1
|
Dortenzio V, Barbaric L, Rosenfeld E, Dechene ET, Gilbert MA, Dulik MC, Rippert AL, Izumi K. Clinical Characteristics of Patients With Kabuki Syndrome at a Single Tertiary Children's Hospital. Am J Med Genet A 2025; 197:e64003. [PMID: 39936499 DOI: 10.1002/ajmg.a.64003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/20/2024] [Accepted: 01/12/2025] [Indexed: 02/13/2025]
Abstract
Kabuki syndrome (KS) is a multisystem disorder characterized by facial dysmorphic features, growth delays, skeletal anomalies, and variable intellectual disability (ID) due to pathogenic variants in KMT2D and KDM6A. Significant phenotypic variability has been reported in patients with KS. To further characterize the variability observed in the genomic sequencing era, comprehensive genotypic and phenotypic information from 36 patients with KS and likely pathogenic or pathogenic KMT2D or KDM6A variants at the Children's Hospital of Philadelphia (CHOP) was collected. Dysmorphic features, growth restriction, and developmental delays were commonly reported, as expected. Hyperinsulinism (HI) was seen more frequently than in previously published cohorts. Patients diagnosed with HI were more likely to require neonatal intensive care unit admission and feeding tube(s). Intellectual disability was variable in severity and less frequent than previously reported. This study highlights the wide phenotypic spectrum of KS and expands our knowledge of the diagnostic process for KS. This study is limited by potential ascertainment bias as CHOP is a HI Center of Excellence, however, our cohort is unique as many were ascertained with disease-agnostic testing. Screening for hyperinsulinism, including consideration of diagnostic fast, at time of KS diagnosis is warranted to prevent long-term neurologic effects of untreated hypoglycemia.
Collapse
Affiliation(s)
- Victoria Dortenzio
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lidija Barbaric
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Elizabeth Rosenfeld
- Division of Endocrinology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth T Dechene
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Melissa A Gilbert
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Matthew C Dulik
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alyssa L Rippert
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kosuke Izumi
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Kilic S, Bove J, So BN, Whitman MC. Strabismus in Genetic Syndromes: A Review. Clin Exp Ophthalmol 2025; 53:302-330. [PMID: 39948700 DOI: 10.1111/ceo.14507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/29/2025] [Accepted: 01/29/2025] [Indexed: 04/03/2025]
Abstract
Strabismus is a feature of many genetic syndromes, with highly variable penetrance. The congenital cranial dysinnervation disorders (CCDDs) result in paralytic strabismus, with limited eye movements. CCDDs result from either deficits in differentiation of the cranial motor neuron precursors or from abnormal axon guidance of the cranial nerves. Although most individuals with comitant strabismus are otherwise healthy, strabismus is a variable feature of many genetic syndromes, most commonly those associated with intellectual disability. We review 255 genetic syndromes in which strabismus has been described and discuss the variable penetrance. The association with intellectual disability and neurological disorders underscores the likely neurological basis of strabismus, but the variable penetrance emphasises the complexity of strabismus pathophysiology. The syndromes described here mostly result from loss of function or change in function of the responsible genes; one hypothesis is that nonsyndromic strabismus may result from altered expression or regulation of the same genes.
Collapse
Affiliation(s)
- Seyda Kilic
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Jillian Bove
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, USA
- Boston Orthoptic Fellowship Program, Boston, Massachusetts, USA
| | | | - Mary C Whitman
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
- F.M. Kirby Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Yoon JH, Hwang S, Bae H, Kim D, Seo GH, Koh JY, Ju YS, Do HS, Kim S, Kim GH, Kim JH, Choi JH, Lee BH. Clinical and molecular characteristics of Korean patients with Kabuki syndrome. J Hum Genet 2024; 69:417-423. [PMID: 38824232 DOI: 10.1038/s10038-024-01258-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/11/2024] [Accepted: 05/16/2024] [Indexed: 06/03/2024]
Abstract
INTRODUCTION Kabuki syndrome (KS) is a rare disorder characterized by typical facial features, skeletal anomalies, fetal fingertip pad persistence, postnatal growth retardation, and intellectual disabilities. Heterozygous variants of the KMT2D and KDM6A genes are major genetic causes of KS. This study aimed to report the clinical and genetic characteristics of KS. METHODS This study included 28 Korean patients (14 boys and 14 girls) with KS through molecular genetic testing, including direct Sanger sequencing, whole-exome sequencing, or whole-genome sequencing. RESULTS The median age at clinical diagnosis was 18.5 months (IQR 7-58 months), and the median follow-up duration was 80.5 months (IQR 48-112 months). Molecular genetic testing identified different pathogenic variants of the KMT2D (n = 23) and KDM6A (n = 3) genes, including 15 novel variants. Patients showed typical facial features (100%), such as long palpebral fissure and eversion of the lower eyelid; intellectual disability/developmental delay (96%); short stature (79%); and congenital cardiac anomalies (75%). Although 71% experienced failure to thrive in infancy, 54% of patients showed a tendency toward overweight/obesity in early childhood. Patients with KDM6A variants demonstrated severe genotype-phenotype correlation. CONCLUSION This study enhances the understanding of the clinical and genetic characteristics of KS.
