1
|
Shabto JM, Shteyman AR, Stevens S, Coombs A, Kazim M. Orbital Inflammatory Disease as a Presenting Symptom of Generalized Lipodystrophy in a Young Female. Ophthalmic Plast Reconstr Surg 2025; 41:e54-e56. [PMID: 39560295 DOI: 10.1097/iop.0000000000002823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
The authors report the first case of generalized lipodystrophy with orbital inflammatory symptoms. A 6-year-old female with hypothyroidism who developed hepatosplenomegaly, lymphadenopathy, and progressive loss of subcutaneous fat. Following flu vaccination, she developed orbital inflammatory symptoms. Imaging of the orbits demonstrated a paucity of retrobulbar fat and fat stranding. Systemic workup revealed insulin resistance and hepatosteatosis, consistent with generalized lipodystrophy. The authors discuss the typical history and examination findings in generalized lipodystrophy and review the etiology, treatment options, and outcomes.
Collapse
Affiliation(s)
- Julie M Shabto
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University, New York, NY, U.S.A
| | | | | | | | | |
Collapse
|
2
|
Saxena A, Tiwari P, Gupta S, Mandia R, Banshiwal RC, Lamoria RK, Anjana RM, Radha V, Mohan V, Mathur SK. Exploring lipodystrophy gene expression in adipocytes: unveiling insights into the pathogenesis of insulin resistance, type 2 diabetes, and clustering diseases (metabolic syndrome) in Asian Indians. Front Endocrinol (Lausanne) 2024; 15:1468824. [PMID: 39444451 PMCID: PMC11496143 DOI: 10.3389/fendo.2024.1468824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024] Open
Abstract
Background Studying the molecular mechanisms of lipodystrophy can provide valuable insights into the pathophysiology of insulin resistance (IR), type 2 diabetes (T2D), and other clustering diseases [metabolic syndrome (MetS)] and its underlying adipocentric disease (MetS disease). Methods A high-confidence lipodystrophy gene panel comprising 50 genes was created, and their expressions were measured in the visceral and subcutaneous (both peripheral and abdominal) adipose depots of MetS and non-MetS individuals at a tertiary care medical facility. Results Most lipodystrophy genes showed significant downregulation in MetS individuals compared to non-MetS individuals in both subcutaneous and visceral depots. In the abdominal compartment, all the genes showed relatively higher expression in visceral depot as compared to their subcutaneous counterpart, and this difference narrowed with increasing severity of MetS. Their expression level shows an inverse correlation with T2D, MetS, and HOMA-IR and with other T2D-related intermediate traits. Results also demonstrated that individualization of MetS patients could be done based on adipose tissue expression of just 12 genes. Conclusion Adipose tissue expression of lipodystrophy genes shows an association with MetS and its intermediate phenotypic traits. Mutations of these genes are known to cause congenital lipodystrophy syndromes, whereas their altered expression in adipose tissue contributes to the pathogenesis of IR, T2D, and MetS.
Collapse
Affiliation(s)
- Aditya Saxena
- Department of Computer Engineering & Applications, GLA University, Mathura, India
| | - Pradeep Tiwari
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
| | - Shalu Gupta
- Department of General Surgery, Sawai Man Singh (SMS) Medical College and Attached Hospital, Jaipur, India
| | - Rajendra Mandia
- Department of General Surgery, Sawai Man Singh (SMS) Medical College and Attached Hospital, Jaipur, India
| | - Ramesh C. Banshiwal
- Department of Orthopedics, Sawai Man Singh (SMS) Medical College and Attached Hospital, Jaipur, India
| | - Ravinder Kumar Lamoria
- Department of Orthopedics, Sawai Man Singh (SMS) Medical College and Attached Hospital, Jaipur, India
| | - Ranjit Mohan Anjana
- Department of Diabetology, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India
| | - Venkatesan Radha
- Department of Diabetology, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India
| | - Viswanathan Mohan
- Department of Diabetology, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India
| | - Sandeep Kumar Mathur
- Department of Endocrinology, Sawai Man Singh (SMS) Medical College, Jaipur, India
| |
Collapse
|
3
|
Khan Z, Ali K, Khan A, Teelucksingh S. A Case of Bone Marrow Transplant-Associated Partial Lipodystrophy. Cureus 2024; 16:e71641. [PMID: 39553096 PMCID: PMC11567169 DOI: 10.7759/cureus.71641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2024] [Indexed: 11/19/2024] Open
Abstract
Lipodystrophy is characterized by abnormal fat distribution and has a broad range of etiologic associations. We present a case of a young Afro-Caribbean female to highlight the clinical features of bone marrow transplant-associated partial lipodystrophy. This review examines and provides diagnostic recommendations for discerning lipodystrophy and its potential cause and also provides follow-up guidance in those diagnosed with bone marrow transplant-associated partial lipodystrophy. We utilize this case to highlight the clinical implications of lipodystrophy and create awareness of this as a potential outcome in childhood cancer survivors.
Collapse
Affiliation(s)
- Zakiyyah Khan
- Internal Medicine, Medical Associates Hospital, Saint Joseph, TTO
| | - Kabeer Ali
- Internal Medicine, Eric Williams Medical Sciences Complex, Champs Fleurs, TTO
| | - Aliyyah Khan
- Anesthesiology, Eric Williams Medical Sciences Complex, Champs Fleurs, TTO
| | - Surujpal Teelucksingh
- Faculty of Clinical Medical Sciences, The University of the West Indies, Saint Augustine, TTO
| |
Collapse
|
4
|
Huang M, Wang X, Chen Y, Pessoa MT, Terrell KC, Zhang J, Tian J, Xie Z, Pierre SV, Cai L. Role of Na/K-ATPase α1 caveolin-binding motif in adipogenesis. Am J Physiol Cell Physiol 2024; 327:C48-C64. [PMID: 38708522 PMCID: PMC11371328 DOI: 10.1152/ajpcell.00168.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
Deficiencies in mice and in humans have brought to the fore the importance of the caveolar network in key aspects of adipocyte biology. The conserved N-terminal caveolin-binding motif (CBM) of the ubiquitous Na/K-ATPase (NKA) α1 isoform, which allows NKA/caveolin-1 (Cav1) interaction, influences NKA signaling and caveolar distribution. It has been shown to be critical for animal development and ontogenesis, as well as lineage-specific differentiation of human induced pluripotent stem cells (hiPSCs). However, its role in postnatal adipogenesis has not been fully examined. Using a genetic approach to alter CBM in hiPSC-derived adipocytes (iAdi-mCBM) and in mice (mCBM), we investigated the regulatory function of NKA CBM signaling in adipogenesis. Seahorse XF cell metabolism analyses revealed impaired glycolysis and decreased ATP synthesis-coupled respiration in iAdi-mCBM. These metabolic dysfunctions were accompanied by evidence of extensive remodeling of the extracellular matrix (ECM), including increased collagen staining, overexpression of ECM marker genes, and heightened TGF-β signaling uncovered by RNAseq analysis. Rescue of mCBM by lentiviral delivery of WT NKA α1 or treatment of mCBM hiPSCs with the TGF-β inhibitor SB431542 normalized ECM, suggesting that NKA CBM signaling integrity is required for adequate control of TGF-β signaling and ECM stiffness during adipogenesis. The physiological impact was revealed in mCBM male mice with reduced fat mass accompanied by histological and transcriptional evidence of elevated adipose fibrosis and decreased adipocyte size. Based on these findings, we propose that the genetic alteration of the NKA/Cav1 regulatory path uncovered in human iAdi leads to lipodystrophy in mice.NEW & NOTEWORTHY A Na/K-ATPase α1 caveolin-binding motif regulates adipogenesis. Mutation of this binding motif in the mouse leads to reduced fat with increased extracellular matrix production and inflammation. RNA-seq analysis and pharmacological interventions in human iPSC-derived adipocytes revealed that TGF-β signal, rather than Na/K-ATPase-mediated ion transport, is a key mediator of NKA regulation of adipogenesis.
Collapse
Affiliation(s)
- Minqi Huang
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, United States
| | - Xiaoliang Wang
- Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States
| | - Yiliang Chen
- Versiti Blood Research Institute, Milwaukee, West Virginia, United States
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Marco T Pessoa
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, United States
| | - Kayleigh C Terrell
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, United States
| | - Jue Zhang
- Versiti Blood Research Institute, Milwaukee, West Virginia, United States
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Jiang Tian
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, United States
- Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, United States
| | - Sandrine V Pierre
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, United States
| | - Liquan Cai
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, United States
| |
Collapse
|
5
|
Kopp J, Koch LA, Lyubenova H, Küchler O, Holtgrewe M, Ivanov A, Dubourg C, Launay E, Brachs S, Mundlos S, Ehmke N, Seelow D, Fradin M, Kornak U, Fischer-Zirnsak B. Loss-of-function variants affecting the STAGA complex component SUPT7L cause a developmental disorder with generalized lipodystrophy. Hum Genet 2024; 143:683-694. [PMID: 38592547 PMCID: PMC11098864 DOI: 10.1007/s00439-024-02669-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/11/2024] [Indexed: 04/10/2024]
Abstract
Generalized lipodystrophy is a feature of various hereditary disorders, often leading to a progeroid appearance. In the present study we identified a missense and a frameshift variant in a compound heterozygous state in SUPT7L in a boy with intrauterine growth retardation, generalized lipodystrophy, and additional progeroid features. SUPT7L encodes a component of the transcriptional coactivator complex STAGA. By transcriptome sequencing, we showed the predicted missense variant to cause aberrant splicing, leading to exon truncation and thereby to a complete absence of SUPT7L in dermal fibroblasts. In addition, we found altered expression of genes encoding DNA repair pathway components. This pathway was further investigated and an increased rate of DNA damage was detected in proband-derived fibroblasts and genome-edited HeLa cells. Finally, we performed transient overexpression of wildtype SUPT7L in both cellular systems, which normalizes the number of DNA damage events. Our findings suggest SUPT7L as a novel disease gene and underline the link between genome instability and progeroid phenotypes.
Collapse
Affiliation(s)
- Johannes Kopp
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 13353, Berlin, Germany
- Max Planck Institute for Molecular Genetics, FG Development and Disease, Berlin, Germany
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Leonard A Koch
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 13353, Berlin, Germany
| | - Hristiana Lyubenova
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 13353, Berlin, Germany
- Max Planck Institute for Molecular Genetics, FG Development and Disease, Berlin, Germany
| | - Oliver Küchler
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 13353, Berlin, Germany
- Exploratory Diagnostic Sciences, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Manuel Holtgrewe
- Core Unit Bioinformatics (CUBI), Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andranik Ivanov
- Core Unit Bioinformatics (CUBI), Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christele Dubourg
- Service de Génétique Moléculaire et Génomique, CHU, Rennes, F-35033, France
- Univercity Rennes, CNRS, INSERM, IGDR, UMR 6290, ERL U1305, Rennes, F-35000, France
| | - Erika Launay
- Service de Cytogénétique et Biologie cellulaire, Hôpital Pontchaillou - CHU Rennes, 2 rue Henri Le Guilloux - Rennes cedex 9, France, Rennes, F-35033, France
| | - Sebastian Brachs
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
- German Centre for Cardiovascular Research, partner site Berlin, Berlin, Germany
| | - Stefan Mundlos
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 13353, Berlin, Germany
- Max Planck Institute for Molecular Genetics, FG Development and Disease, Berlin, Germany
| | - Nadja Ehmke
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 13353, Berlin, Germany
- Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dominik Seelow
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 13353, Berlin, Germany
- Exploratory Diagnostic Sciences, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mélanie Fradin
- Service de Génétique Clinique, Centre Référence Déficiences Intellectuelles CRDI, Hôpital Sud - CHU Rennes, 16 boulevard de Bulgarie - BP 90347, Rennes cedex 2, Rennes, F-35203, France
- Service de Génétique, CH Saint Brieuc, St Brieuc, 22000, France
| | - Uwe Kornak
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 13353, Berlin, Germany
- Max Planck Institute for Molecular Genetics, FG Development and Disease, Berlin, Germany
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Björn Fischer-Zirnsak
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 13353, Berlin, Germany.
- Max Planck Institute for Molecular Genetics, FG Development and Disease, Berlin, Germany.
| |
Collapse
|
6
|
Abuzenadah A, Alganmi N, AlQurashi R, Hawsa E, AlOtibi A, Hummadi A, Nahari AA, AlZelaye S, Aljuhani NR, Al-Attas M, Abusamra H, Turkistany S, Karim S, Mirza Z, Al-Qahtani M, Chaudhary A, Al Eissa MM. Familial Screening for the Prevention of Rare Diseases: A Focus on Lipodystrophy in Southern Saudi Arabia. J Epidemiol Glob Health 2024; 14:162-168. [PMID: 38231342 PMCID: PMC11043304 DOI: 10.1007/s44197-023-00182-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Lipodystrophy is a relatively rare, complex disease characterised by a deficiency of adipose tissue and can present as either generalised lipodystrophy (GLD) or partial lipodystrophy (PLD). The prevalence of this disease varies by region. This study aimed to identify the genetic variations associated with lipodystrophy in the southern part of Saudi Arabia. METHODOLOGY We conducted a retrospective study by recruiting nine patients from six families, recruiting the proband whole exome sequencing results or any other genetic test results, screening other family members using Sanger sequencing and analysing the carrier status of the latter. These patients were recruited from the Endocrinology and Diabetes Clinic at Jazan General Hospital and East Jeddah Hospital, both in the Kingdom of Saudi Arabia. RESULT Eight patients were diagnosed with GLD, and one was diagnosed with PLD. Of the six families, four were consanguineously married from the same tribe, while the remaining belonged to the same clan. The majority of GLD patients had an AGPAT2 c.158del mutation, but some had a BSCL2 c.942dup mutation. The single PLD case had a PPARG c.1024C > T mutation but no family history of the disease. In all families evaluated in this study, some family members were confirmed to be carriers of the mutation observed in the corresponding patient. CONCLUSION Familial screening of relatives of patients with rare, autosomal recessive diseases, such as lipodystrophy, especially when there is a family history, allows the implementation of measures to prevent the onset or reduced severity of disease and reduces the chances of the pathogenic allele being passed onto future generations. Creating a national registry of patients with genetic diseases and carriers of familial pathogenic alleles will allow the assessment of preventive measures and accelerate disease intervention via gene therapy.
