baseline CMRO2(117.4 ± 37.5 vs. 151.6 ± 29.4 µmol/100 g/min,P = 0.013). In response to apnea, CMRO2decreased more in apneics than controls (-10.9 ± 8.8 % vs. -4.0 ± 6.7 %,P = 0.036). In contrast, group differences in flow-based cerebrovascular reactivity were not significant. Results should be interpreted with caution given the small sample size, and future studies with larger independent samples should examine the observed associations, including potential independent effects of age or BMI. Overall, these data suggest that dysregulation of the apneic response may be a mechanism for OSA-associated neuropathology.
Collapse
Affiliation(s)
- Zachary B Rodgers
- Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, PA, USA
| | - Sarah E Leinwand
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania Medical Center, Philadelphia, PA, USA
| | - Brendan T Keenan
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lohith G Kini
- Center for Neuroengineering and Therapeutics, Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard J Schwab
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania Medical Center, Philadelphia, PA, USA
| | - Felix W Wehrli
- Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, PA, USA
| |
Collapse
|
42
|
Shu CY, Sanganahalli BG, Coman D, Herman P, Hyder F. New horizons in neurometabolic and neurovascular coupling from calibrated fMRI. PROGRESS IN BRAIN RESEARCH 2016; 225:99-122. [PMID: 27130413 DOI: 10.1016/bs.pbr.2016.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neurovascular coupling relates changes in neuronal activity to constriction/dilation of microvessels. However neurometabolic coupling, which is less well known, relates alterations in neuronal activity with metabolic demands. The link between the blood oxygenation level dependent (BOLD) signal and neural activity opened doors for functional MRI (fMRI) to be a powerful neuroimaging tool in the neurosciences. But due to the complex makeup of BOLD contrast, researchers began to investigate the relationship between BOLD signal and blood flow and/or volume changes during functional brain activation, which together provided the tools to measure oxygen consumption on the basis of the biophysical model of BOLD. This field is called calibrated fMRI, thereby allowed probing of both neurometabolic and neurovascular couplings for a variety of health conditions in animals and humans. Calibrated fMRI may provide brain disorder biomarkers that could be used for monitoring effective therapies.
Collapse
Affiliation(s)
- C Y Shu
- Yale University, New Haven, CT, United States
| | - B G Sanganahalli
- Yale University, New Haven, CT, United States; Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, United States
| | - D Coman
- Yale University, New Haven, CT, United States; Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, United States
| | - P Herman
- Yale University, New Haven, CT, United States; Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, United States
| | - F Hyder
- Yale University, New Haven, CT, United States; Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, United States.
| |
Collapse
|
43
|
Shu CY, Herman P, Coman D, Sanganahalli BG, Wang H, Juchem C, Rothman DL, de Graaf RA, Hyder F. Brain region and activity-dependent properties of M for calibrated fMRI. Neuroimage 2015; 125:848-856. [PMID: 26529646 DOI: 10.1016/j.neuroimage.2015.10.083] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/28/2015] [Accepted: 10/30/2015] [Indexed: 11/28/2022] Open
Abstract
Calibrated fMRI extracts changes in oxidative energy demanded by neural activity based on hemodynamic and metabolic dependencies of the blood oxygenation level-dependent (BOLD) response. This procedure requires the parameter M, which is determined from the dynamic range of the BOLD signal between deoxyhemoglobin (paramagnetic) and oxyhemoglobin (diamagnetic). Since it is unclear if the range of M-values in human calibrated fMRI is due to regional/state differences, we conducted a 9.4T study to measure M-values across brain regions in deep (α-chloralose) and light (medetomidine) anesthetized rats, as verified by electrophysiology. Because BOLD signal is captured differentially by gradient-echo (R2*) and spin-echo (R2) relaxation rates, we measured M-values by the product of the fMRI echo time and R2' (i.e., the reversible magnetic susceptibility component), which is given by the absolute difference between R2* and R2. While R2' mapping was shown to be dependent on the k-space sampling method used, at nominal spatial resolutions achieved at high magnetic field of 9.4T the M-values were quite homogenous across cortical gray matter. However cortical M-values varied in relation to neural activity between brain states. The findings from this study could improve precision of future calibrated fMRI studies by focusing on the global uniformity of M-values in gray matter across different resting activity levels.