Collapse
Affiliation(s)
- Ji-Hee Yoon
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Medical Genetics Center, Asan Medical Center, Seoul, Republic of Korea
- Department of Pediatrics, Kangbuk Samsung Hospital, Sungkyunkwan University of School of Medicine, Seoul, Republic of Korea
| | - Soojin Hwang
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Medical Genetics Center, Asan Medical Center, Seoul, Republic of Korea
| | - Hyunwoo Bae
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Medical Genetics Center, Asan Medical Center, Seoul, Republic of Korea
| | - Dohyung Kim
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Medical Genetics Center, Asan Medical Center, Seoul, Republic of Korea
| | - Go Hun Seo
- Division of Medical genetics, 3billion Inc., Seoul, Republic of Korea
| | | | | | - Hyo-Sang Do
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Soyoung Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Gu-Hwan Kim
- Medical Genetics Center, Asan Medical Center, Seoul, Republic of Korea
| | - Ja Hye Kim
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Medical Genetics Center, Asan Medical Center, Seoul, Republic of Korea
| | - Jin-Ho Choi
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Medical Genetics Center, Asan Medical Center, Seoul, Republic of Korea
| | - Beom Hee Lee
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
- Medical Genetics Center, Asan Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Wang Y, Xu Y, Chen Y, Hu Y, Li Q, Liu S, Wang J, Wang X. Sex-specific difference in phenotype of Kabuki syndrome type 2 patients: a matched case-control study. BMC Pediatr 2024; 24:133. [PMID: 38373926 PMCID: PMC10875883 DOI: 10.1186/s12887-024-04562-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/13/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Kabuki syndrome (KS) is a monogenic disorder leading to special facial features, mental retardation, and multiple system malformations. Lysine demethylase 6A, (KDM6A, MIM*300128) is the pathogenic gene of Kabuki syndrome type 2 (KS2, MIM#300867), which accounts for only 5%-8% of KS. Previous studies suggested that female patients with KS2 may have a milder phenotype. METHOD We summarized the phenotype and genotype of KS2 patients who were diagnosed in Shanghai Children's Medical Center since July 2017 and conducted a 1:3 matched case-control study according to age and sex to investigate sex-specific differences between patients with and without KS2. RESULTS There were 12 KS2 cases in this study, and 8 of them matched with 24 controls. The intelligence quotient (IQ) score of the case group was significantly lower than that of the control group (P < 0.001). In addition, both the incidence of intellectual disability (ID) (IQ < 70) and moderate-to-severe ID (IQ < 55) were significantly higher in the case group than those in the control group. No sex-specific difference was found in the incidence of ID or moderate-to-severe ID between the female cases and female controls, whereas there was a significant difference between male cases and male controls. Furthermore, the rate of moderate-to-severe ID and congenital heart disease (CHD) was significantly higher in the male group than that in the female group. CONCLUSIONS Our results showed that a sex-specific difference was exhibited in the clinical phenotypes of KS2 patients. The incidence of CHD was higher in male patients, and mental retardation was significantly impaired. However, the female patients' phenotype was mild.