Collapse
Affiliation(s)
- Adel Abuzenadah
- Faculty of Applied Medical Sciences, Center of Excellence in Genomic Medicine Research, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Nofe Alganmi
- Faculty of Applied Medical Sciences, Center of Excellence in Genomic Medicine Research, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Computer Science Department, Faculty of Computing and Information Technology, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Raghad AlQurashi
- Molecular Genetics Laboratory, Public Health Laboratory, Public Health Authority, Riyadh, Saudi Arabia
| | - Esraa Hawsa
- Molecular Genetics Laboratory, Public Health Laboratory, Public Health Authority, Riyadh, Saudi Arabia
| | - Abdullah AlOtibi
- Molecular Genetics Laboratory, Public Health Laboratory, Public Health Authority, Riyadh, Saudi Arabia
| | - Abdulrahman Hummadi
- Jazan Endocrinology and Diabetes Center, Ministry of Health, Jazan, Saudi Arabia
| | - Ahmed Ali Nahari
- Jazan Endocrinology and Diabetes Center, Ministry of Health, Jazan, Saudi Arabia
- Pediatric Department, King Fahd Hospital, Jazan, Saudi Arabia
| | - Somaya AlZelaye
- Centre of Endocrinology and Diabetes Mellitus, Al-Qunfudah General Hospital, Al-Qunfudah, Makkah Province, Saudi Arabia
| | - Nasser R Aljuhani
- Department of Medicine Endocrinology and Diabetes, East Jeddah Hospital, Jeddah, Saudi Arabia
| | - Manal Al-Attas
- Faculty of Applied Medical Sciences, Center of Excellence in Genomic Medicine Research, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Heba Abusamra
- Faculty of Applied Medical Sciences, Center of Excellence in Genomic Medicine Research, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Shereen Turkistany
- Center of Innovation in Personalized Medicine, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sajjad Karim
- Faculty of Applied Medical Sciences, Center of Excellence in Genomic Medicine Research, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Zeenat Mirza
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- King Fahd Medical Research Center, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Mohammed Al-Qahtani
- Faculty of Applied Medical Sciences, Center of Excellence in Genomic Medicine Research, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Adeel Chaudhary
- Faculty of Applied Medical Sciences, Center of Excellence in Genomic Medicine Research, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Mariam M Al Eissa
- Molecular Genetics Laboratory, Public Health Laboratory, Public Health Authority, Riyadh, Saudi Arabia.
- Medical School, AlFaisal University, Riyadh, Saudi Arabia.
| |
Collapse
|
7
|
Mancioppi V, Daffara T, Romanisio M, Ceccarini G, Pelosini C, Santini F, Bellone S, Mellone S, Baricich A, Rabbone I, Aimaretti G, Akinci B, Giordano M, Prodam F. A new mutation in the CAVIN1/PTRF gene in two siblings with congenital generalized lipodystrophy type 4: case reports and review of the literature. Front Endocrinol (Lausanne) 2023; 14:1212729. [PMID: 37501786 PMCID: PMC10369054 DOI: 10.3389/fendo.2023.1212729] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Lipodystrophy syndromes are characterized by a progressive metabolic impairment secondary to adipose tissue dysfunction and may have a genetic background. Congenital generalized lipodystrophy type 4 (CGL4) is an extremely rare subtype, caused by mutations in the polymerase I and transcript release factor (PTRF) gene. It encodes for a cytoplasmatic protein called caveolae-associated protein 1 (Cavin-1), which, together with caveolin 1, is responsible for the biogenesis of caveolae, being a master regulator of adipose tissue expandability. Cavin-1 is expressed in several tissues, including muscles, thus resulting, when dysfunctional, in a clinical phenotype characterized by the absence of adipose tissue and muscular dystrophy. We herein describe the clinical phenotypes of two siblings in their early childhood, with a phenotype characterized by a generalized reduction of subcutaneous fat, muscular hypertrophy, distinct facial features, myopathy, and atlantoaxial instability. One of the siblings developed paroxysmal supraventricular tachycardia leading to cardiac arrest at 3 months of age. Height and BMI were normal. Blood tests showed elevated CK, a mild increase in liver enzymes and triglycerides levels, and undetectable leptin and adiponectin concentrations. Fasting glucose and HbA1c were normal, while Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) was mildly elevated. Both patients were hyperphagic and had cravings for foods rich in fats and sugars. Genetic testing revealed a novel pathogenic mutation of the CAVIN1/PTRF gene (NM_012232 exon1:c T21A:p.Y7X) at the homozygous state. The diagnosis of lipodystrophy can be challenging, often requiring a multidisciplinary approach, given the pleiotropic effect, involving several tissues. The coexistence of generalized lack of fat, myopathy with elevated CK levels, arrhythmias, gastrointestinal dysmotility, and skeletal abnormalities should prompt the suspicion for the diagnosis of CGL4, although phenotypic variability may occur.
Collapse
Affiliation(s)
- Valentina Mancioppi
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Tommaso Daffara
- Endocrinology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Martina Romanisio
- Endocrinology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Giovanni Ceccarini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| | - Caterina Pelosini
- Chemistry and Endocrinology Laboratory, Department of Laboratory Medicine, University Hospital of Pisa, Pisa, Italy
| | - Ferruccio Santini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| | - Simonetta Bellone
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
- Interdisciplinary Research Center of Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - Simona Mellone
- Laboratory of Genetics, Struttura Complessa a Direzione Universitaria (SCDU) Biochimica Clinica, Ospedale Maggiore della Carità, Novara, Italy
| | - Alessio Baricich
- Physical Medicine and Rehabilitation, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Ivana Rabbone
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Gianluca Aimaretti
- Endocrinology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Baris Akinci
- Division of Endocrinology and Metabolism, Faculty of Medicine, Dokuz Eylul University, Izmir, Türkiye
| | - Mara Giordano
- Laboratory of Genetics, Struttura Complessa a Direzione Universitaria (SCDU) Biochimica Clinica, Ospedale Maggiore della Carità, Novara, Italy
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Flavia Prodam
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
- Endocrinology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
- Interdisciplinary Research Center of Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
8
|
da Cunha Olegario NB, da Cunha Neto JS, Barbosa PCS, Pinheiro PR, Landim PLA, Montenegro APDR, Fernandes VO, de Albuquerque VHC, Duarte JBF, da Cruz Paiva Lima GE, Junior RMM. Identifying congenital generalized lipodystrophy using deep learning-DEEPLIPO. Sci Rep 2023; 13:2176. [PMID: 36750605 PMCID: PMC9905595 DOI: 10.1038/s41598-023-27987-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 01/11/2023] [Indexed: 02/09/2023] Open
Abstract
Congenital Generalized Lipodystrophy (CGL) is a rare autosomal recessive disease characterized by near complete absence of functional adipose tissue from birth. CGL diagnosis can be based on clinical data including acromegaloid features, acanthosis nigricans, reduction of total body fat, muscular hypertrophy, and protrusion of the umbilical scar. The identification and knowledge of CGL by the health care professionals is crucial once it is associated with severe and precocious cardiometabolic complications and poor outcome. Image processing by deep learning algorithms have been implemented in medicine and the application into routine clinical practice is feasible. Therefore, the aim of this study was to identify congenital generalized lipodystrophy phenotype using deep learning. A deep learning approach model using convolutional neural network was presented as a detailed experiment with evaluation steps undertaken to test the effectiveness. These experiments were based on CGL patient's photography database. The dataset consists of two main categories (training and testing) and three subcategories containing photos of patients with CGL, individuals with malnutrition and eutrophic individuals with athletic build. A total of 337 images of individuals of different ages, children and adults were carefully chosen from internet open access database and photographic records of stored images of medical records of a reference center for inherited lipodystrophies. For validation, the dataset was partitioned into four parts, keeping the same proportion of the three subcategories in each part. The fourfold cross-validation technique was applied, using 75% (3 parts) of the data as training and 25% (1 part) as a test. Following the technique, four tests were performed, changing the parts that were used as training and testing until each part was used exactly once as validation data. As a result, a mean accuracy, sensitivity, and specificity were obtained with values of [90.85 ± 2.20%], [90.63 ± 3.53%] and [91.41 ± 1.10%], respectively. In conclusion, this study presented for the first time a deep learning model able to identify congenital generalized lipodystrophy phenotype with excellent accuracy, sensitivity and specificity, possibly being a strategic tool for detecting this disease.
Collapse
Affiliation(s)
- Natália Bitar da Cunha Olegario
- Brazilian Group for the Study of Inherited and Acquired Lipodystrophies (BRAZLIPO), Clinical Research Unit, Walter Cantidio University Hospital, Federal University of Ceará/EBSERH, Rua Coronel Nunes de Melo 1142, Fortaleza, Ceara, 60416-000, Brazil.,Department of Clinical Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | | | | | | | - Ana Paula Dias Rangel Montenegro
- Brazilian Group for the Study of Inherited and Acquired Lipodystrophies (BRAZLIPO), Clinical Research Unit, Walter Cantidio University Hospital, Federal University of Ceará/EBSERH, Rua Coronel Nunes de Melo 1142, Fortaleza, Ceara, 60416-000, Brazil.,Department of Clinical Medicine, Federal University of Ceará, Fortaleza, Brazil.,Postgraduate Program in Public Health, Federal University of Ceará, Fortaleza, Brazil
| | - Virginia Oliveira Fernandes
- Brazilian Group for the Study of Inherited and Acquired Lipodystrophies (BRAZLIPO), Clinical Research Unit, Walter Cantidio University Hospital, Federal University of Ceará/EBSERH, Rua Coronel Nunes de Melo 1142, Fortaleza, Ceara, 60416-000, Brazil.,Department of Clinical Medicine, Federal University of Ceará, Fortaleza, Brazil.,Postgraduate Program in Public Health, Federal University of Ceará, Fortaleza, Brazil
| | | | | | - Grayce Ellen da Cruz Paiva Lima
- Brazilian Group for the Study of Inherited and Acquired Lipodystrophies (BRAZLIPO), Clinical Research Unit, Walter Cantidio University Hospital, Federal University of Ceará/EBSERH, Rua Coronel Nunes de Melo 1142, Fortaleza, Ceara, 60416-000, Brazil.,Center of Technology, University of Fortaleza, Fortaleza, Brazil.,Department of Clinical Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Renan Magalhães Montenegro Junior
- Brazilian Group for the Study of Inherited and Acquired Lipodystrophies (BRAZLIPO), Clinical Research Unit, Walter Cantidio University Hospital, Federal University of Ceará/EBSERH, Rua Coronel Nunes de Melo 1142, Fortaleza, Ceara, 60416-000, Brazil. .,Department of Clinical Medicine, Federal University of Ceará, Fortaleza, Brazil. .,Postgraduate Program in Public Health, Federal University of Ceará, Fortaleza, Brazil.
| |
Collapse
|
9
|
Calcaterra V, Magenes VC, Rossi V, Fabiano V, Mameli C, Zuccotti G. Lipodystrophies in non-insulin-dependent children: Treatment options and results from recombinant human leptin therapy. Pharmacol Res 2023; 187:106629. [PMID: 36566927 DOI: 10.1016/j.phrs.2022.106629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Lipodystrophy is a general definition containing different pathologies which, except for those observed in insulin-treated subjects falling outside the scope of this paper, are characterized by total or partial lack of body fat, that, according to the amount of missing adipose tissue, are divided in generalized or partial lipodystrophy. These diseases are characterized by leptin deficiency, which often leads to metabolic derangement, causing insulin resistance, dyslipidemia, and increasing cardiovascular risk. In this narrative review, we presentend the clinical presentation of different types of lipodystrophies and metabolic unbalances related to disease in children and adolescents, focusing on the main treatment options and the novel results from recombinant human leptin (metreleptin) therapy. Milestones in the management of lipodystrophy include lifestyle modification as diet and physical activity, paired with hypoglycemic drugs, insulin, hypolipidemic drugs, and other drugs with the aim of treating lipodystrophy complications. Metreleptin has been recently approved for pediatric patients with general lipodystrophy (GL)> 2 years of age and for children with partial lipodystrophy (PL)> 12 years of age not controlled with conventional therapies. New therapeutic strategies are currently being investigated, especially for patients with PL forms, specifically, liver-targeted therapies. Further studies are needed to achieve the most specific and precise treatment possible.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; Department of Pediatrics, Vittore Buzzi Children's Hospital, 20154 Milan, Italy.
| | | | - Virginia Rossi
- Department of Pediatrics, Vittore Buzzi Children's Hospital, 20154 Milan, Italy
| | - Valentina Fabiano
- Department of Pediatrics, Vittore Buzzi Children's Hospital, 20154 Milan, Italy; Department of Biomedical and Clinical Sciences, Università di Milano, 20122 Milan, Italy
| | - Chiara Mameli
- Department of Pediatrics, Vittore Buzzi Children's Hospital, 20154 Milan, Italy; Department of Biomedical and Clinical Sciences, Università di Milano, 20122 Milan, Italy
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children's Hospital, 20154 Milan, Italy; Department of Biomedical and Clinical Sciences, Università di Milano, 20122 Milan, Italy
| |
Collapse
|
10
|
Mainieri F, Chiarelli F. Lipodystrophies in Children. Horm Res Paediatr 2022; 95:305-320. [PMID: 35189617 DOI: 10.1159/000522620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/11/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Lipodystrophy includes a wide group of diseases characterized by reduction, absence, or altered distribution of adipose tissue. Lipodystrophies are classified into generalized or partial, according to the fat distribution, and congenital or acquired, considering the etiology. SUMMARY Impaired glucose and lipid metabolism are typically present, thus severe insulin resistance, diabetes mellitus, dyslipidemia, and hepatic steatosis are frequent complications. Because of the rarity and the diversification of lipodystrophies, diagnosis might be challenging, typically for partial forms that cannot be easily recognized, leading to progression of the several metabolic abnormalities associated. First management of lipodystrophy is diet and lifestyle changes, followed by the treatment of metabolic complications. Replacement therapy with metreleptin, currently available in the USA and Europe, has shown improvement of metabolic profile in a great number of patients with lipodystrophy. KEY MESSAGES The purpose of this review was to describe the phenotypic characteristics of all the known lipodystrophic types and to present specific steps for obtaining an early diagnosis and assessing the best treatment of lipodystrophy.