Collapse
Affiliation(s)
- Christina Y Shu
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| | - Peter Herman
- Department of Radiology and Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
| | - Daniel Coman
- Department of Radiology and Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
| | - Basavaraju G Sanganahalli
- Department of Radiology and Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
| | - Helen Wang
- Department of Radiology and Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
| | - Christoph Juchem
- Department of Radiology and Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, USA; Department of Neurology, Yale University, New Haven, CT, USA
| | - Douglas L Rothman
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
| | - Robin A de Graaf
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
| | - Fahmeed Hyder
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, USA.
| |
Collapse
|
44
|
Method for rapid MRI quantification of global cerebral metabolic rate of oxygen. J Cereb Blood Flow Metab 2015; 35:1616-22. [PMID: 25966941 PMCID: PMC4640312 DOI: 10.1038/jcbfm.2015.96] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/08/2015] [Accepted: 04/13/2015] [Indexed: 11/08/2022]
Abstract
A recently reported quantitative magnetic resonance imaging (MRI) method denoted OxFlow has been shown to be able to quantify whole-brain cerebral metabolic rate of oxygen (CMRO2) by simultaneously measuring oxygen saturation (SvO2) in the superior sagittal sinus and cerebral blood flow (CBF) in the arteries feeding the brain in 30 seconds, which is adequate for measurement at baseline but not necessarily in response to neuronal activation. Here, we present an accelerated version of the method (referred to as F-OxFlow) that quantifies CMRO2 in 8 seconds scan time under full retention of the parent method's capabilities and compared it with its predecessor at baseline in 10 healthy subjects. Results indicate excellent agreement between both sequences, with mean bias of 2.2% (P=0.18, two-tailed t-test), 3.4% (P=0.08, two-tailed t-test), and 2.0% (P=0.56, two-tailed t-test) for SvO2, CBF, and CMRO2, respectively. F-OxFlow's potential to monitor dynamic changes in SvO2, CBF, and CMRO2 is illustrated in a paradigm of volitional apnea applied to five of the study subjects. The sequence captured an average increase in SvO2, CBF, and CMRO2 of 10.1±2.5%, 43.2±9.2%, and 7.1±2.2%, respectively, in good agreement with literature values. The method may therefore be suited for monitoring alterations in CBF and SvO2 in response to neurovascular stimuli.
Collapse
|
45
|
Noninvasive real-time visualization of multiple cerebral hemodynamic parameters in whole mouse brains using five-dimensional optoacoustic tomography. J Cereb Blood Flow Metab 2015; 35:531-5. [PMID: 25586142 PMCID: PMC4420890 DOI: 10.1038/jcbfm.2014.249] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 11/24/2014] [Accepted: 12/11/2014] [Indexed: 11/08/2022]
Abstract
Current functional neuroimaging methods are not adequate for high-resolution whole-brain visualization of neural activity in real time. Here, we show imaging of fast hemodynamic changes in deep mouse brain using fully noninvasive acquisition of five-dimensional optoacoustic data from animals subjected to oxygenation stress. Multispectral video-rate acquisition of three-dimensional tomographic data enables simultaneous label-free assessment of multiple brain hemodynamic parameters, including blood oxygenation, total hemoglobin, cerebral blood volume, oxygenized and deoxygenized hemoglobin, in real time. The unprecedented results indicate that the proposed methodology may serve as a powerful complementary, and potentially superior, method for functional neuroimaging studies in rodents.
