1
|
Lin W, Wang K, Chen Y, Zheng Z, Lin Y. Newborn screening and genetic diagnosis of 3-methylcrotonyl-CoA carboxylase deficiency in Quanzhou,China. Mol Genet Metab Rep 2024; 40:101127. [PMID: 39188588 PMCID: PMC11345313 DOI: 10.1016/j.ymgmr.2024.101127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/28/2024] Open
Abstract
Background and aims 3-Methylcrotonyl-CoA carboxylase deficiency (3-MCCD) is an autosomal recessive leucine catabolism condition caused by 3-methylcrotonyl-CoA carboxylase (3-MCC) deficiency due to MCCC1/MCCC2 variants. We investigated its incidence and features in Quanzhou, China. Materials and methods We screened 643,606 newborns (January 2014 to December 2022) for elevated 3-hydroxyisovalerylcarnitine (C5OH) levels using tandem mass spectrometry (MS/MS). Molecular analyses identified MCCC1/MCCC2 variants in suspected 3-MCCD cases. Results Seventeen neonates, two maternal patients, and one paternal patient had 3-MCCD. Its incidence in the Quanzhou study population was 1/37,859 newborns. All patients and neonates with 3-MCCD exhibited increased C5OH concentrations. Most patients [76.5%(13/17)] had increased urinary 3-methylcrotonylglycine (3-MCG) and 3-hydroxyisovaleric acid (3-HIVA) levels. Eight neonates and all adults with 3-MCCD had secondary carnitine deficiency. We identified seventeen variants, including 6 novel ones.MCCC1and MCCC2 variants were found in 47.1% and 52.9% of patients,with c.1331G > A (31.3%) and c.351_353delTGG (50.0%) being the most prevalent, respectively. Clinical symptoms were observed in 11.8% of patients. Conclusion We identified six new MCCC1/MCCC2 variants, enhancing our understanding of the 3-MCCD molecular profile. Secondary carnitine deficiency occurred in eight neonates and all adult patients. Although clinical symptoms were observed in 11.8% of patients, whether they were related to 3-MCCD remain unclear. Therefore, further studies are required to decide whether 3-MCCD and C5OH indicators should continue to be used.
Collapse
Affiliation(s)
- Weihua Lin
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian Province 350004, China
- Department of Child Health Care, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, Fujian Province 362000, China
| | - Kunyi Wang
- Integrated Technical Service Center, Quanzhou Customs, Quanzhou, Fujian Province 362000, China
| | - Yanru Chen
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian Province 350004, China
- Department of Child Health Care, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, Fujian Province 362000, China
| | - Zhenzhu Zheng
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, Fujian Province 362000, China
| | - Yiming Lin
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, Fujian Province 362000, China
| |
Collapse
|
2
|
Dai W, Feng H, Lee D. MCCC2 overexpression predicts poorer prognosis and promotes cell proliferation in colorectal cancer. Exp Mol Pathol 2020; 115:104428. [PMID: 32205097 DOI: 10.1016/j.yexmp.2020.104428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/13/2019] [Accepted: 03/19/2020] [Indexed: 01/25/2023]
Abstract
PURPOSES Recently, Methylcrotonoyl-CoA carboxylase 2 (MCCC2) is reported to be involved in tumor formation and progression. However, MCCC2 has nerve been reported in colorectal cancer. In this study, we aimed to investigate the role of MCCC2 in colorectal cancer. METHODS 118 colorectal cancer and matched adjacent normal tissues were enrolled in this study. The expression level of MCCC2 was measured by quantificational real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). The clinical significance of MCCC2 and its influence on cell proliferation was further analyzed. RESULTS Results shown that the mRNA levels of MCCC2 in colorectal cancer tissues were significantly increased compared with those in normal tissues (P < .0001). MCCC2 high-expression was observed in 56.8% colorectal cancer tissues, which was significantly higher than those in normal controls (9.3%, P < .0001). MCCC2 high-expression correlated with tumor size, T stage, lymph node metastasis, distant metastasis, clinical stage and differentiation in colorectal cancer (P < .05). Moreover, MCCC2 high-expression predicted poorer prognosis and could be as an independent prognostic factor. In addition, MCCC2 knockdown significantly inhibited cell proliferation compared with these controls, while MCCC2 overexpression could reverse the effect. CONCLUSION These data indicate MCCC2 overexpression promotes cell proliferation and predicts poorer prognosis in colorectal cancer.