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Genetic or acquired lipodystrophies are characterized by selective loss of body fat along with predisposition towards metabolic complications of insulin resistance, such as diabetes mellitus, hypertriglyceridemia, hepatic steatosis, polycystic ovarian syndrome, and acanthosis nigricans. In this review, we discuss the various subtypes and when to suspect and how to diagnose lipodystrophy. RECENT FINDINGS The four major subtypes are autosomal recessive, congenital generalized lipodystrophy (CGL); acquired generalized lipodystrophy (AGL), mostly an autoimmune disorder; autosomal dominant or recessive familial partial lipodystrophy (FPLD); and acquired partial lipodystrophy (APL), an autoimmune disorder. Diagnosis of lipodystrophy is mainly based upon physical examination findings of loss of body fat and can be supported by body composition analysis by skinfold measurements, dual-energy x-ray absorptiometry, and whole-body magnetic resonance imaging. Confirmatory genetic testing is helpful in the proband and at-risk family members with suspected genetic lipodystrophies. The treatment is directed towards the specific comorbidities and metabolic complications, and there is no treatment to reverse body fat loss. Metreleptin should be considered as the first-line therapy for metabolic complications in patients with generalized lipodystrophy and for prevention of comorbidities in children. Metformin and insulin therapy are the best options for treating hyperglycemia and fibrates and/or fish oil for hypertriglyceridemia. Lipodystrophy should be suspected in lean and muscular subjects presenting with diabetes mellitus, hypertriglyceridemia, non-alcoholic fatty liver disease, polycystic ovarian syndrome, or amenorrhea. Diabetologists should be aware of lipodystrophies and consider genetic varieties as an important subtype of monogenic diabetes.
Collapse
Affiliation(s)
- Nivedita Patni
- Division of Pediatric Endocrinology, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Abhimanyu Garg
- Division of Nutrition and Metabolic Diseases, Department of Internal Medicine and the Center for Human Nutrition, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-8537, USA.
| |
Collapse
|
12
|
Kornak U, Saha N, Keren B, Neumann A, Taylor Tavares AL, Piard J, Kopp J, Rodrigues Alves JG, Rodríguez de Los Santos M, El Choubassi N, Ehmke N, Jäger M, Spielmann M, Pantel JT, Lejeune E, Fauler B, Mielke T, Hecht J, Meierhofer D, Strom TM, Laugel V, Brice A, Mundlos S, Bertoli-Avella A, Bauer P, Heyd F, Boute O, Dupont J, Depienne C, Van Maldergem L, Fischer-Zirnsak B. Alternative splicing of BUD13 determines the severity of a developmental disorder with lipodystrophy and progeroid features. Genet Med 2022; 24:1927-1940. [PMID: 35670808 DOI: 10.1016/j.gim.2022.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022] Open
Abstract
PURPOSE In this study we aimed to identify the molecular genetic cause of a progressive multisystem disease with prominent lipodystrophy. METHODS In total, 5 affected individuals were investigated using exome sequencing. Dermal fibroblasts were characterized using RNA sequencing, proteomics, immunoblotting, immunostaining, and electron microscopy. Subcellular localization and rescue studies were performed. RESULTS We identified a lipodystrophy phenotype with a typical facial appearance, corneal clouding, achalasia, progressive hearing loss, and variable severity. Although 3 individuals showed stunted growth, intellectual disability, and died within the first decade of life (A1, A2, and A3), 2 are adults with normal intellectual development (A4 and A5). All individuals harbored an identical homozygous nonsense variant affecting the retention and splicing complex component BUD13. The nucleotide substitution caused alternative splicing of BUD13 leading to a stable truncated protein whose expression positively correlated with disease expression and life expectancy. In dermal fibroblasts, we found elevated intron retention, a global reduction of spliceosomal proteins, and nuclei with multiple invaginations, which were more pronounced in A1, A2, and A3. Overexpression of both BUD13 isoforms normalized the nuclear morphology. CONCLUSION Our results define a hitherto unknown syndrome and show that the alternative splice product converts a loss-of-function into a hypomorphic allele, thereby probably determining the severity of the disease and the survival of affected individuals.
Collapse
Affiliation(s)
- Uwe Kornak
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany.
| | - Namrata Saha
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies, Charité-Universtitätsmedizin Berlin, Germany; Max Planck International Research Network on Aging, Max Planck Society, Rostock, Germany
| | - Boris Keren
- Department of Genetics, DMU BioGem, Assistance Publique - Hôpitaux de Paris, Hôpital Universitaire Pitié-Salpêtrière, Paris, France
| | - Alexander Neumann
- Laboratory of RNA Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany; Omiqa Bioinformatics, Berlin, Germany
| | - Ana Lisa Taylor Tavares
- East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom; Genomics England, London, United Kingdom
| | - Juliette Piard
- Centre de Génétique Humaine, Université de Franche-Comté, Besançon, France.
| | - Johannes Kopp
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - João Guilherme Rodrigues Alves
- Serviço de Genética, Departamento de Pediatria, Hospital de Santa Maria, Centro Hospital Universitário Lisboa Norte, Lisboa, Portugal
| | - Miguel Rodríguez de Los Santos
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies, Charité-Universtitätsmedizin Berlin, Germany
| | - Naji El Choubassi
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Nadja Ehmke
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Marten Jäger
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; BIH Genomics Core Unit, Berlin Institute of Health (BIH), Berlin, Germany
| | - Malte Spielmann
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute of Human Genetics, University of Lübeck, Lübeck, Germany
| | - Jean Tori Pantel
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Elodie Lejeune
- Department of Genetics, DMU BioGem, Assistance Publique - Hôpitaux de Paris, Hôpital Universitaire Pitié-Salpêtrière, Paris, France
| | - Beatrix Fauler
- Microscopy and Cryo-electron Microscopy Group, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Thorsten Mielke
- Microscopy and Cryo-electron Microscopy Group, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Jochen Hecht
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - David Meierhofer
- Mass-Spectrometry Facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Tim M Strom
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Vincent Laugel
- Service de Pédiatrie 1, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France; Laboratoire de Génétique Médicale, Institut de Génétique Médicale d'Alsace, Faculté de Médecine de Strasbourg, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Alexis Brice
- Department of Genetics, DMU BioGem, Assistance Publique - Hôpitaux de Paris, Hôpital Universitaire Pitié-Salpêtrière, Paris, France; Institut du Cerveau - Paris Brain Institute - ICM, Inserm, Centre National de la Recherche Scientifique, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - Stefan Mundlos
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Peter Bauer
- CENTOGENE GmbH, Rostock, Germany; Department of Medicine Clinic III, Hematology, Oncology and Palliative Medicine, Rostock University Medical Center, Rostock, Germany
| | - Florian Heyd
- Laboratory of RNA Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Odile Boute
- Génétique Clinique, Centre Hospitalier Universitaire de Lille, Hôpital Jeanne de Flandre, Lille, France.
| | - Juliette Dupont
- Serviço de Genética, Departamento de Pediatria, Hospital de Santa Maria, Centro Hospital Universitário Lisboa Norte, Lisboa, Portugal.
| | - Christel Depienne
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, Centre National de la Recherche Scientifique, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris, France; Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Lionel Van Maldergem
- Centre de Génétique Humaine, Université de Franche-Comté, Besançon, France; Center of Clinical investigation 1431, National Institute of Health and Medical Research (INSERM), CHU, Besancon, France
| | - Björn Fischer-Zirnsak
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
13
|
Abstract
Lipodystrophy constitutes a spectrum of diseases characterized by a generalized or partial absence of adipose tissue. Underscoring the role of healthy fat in maintenance of metabolic homeostasis, fat deficiency in lipodystrophy typically leads to profound metabolic disturbances including insulin resistance, hypertriglyceridemia, and ectopic fat accumulation. While rare, recent genetic studies indicate that lipodystrophy is more prevalent than has been previously thought, suggesting considerable underdiagnosis in clinical practice. In this article, we provide an overview of the etiology and management of generalized and partial lipodystrophy disorders. We bring together the latest scientific evidence and clinical guidelines and expose key gaps in knowledge. Through improved recognition of the lipodystrophy disorders, patients (and their affected family members) can be appropriately screened for cardiometabolic, noncardiometabolic, and syndromic abnormalities and undergo treatment with targeted interventions. Notably, insights gained through the study of this rare and extreme phenotype can inform our knowledge of more common disorders of adipose tissue overload, including generalized obesity.
Collapse
Affiliation(s)
- Lindsay T Fourman
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
- Correspondence: Lindsay T. Fourman, MD, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, 5LON207, Boston, MA 02114, USA.
| | - Steven K Grinspoon
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| |
Collapse
|
14
|
Rutkowska L, Salachna D, Lewandowski K, Lewiński A, Gach A. Familial Partial Lipodystrophy-Literature Review and Report of a Novel Variant in PPARG Expanding the Spectrum of Disease-Causing Alterations in FPLD3. Diagnostics (Basel) 2022; 12:1122. [PMID: 35626278 PMCID: PMC9139680 DOI: 10.3390/diagnostics12051122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
Familial partial lipodystrophy (FPLD) is a rare genetic disorder characterized by the selective loss of adipose tissue. Its estimated prevalence is as low as 1 in 1 million. The deficiency of metabolically active adipose tissue is closely linked with a wide range of metabolic complications, such as insulin resistance, lipoatrophic diabetes, dyslipidemia with severe hypertriglyceridemia, hypertension or hepatic steatosis. Moreover, female patients often develop hyperandrogenism, hirsutism, polycystic ovaries and infertility. The two most common types are FPLD type 2 and 3. Variants within LMNA and PPARG genes account for more than 50% of all reported FPLD cases. Because of its high heterogeneity and rarity, lipodystrophy can be easily unrecognized or misdiagnosed. To determine the genetic background of FPLD in a symptomatic woman and her close family, an NGS custom panel was used to sequence LMNA and PPARG genes. The affected patient presented fat deposits in the face, neck and trunk, with fat loss combined with muscular hypertrophy in the lower extremities and hirsutism, all features first manifesting at puberty. Her clinical presentation included metabolic disturbances, including hypercholesterolemia with severe hypertriglyceridemia, diabetes mellitus and hepatic steatosis. This together with her typical fat distribution and physical features raised a suspicion of FPLD. NGS analysis revealed the presence of missense heterozygous variant c.443G>A in exon 4 of PPARG gene, causing glycine to glutamic acid substitution at amino acid position 148, p.(Gly148Glu). The variant was also found in the patient’s mother and son. The variant was not previously reported in any public database. Based on computational analysis, crucial variant localization within DNA-binding domain of PPARγ, available literature data and the variant cosegregation in the patient’s family, novel c.443G>A variant was suspected to be causative. Functional testing is needed to confirm the pathogenicity of the novel variant. Inherited lipodystrophy syndromes represent a heterogenous group of metabolic disorders, whose background often remains unclear. A better understating of the genetic basis would allow earlier diagnosis and targeted treatment implementation.
Collapse
Affiliation(s)
- Lena Rutkowska
- Department of Genetics, Polish Mother’s Memorial Hospital-Research Institute, 93-338 Lodz, Poland;
| | - Dominik Salachna
- Department of Genetics, Polish Mother’s Memorial Hospital-Research Institute, 93-338 Lodz, Poland;
| | - Krzysztof Lewandowski
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 90-419 Lodz, Poland
- Department of Endocrinology and Metabolic Diseases, Polish Mother’s Memorial Hospital-Research Institute, 93-338 Lodz, Poland
| | - Andrzej Lewiński
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 90-419 Lodz, Poland
- Department of Endocrinology and Metabolic Diseases, Polish Mother’s Memorial Hospital-Research Institute, 93-338 Lodz, Poland
| | - Agnieszka Gach
- Department of Genetics, Polish Mother’s Memorial Hospital-Research Institute, 93-338 Lodz, Poland;
| |
Collapse
|
15
|
Molekulargenetische Diagnostik des Diabetes mellitus. DIABETOLOGE 2022. [DOI: 10.1007/s11428-022-00876-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
DiCorpo D, LeClair J, Cole JB, Sarnowski C, Ahmadizar F, Bielak LF, Blokstra A, Bottinger EP, Chaker L, Chen YDI, Chen Y, de Vries PS, Faquih T, Ghanbari M, Gudmundsdottir V, Guo X, Hasbani NR, Ibi D, Ikram MA, Kavousi M, Leonard HL, Leong A, Mercader JM, Morrison AC, Nadkarni GN, Nalls MA, Noordam R, Preuss M, Smith JA, Trompet S, Vissink P, Yao J, Zhao W, Boerwinkle E, Goodarzi MO, Gudnason V, Jukema JW, Kardia SL, Loos RJ, Liu CT, Manning AK, Mook-Kanamori D, Pankow JS, Picavet HSJ, Sattar N, Simonsick EM, Verschuren WM, Willems van Dijk K, Florez JC, Rotter JI, Meigs JB, Dupuis J, Udler MS. Type 2 Diabetes Partitioned Polygenic Scores Associate With Disease Outcomes in 454,193 Individuals Across 13 Cohorts. Diabetes Care 2022; 45:674-683. [PMID: 35085396 PMCID: PMC8918228 DOI: 10.2337/dc21-1395] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/15/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Type 2 diabetes (T2D) has heterogeneous patient clinical characteristics and outcomes. In previous work, we investigated the genetic basis of this heterogeneity by clustering 94 T2D genetic loci using their associations with 47 diabetes-related traits and identified five clusters, termed β-cell, proinsulin, obesity, lipodystrophy, and liver/lipid. The relationship between these clusters and individual-level metabolic disease outcomes has not been assessed. RESEARCH DESIGN AND METHODS Here we constructed individual-level partitioned polygenic scores (pPS) for these five clusters in 12 studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the UK Biobank (n = 454,193) and tested for cross-sectional association with T2D-related outcomes, including blood pressure, renal function, insulin use, age at T2D diagnosis, and coronary artery disease (CAD). RESULTS Despite all clusters containing T2D risk-increasing alleles, they had differential associations with metabolic outcomes. Increased obesity and lipodystrophy cluster pPS, which had opposite directions of association with measures of adiposity, were both significantly associated with increased blood pressure and hypertension. The lipodystrophy and liver/lipid cluster pPS were each associated with CAD, with increasing and decreasing effects, respectively. An increased liver/lipid cluster pPS was also significantly associated with reduced renal function. The liver/lipid cluster includes known loci linked to liver lipid metabolism (e.g., GCKR, PNPLA3, and TM6SF2), and these findings suggest that cardiovascular disease risk and renal function may be impacted by these loci through their shared disease pathway. CONCLUSIONS Our findings support that genetically driven pathways leading to T2D also predispose differentially to clinical outcomes.