Collapse
Affiliation(s)
- Yirou Wang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center,, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yufei Xu
- Department of NeurologySchool of Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Chen
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center,, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yabin Hu
- Children Health Advocacy Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qun Li
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center,, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shijian Liu
- Children Health Advocacy Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- School of Public Health, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Wang
- Department of NeurologySchool of Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiumin Wang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center,, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Department of NeurologySchool of Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
5
|
Zhao Z, Aoi Y, Philips CN, Meghani KA, Gold SR, Yu Y, John LS, Qian J, Zeidner JM, Meeks JJ, Shilatifard A. Somatic mutations of MLL4/COMPASS induce cytoplasmic localization providing molecular insight into cancer prognosis and treatment. Proc Natl Acad Sci U S A 2023; 120:e2310063120. [PMID: 38113256 PMCID: PMC10756272 DOI: 10.1073/pnas.2310063120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2023] Open
Abstract
Cancer genome sequencing consortiums have recently catalogued an abundance of somatic mutations, across a wide range of human cancers, in the chromatin-modifying enzymes that regulate gene expression. Defining the molecular mechanisms underlying the potentially oncogenic functions of these epigenetic mutations could serve as the basis for precision medicine approaches to cancer therapy. MLL4 encoded by the KMT2D gene highly mutated in a large number of human cancers, is a key histone lysine monomethyltransferase within the Complex of Proteins Associated with Set1 (COMPASS) family that regulates gene expression through enhancer function, potentially functioning as a tumor suppressor. We report that the KMT2D mutations which cause MLL4 protein truncation also alter MLL4's subcellular localization, resulting in loss-of-function in the nucleus and gain-of-function in the cytoplasm. We demonstrate that isogenic correction of KMT2D truncation mutation rescues the aberrant localization phenotype and restores multiple regulatory functions of MLL4, including COMPASS integrity/stabilization, histone H3K4 mono-methylation, enhancer activation, and therefore transcriptional regulation. Moreover, isogenic correction diminishes the sensitivity of KMT2D-mutated cancer cells to targeted metabolic inhibition. Using immunohistochemistry, we identified that cytoplasmic MLL4 is unique to the tissue of bladder cancer patients with KMT2D truncation mutations. Using a preclinical carcinogen model of bladder cancer in mouse, we demonstrate that truncated cytoplasmic MLL4 predicts response to targeted metabolic inhibition therapy for bladder cancer and could be developed as a biomarker for KMT2D-mutated cancers. We also highlight the broader potential for prognosis, patient stratification and treatment decision-making based on KMT2D mutation status in MLL4 truncation-relevant diseases, including human cancers and Kabuki Syndrome.
Collapse
Affiliation(s)
- Zibo Zhao
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Yuki Aoi
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Cassandra N. Philips
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Khyati A. Meghani
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Sarah R. Gold
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Yanni Yu
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Luke St John
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Jun Qian
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Jacob M. Zeidner
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Joshua J. Meeks
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| |
Collapse
|
6
|
Golden CS, Williams S, Serrano MA. Molecular insights of KMT2D and clinical aspects of Kabuki syndrome type 1. Birth Defects Res 2023; 115:1809-1824. [PMID: 37158694 PMCID: PMC10845236 DOI: 10.1002/bdr2.2183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Kabuki syndrome type 1 (KS1), a rare multisystem congenital disorder, presents with characteristic facial features, intellectual disability, persistent fetal fingertip pads, skeletal abnormalities, and postnatal growth delays. KS1 results from pathogenic variants in the KMT2D gene, which encodes a histone methyltransferase protein involved in chromatin remodeling, promoter and enhancer regulation, and scaffold formation during early development. KMT2D also mediates cell signaling pathways, responding to external stimuli and organizing effector protein assembly. Research on KMT2D's molecular mechanisms in KS1 has primarily focused on its histone methyltransferase activity, leaving a gap in understanding the methyltransferase-independent roles in KS1 clinical manifestations. METHODS This scoping review examines KMT2D's role in gene expression regulation across various species, cell types, and contexts. We analyzed human pathogenic KMT2D variants using publicly available databases and compared them to research organism models of KS1. We also conducted a systematic search of healthcare and governmental databases for clinical trials, studies, and therapeutic approaches. RESULTS Our review highlights KMT2D's critical roles beyond methyltransferase activity in diverse cellular contexts and conditions. We identified six distinct groups of KMT2D as a cell signaling mediator, including evidence of methyltransferase-dependent and -independent activity. A comprehensive search of the literature, clinical databases, and public registries emphasizes the need for basic research on KMT2D's functional complexity and longitudinal studies of KS1 patients to establish objective outcome measurements for therapeutic development. CONCLUSION We discuss how KMT2D's role in translating external cellular communication can partly explain the clinical heterogeneity observed in KS1 patients. Additionally, we summarize the current molecular diagnostic approaches and clinical trials targeting KS1. This review is a resource for patient advocacy groups, researchers, and physicians to support KS1 diagnosis and therapeutic development.