Collapse
Affiliation(s)
- Wenxin Dai
- Department of BIN Convergence Technology and Polymer Nano Science and Technology, Chonbuk National University, 664-14, Dukjin, Jeonju 561-756, Republic of Korea; Fourth Ward of Medical Care Center, Hainan Provincial People's Hospital, Haikou 570311, Hainan Province, China.
| | - Huiying Feng
- Department of BIN Convergence Technology and Polymer Nano Science and Technology, Chonbuk National University, 664-14, Dukjin, Jeonju 561-756, Republic of Korea
| | - Dongwon Lee
- Department of BIN Convergence Technology and Polymer Nano Science and Technology, Chonbuk National University, 664-14, Dukjin, Jeonju 561-756, Republic of Korea.
| |
Collapse
|
3
|
Liu Y, Yuan Z, Song C. Methylcrotonoyl-CoA carboxylase 2 overexpression predicts an unfavorable prognosis and promotes cell proliferation in breast cancer. Biomark Med 2019; 13:427-436. [PMID: 30895811 DOI: 10.2217/bmm-2018-0475] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: Methylcrotonoyl-CoA carboxylase 2 (MCCC2), a subunit of 3-Methylcrotonyl-CoA carboxylase (MCC), is reported to be involved in tumor formation and development. However, the role of MCCC2 in breast cancer is unknown. Materials & methods: MCCC2 expression was examined in 138 cases of breast cancer and matched adjacent normal tissues by quantitative reverse transcription PCR and immunohistochemistry. The influence of MCCC2 expression on cell proliferation was evaluated by CCK-8 and colony formation assay. Results: Quantitative reverse transcription PCR results show MCCC2 mRNA levels were significantly greater in breast cancer tissues than normal tissues (p < 0.05). Immunohistochemistry analysis revealed that MCCC2 overexpression was significantly associated with Tumor, Node, Metastasis stage and lymph node metastasis and predicted an unfavorable prognosis (p < 0.05). CCK-8 and colony formation assay indicated that MCCC2 overexpression significantly promoted cell proliferation. Discussion & conclusion: These data indicate MCCC2 overexpression predicts an unfavorable prognosis and promotes cell proliferation in breast cancer, which may serve as a potential prognostic biomarker.
Collapse
Affiliation(s)
- Yu Liu
- Heze Municipal Hospital, Heze City, Shandong Province 276800, PR China
| | - Zonghuai Yuan
- People's Hospital of Rizhao, Rizhao City, Shandong Province 276800, PR China
| | - Chuanwei Song
- Heze Municipal Hospital, Heze City, Shandong Province 276800, PR China
| |
Collapse
|
4
|
Tomassetti M, Garavaglia BS, Vranych CV, Gottig N, Ottado J, Gramajo H, Diacovich L. 3-methylcrotonyl Coenzyme A (CoA) carboxylase complex is involved in the Xanthomonas citri subsp. citri lifestyle during citrus infection. PLoS One 2018; 13:e0198414. [PMID: 29879157 PMCID: PMC5991677 DOI: 10.1371/journal.pone.0198414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/19/2018] [Indexed: 01/15/2023] Open
Abstract
Citrus canker is a disease caused by the phytopathogen Xanthomonas citri subsp. citri (Xcc), bacterium which is unable to survive out of the host for extended periods of time. Once established inside the plant, the pathogen must compete for resources and evade the defenses of the host cell. However, a number of aspects of Xcc metabolic and nutritional state, during the epiphytic stage and at different phases of infection, are poorly characterized. The 3-methylcrotonyl-CoA carboxylase complex (MCC) is an essential enzyme for the catabolism of the branched-chain amino acid leucine, which prevents the accumulation of toxic intermediaries, facilitates the generation of branched chain fatty acids and/or provides energy to the cell. The MCC complexes belong to a group of acyl-CoA carboxylases (ACCase) enzymes dependent of biotin. In this work, we have identified two ORFs (XAC0263 and XAC0264) encoding for the α and β subunits of an acyl-CoA carboxylase complex from Xanthomonas and demonstrated that this enzyme has MCC activity both in vitro and in vivo. We also found that this MCC complex is conserved in a group of pathogenic gram negative bacteria. The generation and analysis of an Xcc mutant strain deficient in MCC showed less canker lesions in the interaction with the host plant, suggesting that the expression of these proteins is necessary for Xcc fitness during infection.