Collapse
|
46
|
Zhou Y, Rodgers ZB, Kuo AH. Cerebrovascular reactivity measured with arterial spin labeling and blood oxygen level dependent techniques. Magn Reson Imaging 2015; 33:566-76. [PMID: 25708263 DOI: 10.1016/j.mri.2015.02.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 01/17/2015] [Accepted: 02/16/2015] [Indexed: 10/24/2022]
Abstract
PURPOSE To compare cerebrovascular reactivity (CVR) quantified with pseudo-continuous arterial spin labeling (pCASL) and blood oxygen level dependent (BOLD) fMRI techniques. MATERIALS AND METHODS Sixteen healthy volunteers (age: 37.8±14.3years; 6 women and 10 men; education attainment: 17±2.1years) were recruited and completed a 5% CO2 gas-mixture breathing paradigm at 3T field strength. ASL and BOLD images were acquired for CVR determination assuming that mild hypercapnia does not affect the cerebral metabolic rate of oxygen. Both CVR quantifications were derived as the ratio of the fractional cerebral blood flow (CBF) or BOLD signal change over the change in end-tidal CO2 pressure. RESULTS The absolute CBF, BOLD and CVR measures were consistent with literature values. CBF derived CVR was 5.11±0.87%/mmHg in gray matter (GM) and 4.64±0.37%/mmHg in parenchyma. BOLD CVR was 0.23±0.04%/mmHg and 0.22±0.04%/mmHg for GM and parenchyma respectively. The most significant correlations between BOLD and CBF-based CVRs were also in GM structures, with greater vascular response in occipital cortex than in frontal and parietal lobes (6.8%/mmHg versus 4.5%/mmHg, 50% greater). Parenchymal BOLD CVR correlated significantly with the fractional change in CBF in response to hypercapnia (r=0.61, P=0.01), suggesting the BOLD response to be significantly flow driven. GM CBF decreased with age in room air (-5.58mL/100g/min per decade for GM; r=-0.51, P=0.05), but there was no association of CBF with age during hypercapnia. A trend toward increased pCASL CVR with age was observed, scaling as 0.64%/mmHg per decade for GM. CONCLUSION Consistent with previously reported CVR values, our results suggest that BOLD and CBF CVR techniques are complementary to each other in evaluating neuronal and vascular underpinning of hemodynamic processes.
Collapse
Affiliation(s)
- Yongxia Zhou
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104.
| | - Zachary B Rodgers
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Anderson H Kuo
- Department of Radiology, University of Texas South Medical Center, San Antonio, TX
| |
Collapse
|
47
|
Xu F, Liu P, Pekar JJ, Lu H. Does acute caffeine ingestion alter brain metabolism in young adults? Neuroimage 2015; 110:39-47. [PMID: 25644657 DOI: 10.1016/j.neuroimage.2015.01.046] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 12/16/2014] [Accepted: 01/26/2015] [Indexed: 12/23/2022] Open
Abstract
Caffeine, as the most commonly used stimulant drug, improves vigilance and, in some cases, cognition. However, the exact effect of caffeine on brain activity has not been fully elucidated. Because caffeine has a pronounced vascular effect which is independent of any neural effects, many hemodynamics-based methods such as fMRI cannot be readily applied without a proper calibration. The scope of the present work is two-fold. In Study 1, we used a recently developed MRI technique to examine the time-dependent changes in whole-brain cerebral metabolic rate of oxygen (CMRO2) following the ingestion of 200mg caffeine. It was found that, despite a pronounced decrease in CBF (p<0.001), global CMRO2 did not change significantly. Instead, the oxygen extraction fraction (OEF) was significantly elevated (p=0.002) to fully compensate for the reduced blood supply. Using the whole-brain finding as a reference, we aim to investigate whether there are any regional differences in the brain's response to caffeine. Therefore, in Study 2, we examined regional heterogeneities in CBF changes following the same amount of caffeine ingestion. We found that posterior brain regions such as posterior cingulate cortex and superior temporal regions manifested a slower CBF reduction, whereas anterior brain regions including dorsolateral prefrontal cortex and medial frontal cortex showed a faster rate of decline. These findings have a few possible explanations. One is that caffeine may result in a region-dependent increase or decrease in brain activity, resulting in an unaltered average brain metabolic rate. The other is that caffeine's effect on vasculature may be region-specific. Plausibility of these explanations is discussed in the context of spatial distribution of the adenosine receptors.