Collapse
Affiliation(s)
- Carly S Golden
- Center for Regenerative Medicine, Section of Vascular Biology, Department of Medicine, Boston University, Boston, Massachusetts, USA
| | - Saylor Williams
- Center for Regenerative Medicine, Section of Vascular Biology, Department of Medicine, Boston University, Boston, Massachusetts, USA
| | - Maria A Serrano
- Center for Regenerative Medicine, Section of Vascular Biology, Department of Medicine, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Yi S, Zhang X, Yang Q, Huang J, Zhou X, Qian J, Pan P, Yi S, Zhang S, Zhang Q, Tang X, Huang L, Zhang Q, Qin Z, Luo J. Clinical and molecular analysis of Guangxi patients with Kabuki syndrome and KMT2D mutations. Heliyon 2023; 9:e20223. [PMID: 37810849 PMCID: PMC10550629 DOI: 10.1016/j.heliyon.2023.e20223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/10/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023] Open
Abstract
Kabuki syndrome (KS) is a multiple congenital anomaly syndrome that is characterized by postnatal growth deficiency, hypotonia, short stature, mild-to-moderate intellectual disability, skeletal abnormalities, persistence of fetal fingertip pads, and distinct facial appearance. It is mainly caused by pathogenic/likely pathogenic variants in the KMT2D or KDM6A genes. Here, we described the clinical features of nine sporadic KS patients with considerable phenotypic heterogeneity. In addition to intellectual disability and short stature, our patients presented with a high prevalence of motor retardation and recurrent otitis media. We recommended that KS should be strongly considered in patients with motor delay, short stature, intellectual disability, language disorder and facial deformities. Nine KMT2D variants, four of which were novel, were identified by whole-exome sequencing. The variants included five nonsense variants, two frameshift variants, one missense variant, and one non-canonical splice site variant. In addition, we reviewed the mutation types of the pathogenic KMT2D variants in the ClinVar database. We also indicated that effective mRNA analysis, using biological materials from patients, is helpful in classifying the pathogenicity of atypical splice site variants. Pedigree segregation analysis may also provide valuable information for pathogenicity classification of novel missense variants. These findings extended the mutation spectrum of KMT2D and provided new insights into the understanding of genotype-phenotype correlations, which are helpful for accurate genetic counseling and treatment optimization.
Collapse
Affiliation(s)
- Sheng Yi
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xiaofei Zhang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Pediatrics Department, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qi Yang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jingjing Huang
- Department of Surgery, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xunzhao Zhou
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jiale Qian
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Pediatrics Department, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Pingshan Pan
- Department of Obstetrics, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shang Yi
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shujie Zhang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qiang Zhang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xianglian Tang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Limei Huang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qinle Zhang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zailong Qin
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jingsi Luo
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
8
|
Duplaquet L, Li Y, Booker MA, Xie Y, Olsen SN, Patel RA, Hong D, Hatton C, Denize T, Walton E, Laimon YN, Li R, Jiang Y, Bronson RT, Southard J, Li S, Signoretti S, Qiu X, Cejas P, Armstrong SA, Long HW, Tolstorukov MY, Haffner MC, Oser MG. KDM6A epigenetically regulates subtype plasticity in small cell lung cancer. Nat Cell Biol 2023; 25:1346-1358. [PMID: 37591951 PMCID: PMC10546329 DOI: 10.1038/s41556-023-01210-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 07/19/2023] [Indexed: 08/19/2023]
Abstract
Small cell lung cancer (SCLC) exists broadly in four molecular subtypes: ASCL1, NEUROD1, POU2F3 and Inflammatory. Initially, SCLC subtypes were thought to be mutually exclusive, but recent evidence shows intra-tumoural subtype heterogeneity and plasticity between subtypes. Here, using a CRISPR-based autochthonous SCLC genetically engineered mouse model to study the consequences of KDM6A/UTX inactivation, we show that KDM6A inactivation induced plasticity from ASCL1 to NEUROD1 resulting in SCLC tumours that express both ASCL1 and NEUROD1. Mechanistically, KDM6A normally maintains an active chromatin state that favours the ASCL1 subtype with its loss decreasing H3K4me1 and increasing H3K27me3 at enhancers of neuroendocrine genes leading to a cell state that is primed for ASCL1-to-NEUROD1 subtype switching. This work identifies KDM6A as an epigenetic regulator that controls ASCL1 to NEUROD1 subtype plasticity and provides an autochthonous SCLC genetically engineered mouse model to model ASCL1 and NEUROD1 subtype heterogeneity and plasticity, which is found in 35-40% of human SCLCs.
Collapse
Affiliation(s)
- Leslie Duplaquet
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yixiang Li
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthew A Booker
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yingtian Xie
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sarah Naomi Olsen
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA, USA
| | - Radhika A Patel
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Deli Hong
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Charlie Hatton
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA, USA
| | - Thomas Denize
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Emily Walton
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yasmin N Laimon
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rong Li
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yijia Jiang
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Roderick T Bronson
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Jackson Southard
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shuqiang Li
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sabina Signoretti
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xintao Qiu
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Paloma Cejas
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA, USA
| | - Henry W Long
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael Y Tolstorukov
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael C Haffner
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Matthew G Oser
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, MA, USA.