Collapse
Affiliation(s)
- Daniel DiCorpo
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Jessica LeClair
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Joanne B. Cole
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA
| | - Chloé Sarnowski
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Fariba Ahmadizar
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Julius Global Health, University Utrecht Medical Center, Utrecht, the Netherlands
| | - Lawrence F. Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Anneke Blokstra
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Erwin P. Bottinger
- Hasso Plattner Institute Digital Health, Potsdam, Germany
- Mount Sinai Health System, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Layal Chaker
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Internal Medicine, Division of Endocrinology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Yii-Der I. Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Ye Chen
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA
| | - Paul S. de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
| | - Tariq Faquih
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Valborg Gudmundsdottir
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Natalie R. Hasbani
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
| | - Dorina Ibi
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Hampton L. Leonard
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD
- Data Tecnica International, Glen Echo, MD
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD
| | - Aaron Leong
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA
| | - Josep M. Mercader
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Alanna C. Morrison
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA
| | - Girish N. Nadkarni
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mike A. Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD
- Data Tecnica International, Glen Echo, MD
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD
| | - Raymond Noordam
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Michael Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
- Institute for Social Research, Survey Research Center, University of Michigan, Ann Arbor, MI
| | - Stella Trompet
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Petra Vissink
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Mark O. Goodarzi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - J. Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Netherlands Heart Institute, Utrecht, the Netherlands
| | - Sharon L.R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Ruth J.F. Loos
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Alisa K. Manning
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA
| | - Dennis Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - James S. Pankow
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN
| | - H. Susan J. Picavet
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Naveed Sattar
- British Heart Foundation Glasgow Cardiovascular Research Centre, Faculty of Medicine, Glasgow, U.K
| | - Eleanor M. Simonsick
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - W.M. Monique Verschuren
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Ko Willems van Dijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Jose C. Florez
- Department of Medicine, Harvard Medical School, Boston, MA
- Endocrine Division, Massachusetts General Hospital, Boston, MA
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - James B. Meigs
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Miriam S. Udler
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Endocrine Division, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| |
Collapse
|
17
|
Generalized lipoatrophy syndromes. Presse Med 2021; 50:104075. [PMID: 34562560 DOI: 10.1016/j.lpm.2021.104075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/31/2021] [Accepted: 09/15/2021] [Indexed: 11/23/2022] Open
Abstract
Generalized lipodystrophy (GL) syndromes are a group of rare heterogenous disorders, characterized by total subcutaneous fat loss. The frequency of GL is currently assessed as approximately 0,23 cases per million of the population, in Europe - as 0,96 cases per million of the population. They can be congenital (CGL) or acquired (AGL) depending on the etiology and the time of the onset of fat loss. Both CGL and AGL are often associated with different metabolic complications, such as hypertriglyceridemia, insulin resistance and lipoatrophic diabetes mellitus, metabolically associated FLD, arterial hypertension, proteinuria, reproductive system disorders. In this review we aimed to summarize the information on all forms of generalized lipodystrophy, especially the ones of genetic etiology, their clinical manifestations and complications, the perspectives for diagnostics, treatment and further research.
Collapse
|
18
|
Hamp A, Anderson J, Bal A, Hansen N. Acquired localised lipoatrophy secondary to transgluteal drainage. BMJ Case Rep 2021; 14:14/7/e242964. [PMID: 34290016 DOI: 10.1136/bcr-2021-242964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Acquired localised lipoatrophy is a focal loss of subcutaneous fat, which is commonly secondary to trauma, injections of medications such as antibiotics or corticosteroids, pressure, previous surgery or panniculitis. We present a case of a patient who experienced focal fat loss in the left gluteal region from a previous left transgluteal drainage of a suspected abscess. There was no medical history of corticosteroid, antibiotic injection or use of highly active antiretroviral therapy. Lipoatrophy occurring as a consequence of a deep pelvic abscess drainage has not been reported in the literature; however, based on the lack of other aetiologies, the diagnosis of acquired localised lipoatrophy secondary to a transgluteal drainage was made in this patient. The aim of this report was to present this rare cause of lipoatrophy that has not previously been described and to acknowledge lipoatrophy as a potential side effect of a deep abscess drainage.
Collapse
Affiliation(s)
- Austin Hamp
- Arizona College of Osteopathic Medicine, Glendale, Arizona, USA
| | - Jarett Anderson
- Arizona College of Osteopathic Medicine, Glendale, Arizona, USA
| | - Arjun Bal
- Arizona College of Osteopathic Medicine, Glendale, Arizona, USA
| | - Nate Hansen
- Dermatology, Beaumont Health, Farmington Hills, Michigan, USA
| |
Collapse
|
19
|
Ren Z, Hu Y, Guo D, Guan Z, Chen L, He J, Yu W. Increased miR‑187‑3p expression after cerebral ischemia/reperfusion induces apoptosis via initiation of endoplasmic reticulum stress. Neurosci Lett 2021; 759:135947. [PMID: 34015413 DOI: 10.1016/j.neulet.2021.135947] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/13/2021] [Accepted: 05/05/2021] [Indexed: 12/16/2022]
Abstract
Ischemia/reperfusion (I/R) injury induces activation of the endoplasmic reticulum stress (ERS) pathway, accompanied by an increase in apoptosis. Multiple microRNAs (miRNAs/miRs) are dysregulated during I/R and contribute to I/R-induced injury. miRNAs act as suppressors of gene expression and negatively regulate gene expression by targeting the protein-coding sequence (CDS) of specific target mRNAs. Seipin is an endoplasmic reticulum protein that has recently been associated with ERS. We previously reported that seipin is the target gene of miR‑187‑3p. Therefore, we explored the involvement of miR-187-3p in I/R-induced ERS via the regulation of seipin. A rat MCAO/R model was established by 1 h of occlusion and 24 h reperfusion. Neurological deficits and infarction area were examined. PC12 cells were exposed to oxygen‑glucose deprivation/reoxygenation (OGD/R) to model I/R. Expression levels of miR-187-3p and proteins related to ERS and apoptosis were measured using RT-PCR, western blotting, immunofluorescence, and immunohistochemistry, respectively. TUNEL staining was used to assay apoptosis. MCAO/R-induced morphological changes were analyzed with Nissl staining and Hematoxylin-eosin staining. I/R-induced ERS was closely associated with an increase in miR-1873p and a decrease in seipin expression. miR-187-3p agomir further activated the ERS pathway and promoted apoptosis but decreased seipin expression levels; these effects were reversed by miR-187-3p antagomir. Moreover, seipin knockdown aggravated ERS in PC12 cells after OGD/R, and this change was rescued by seipin overexpression. miR-187-3p antagomir did not suppress ERS and apoptosis in seipin knockdown PC12 cells after OGD/R. Our findings demonstrate that the inhibition of miR‑187‑3p attenuated I/R‑induced cerebral injury by regulating seipin-mediated ERS.
Collapse
Affiliation(s)
- Zhenkui Ren
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, School of Basic Medical Science, Guizhou Medical University, China; Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou, 550004, China; Laboratory Department of People's Hospital of Southwest Guizhou Autonomous Prefecture, Xingyi, Guizhou, 562400, China
| | - Yumei Hu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, School of Basic Medical Science, Guizhou Medical University, China; Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Dongfen Guo
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, School of Basic Medical Science, Guizhou Medical University, China; Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Zhizhong Guan
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, School of Basic Medical Science, Guizhou Medical University, China; Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou, 550004, China; Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Ling Chen
- Laboratory of Reproductive Medicine, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Jun He
- Department of Laboratory Medicine, The Second People's Hospital of Guizhou Province, Guiyang, 550002, China; Department of Immunology, Guizhou Medical University, Guiyang, 550004, China.
| | - Wenfeng Yu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, School of Basic Medical Science, Guizhou Medical University, China; Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou, 550004, China.
| |
Collapse
|
20
|
Distinct Shades of Adipocytes Control the Metabolic Roles of Adipose Tissues: From Their Origins to Their Relevance for Medical Applications. Biomedicines 2021; 9:biomedicines9010040. [PMID: 33466493 PMCID: PMC7824911 DOI: 10.3390/biomedicines9010040] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022] Open
Abstract
Adipose tissue resides in specific depots scattered in peripheral or deeper locations all over the body and it enwraps most of the organs. This tissue is always in a dynamic evolution as it must adapt to the metabolic demand and constraints. It exhibits also endocrine functions important to regulate energy homeostasis. This complex organ is composed of depots able to produce opposite functions to monitor energy: the so called white adipose tissue acts to store energy as triglycerides preventing ectopic fat deposition while the brown adipose depots dissipate it. It is composed of many cell types. Different types of adipocytes constitute the mature cells specialized to store or burn energy. Immature adipose progenitors (AP) presenting stem cells properties contribute not only to the maintenance but also to the expansion of this tissue as observed in overweight or obese individuals. They display a high regeneration potential offering a great interest for cell therapy. In this review, we will depict the attributes of the distinct types of adipocytes and their contribution to the function and metabolic features of adipose tissue. We will examine the specific role and properties of distinct depots according to their location. We will consider their cellular heterogeneity to present an updated picture of this sophisticated tissue. We will also introduce new trends pointing out a rational targeting of adipose tissue for medical applications.
Collapse
|
21
|
Jeon FHK, Griffin M, Frosdick C, Butler PEM. Lipotransfer provides effective soft tissue replacement for acquired partial lipodystrophy. BMJ Case Rep 2020; 13:13/5/e232601. [PMID: 32404319 DOI: 10.1136/bcr-2019-232601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We present a 48-year-old female patient who presented with features consistent with acquired partial lipodystrophy (APL) also known as 'Barraquer-Simons syndrome'. It is a rare disease characterised by a gradual and progressive onset of lipoatrophy limited to the face, neck, upper limbs, thorax and abdomen and sparing the lower extremities. The resultant physical appearance can have significant psychosocial sequelae, further compounded by misdiagnosis and delay in recognition and management. Treatment is aimed at surgical correction of soft tissue destruction. Autologous fat transfer is an established plastic and reconstructive procedure that is safe and minimally invasive and can be used to reconstruct a variety of soft tissue defects and has shown to be an effective treatment modality in patients with APL.
Collapse
Affiliation(s)
| | - Michelle Griffin
- Division of Surgery & Interventional Science, University College London, London, UK.,Department of Plastic and Reconstructive Surgery, Royal Free London NHS Foundation Trust, London, UK
| | - Carole Frosdick
- Department of Plastic and Reconstructive Surgery, Royal Free London NHS Foundation Trust, London, UK
| | - Peter Edward Michael Butler
- Division of Surgery & Interventional Science, University College London, London, UK.,Department of Plastic and Reconstructive Surgery, Royal Free London NHS Foundation Trust, London, UK
| |
Collapse
|
22
|
Ren M, Shi J, Jia J, Guo Y, Ni X, Shi T. Genotype-phenotype correlations of Berardinelli-Seip congenital lipodystrophy and novel candidate genes prediction. Orphanet J Rare Dis 2020; 15:108. [PMID: 32349771 PMCID: PMC7191718 DOI: 10.1186/s13023-020-01383-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 04/13/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Berardinelli-Seip congenital lipodystrophy (BSCL) is a heterogeneous autosomal recessive disorder characterized by an almost total lack of adipose tissue in the body. Mutations in the AGPAT2, BSCL2, CAV1 and PTRF genes define I-IV subtype of BSLC respectively and clinical data indicate that new causative genes remain to be discovered. Here, we retrieved 341 cases from 60 BSCL-related studies worldwide and aimed to explore genotype-phenotype correlations based on mutations of AGPAT2 and BSCL2 genes from 251 cases. We also inferred new candidate genes for BSCL through protein-protein interaction and phenotype-similarity. RESULTS Analysis results show that BSCL type II with earlier age of onset of diabetes mellitus, higher risk to suffer from premature death and mental retardation, is a more severe disorder than BSCL type I, but BSCL type I patients are more likely to have bone cysts. In BSCL type I, females are at higher risk of developing diabetes mellitus and acanthosis nigricans than males, while in BSCL type II, males suffer from diabetes mellitus earlier than females. In addition, some significant correlations among BSCL-related phenotypes were identified. New candidate genes prediction through protein-protein interaction and phenotype-similarity was conducted and we found that CAV3, EBP, SNAP29, HK1, CHRM3, OBSL1 and DNAJC13 genes could be the pathogenic factors for BSCL. Particularly, CAV3 and EBP could be high-priority candidate genes contributing to pathogenesis of BSCL. CONCLUSIONS Our study largely enhances the current knowledge of phenotypic and genotypic heterogeneity of BSCL and promotes the more comprehensive understanding of pathogenic mechanisms for BSCL.
Collapse
Affiliation(s)
- Meng Ren
- Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jingru Shi
- Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jinmeng Jia
- Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yongli Guo
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, National Center for Children's Health, Beijing Pediatric Research Institute, Capital Medical University, Beijing, China.