Collapse
Affiliation(s)
- Feng Xu
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA; The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University, 601 North Caroline Street, MD 21287, USA; F. M Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N Broadway, Baltimore, MD 21205, USA
| | - Peiying Liu
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA; The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University, 601 North Caroline Street, MD 21287, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - James J Pekar
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University, 601 North Caroline Street, MD 21287, USA; F. M Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N Broadway, Baltimore, MD 21205, USA
| | - Hanzhang Lu
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA; The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University, 601 North Caroline Street, MD 21287, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA.
| |
Collapse
|
48
|
Mathewson KW, Haykowsky MJ, Thompson RB. Feasibility and reproducibility of measurement of whole muscle blood flow, oxygen extraction, and VO2 with dynamic exercise using MRI. Magn Reson Med 2014; 74:1640-51. [PMID: 25533515 DOI: 10.1002/mrm.25564] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/17/2014] [Accepted: 11/14/2014] [Indexed: 11/08/2022]
Abstract
PURPOSE Develop an MRI method to estimate skeletal muscle oxygen consumption (VO2 ) with dynamic exercise using simultaneous measurement of venous blood flow (VBF) and venous oxygen saturation (SvO2 ). METHODS Real-time imaging of femoral VBF using a complex-difference method was interleaved with imaging of venous hemoglobin oxygen saturation (SvO2 ) using magnetic susceptometry to estimate muscle VO2 (Fick principle). Nine healthy subjects performed repeated 5-watt knee-extension (quadriceps) exercise within the bore of a 1.5 Tesla MRI scanner, for test/re-test comparison. VBF, SvO2 , and derived VO2 were estimated at baseline and immediately (<1 s) postexercise and every 2.4 s for 4 min. RESULTS Quadriceps muscle mass was 2.43 ± 0.31 kg. Mean baseline values were VBF = 0.13 ± 0.06 L/min/kg, SvO2 = 69.4 ± 10.1%, and VO2 = 6.8 ± 4.1 mL/min/kg. VBF, SvO2 , and VO2 values from peak exercise had good agreement between trials (VBF = 0.9 ± 0.1 versus 1.0 ± 0.1 L/min/kg, R(2) = 0.83, CV = 7.6%; SvO2 = 43.2 ± 13.5 versus 40.9 ± 13.1%, R(2) = 0.88, CV = 15.6%; VO2 = 95.7 ± 18.0 versus 108.9 ± 17.3 mL/min/kg, R(2) = 0.88, CV = 12.3%), as did the VO2 recovery time constant (26.1 ± 3.5 versus 26.0 ± 4.0 s, R(2) = 0.85, CV = 6.0%). CV = coefficient of variation. CONCLUSION Rapid imaging of VBF and SvO2 for the estimation of whole muscle VO2 is compatible with dynamic exercise for the estimation of peak values and recovery dynamics following exercise with good reproducibility.
Collapse
Affiliation(s)
- Kory W Mathewson
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Mark J Haykowsky
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Richard B Thompson
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
49
|
Rodgers ZB, Englund EK, Langham MC, Magland JF, Wehrli FW. Rapid T2- and susceptometry-based CMRO2 quantification with interleaved TRUST (iTRUST). Neuroimage 2014; 106:441-50. [PMID: 25449740 DOI: 10.1016/j.neuroimage.2014.10.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 10/25/2014] [Accepted: 10/28/2014] [Indexed: 11/16/2022] Open
Abstract
Susceptometry-based oximetry (SBO) and T2-relaxation-under-spin-tagging (TRUST) are two promising methods for quantifying the cerebral metabolic rate of oxygen (CMRO2), a critical parameter of brain function. We present a combined method, interleaved TRUST (iTRUST), which achieves rapid, simultaneous quantification of both susceptometry- and T2-based CMRO2 via insertion of a flow-encoded, dual-echo gradient-recalled echo (OxFlow) module within the T1 recovery portion of the TRUST sequence. In addition to allowing direct comparison between SBO- and TRUST-derived venous oxygen saturation (Yv) values, iTRUST substantially improves TRUST temporal resolution for CMRO2 quantification and obviates the need for a separate blood flow measurement following TRUST acquisition. iTRUST was compared directly to TRUST and OxFlow alone in three resting subjects at baseline, exhibiting close agreement with the separate techniques and comparable precision. These baseline data as well as simulation results support the use of two instead of the traditional four T2 preparation times for T2 fitting, allowing simultaneous quantification of susceptometry- and T2-based Yv (and CMRO2) with three- and six-second temporal resolution, respectively. In 10 young healthy subjects, iTRUST was applied during a 5% CO2 gas mixture-breathing paradigm. T2-based Yv values were lower at baseline relative to susceptometry (62.3 ± 3.1 vs. 66.7 ± 5.1 %HbO2, P<0.05), but increased more in response to hypercapnia. As a result, T2-based CMRO2 decreased from 140.4 ± 9.7 to 120.0 ± 9.5 μMol/100g/min, a significant -14.6 ± 3.6% response (P < 0.0001), whereas susceptometry-based CMRO2 changed insignificantly from 123.4 ± 18.7 to 127.9 ± 25.7, a 3.3 ± 9.7% response (P = 0.31). These differing results are in accord with previous studies applying the parent OxFlow or TRUST sequences individually, thus supporting the reliability of iTRUST but also strongly suggesting that a systematic bias exists between the susceptometry- and T2-based Yv quantification techniques.