| |
Collapse
|
9
|
Zhao Z, Cao K, Watanabe J, Philips CN, Zeidner JM, Ishi Y, Wang Q, Gold SR, Junkins K, Bartom ET, Yue F, Chandel NS, Hashizume R, Ben-Sahra I, Shilatifard A. Therapeutic targeting of metabolic vulnerabilities in cancers with MLL3/4-COMPASS epigenetic regulator mutations. J Clin Invest 2023; 133:e169993. [PMID: 37252797 PMCID: PMC10313365 DOI: 10.1172/jci169993] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/09/2023] [Indexed: 06/01/2023] Open
Abstract
Epigenetic status-altering mutations in chromatin-modifying enzymes are a feature of human diseases, including many cancers. However, the functional outcomes and cellular dependencies arising from these mutations remain unresolved. In this study, we investigated cellular dependencies, or vulnerabilities, that arise when enhancer function is compromised by loss of the frequently mutated COMPASS family members MLL3 and MLL4. CRISPR dropout screens in MLL3/4-depleted mouse embryonic stem cells (mESCs) revealed synthetic lethality upon suppression of purine and pyrimidine nucleotide synthesis pathways. Consistently, we observed a shift in metabolic activity toward increased purine synthesis in MLL3/4-KO mESCs. These cells also exhibited enhanced sensitivity to the purine synthesis inhibitor lometrexol, which induced a unique gene expression signature. RNA-Seq identified the top MLL3/4 target genes coinciding with suppression of purine metabolism, and tandem mass tag proteomic profiling further confirmed upregulation of purine synthesis in MLL3/4-KO cells. Mechanistically, we demonstrated that compensation by MLL1/COMPASS was underlying these effects. Finally, we demonstrated that tumors with MLL3 and/or MLL4 mutations were highly sensitive to lometrexol in vitro and in vivo, both in culture and in animal models of cancer. Our results depicted a targetable metabolic dependency arising from epigenetic factor deficiency, providing molecular insight to inform therapy for cancers with epigenetic alterations secondary to MLL3/4 COMPASS dysfunction.
Collapse
Affiliation(s)
- Zibo Zhao
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Kaixiang Cao
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Jun Watanabe
- Department of Biochemistry and Molecular Genetics
- Robert H. Lurie NCI Comprehensive Cancer Center, and
| | - Cassandra N. Philips
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Jacob M. Zeidner
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Yukitomo Ishi
- Department of Biochemistry and Molecular Genetics
- Robert H. Lurie NCI Comprehensive Cancer Center, and
| | - Qixuan Wang
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Sarah R. Gold
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Katherine Junkins
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Elizabeth T. Bartom
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Navdeep S. Chandel
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
- Robert H. Lurie NCI Comprehensive Cancer Center, and
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rintaro Hashizume
- Department of Biochemistry and Molecular Genetics
- Robert H. Lurie NCI Comprehensive Cancer Center, and
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| |
Collapse
|
10
|
Wigby K, Hammer M, Tokita M, Patel P, Jones MC, Larson A, Bartolomei FV, Dykzeul N, Slavotinek A, Yip T, Bandres-Ciga S, Simpson BN, Suhrie K, Shankar S, Veith R, Bragg J, Powell C, Kingsmore SF, Dimmock D, Maron J, Davis J, Del Campo M. Insights into the perinatal phenotype of Kabuki syndrome in infants identified by genome-wide sequencing. Am J Med Genet A 2023; 191:930-940. [PMID: 36651673 DOI: 10.1002/ajmg.a.63097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 01/19/2023]
Abstract
Increasing use of unbiased genomic sequencing in critically ill infants can expand understanding of rare diseases such as Kabuki syndrome (KS). Infants diagnosed with KS through genome-wide sequencing performed during the initial hospitalization underwent retrospective review of medical records. Human phenotype ontology terms used in genomic analysis were aggregated and analyzed. Clinicians were surveyed regarding changes in management and other care changes. Fifteen infants met inclusion criteria. KS was not suspected prior to genomic sequencing. Variants were classified as Pathogenic (n = 10) or Likely Pathogenic (n = 5) by American College of Medical Genetics and Genomics Guidelines. Fourteen variants were de novo (KMT2D, n = 12, KDM6A, n = 2). One infant inherited a likely pathogenic variant in KMT2D from an affected father. Frequent findings involved cardiovascular (14/15) and renal (7/15) systems, with palatal defects also identified (6/15). Three infants had non-immune hydrops. No minor anomalies were universally documented; ear anomalies, micrognathia, redundant nuchal skin, and hypoplastic nails were common. Changes in management were reported in 14 infants. Early use of unbiased genome-wide sequencing enabled a molecular diagnosis prior to clinical recognition including infants with atypical or rarely reported features of KS while also expanding the phenotypic spectrum of this rare disorder.