Collapse
Affiliation(s)
- Mauro Tomassetti
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Betiana S. Garavaglia
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Cecilia V. Vranych
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Natalia Gottig
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Jorgelina Ottado
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Hugo Gramajo
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Lautaro Diacovich
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
5
|
Rips J, Almashanu S, Mandel H, Josephsberg S, Lerman-Sagie T, Zerem A, Podeh B, Anikster Y, Shaag A, Luder A, Staretz Chacham O, Spiegel R. Primary and maternal 3-methylcrotonyl-CoA carboxylase deficiency: insights from the Israel newborn screening program. J Inherit Metab Dis 2016; 39:211-7. [PMID: 26566957 DOI: 10.1007/s10545-015-9899-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND 3-Methylcrotonyl-CoA carboxylase deficiency (3MCCD) is an inborn error of leucine catabolism. Tandem mass spectrometry newborn screening (NBS) programs worldwide confirmed 3MCCD to be the most common organic aciduria and a relatively benign disorder with favorable outcome. In addition, several asymptomatic 3MCCD mothers were initially identified following abnormal screening of their healthy babies and were appropriately termed maternal 3MCCD. METHODS This is a retrospective study that summarizes all the clinical, biochemical, and genetic data collected by questionnaires of all 3MCCD individuals that were identified by the extended Israeli NBS program since its introduction in 2009 including maternal 3MCCD cases. RESULTS A total of 36 3MCCD subjects were diagnosed within the 50-month study period; 16 were classified primary and 20 maternal cases. Four additional 3MCCD individuals were identified following sibling screening. All maternal 3MCCD cases were asymptomatic except for one mother who manifested childhood hypotonia. Most of the primary 3MCCD individuals were asymptomatic except for two whose condition was also complicated by severe prematurity. Initial dried blood spot (DBS) free carnitine was significantly lower in neonates born to 3MCCD mothers compared with newborns with primary 3MCCD (p = 0.0009). Most of the mutations identified in the MCCC1 and MCCC2 genes were missense, five of them were novel. CONCLUSIONS Maternal 3MCCD is more common than previously thought and its presence may be initially indicated by low DBS free carnitine levels. Our findings provide additional confirmation of the benign nature of 3MCCD and we suggest to exclude this disorder from NBS programs.
Collapse
Affiliation(s)
- Jonathan Rips
- Rappaport School of Medicine, Technion, Haifa, Israel
| | - Shlomo Almashanu
- National Newborn Screening Program, Israeli Ministry of Health, Tel HaShomer Sheba Medical Center, Ramat Gan, Israel
| | - Hanna Mandel
- Rappaport School of Medicine, Technion, Haifa, Israel
- Metabolic Unit, Rambam Medical Center, Haifa, Israel
| | - Sagi Josephsberg
- Genetic Institute, Kaplan Medical Center, Rehovot, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Tally Lerman-Sagie
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Pediatric Neurology Unit, Metabolic-Neurogenetic Service, Wolfson Medical Center, Holon, Israel
| | - Ayelet Zerem
- Pediatric Neurology Unit, Metabolic-Neurogenetic Service, Wolfson Medical Center, Holon, Israel
| | - Ben Podeh
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Metabolic Unit, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Yair Anikster
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Metabolic Unit, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Avraham Shaag
- Monique and Jacques Roboh Department of Genetic Research, Hebrew University, Hadassah Medical Center, Jerusalem, Israel
| | - Anthony Luder
- Department of Paediatrics, Ziv Medical Center and Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | | | - Ronen Spiegel
- Rappaport School of Medicine, Technion, Haifa, Israel.
- Department of Pediatrics B, Emek Medical Center, Afula, 18101, Israel.
| |
Collapse
|
6
|
Lee SH, Hong YH. Asymptomatic maternal 3-methylcrotonylglycinuria detected by her unaffected baby's neonatal screening test. KOREAN JOURNAL OF PEDIATRICS 2014; 57:329-32. [PMID: 25114694 PMCID: PMC4127396 DOI: 10.3345/kjp.2014.57.7.329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 02/07/2014] [Accepted: 03/05/2014] [Indexed: 11/29/2022]
Abstract
3-methylcrotonyl-coenzyme A carboxylase (3MCC) deficiency is an autosomal recessive disorder in which leucine catabolism is hampered, leading to increased urinary excretion of 3-methylcrotonylglycine. In addition, 3-hydroxyisovalerylcarnitine levels increase in the blood, and the elevated levels form the basis of neonatal screening. 3MCC deficiency symptoms are variable, ranging from neonatal onset with severe neurological abnormality to a normal, asymptomatic phenotype. Although 3MCC deficiency was previously considered to be rare, it has been found to be one of the most common metabolic disorders in newborns after the neonatal screening test using tandem mass spectrometry was introduced. Additionally, asymptomatic 3MCC deficient mothers have been identified due to abnormal results of unaffected baby's neonatal screening test. Some of the 3MCC-deficient mothers show symptoms such as fatigue, myopathy, or metabolic crisis with febrile illnesses. In the current study, we identified an asymptomatic 3MCC deficient mother when she showed abnormal results during a neonatal screening test of a healthy infant.