- Biobank for Clinical Data and Samples in Pediatrics, Beijing Children's Hospital, National Center for Children's Health, Beijing Pediatric Research Institute, Capital Medical University, Beijing, China.
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China.
| | - Xin Ni
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, National Center for Children's Health, Beijing Pediatric Research Institute, Capital Medical University, Beijing, China.
- Biobank for Clinical Data and Samples in Pediatrics, Beijing Children's Hospital, National Center for Children's Health, Beijing Pediatric Research Institute, Capital Medical University, Beijing, China.
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China.
| | - Tieliu Shi
- Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China.
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
23
|
Romano MMD, Chacon PAI, Ramalho FNZ, Foss MC, Schmidt A. Cardiac Alterations in Patients with Familial Lipodystrophy. Arq Bras Cardiol 2020; 114:305-312. [PMID: 32215503 PMCID: PMC7077563 DOI: 10.36660/abc.20190016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/05/2019] [Indexed: 11/18/2022] Open
Abstract
Familial lipodystrophy is a rare genetic condition in which individuals have, besides metabolic changes and body fat deposits, a type of cardiomyopathy that has not been well studied. Many of the patients develop cardiovascular changes, the most commonly reported in the literature being the expression of a type of hypertrophic cardiomyopathy. This article, presented as a bibliographic review, reviews the clinical and cardiovascular imaging aspects in this scenario of cardiomyopathy in a rare metabolic disease, based on the latest scientific evidence published in the area. Despite the frequent association of congenital lipodystrophy and ventricular hypertrophy described in the literature, the pathophysiological mechanisms of this cardiomyopathy have not yet been definitively elucidated, and new information on cardiac morphological aspects is emerging in the aegis of recent and advanced imaging methods, such as cardiac magnetic resonance.
Collapse
Affiliation(s)
- Minna Moreira Dias Romano
- Universidade de São Paulo Faculdade de Medicina de Ribeirão Preto - Medicina Interna, Ribeirão Preto, SP - Brazil
| | - Paula Ananda Inês Chacon
- Universidade de São Paulo Faculdade de Medicina de Ribeirão Preto - Medicina Interna, Ribeirão Preto, SP - Brazil
| | | | - Maria Cristina Foss
- Universidade de São Paulo Faculdade de Medicina de Ribeirão Preto - Medicina Interna, Ribeirão Preto, SP - Brazil
| | - André Schmidt
- Universidade de São Paulo Faculdade de Medicina de Ribeirão Preto - Centro de Cardiologia, Ribeirão Preto, SP - Brazil
| |
Collapse
|
24
|
Hoa Chung L, Qi Y. Lipodystrophy - A Rare Condition with Serious Metabolic Abnormalities. Rare Dis 2020. [DOI: 10.5772/intechopen.88667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
25
|
Foss-Freitas MC, Akinci B, Luo Y, Stratton A, Oral EA. Diagnostic strategies and clinical management of lipodystrophy. Expert Rev Endocrinol Metab 2020; 15:95-114. [PMID: 32368944 DOI: 10.1080/17446651.2020.1735360] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/24/2020] [Indexed: 12/16/2022]
Abstract
Introduction: Lipodystrophy is a heterogeneous group of rare diseases characterized by various degrees of fat loss which leads to serious morbidity due to metabolic abnormalities associated with insulin resistance and subtype-specific clinical features associated with underlying molecular etiology.Areas covered: This article aims to help physicians address challenges in diagnosing and managing lipodystrophy. We systematically reviewed the literature on PubMed and Google Scholar databases to summarize the current knowledge in lipodystrophy management.Expert opinion: Adipose tissue is a highly active endocrine organ that regulates metabolic homeostasis in the human body through a comprehensive communication network with other organ systems such as the central nervous system, liver, digestive system, and the immune system. The adipose tissue is capable of producing and secreting numerous factors with important endocrine functions such as leptin that regulates energy homeostasis. Recent developments in the field have helped to solve some of the mysteries behind lipodystrophy that allowed us to get a better understanding of adipocyte function and differentiation. From a clinical standpoint, physicians who suspect lipodystrophy should distinguish the disease from several others that may present with similar clinical features. It is also important for physicians to carefully interpret clinical features, laboratory, and imaging results before moving to more sophisticated tests and making decisions about therapy.
Collapse
Affiliation(s)
- Maria C Foss-Freitas
- Division of Metabolism, Endocrinology and Diabetes (MEND), Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Ribeirao Preto Medical School, Sao Paulo University, Ribeirao Preto, Brazil
| | - Baris Akinci
- Division of Metabolism, Endocrinology and Diabetes (MEND), Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Yingying Luo
- Division of Metabolism, Endocrinology and Diabetes (MEND), Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | | | - Elif A Oral
- Division of Metabolism, Endocrinology and Diabetes (MEND), Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
26
|
Herrera-Marcos LV, Sancho-Knapik S, Gabás-Rivera C, Barranquero C, Gascón S, Romanos E, Martínez-Beamonte R, Navarro MA, Surra JC, Arnal C, García-de-Jalón JA, Rodríguez-Yoldi MJ, Tena-Sempere M, Sánchez-Ramos C, Monsalve M, Osada J. Pgc1a is responsible for the sex differences in hepatic Cidec/Fsp27β mRNA expression in hepatic steatosis of mice fed a Western diet. Am J Physiol Endocrinol Metab 2020; 318:E249-E261. [PMID: 31846369 DOI: 10.1152/ajpendo.00199.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hepatic fat-specific protein 27 [cell death-inducing DNA fragmentation effector protein C (Cidec)/Fsp27] mRNA levels have been associated with hepatic lipid droplet extent under certain circumstances. To address its hepatic expression under different dietary conditions and in both sexes, apolipoprotein E (Apoe)-deficient mice were subjected to different experimental conditions for 11 wk to test the influence of cholesterol, Western diet, squalene, oleanolic acid, sex, and surgical castration on Cidec/Fsp27 mRNA expression. Dietary cholesterol increased hepatic Cidec/Fsp27β expression, an effect that was suppressed when cholesterol was combined with saturated fat as represented by Western diet feeding. Using the latter diet, neither oleanolic acid nor squalene modified its expression. Females showed lower levels of hepatic Cidec/Fsp27β expression than males when they were fed Western diets, a result that was translated into a lesser amount of CIDEC/FSP27 protein in lipid droplets and microsomes. This was also confirmed in low-density lipoprotein receptor (Ldlr)-deficient mice. Incubation with estradiol resulted in decreased Cidec/Fsp27β expression in AML12 cells. Whereas male surgical castration did not modify the expression, ovariectomized females did show increased levels compared with control females. Females also showed increased expression of peroxisome proliferator-activated receptor-γ coactivator 1-α (Pgc1a), suppressed by ovariectomy, and the values were significantly and inversely associated with those of Cidec/Fsp27β. When Pgc1a-deficient mice were used, the sex differences in Cidec/Fsp27β expression disappeared. Therefore, hepatic Cidec/Fsp27β expression has a complex regulation influenced by diet and sex hormonal milieu. The mRNA sex differences are controlled by Pgc1a.
Collapse
Affiliation(s)
- Luis V Herrera-Marcos
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
| | - Sara Sancho-Knapik
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
| | - Clara Gabás-Rivera
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Barranquero
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Sonia Gascón
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Eduardo Romanos
- Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
| | - Roberto Martínez-Beamonte
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - María A Navarro
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Joaquín C Surra
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Producción Animal y Ciencia de los Alimentos, Escuela Politécnica Superior de Huesca Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Huesca, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Arnal
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - José A García-de-Jalón
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
| | - María J Rodríguez-Yoldi
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Farmacología y Fisiología, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Tena-Sempere
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba e Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Sánchez-Ramos
- Instituto de Investigaciones Biomedicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - María Monsalve
- Instituto de Investigaciones Biomedicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Jesús Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
27
|
Sivasami P, Poudel N, Munteanu MC, Hudson J, Lovern P, Liu L, Griffin T, Hinsdale ME. Adipose tissue loss and lipodystrophy in xylosyltransferase II deficient mice. Int J Obes (Lond) 2019; 43:1783-1794. [PMID: 30778123 PMCID: PMC7067554 DOI: 10.1038/s41366-019-0324-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 10/21/2018] [Accepted: 11/22/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND/OBJECTIVES The cellular and extracellular matrix (ECM) interactions that regulate adipose tissue homeostasis are incompletely understood. Proteoglycans (PGs) and their sulfated glycosaminoglycans (GAGs) provide spatial and temporal signals for ECM organization and interactions with resident cells by impacting growth factor and cytokine activity. Therefore, PGs and their GAGs could be significant to adipose tissue homeostasis. The purpose of this study was to determine the role of ECM sulfated GAGs in adipose tissue homeostasis. METHODS Adipose tissue and metabolic homeostasis in mice deficient in xylosyltransferase 2 (Xylt2-/-) were examined by histologic analyses, gene expression analyses, whole body fat composition measurements, and glucose tolerance test. Adipose tissue inflammation and adipocyte precursors were characterized by flow cytometry and in vitro culture of mesenchymal stem cells. RESULTS Xylt2-/- mice have low body weight due to overall reductions in abdominal fat deposition. Histologically, the adipocytes are reduced in size and number in both gonadal and mesenteric fat depots of Xylt2-/- mice. In addition, these mice are glucose intolerant, insulin resistant, and have increased serum triglycerides as compared to Xylt2 + / + control mice. Furthermore, the adipose tissue niche has increased inflammatory cells and enrichment of proinflammatory factors IL6 and IL1β, and these mice also have a loss of adipose tissue vascular endothelial cells. Lastly, xylosyltransferease-2 (XylT2) deficient mesenchymal stem cells from gonadal adipose tissue and bone marrow exhibit impaired adipogenic differentiation in vitro. CONCLUSIONS Decreased GAGs due to the loss of the key GAG assembly enzyme XylT2 causes reduced steady state adipose tissue stores leading to a unique lipodystrophic model. Accumulation of an adipocytic precursor pool of cells is discovered indicating an interruption in differentiation. Therefore, adipose tissue GAGs are important in the homeostasis of adipose tissue by mediating control of adipose precursor development, tissue inflammation, and vascular development.
Collapse
Affiliation(s)
- Pulavendran Sivasami
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Nabin Poudel
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | | | - Joanna Hudson
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Pamela Lovern
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Lin Liu
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Tim Griffin
- Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Myron E Hinsdale
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
28
|
Ribeiro A, Brandão JR, Cleto E, Santos M, Borges T, Santos Silva E. Fatty Liver and Autoimmune Hepatitis: Two Forms of Liver Involvement in Lipodystrophies. GE PORTUGUESE JOURNAL OF GASTROENTEROLOGY 2019; 26:362-369. [PMID: 31559327 PMCID: PMC6751459 DOI: 10.1159/000495767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/25/2018] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Lipodystrophies are a heterogeneous group of rare diseases (genetic or acquired) characterized by a partial or generalized deficit of adipose tissue, resulting in less energy storage capacity. They are associated with severe endocrine-metabolic complications with significant morbidity and mortality. In the pathogenesis of the acquired forms, immunological disorders may be involved. CASE 1 A 13-year-old female was diagnosed with acquired generalized lipodystrophy and observed for suspicion of portal hypertension. She presented with generalized absence of adipose tissue, cervical and axillary acanthosis nigricans, and massive hepatosplenomegaly. Laboratory tests revealed AST 116 IU/L, ALT 238 IU/L, GGT 114 IU/L, HOMA-IR 28.2, triglycerides 491 mg/L, and leptin < 0.05 ng/mL. Upper gastrointestinal endoscopy saw no signs of portal hypertension. Hepatic histology showed macrovesicular fatty infiltration (60% of hepatocytes) and advanced fibrosis/cirrhosis. Her clinical condition worsened progressively to diabetes requiring treatment with subcutaneous insulin and hepatopulmonary syndrome. CASE 2 A 15-year-old female, diagnosed with acquired partial lipodystrophy, Parkinson syndrome, autoimmune thyroiditis, and autoimmune thrombocytopenia was observed for hypertransaminasemia since the age of 8 years. She had absence of subcutaneous adipose tissue in the upper and lower limbs and ataxia. Laboratory tests showed AST 461 IU/L, ALT 921 IU/L, GGT 145 IU/L, HOMA-IR 32.6, triglycerides 298 mg/dL, normal leptin levels, platelets 84,000/μL, IgG 1,894 mg/dL, positive anti-LKM and anti-LC-1. Hepatic histology was suggestive of autoimmune hepatitis, without steatosis. She progressed favorably under metformin and immunosuppressive treatment. CONCLUSION Early recognition and adequate characterization of liver disease in lipodystrophies is essential for a correct treatment approach. In acquired generalized lipodystrophy, the severe endocrine-metabolic disorder, which leads to steatohepatitis with cirrhotic progression, may benefit from recombinant leptin treatment.