Collapse
Affiliation(s)
- Kristen Wigby
- Department of Pediatrics, Division of Genetics, University of California, San Diego and Rady Children's Hospital-San Diego, San Diego, California, USA
- Rady Children's Institute for Genomic Medicine, San Diego, California, USA
| | - Monia Hammer
- Rady Children's Institute for Genomic Medicine, San Diego, California, USA
| | - Mari Tokita
- Rady Children's Institute for Genomic Medicine, San Diego, California, USA
| | - Priyanka Patel
- Department of Pediatrics, Division of Genetics, University of California, San Diego and Rady Children's Hospital-San Diego, San Diego, California, USA
| | - Marilyn C Jones
- Department of Pediatrics, Division of Genetics, University of California, San Diego and Rady Children's Hospital-San Diego, San Diego, California, USA
| | - Austin Larson
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Frances Velez Bartolomei
- Torre Medica del San Jorge Hospital, San Juan, Puerto Rico, USA
- Department of Pediatrics, Division of Genetics, Stanford University, Palo Alto, California, USA
| | - Natalie Dykzeul
- Department of Pediatrics, Division of Genetics, Stanford University, Palo Alto, California, USA
| | - Anne Slavotinek
- Department of Pediatrics, Division of Genetics, University of California San Francisco, San Francisco, California, USA
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Tiffany Yip
- Department of Pediatrics, Division of Genetics, University of California San Francisco, San Francisco, California, USA
| | - Sara Bandres-Ciga
- Center for Alzheimer's Disease and Related Dementias (CARD), National Institute on Aging (NIA), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Brittany N Simpson
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kristen Suhrie
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Genetics, Division of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Suma Shankar
- Department of Pediatrics, Division of Genetics, University of California, Davis, Sacramento, California, USA
| | - Regan Veith
- Children's Minnesota, Minneapolis, Minnesota, USA
| | - Jennifer Bragg
- Department of Pediatrics, Division of Newborn Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Cynthia Powell
- Department of Pediatrics, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | - Jill Maron
- Mother Infant Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
- Department of Pediatrics, The Floating Hospital for Children at Tufts Medical Center, Boston, Massachusetts, USA
- Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Jonathan Davis
- Department of Pediatrics, The Floating Hospital for Children at Tufts Medical Center, Boston, Massachusetts, USA
- The Tufts Clinical and Translation Science Institute, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Miguel Del Campo
- Department of Pediatrics, Division of Genetics, University of California, San Diego and Rady Children's Hospital-San Diego, San Diego, California, USA
| |
Collapse
|
11
|
Dolgopolov IS, Grivtsova LY, Ustinova OK, Rykov MY. Primary immunodeficiency in a patient with Kabuki syndrome. ROSSIYSKIY VESTNIK PERINATOLOGII I PEDIATRII (RUSSIAN BULLETIN OF PERINATOLOGY AND PEDIATRICS) 2023. [DOI: 10.21508/1027-4065-2022-67-6-104-112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Kabuki syndrome is a well-known disease characterized by postnatal growth failure, dysmorphic facial features, skeletal abnormalities, and mental retardation associated with one of the pathogenic mutations in the KMT2D or KDM6A genes. At least 50% of individuals with Kabuki syndrome tend to develop recurrent infections and immune abnormalities, primarily hypogammaglobulinemia. The article describes the clinical course of resistant infectious syndrome in an 18-month-old child without typical dysmorphic and dermatoglyphic manifestations characteristic of Kabuki syndrome. A long history of resistant bacterial infection, enterocolitis, microcephaly, autistic-like behavior, hyperkinetic disorder, CT scan patterns of granulomatous lymphocytic interstitial lung disease (GLILD), suggested the immunodeficiency as part of a hereditary genetically determined syndrome. At the same time, the patient did not experience hypogammaglobulinemia characteristic of Kabuki syndrome. The upper normal response to previously received vaccination and a polyclonal repertoire of B-lymphocytes indicated the absence of disturbances in the humoral immunity. Immunophenotyping revealed the absence of T-regulatory cells (CD4+CD25++CD127–) as well as effector NK cells (CD16+CD56+CD3–) in the peripheral blood. The significant reduction of CD4+CD3+ T-lymphocytes and CD4+/CD8+ index was observed. In addition, no expression of integrin-beta (CD18) on neutrophils revealed.Conclusion. In children under the age of 2, Kabuki syndrome may present difficulties for clinical diagnosis due to the absence of distinctive phenotypic signs. Patients with mental disorders, congenital malformations, recurrent infections suspected of immunodeficiency should be carried out using molecular genetic exploration, including testing for mutations in the KMT2D and KDM6A.