Collapse
Affiliation(s)
- Sun Hee Lee
- Department of Pediatrics, Gachon University Gil Medical Center, Incheon, Korea
| | - Yong Hee Hong
- Department of Pediatrics, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| |
Collapse
|
7
|
Ryckman KK, Smith CJ, Jelliffe-Pawlowski LL, Momany AM, Berberich SL, Murray JC. Metabolic heritability at birth: implications for chronic disease research. Hum Genet 2014; 133:1049-57. [PMID: 24850141 DOI: 10.1007/s00439-014-1450-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/15/2014] [Indexed: 02/07/2023]
Abstract
Recent genome-wide association studies of the adult human metabolome have identified genetic variants associated with relative levels of several acylcarnitines, which are important clinical correlates for chronic conditions such as type 2 diabetes and obesity. We have previously shown that these same metabolite levels are highly heritable at birth; however, no studies to our knowledge have examined genetic associations with these metabolites measured at birth. Here, we examine, in 743 newborns, 58 single nucleotide polymorphisms (SNPs) in 11 candidate genes previously associated with differing relative levels of short-chain acylcarnitines in adults. Six SNPs (rs2066938, rs3916, rs3794215, rs555404, rs558314, rs1799958) in the short-chain acyl-CoA dehydrogenase gene (ACADS) were associated with neonatal C4 levels. Most significant was the G allele of rs2066938, which was associated with significantly higher levels of C4 (P = 1.5 × 10(-29)). This SNP explains 25 % of the variation in neonatal C4 levels, which is similar to the variation previously reported in adult C4 levels. There were also significant (P < 1 × 10(-4)) associations between neonatal levels of C5-OH and SNPs in the solute carrier family 22 genes (SLC22A4 and SLC22A5) and the 3-methylcrotonyl-CoA carboxylase 1 gene (MCCC1). We have replicated, in newborns, SNP associations between metabolic traits and the ACADS and SLC22A4 genes observed in adults. This research has important implications not only for the identification of rare inborn errors of metabolism but also for personalized medicine and early detection of later life risks for chronic conditions.
Collapse
Affiliation(s)
- Kelli K Ryckman
- Department of Epidemiology, University of Iowa, Iowa City, IA, 52242, USA,
| | | | | | | | | | | |
Collapse
|
8
|
Structure and function of biotin-dependent carboxylases. Cell Mol Life Sci 2012; 70:863-91. [PMID: 22869039 DOI: 10.1007/s00018-012-1096-0] [Citation(s) in RCA: 284] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/07/2012] [Accepted: 07/09/2012] [Indexed: 12/14/2022]
Abstract
Biotin-dependent carboxylases include acetyl-CoA carboxylase (ACC), propionyl-CoA carboxylase (PCC), 3-methylcrotonyl-CoA carboxylase (MCC), geranyl-CoA carboxylase, pyruvate carboxylase (PC), and urea carboxylase (UC). They contain biotin carboxylase (BC), carboxyltransferase (CT), and biotin-carboxyl carrier protein components. These enzymes are widely distributed in nature and have important functions in fatty acid metabolism, amino acid metabolism, carbohydrate metabolism, polyketide biosynthesis, urea utilization, and other cellular processes. ACCs are also attractive targets for drug discovery against type 2 diabetes, obesity, cancer, microbial infections, and other diseases, and the plastid ACC of grasses is the target of action of three classes of commercial herbicides. Deficiencies in the activities of PCC, MCC, or PC are linked to serious diseases in humans. Our understanding of these enzymes has been greatly enhanced over the past few years by the crystal structures of the holoenzymes of PCC, MCC, PC, and UC. The structures reveal unanticipated features in the architectures of the holoenzymes, including the presence of previously unrecognized domains, and provide a molecular basis for understanding their catalytic mechanism as well as the large collection of disease-causing mutations in PCC, MCC, and PC. This review will summarize the recent advances in our knowledge on the structure and function of these important metabolic enzymes.
Collapse
|