Collapse
Affiliation(s)
- Andreia Ribeiro
- Gastroenterology Unit, Pediatrics Division, Child and Adolescent Department, Centro Materno Infantil do Norte, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - José Ricardo Brandão
- Anatomical Pathology Department, Hospital de Santo António, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Esmeralda Cleto
- Hematology Unit, Pediatrics Division, Child and Adolescent Department, Centro Materno Infantil do Norte, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Manuela Santos
- Neurology Unit, Pediatrics Division, Child and Adolescent Department, Centro Materno Infantil do Norte, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Teresa Borges
- Endocrinology Unit, Pediatrics Division, Child and Adolescent Department, Centro Materno Infantil do Norte, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Ermelinda Santos Silva
- Gastroenterology Unit, Pediatrics Division, Child and Adolescent Department, Centro Materno Infantil do Norte, Centro Hospitalar Universitário do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
29
|
Falcao CK, Cabral MCS, Mota JM, Arbache ST, Costa-Riquetto AD, Muniz DQB, Cury-Martins J, Almeida MQ, Kaczemorska PC, Nery M, Teles MG. Acquired Lipodystrophy Associated With Nivolumab in a Patient With Advanced Renal Cell Carcinoma. J Clin Endocrinol Metab 2019; 104:3245-3248. [PMID: 30779841 DOI: 10.1210/jc.2018-02221] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/14/2019] [Indexed: 01/20/2023]
Abstract
CONTEXT Lipodystrophy syndromes are rare disorders characterized by the selective loss of adipose tissue. We aimed to report a case of acquired generalized lipodystrophy possibly associated with nivolumab. CASE DESCRIPTION A woman was referred to our Endocrinology Department for uncontrolled diabetes mellitus. At 50 years of age, she was diagnosed with type 2 diabetes after a routine laboratory test and her diabetes was well controlled with low doses of metformin. In 2010, she was diagnosed with clear cell renal carcinoma. The cancer progressed in the following years, leading to the initiation of treatment with nivolumab in 2017. Two months later she presented with facial lipoatrophy, with loss of the buccal fat pads and prominent zygomatic arch. Her neck, shoulders, arms, and buttocks were also affected. Her diabetes control worsened. She received maximal doses of metformin and pioglitazone and was administered 1.5 units/kg/d insulin. Subcutaneous biopsy of medial surface of the arm revealed chronic lobular panniculitis. Despite nivolumab's possible involvement in the onset of lipodystrophy, the maintenance of nivolumab therapy was justified by the observed reduction in the progression of the cancer, combined with the lack of an alternative chemotherapy. The therapy was withdrawn after 8 months of treatment because of grade 3 hepatitis. CONCLUSION Anti-PD1 therapy has great potential. Early recognition of the onset of unusual collateral effects is important to improve decision making regarding the treatment of patients with tumors.
Collapse
Affiliation(s)
- Camila Kruschewsky Falcao
- Department of Endocrinology and Metabolism, Hospital das Clinicas, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
| | - Marina Campos Simoes Cabral
- Department of Endocrinology and Metabolism, Hospital das Clinicas, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
| | - Jose Mauricio Mota
- Division of Oncology, Instituto do Câncer do Estado de São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | - Samia Trigo Arbache
- Division of Dermatology, Hospital das Clinicas, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
| | - Aline Dantas Costa-Riquetto
- Department of Endocrinology and Metabolism, Hospital das Clinicas, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
| | - David Queiroz Borges Muniz
- Division of Oncology, Instituto do Câncer do Estado de São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | - Jade Cury-Martins
- Division of Dermatology, Hospital das Clinicas, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
| | - Madson Q Almeida
- Department of Endocrinology and Metabolism, Hospital das Clinicas, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
| | - Priscilla Cukier Kaczemorska
- Department of Endocrinology and Metabolism, Hospital das Clinicas, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
| | - Marcia Nery
- Department of Endocrinology and Metabolism, Hospital das Clinicas, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
| | - Milena Gurgel Teles
- Department of Endocrinology and Metabolism, Hospital das Clinicas, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
| |
Collapse
|
30
|
El Zowalaty AE, Li R, Chen W, Ye X. Seipin deficiency leads to increased endoplasmic reticulum stress and apoptosis in mammary gland alveolar epithelial cells during lactation. Biol Reprod 2019; 98:570-578. [PMID: 29236949 DOI: 10.1093/biolre/iox169] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 12/10/2017] [Indexed: 02/06/2023] Open
Abstract
Seipin is an integral endoplasmic reticulum (ER) membrane protein encoded by Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2/Bscl2) gene. Most litters (59%) from Bscl2-/- dams mated with wild type (WT) (Bscl2+/+) males did not survive postnatal day 5 (PND5) and pups (Bscl2+/-) lacked milk in their stomachs. The survived litters had reduced pup survival rate at PND21. It was hypothesized that seipin was critical for lactation. Bscl2 was upregulated and highly detected in the lactation day 1 (LD1) WT mammary gland alveolar epithelial cells. LD1 Bscl2-/- mammary glands lacked adipocytes and alveolar clusters and had varied alveolar morphology: from interconnected mammary gland alveoli with dilated lumen and sloughed epithelial cells to undifferentiated mammary gland alveoli with unexpanded lumen. Comparable levels of whey acidic protein (WAP, a major component in rodent milk) staining and Nile Red lipid droplet staining between WT and Bscl2-/- LD1 alveolar epithelial cells indicated normal milk protein synthesis and lipid syntheses in LD1 Bscl2-/- mammary glands. Significantly reduced percentage of larger lipid droplets was detected in LD1 Bscl2-/- alveoli with unexpanded lumen. There was no obviously impaired proliferation detected by PCNA staining but increased apoptosis detected by cleaved caspase-3 staining in LD1 Bscl2-/- alveolar epithelial cells. Increased expression of protein disulfide isomerase and binding immunoglobulin protein in the LD1 Bscl2-/- mammary gland alveolar epithelial cells indicated increased ER stress. This study demonstrates increased ER stress and apoptosis in LD1 Bscl2-/- mammary gland alveolar epithelial cells and reveals a novel in vivo function of seipin in lactation.
Collapse
Affiliation(s)
- Ahmed E El Zowalaty
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA.,Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia, USA
| | - Rong Li
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA.,Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia, USA
| | - Weiqin Chen
- Department of Physiology, Augusta University, Augusta, Georgia, USA
| | - Xiaoqin Ye
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA.,Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
31
|
Luong Q, Huang J, Lee KY. Deciphering White Adipose Tissue Heterogeneity. BIOLOGY 2019; 8:biology8020023. [PMID: 30978929 PMCID: PMC6628053 DOI: 10.3390/biology8020023] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 01/09/2023]
Abstract
Adipose tissue not only stores energy, but also controls metabolism through secretion of hormones, cytokines, proteins, and microRNAs that affect the function of cells and tissues throughout the body. Adipose tissue is organized into discrete depots throughout the body, and these depots are differentially associated with insulin resistance and increased risk of metabolic disease. In addition to energy-dissipating brown and beige adipocytes, recent lineage tracing studies have demonstrated that individual adipose depots are composed of white adipocytes that are derived from distinct precursor populations, giving rise to distinct subpopulations of energy-storing white adipocytes. In this review, we discuss this developmental and functional heterogeneity of white adipocytes both between and within adipose depots. In particular, we will highlight findings from our recent manuscript in which we find and characterize three major subtypes of white adipocytes. We will discuss these data relating to the differences between subcutaneous and visceral white adipose tissue and in relationship to previous work deciphering adipocyte heterogeneity within adipose tissue depots. Finally, we will discuss the possible implications of adipocyte heterogeneity may have for the understanding of lipodystrophies.
Collapse
Affiliation(s)
- Quyen Luong
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA.
- The Diabetes Institute, Ohio University, Athens, OH 45701, USA.
| | - Jun Huang
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA.
- The Diabetes Institute, Ohio University, Athens, OH 45701, USA.
| | - Kevin Y Lee
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA.
- The Diabetes Institute, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
32
|
Vatier C, Vantyghem MC, Storey C, Jéru I, Christin-Maitre S, Fève B, Lascols O, Beltrand J, Carel JC, Vigouroux C, Bismuth E. Monogenic forms of lipodystrophic syndromes: diagnosis, detection, and practical management considerations from clinical cases. Curr Med Res Opin 2019; 35:543-552. [PMID: 30296183 DOI: 10.1080/03007995.2018.1533459] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Lipodystrophic syndromes are rare diseases of genetic or acquired origin characterized by partial or generalized lack of body fat. Early detection and diagnosis are crucial to prevent and manage associated metabolic dysfunctions, i.e. insulin resistance, dyslipidemia, fatty liver, and diabetes, and to provide appropriate genetic counseling. By means of several representative case studies, this article illustrates the diagnostic and management challenges of lipodystrophic syndromes. REVIEW Berardinelli-Seip congenital lipodystrophy (BSCL) is typically diagnosed at birth, or soon thereafter, with generalized lipoatrophy and hepatomegaly secondary to hepatic steatosis. Physicians must also consider this diagnosis in adults with atypical non-autoimmune diabetes, hypertriglyceridemia, and a lean and muscular phenotype. The BSCL1 subtype due to mutations in the AGPAT2 gene can have an unusual presentation, especially in neonates and infants. Particular attention should be paid to infants presenting failure to thrive who also have hepatomegaly and metabolic derangements. The BSCL2 sub-type due to mutations in the BSCL gene tends to be more severe than BSCL1, and is characterized by greater fat loss, mild intellectual disability, earlier onset of diabetes, and higher incidence of premature death. Effective management from an earlier age may moderate the natural disease course. Partial lipodystrophies may easily be confused with common central obesity and/or metabolic syndrome. In patients with unexplained pancreatitis and hypertriglyceridemia, lipodystrophies such as familial partial lipodystrophy type 2 (FPLD2; Dunnigan type, due to LMNA mutations) should be considered. Oral combined contraceptives, which can reveal the disease by inducing severe hypertriglyceridemia, are contraindicated. Endogenous estrogens may also lead to "unmasking" of the FPLD2 phenotype, which often appears at puberty, and is more severe in females than males. CONCLUSIONS Diet and exercise, adapted to age and potential comorbidities, are essential prerequisites for therapeutic management of lipodystrophic syndromes. Metreleptin therapy can be useful to manage lipodystrophy-related metabolic complications.
Collapse
Affiliation(s)
- Camille Vatier
- a Assistance Publique-Hôpitaux de Paris (AP-HP) , Hôpital Saint-Antoine, Centre de Référence des Pathologies Rares de l'Insulino-Sécrétion et de l'Insulino-Sensibilité (PRISIS), Service d'Endocrinologie, Diabétologie et Endocrinologie de la Reproduction , Paris , France
- b Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine , Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN) , Paris , France
| | - Marie-Christine Vantyghem
- c CHU Lille , Endocrinologie, Diabétologie, Métabolisme, Centre de Compétence des Pathologies Rares de l'Insulino-Sécrétion et de l'Insulino-Sensibilité (PRISIS) , Lille , France
| | - Caroline Storey
- d Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Robert Debré , Service d'endocrinologie diabétologie pédiatrique, Centre de Compétence des Pathologies Rares de l'Insulino-Sécrétion et de l'Insulino-Sensibilité (PRISIS) , Paris , France
- e Université Paris Diderot , Sorbonne Paris Cité , Paris , France
| | - Isabelle Jéru
- b Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine , Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN) , Paris , France
- f Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine , Laboratoire Commun de Biologie et Génétique Moléculaires , Paris , France
| | - Sophie Christin-Maitre
- a Assistance Publique-Hôpitaux de Paris (AP-HP) , Hôpital Saint-Antoine, Centre de Référence des Pathologies Rares de l'Insulino-Sécrétion et de l'Insulino-Sensibilité (PRISIS), Service d'Endocrinologie, Diabétologie et Endocrinologie de la Reproduction , Paris , France
- g Sorbonne Université , Inserm, Hôpital Trousseau , Paris , France
| | - Bruno Fève
- a Assistance Publique-Hôpitaux de Paris (AP-HP) , Hôpital Saint-Antoine, Centre de Référence des Pathologies Rares de l'Insulino-Sécrétion et de l'Insulino-Sensibilité (PRISIS), Service d'Endocrinologie, Diabétologie et Endocrinologie de la Reproduction , Paris , France
- b Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine , Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN) , Paris , France
| | - Olivier Lascols
- b Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine , Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN) , Paris , France
- c CHU Lille , Endocrinologie, Diabétologie, Métabolisme, Centre de Compétence des Pathologies Rares de l'Insulino-Sécrétion et de l'Insulino-Sensibilité (PRISIS) , Lille , France
| | - Jacques Beltrand
- h Assistance publique-Hôpitaux de Paris, Hôpital Universitaire Necker Enfants Malades, Service d'endocrinologie, gynécologie et diabétologie pédiatrique, Centre de Compétence des Pathologies Rares de l'Insulino-Sécrétion et de l'Insulino-Sensibilité (PRISIS), Faculté de médecine , Paris , France
| | - Jean-Claude Carel
- d Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Robert Debré , Service d'endocrinologie diabétologie pédiatrique, Centre de Compétence des Pathologies Rares de l'Insulino-Sécrétion et de l'Insulino-Sensibilité (PRISIS) , Paris , France
- e Université Paris Diderot , Sorbonne Paris Cité , Paris , France
| | - Corinne Vigouroux
- a Assistance Publique-Hôpitaux de Paris (AP-HP) , Hôpital Saint-Antoine, Centre de Référence des Pathologies Rares de l'Insulino-Sécrétion et de l'Insulino-Sensibilité (PRISIS), Service d'Endocrinologie, Diabétologie et Endocrinologie de la Reproduction , Paris , France
- b Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine , Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN) , Paris , France
- f Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine , Laboratoire Commun de Biologie et Génétique Moléculaires , Paris , France
| | - Elise Bismuth
- d Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Robert Debré , Service d'endocrinologie diabétologie pédiatrique, Centre de Compétence des Pathologies Rares de l'Insulino-Sécrétion et de l'Insulino-Sensibilité (PRISIS) , Paris , France
- e Université Paris Diderot , Sorbonne Paris Cité , Paris , France
| |
Collapse
|
33
|
Papathanasiou AE, Nolen-Doerr E, Farr OM, Mantzoros CS. GEOFFREY HARRIS PRIZE LECTURE 2018: Novel pathways regulating neuroendocrine function, energy homeostasis and metabolism in humans. Eur J Endocrinol 2019; 180:R59-R71. [PMID: 30475221 PMCID: PMC6378110 DOI: 10.1530/eje-18-0847] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022]
Abstract
The discovery of leptin, an adipocyte-secreted hormone, set the stage for unraveling the mechanisms dictating energy homeostasis, revealing adipose tissue as an endocrine system that regulates appetite and body weight. Fluctuating leptin levels provide molecular signals to the brain regarding available energy reserves modulating energy homeostasis and neuroendocrine response in states of leptin deficiency and to a lesser extent in hyperleptinemic states. While leptin replacement therapy fails to provide substantial benefit in common obesity, it is an effective treatment for congenital leptin deficiency and states of acquired leptin deficiency such as lipodystrophy. Current evidence suggests that regulation of eating behavior in humans is not limited to homeostatic mechanisms and that the reward, attention, memory and emotion systems are involved, participating in a complex central nervous system network. It is critical to study these systems for the treatment of typical obesity. Although progress has been made, further studies are required to unravel the physiology, pathophysiology and neurobehavioral mechanisms underlying potential treatments for weight-related problems in humans.