Collapse
Affiliation(s)
| | - L. Yu. Grivtsova
- A. Tsyb Medical Radiological Research Centre - branch of the National Medical Research Radiological Centre
| | | | | |
Collapse
|
12
|
Aukema SM, Glaser S, van den Hout MFCM, Dahlum S, Blok MJ, Hillmer M, Kolarova J, Sciot R, Schott DA, Siebert R, Stumpel CTRM. Molecular characterization of an embryonal rhabdomyosarcoma occurring in a patient with Kabuki syndrome: report and literature review in the light of tumor predisposition syndromes. Fam Cancer 2023; 22:103-118. [PMID: 35856126 PMCID: PMC9829644 DOI: 10.1007/s10689-022-00306-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/05/2022] [Indexed: 01/13/2023]
Abstract
Kabuki syndrome is a well-recognized syndrome characterized by facial dysmorphism and developmental delay/intellectual disability and in the majority of patients a germline variant in KMT2D is found. As somatic KMT2D variants can be found in 5-10% of tumors a tumor predisposition in Kabuki syndrome is discussed. So far less than 20 patients with Kabuki syndrome and a concomitant malignancy have been published. Here we report on a female patient with Kabuki syndrome and a c.2558_2559delCT germline variant in KMT2D who developed an embryonal rhabdomyosarcoma (ERMS) at 10 years. On tumor tissue we performed DNA-methylation profiling and exome sequencing (ES). Copy number analyses revealed aneuploidies typical for ERMS including (partial) gains of chromosomes 2, 3, 7, 8, 12, 15, and 20 and 3 focal deletions of chromosome 11p. DNA methylation profiling mapped the case to ERMS by a DNA methylation-based sarcoma classifier. Sequencing suggested gain of the wild-type KMT2D allele in the trisomy 12. Including our patient literature review identified 18 patients with Kabuki syndrome and a malignancy. Overall, the landscape of malignancies in patients with Kabuki syndrome was reminiscent of that of the pediatric population in general. Histopathological and molecular data were only infrequently reported and no report included next generation sequencing and/or DNA-methylation profiling. Although we found no strong arguments pointing towards KS as a tumor predisposition syndrome, based on the small numbers any relation cannot be fully excluded. Further planned studies including profiling of additional tumors and long term follow-up of KS-patients into adulthood could provide further insights.
Collapse
Affiliation(s)
- Sietse M Aukema
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), PO Box 5800, 6202 AZ, Maastricht, The Netherlands.
| | - Selina Glaser
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Mari F C M van den Hout
- Department of Pathology, Research Institute GROW, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Sonja Dahlum
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Marinus J Blok
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), PO Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - Morten Hillmer
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Julia Kolarova
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Raf Sciot
- Department of Pathology, University Hospital, University of Leuven, 3000, Louvain, Belgium
| | - Dina A Schott
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), PO Box 5800, 6202 AZ, Maastricht, The Netherlands
- Department of Pediatrics, Zuyderland Medical Center, Heerlen, The Netherlands
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Constance T R M Stumpel
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), PO Box 5800, 6202 AZ, Maastricht, The Netherlands.
- Department of Clinical Genetics and GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands.
| |
Collapse
|
13
|
Kalinousky AJ, Rapp T, Hijazi H, Johnson J, Bjornsson HT, Harris JR. Neurobehavioral phenotype of Kabuki syndrome: Anxiety is a common feature. Front Genet 2022; 13:1007046. [PMID: 36276984 PMCID: PMC9582441 DOI: 10.3389/fgene.2022.1007046] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
Kabuki syndrome (KS) is a Mendelian Disorder of the Epigenetic Machinery (MDEM) caused by loss of function variants in either of two genes involved in the regulation of histone methylation, KMT2D (34–76%) or KDM6A (9–13%). Previously, representative neurobehavioral deficits of KS were recapitulated in a mouse model, emphasizing the role of KMT2D in brain development, specifically in ongoing hippocampal neurogenesis in the granule cell layer of the dentate gyrus. Interestingly, anxiety, a phenotype that has a known association with decreased hippocampal neurogenesis, has been anecdotally reported in individuals with KS. In this study, anxiety and behavior were assessed in a cohort of 60 individuals with molecularly confirmed KS and 25 unaffected biological siblings, via questionnaires (SCARED/GAS-ID and CBCL/ABCL). Participant age ranged from 4 to 43 years old, with 88.3% of participants having a pathogenic variant in KMT2D, and the rest having variants in KDM6A. In addition, data was collected on adaptive function and positive affect/quality of life in participants with KS using appropriate online surveys including ABAS-III and PROMIS Positive Affect. Survey scores were compared within the KS participants across age groups and between KS participants and their unaffected siblings. We found that children with KS have significantly higher anxiety scores and total behavior problem scores than their unaffected siblings (p = 0.0225, p < 0.0001). Moreover, a large proportion of affected individuals (22.2% of children and 60.0% of adults) surpassed the established threshold for anxiety; this may even be an underestimate given many patients are already treated for anxiety. In this sample, anxiety levels did not correlate with level of cognitive or adaptive function in any KS participants, but negatively correlated with positive affect in children with KS (p = 0.0005). These findings indicate that anxiety is a common neurobehavioral feature of KS. Providers should therefore carefully screen individuals with KS for anxiety as well as other behavioral issues in order to allow for prompt intervention. Neurobehavioral anxiety measures may also prove to be important outcome measures for clinical trials in KS.