Collapse
Affiliation(s)
- Zachary B Rodgers
- Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, PA, USA
| | - Erin K Englund
- Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, PA, USA
| | - Michael C Langham
- Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, PA, USA
| | - Jeremy F Magland
- Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, PA, USA
| | - Felix W Wehrli
- Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, PA, USA.
| |
Collapse
|
50
|
Fan AP, Evans KC, Stout JN, Rosen BR, Adalsteinsson E. Regional quantification of cerebral venous oxygenation from MRI susceptibility during hypercapnia. Neuroimage 2014; 104:146-55. [PMID: 25300201 DOI: 10.1016/j.neuroimage.2014.09.068] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/18/2014] [Accepted: 09/30/2014] [Indexed: 12/27/2022] Open
Abstract
There is an unmet medical need for noninvasive imaging of regional brain oxygenation to manage stroke, tumor, and neurodegenerative diseases. Oxygenation imaging from magnetic susceptibility in MRI is a promising new technique to measure local venous oxygen extraction fraction (OEF) along the cerebral venous vasculature. However, this approach has not been tested in vivo at different levels of oxygenation. The primary goal of this study was to test whether susceptibility imaging of oxygenation can detect OEF changes induced by hypercapnia, via CO2 inhalation, within selected a priori brain regions. Ten healthy subjects were scanned at 3T with a 32-channel head coil. The end-tidal CO2 (ETCO2) was monitored continuously and inspired gases were adjusted to achieve steady-state conditions of eucapnia (41±3mmHg) and hypercapnia (50±4mmHg). Gradient echo phase images and pseudo-continuous arterial spin labeling (pcASL) images were acquired to measure regional OEF and CBF respectively during eucapnia and hypercapnia. By assuming constant cerebral oxygen consumption throughout both gas states, regional CBF values were computed to predict the local change in OEF in each brain region. Hypercapnia induced a relative decrease in OEF of -42.3% in the straight sinus, -39.9% in the internal cerebral veins, and approximately -50% in pial vessels draining each of the occipital, parietal, and frontal cortical areas. Across volunteers, regional changes in OEF correlated with changes in ETCO2. The reductions in regional OEF (via phase images) were significantly correlated (P<0.05) with predicted reductions in OEF derived from CBF data (via pcASL images). These findings suggest that susceptibility imaging is a promising technique for OEF measurements, and may serve as a clinical biomarker for brain conditions with aberrant regional oxygenation.
Collapse
Affiliation(s)
- Audrey P Fan
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA; Radiology, Athinoula A. Martinos Center for Biomedical Imaging, 149 Thirteenth Street, Charlestown, MA, USA.
| | - Karleyton C Evans
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA; Psychiatry, Massachusetts General Hospital East, 149 Thirteenth Street, Charlestown, MA, USA.
| | - Jeffrey N Stout
- Radiology, Athinoula A. Martinos Center for Biomedical Imaging, 149 Thirteenth Street, Charlestown, MA, USA; Harvard-MIT Health Sciences and Technology, Institute of Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA.
| | - Bruce R Rosen
- Radiology, Athinoula A. Martinos Center for Biomedical Imaging, 149 Thirteenth Street, Charlestown, MA, USA; Harvard-MIT Health Sciences and Technology, Institute of Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA.
| | - Elfar Adalsteinsson
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA; Radiology, Athinoula A. Martinos Center for Biomedical Imaging, 149 Thirteenth Street, Charlestown, MA, USA; Harvard-MIT Health Sciences and Technology, Institute of Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA.
| |
Collapse
|