Collapse
Affiliation(s)
| | - Eric Nolen-Doerr
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215
| | - Olivia M. Farr
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215
| | - Christos S. Mantzoros
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215
| |
Collapse
|
34
|
Elias CP, Antunes DE, Coelho MS, de Lima CL, Rassi N, de Melo APM, Amato AA. Evaluation of the hypothalamic-pituitary-adrenal axis in a case series of familial partial lipodystrophy. Diabetol Metab Syndr 2019; 11:1. [PMID: 30622652 PMCID: PMC6317180 DOI: 10.1186/s13098-018-0396-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 12/20/2018] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Familial partial lipodystrophy (FPL) is a rare genetic disease characterized by body fat abnormalities that lead to insulin resistance (IR). Clinical conditions linked to milder IR, such as type 2 diabetes (T2D) and metabolic syndrome, are associated with abnormalities of the hypothalamic-pituitary-adrenal (HPA) axis, but little is known about its activity in FPL. METHODS Patients meeting the clinical criteria for FPL were subjected to anthropometric, biochemical and hormone analyses. A genetic study to identify mutations in the genes encoding peroxisome proliferator-activated receptor gamma (PPARγ) was performed. Polycystic ovary syndrome and hepatic steatosis were investigated, and the patient body compositions were analyzed via dual X-ray energy absorptiometry (DXA). The HPA axis was assessed via basal [cortisol, adrenocorticotrophic hormone (ACTH), cortisol binding globulin, nocturnal salivary cortisol and urinary free cortisol (UFC)] as well as dynamic suppression tests (cortisol post 0.5 mg and post 1 mg dexamethasone). RESULTS Six patients (five female and one male) aged 17 to 42 years were included. In DXA analyses, the fat mass ratio between the trunk and lower limbs (FMR) was > 1.2 in all phenotypes. One patient had a confirmed mutation in the PPARγ gene: a novel heterozygous substitution of p. Arg 212 Trp (c.634C>T) at exon 5. HPA sensitivity to glucocorticoid feedback was preserved in all six patients, and a trend towards lower basal serum cortisol, serum ACTH and UFC values was observed. CONCLUSIONS Our findings suggest that FPL is not associated with overt abnormalities in the HPA axis, despite a trend towards low-normal basal cortisol and ACTH values and lower UFC levels. These findings suggest that the extreme insulin resistance occurring in FPL may lead to a decrease in HPA axis activity without changing its sensitivity to glucocorticoid feedback, in contrast to the abnormalities in HPA axis function in T2D and common metabolic syndrome.
Collapse
Affiliation(s)
- Cecília Pacheco Elias
- Unit of Endocrinology, Hospital Alberto Rassi–General Hospital of Goiânia (HGG), Avenida Anhanguera, 6479 - St. Oeste, Goiânia, GO CEP 74120-080 Brazil
| | | | - Michella Soares Coelho
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Brasília (UnB), Brasília, Brazil
| | - Caroline Lourenço de Lima
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Brasília (UnB), Brasília, Brazil
| | - Nelson Rassi
- Unit of Endocrinology, Hospital Alberto Rassi–General Hospital of Goiânia (HGG), Avenida Anhanguera, 6479 - St. Oeste, Goiânia, GO CEP 74120-080 Brazil
| | | | - Angélica Amorim Amato
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Brasília (UnB), Brasília, Brazil
| |
Collapse
|
35
|
Mathur SK, Tiwari P, Gupta S, Gupta N, Nimesh S, Medicherla KM, Suravajhala P. Genetics of Lipodystrophy: Can It Help in Understanding the Pathophysiology of Metabolic Syndrome? Biomolecules 2018; 8:E47. [PMID: 29986445 PMCID: PMC6163883 DOI: 10.3390/biom8030047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 12/18/2022] Open
Abstract
Understanding phenotypes and their genetic determinants for metabolic syndrome (MetS) has been quite challenging. With the advent of systems genomic approaches, there is a need to decipher methods for identification and evaluating the functional role of phenotypic traits associated with complex diseases, such as MetS. The monogenic syndromes of lipodystrophy are well understood, but the molecular pathophysiology of insulin resistance (IR) underpinning the obesity, diabetes mellitus, and dyslipidemia is not well deciphered. In this commentary, we argue the role of pathophysiology of MetS, and its effects into possible understanding of genetic determinants associated with lipodystrophy-mediated diabetes mellitus.
Collapse
Affiliation(s)
| | - Pradeep Tiwari
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Statue Circle, Jaipur 302001, India.
| | - Sonal Gupta
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Statue Circle, Jaipur 302001, India.
| | - Nidhi Gupta
- Department of Biotechnology, IIS University, Mansarovar, Jaipur 302020, India.
| | - Surendra Nimesh
- Department of Biotechnology, Central University of Rajasthan, Bandarsindri, N.H. 8, Kishangarh 305801, India.
| | - Krishna Mohan Medicherla
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Statue Circle, Jaipur 302001, India.
| | - Prashanth Suravajhala
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Statue Circle, Jaipur 302001, India.
| |
Collapse
|
36
|
Hoorntje ET, Bollen IA, Barge-Schaapveld DQ, van Tienen FH, Te Meerman GJ, Jansweijer JA, van Essen AJ, Volders PG, Constantinescu AA, van den Akker PC, van Spaendonck-Zwarts KY, Oldenburg RA, Marcelis CL, van der Smagt JJ, Hennekam EA, Vink A, Bootsma M, Aten E, Wilde AA, van den Wijngaard A, Broers JL, Jongbloed JD, van der Velden J, van den Berg MP, van Tintelen JP. Lamin A/C-Related Cardiac Disease: Late Onset With a Variable and Mild Phenotype in a Large Cohort of Patients With the Lamin A/C p.(Arg331Gln) Founder Mutation. ACTA ACUST UNITED AC 2018; 10:CIRCGENETICS.116.001631. [PMID: 28790152 DOI: 10.1161/circgenetics.116.001631] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 05/08/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Interpretation of missense variants can be especially difficult when the variant is also found in control populations. This is what we encountered for the LMNA c.992G>A (p.(Arg331Gln)) variant. Therefore, to evaluate the effect of this variant, we combined an evaluation of clinical data with functional experiments and morphological studies. METHODS AND RESULTS Clinical data of 23 probands and 35 family members carrying this variant were retrospectively collected. A time-to-event analysis was performed to compare the course of the disease with carriers of other LMNA mutations. Myocardial biopsies were studied with electron microscopy and by measuring force development of the sarcomeres. Morphology of the nuclear envelope was assessed with immunofluorescence on cultured fibroblasts. The phenotype in probands and family members was characterized by atrioventricular conduction disturbances (61% and 44%, respectively), supraventricular arrhythmias (69% and 52%, respectively), and dilated cardiomyopathy (74% and 14%, respectively). LMNA p.(Arg331Gln) carriers had a significantly better outcome regarding the composite end point (malignant ventricular arrhythmias, end-stage heart failure, or death) compared with carriers of other pathogenic LMNA mutations. A shared haplotype of 1 Mb around LMNA suggested a common founder. The combined logarithm of the odds score was 3.46. Force development in membrane-permeabilized cardiomyocytes was reduced because of decreased myofibril density. Structural nuclear LMNA-associated envelope abnormalities, that is, blebs, were confirmed by electron microscopy and immunofluorescence microscopy. CONCLUSIONS Clinical, morphological, functional, haplotype, and segregation data all indicate that LMNA p.(Arg331Gln) is a pathogenic founder mutation with a phenotype reminiscent of other LMNA mutations but with a more benign course.
Collapse
Affiliation(s)
| | - Ilse A Bollen
- For the author affiliations, please see the Appendix
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Aryan Vink
- For the author affiliations, please see the Appendix
| | | | - Emmelien Aten
- For the author affiliations, please see the Appendix
| | | | | | - Jos L Broers
- For the author affiliations, please see the Appendix
| | | | | | | | | |
Collapse
|
37
|
CASE REPORT OF SEVERE PROLIFERATIVE RETINOPATHY IN A PATIENT WITH CONGENITAL LIPODYSTROPHY. Retin Cases Brief Rep 2017; 14:69-71. [PMID: 28834920 DOI: 10.1097/icb.0000000000000621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE A case report of a patient with severe proliferative retinopathy due to congenital lipodystrophy. METHODS We reviewed the medical history, imaging, and surgical procedures of a 25-year-old woman with a history of congenital lipodystrophy, presenting with bilateral combined tractional and exudative retinal detachment, poorly controlled diabetes mellitus, and extreme dislipidemia. RESULTS The patient underwent retinal detachment repair surgery both eyes. On the last follow-up, both retinae were flat, and visual acuity had improved in the right eye to J3 for near and finger counting 3 m for distance. CONCLUSION Surgery combining pars plana vitrectomy and scleral bucking successfully flattened both retinae and significantly improved visual acuity in one eye in this case of bilateral retinal detachment with combined tractional and exudative components in a patient with congenital lipodystrophy. Surgical control of retinal complications is thus possible, provided there is adequate control of the underlying risk factors.
Collapse
|
38
|
Fatima F, Nawaz M. Long Distance Metabolic Regulation through Adipose-Derived Circulating Exosomal miRNAs: A Trail for RNA-Based Therapies? Front Physiol 2017; 8:545. [PMID: 28824444 PMCID: PMC5539684 DOI: 10.3389/fphys.2017.00545] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/13/2017] [Indexed: 12/18/2022] Open
Abstract
The contribution of non-coding RNAs, such as microRNAs (miRNAs) in regulating physiological and pathological states has been intensively elucidated during last 15 years. The discovery of circulating miRNAs (cir-miRNAs) in variety of body fluids, is, however a recent focus of interest in understanding pathophysiological states of their originating cells/organs. Yet another stimulating debate that takes miRNAs to the next level is their presence in exosomes, and this is truly interesting area of research. Exosomes are cell-derived extracellular vesicles, and are naturally equipped biological vehicles that not only enable functional transfer of miRNAs between cells (horizontal transfer) but also foster inter-organ communication, presumably guided by organ specific receptors—decorated on their surface. However, understandings on inter-organ communication elicited by tissue specific exosomal-miRNA fingerprints remain elusive. Recently, Thomou et al., has discovered that adipose tissue contributes a large fraction of adipose specific exosomal-miRNA fingerprints in blood circulation. Experimental evidence emphasize adipose tissue as major depot of cir-miRNAs that sail through blood flow and reach to distal organs—primarily in the liver, where they regulate gene expression of host tissue and elicit metabolic control. This appears to be a genetic form of adipokines (endocrine factors secreted from adipose tissue). We review such offshore metabolic insults, and make an effort to address few important missing links between miRNAs processing and their incorporation into exosomes. We provide potential perspectives on how this knowledge could be steered towards RNA-based therapeutics for monitoring complex metabolic diseases and beyond.
Collapse
Affiliation(s)
- Farah Fatima
- Department of Pathology and Forensic Medicine, Ribeirao Preto Medical School, University of Sao PauloSao Paulo, Brazil
| | - Muhammad Nawaz
- Department of Pathology and Forensic Medicine, Ribeirao Preto Medical School, University of Sao PauloSao Paulo, Brazil.,Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| |
Collapse
|
39
|
Brandão BB, Guerra BA, Mori MA. Shortcuts to a functional adipose tissue: The role of small non-coding RNAs. Redox Biol 2017; 12:82-102. [PMID: 28214707 PMCID: PMC5312655 DOI: 10.1016/j.redox.2017.01.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 01/30/2017] [Indexed: 12/20/2022] Open
Abstract
Metabolic diseases such as type 2 diabetes are a major public health issue worldwide. These diseases are often linked to a dysfunctional adipose tissue. Fat is a large, heterogenic, pleiotropic and rather complex tissue. It is found in virtually all cavities of the human body, shows unique plasticity among tissues, and harbors many cell types in addition to its main functional unit - the adipocyte. Adipose tissue function varies depending on the localization of the fat depot, the cell composition of the tissue and the energy status of the organism. While the white adipose tissue (WAT) serves as the main site for triglyceride storage and acts as an important endocrine organ, the brown adipose tissue (BAT) is responsible for thermogenesis. Beige adipocytes can also appear in WAT depots to sustain heat production upon certain conditions, and it is becoming clear that adipose tissue depots can switch phenotypes depending on cell autonomous and non-autonomous stimuli. To maintain such degree of plasticity and respond adequately to changes in the energy balance, three basic processes need to be properly functioning in the adipose tissue: i) adipogenesis and adipocyte turnover, ii) metabolism, and iii) signaling. Here we review the fundamental role of small non-coding RNAs (sncRNAs) in these processes, with focus on microRNAs, and demonstrate their importance in adipose tissue function and whole body metabolic control in mammals.
Collapse
Affiliation(s)
- Bruna B Brandão
- Program in Molecular Biology, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Campinas, Brazil
| | - Beatriz A Guerra
- Program in Molecular Biology, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Campinas, Brazil
| | - Marcelo A Mori
- Program in Molecular Biology, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Campinas, Brazil; Program in Genetics and Molecular Biology, Universidade Estadual de Campinas, Campinas, Brazil.
| |
Collapse
|
40
|
Lipid droplet growth and adipocyte development: mechanistically distinct processes connected by phospholipids. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1273-1283. [PMID: 28668300 DOI: 10.1016/j.bbalip.2017.06.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 12/19/2022]
Abstract
The differentiation of preadipocytes into mature adipocytes is accompanied by the growth and formation of a giant, unilocular lipid droplet (LD). Mechanistically however, LD growth and adipogenesis are two different processes. Recent studies have uncovered a number of proteins that are able to regulate both LD dynamics and adipogenesis, such as SEIPIN, LIPIN and CDP-Diacylglycerol Synthases. It appears that phospholipids, phosphatidic acid in particular, play a critical role in both LD budding/growth and adipocyte development. This review summarizes recent advances, and aims to provide a better understanding of LD growth as well as adipogenesis, two critical aspects in mammalian fat storage. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink.
Collapse
|
41
|
Abstract
Adipose tissue represents a critical component in healthy energy homeostasis. It fulfills important roles in whole-body lipid handling, serves as the body's major energy storage compartment and insulation barrier, and secretes numerous endocrine mediators such as adipokines or lipokines. As a consequence, dysfunction of these processes in adipose tissue compartments is tightly linked to severe metabolic disorders, including obesity, metabolic syndrome, lipodystrophy, and cachexia. While numerous studies have addressed causes and consequences of obesity-related adipose tissue hypertrophy and hyperplasia for health, critical pathways and mechanisms in (involuntary) adipose tissue loss as well as its systemic metabolic consequences are far less understood. In this review, we discuss the current understanding of conditions of adipose tissue wasting and review microenvironmental determinants of adipocyte (dys)function in related pathophysiologies.
Collapse
Affiliation(s)
- Alexandros Vegiopoulos
- Junior Group Metabolism and Stem Cell Plasticity, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
| | - Maria Rohm
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Joint Heidelberg-IDC Translational Diabetes Program Inner Medicine I, Neuherberg, Germany
| |
Collapse
|
42
|
Impairment of the activin A autocrine loop by lopinavir reduces self-renewal of distinct human adipose progenitors. Sci Rep 2017; 7:2986. [PMID: 28592814 PMCID: PMC5462747 DOI: 10.1038/s41598-017-02807-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/18/2017] [Indexed: 01/15/2023] Open
Abstract
Maintenance of the adipose tissue requires a proper balance between self-renewal and differentiation of adipose progenitors (AP). Any deregulation leads either to fat overexpansion and obesity or fat loss and consequent lipodystrophies. Depending on the fat pad location, APs and adipocytes are heterogeneous. However, information on the pharmacological sensitivity of distinct APs to drugs known to alter the function of adipose tissue, especially HIV protease inhibitors (PIs) is scant. Here we show that PIs decreased proliferation and clonal expansion of APs, modifying their self-renewal potential. Lopinavir was the most potent PI tested. Decrease in self-renewal was accompanied by a reduced expression of the immediate early response gene IER3, a gene associated with tissue expansion. It was more pronounced in chin-derived APs than in knee-derived APs. Furthermore, lopinavir lowered the activin A–induced ERK1/2 phosphorylation. Expressions of the transcription factor EGR1 and its targets, including INHBA were subsequently altered. Therefore, activin A secretion was reduced leading to a dramatic impairment of APs self-renewal sustained by the activin A autocrine loop. All together, these observations highlight the activin A autocrine loop as a crucial effector to maintain APs self-renewal. Targeting this pathway by HIV-PIs may participate in the induction of unwanted side effects.
Collapse
|
43
|
Fountas A, Giotaki Z, Dounousi E, Liapis G, Bargiota A, Tsatsoulis A, Tigas S. Familial partial lipodystrophy and proteinuric renal disease due to a missense c.1045C > T LMNA mutation. Endocrinol Diabetes Metab Case Rep 2017; 2017:EDM170049. [PMID: 28620495 PMCID: PMC5467650 DOI: 10.1530/edm-17-0049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 12/28/2022] Open
Abstract
Proteinuric renal disease is prevalent in congenital or acquired forms of generalized lipodystrophy. In contrast, an association between familial partial lipodystrophy (FPLD) and renal disease has been documented in very few cases. A 22-year-old female patient presented with impaired glucose tolerance, hyperinsulinemia, hirsutism and oligomenorrhea. On examination, there was partial loss of subcutaneous adipose tissue in the face, upper and lower limbs, bird-like facies with micrognathia and low set ears and mild acanthosis nigricans. Laboratory investigations revealed hyperandrogenism, hyperlipidemia, elevated serum creatine kinase and mild proteinuria. A clinical diagnosis of FPLD of the non-Dunnigan variety was made; genetic testing revealed a heterozygous c.1045C > T mutation in exon 6 of the LMNA gene, predicted to result in an abnormal LMNA protein (p.R349W). Electromyography and muscle biopsy were suggestive of non-specific myopathy. Treatment with metformin and later with pioglitazone was initiated. Due to worsening proteinuria, a renal biopsy was performed; histological findings were consistent with mild focal glomerular mesangioproliferative changes, and the patient was started on angiotensin-converting enzyme inhibitor therapy. This is the fourth report of FPLD associated with the c.1045C > T missense LMNA mutation and the second with co-existent proteinuric renal disease. Patients carrying this specific mutation may exhibit a phenotype that includes partial lipodystrophy, proteinuric nephropathy, cardiomyopathy and atypical myopathy.
Collapse
Affiliation(s)
| | | | | | - George Liapis
- Nephrology, University Hospital of Ioannina, IoanninaGreece
| | - Alexandra Bargiota
- Department of Endocrinology and Metabolic Diseases, University Hospital of Larissa, LarissaGreece
| | | | | |
Collapse
|
44
|
Oliveira J, Lau E, Carvalho D, Freitas P. Glucagon-like peptide-1 analogues - an efficient therapeutic option for the severe insulin resistance of lipodystrophic syndromes: two case reports. J Med Case Rep 2017; 11:12. [PMID: 28086952 PMCID: PMC5237351 DOI: 10.1186/s13256-016-1175-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/11/2016] [Indexed: 11/29/2022] Open
Abstract
Background Lipodystrophic syndromes are uncommon medical conditions which are normally associated with metabolic disorders, such as diabetes mellitus, dyslipidemia, and fatty liver disease. These complications are generally difficult to treat, particularly diabetes, due to severe insulin resistance. We present two case reports of successful treatment of diabetes with glucagon-like peptide-1 analogues in patients with clinical features of lipodystrophic syndromes. Case presentation Two white women aged 49 and 60 years manifested marked central body fat deposition with severe lipoatrophy of their limbs and buttocks and pronounced acanthosis nigricans. They had hypertension, dyslipidemia, fatty liver disease, and poorly controlled diabetes (glycated hemoglobin 8.3% and 10.2%, respectively) despite the use of three classes of oral antidiabetic drugs taken in combination in the first case, and high doses of insulin in the second case. Four months after the addition of glucagon-like peptide-1 analogue to their previous treatment they both showed a pronounced improvement in metabolic control (glycated hemoglobin 5.6% and 6.2%, respectively). In the first case, a weight loss of nearly 30 kg was recorded. Conclusions We intend to demonstrate that glucagon-like peptide-1 analogues could be a valuable tool for patients with lipodystrophic disorders, probably by improving body fat distribution, with favorable results in insulin-sensitivity and glycemic control.
Collapse
Affiliation(s)
- Joana Oliveira
- Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar São João, Alameda Prof. Hernâni Monteiro, 4200, Porto, Portugal. .,Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Eva Lau
- Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar São João, Alameda Prof. Hernâni Monteiro, 4200, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Davide Carvalho
- Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar São João, Alameda Prof. Hernâni Monteiro, 4200, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Paula Freitas
- Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar São João, Alameda Prof. Hernâni Monteiro, 4200, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
45
|
AIM2 inflammasome is activated by pharmacological disruption of nuclear envelope integrity. Proc Natl Acad Sci U S A 2016; 113:E4671-80. [PMID: 27462105 DOI: 10.1073/pnas.1602419113] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inflammasomes are critical sensors that convey cellular stress and pathogen presence to the immune system by activating inflammatory caspases and cytokines such as IL-1β. The nature of endogenous stress signals that activate inflammasomes remains unclear. Here we show that an inhibitor of the HIV aspartyl protease, Nelfinavir, triggers inflammasome formation and elicits an IL-1R-dependent inflammation in mice. We found that Nelfinavir impaired the maturation of lamin A, a structural component of the nuclear envelope, thereby promoting the release of DNA in the cytosol. Moreover, deficiency of the cytosolic DNA-sensor AIM2 impaired Nelfinavir-mediated inflammasome activation. These findings identify a pharmacologic activator of inflammasome and demonstrate the role of AIM2 in detecting endogenous DNA release upon perturbation of nuclear envelope integrity.
Collapse
|
46
|
Culha MG, Inkaya AC, Yildirim E, Unal S, Serefoglu EC. Glucagon like peptide-1 receptor agonists may ameliorate the metabolic adverse effect associated with antiretroviral therapy. Med Hypotheses 2016; 94:151-3. [PMID: 27515222 DOI: 10.1016/j.mehy.2016.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/20/2016] [Accepted: 07/24/2016] [Indexed: 01/05/2023]
Abstract
The number of people living with HIV and AIDS (PLWHA) reached to almost 40 million, half of which are under antiretroviral treatment (ART). Although the introduction of this therapy significantly improved the life span and quality of PLWHA, metabolic complications of these people remains to be an important issue. These metabolic complications include hyperlipidemia, abnormal fat redistribution and diabetes mellitus, which are defined as lipodystrophy syndrome. Glucagon-like peptide-1 (GLP-1) is a neuropeptide secreted from intestinal L cells and recently developed GLP-1 receptor agonists (GLP-1RAs) stimulate insulin secretion, improve weight control and reduce cardiovascular outcomes. This class of drugs may be a valuable medication in the treatment of HIV-associated metabolic adverse effects and extend the life expectancy of patients infected with HIV.
Collapse
Affiliation(s)
- Mehmet Gokhan Culha
- Department of Urology, Istanbul Training & Research Hospital, Istanbul, Turkey
| | - Ahmet Cagkan Inkaya
- Department of Infectious Diseases, Hacettepe University School of Medicine, Ankara, Turkey
| | - Emre Yildirim
- Novo Nordisk Turkey, CMRQ Department, Istanbul, Turkey
| | - Serhat Unal
- Department of Infectious Diseases, Hacettepe University School of Medicine, Ankara, Turkey
| | - Ege Can Serefoglu
- Department of Urology, Bagcilar Training & Research Hospital, Istanbul, Turkey.
| |
Collapse
|
47
|
Khan KN, Mahroo OA, Khan RS, Mohamed MD, McKibbin M, Bird A, Michaelides M, Tufail A, Moore AT. Differentiating drusen: Drusen and drusen-like appearances associated with ageing, age-related macular degeneration, inherited eye disease and other pathological processes. Prog Retin Eye Res 2016; 53:70-106. [DOI: 10.1016/j.preteyeres.2016.04.008] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 04/24/2016] [Accepted: 04/27/2016] [Indexed: 12/11/2022]
|
48
|
Kazandjieva J, Guleva D, Márina S, Nikolova A, Mladenova G, Kurtev A. Berardinelli-Seip Syndrome - A Case Report. SERBIAN JOURNAL OF DERMATOLOGY AND VENEREOLOGY 2016. [DOI: 10.1515/sjdv-2016-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Congenital generalized lipodystrophy (CGL), also known as Berardinelli-Seip syndrome (BSS), is a rare autosomal recessive disease characterized by near total absence of adipose tissue and muscular hypertrophy. Additional common clinical signs are acanthosis nigricans, acromegaloid features, hepatomegaly, hyperandrogenism, altered glucose intolerance, cardiomyopathy and hypertriglyceridemia. An 11-year-old girl was admitted to our Clinic presenting with hyperandrogenic features, generalized lack of adipose tissue, generalized muscular hypertrophy and brownish colored skin on the neck, axillas and inguinal folds associated with impaired glucose tolerance and hypertension. A clinical diagnosis of congenital generalized lipodystrophy was made.
Collapse
Affiliation(s)
- Jana Kazandjieva
- Department of Dermatology and Venereology, Medical University of Sofia, Bulgaria
| | - Dimitrina Guleva
- Department of Dermatology and Venereology, Medical University of Sofia, Bulgaria
| | - Sonya Márina
- Department of Dermatology and Venereology, Medical University of Sofia, Bulgaria
| | - Assya Nikolova
- Department of Dermatology and Venereology, Medical University of Sofia, Bulgaria
| | - Gergana Mladenova
- Specialized Hospital for Active Treatment in Pediatrics “Prof. Ivan Mitev”, Medical University of Sofia, Bulgaria
| | - Alexander Kurtev
- Specialized Hospital for Active Treatment in Pediatrics “Prof. Ivan Mitev”, Medical University of Sofia, Bulgaria
| |
Collapse
|
49
|
Small JE, Jassam YN, Small KM, Chea P, Popov V, Li S, Srinivasan J. Barraquer-Simons Syndrome. Am J Med Sci 2016; 352:280-4. [PMID: 27650233 DOI: 10.1016/j.amjms.2016.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 11/26/2022]
Abstract
BACKGROUND Barraquer-Simons syndrome (BSS) is a rare acquired lipodystrophy characterized by gradually symmetric subcutaneous fat loss in a craniocaudal distribution, associated with hypocomplementemia, diabetes and hypertriglyceridemia. Few investigators have studied body fat distribution with cross-sectional imaging techniques. METHODS We present 2 cases of BSS with emphasis on phenotypic analysis through cross-sectional imaging. RESULTS For the first time, we demonstrate bone marrow involvement and deep cervical and axillary fat sparing of Barraquer-Simons using magnetic resonance imaging. CONCLUSION Phenotypic analysis in lipodystrophies such as Barraquer-Simons is an essential guide for future experiments. Therefore, careful analysis of cross-sectional imaging should be conducted in future studies as areas of involvement or fat sparing may be overlooked. The major contributions of our work are that this is the first time that deep cervical or nuchal and axillary fat sparing and bone marrow involvement has been documented in BSS.
Collapse
Affiliation(s)
- Juan E Small
- Lahey Hospital and Medical Center, Burlington, MA
| | | | | | - Pauley Chea
- Lahey Hospital and Medical Center, Burlington, MA.
| | - Veljko Popov
- Lahey Hospital and Medical Center, Burlington, MA
| | - Sui Li
- Lahey Hospital and Medical Center, Burlington, MA
| | | |
Collapse
|
50
|
Strollo F. Insulin Shot Dependent Lipodystrophy: Evidence, Uncertainties and Current Terminology Overlaps. ACTA ACUST UNITED AC 2016. [DOI: 10.15406/jdmdc.2016.03.00067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|