Collapse
Affiliation(s)
- Allison J. Kalinousky
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Tyler Rapp
- University of North Carolina School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Hadia Hijazi
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | - Hans Tomas Bjornsson
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Landspitali University Hospital, Reykjavík, Iceland
| | - Jacqueline R. Harris
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Kennedy Krieger Institute, Baltimore, MD, United States
- *Correspondence: Jacqueline R. Harris,
| |
Collapse
|
14
|
Di Candia F, Fontana P, Paglia P, Falco M, Rosano C, Piscopo C, Cappuccio G, Siano MA, De Brasi D, Mandato C, De Maggio I, Squeo GM, Monica MD, Scarano G, Lonardo F, Strisciuglio P, Merla G, Melis D. Clinical heterogeneity of Kabuki syndrome in a cohort of Italian patients and review of the literature. Eur J Pediatr 2022; 181:171-187. [PMID: 34232366 PMCID: PMC8760211 DOI: 10.1007/s00431-021-04108-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 12/31/2022]
Abstract
Kabuki syndrome (KS) is a well-recognized disorder characterized by postnatal growth deficiency, dysmorphic facial features, skeletal anomalies, and intellectual disability. The syndrome is caused by KMT2D gene mutations or less frequently KDM6A gene mutations or deletions. We report a systematic evaluation of KS patients from Campania region of Italy; data were also compared with literature ones. We collected data of 15 subjects (8 males and 7 females with age range 10-26 years; mean age 16.9 years) with confirmed diagnosis of KS, representing the entire cohort of patients from Campania Region. Each patient performed biochemical testing and instrumental investigation. Neuro-intellectual development, cranio-facial dysmorphisms, and multisystem involvement data were collected retrospectively. For each category, type of defects and frequency of the anomalies were analyzed. Our observation shows that KS patients from Campania region have some particular and previously underscored, neurological and immunological findings. We found high prevalence of EEG's abnormalities (43%) and MRI brain abnormalities (60%). Microcephaly resulted more common in our series (33%), if compared with major cohorts described in literature. Biochemical features of immunodeficiency and autoimmune diseases including thyroid autoimmunity, polyserositis, and vitiligo were observed with high prevalence (54.5%). Low immunoglobulins levels were a frequent finding. Lymphocyte class investigation showed significantly reduced CD8 levels in one patient.Conclusions: These data confirm great heterogeneity of clinical manifestations in KS and suggest to introduce further clinical diagnostic criteria in order to perform a correct and precocious diagnosis. What is Known • Kabuki syndrome is characterized by growth deficiency, dysmorphic facial features, skeletal anomalies, and intellectual disability • Immune dysfunction is a common finding but autoimmune diseases are rarely seen • Neurological features are common What is New • Some particular facial features could help gestalt diagnosis (hypertelorism, broad nasal bridge, micrognathia, tooth agenesis, cutaneous haemangiomas and strabismus) • Higher prevalence of autoimmune disorders than previously reported • Particular neurological features are present in this cohort (EEG and MRI brain abnormalities).
Collapse
Affiliation(s)
- Francesca Di Candia
- grid.411293.c0000 0004 1754 9702Pediatric Unit, Translational Medicine Department, Federico II University Hospital, Naples, Italy
| | - Paolo Fontana
- Medical Genetics Unit, San Pio Hospital, Benevento, Italy
| | - Pamela Paglia
- Pediatric Unit, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, (Salerno), Baronissi, Italy
| | - Mariateresa Falco
- Pediatric Unit, San Giovanni di Dio e Ruggi d’Aragona University Hospital, Via San Leonardo, 1 – 84131 Salerno, Italy
| | - Carmen Rosano
- grid.411293.c0000 0004 1754 9702Pediatric Unit, Translational Medicine Department, Federico II University Hospital, Naples, Italy
| | - Carmelo Piscopo
- grid.413172.2Medical Genetics Unit, Cardarelli Hospital, Napoli, Italy
| | - Gerarda Cappuccio
- grid.411293.c0000 0004 1754 9702Pediatric Unit, Translational Medicine Department, Federico II University Hospital, Naples, Italy
| | - Maria Anna Siano
- Pediatric Unit, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, (Salerno), Baronissi, Italy
| | - Daniele De Brasi
- Department of Pediatrics, AORN Santobono-Pausilipon, Napoli, Italy
| | - Claudia Mandato
- Department of Pediatrics, AORN Santobono-Pausilipon, Napoli, Italy
| | - Ilaria De Maggio
- grid.413172.2Medical Genetics Unit, Cardarelli Hospital, Napoli, Italy
| | - Gabriella Maria Squeo
- grid.413503.00000 0004 1757 9135Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | | | | | | | - Pietro Strisciuglio
- grid.411293.c0000 0004 1754 9702Pediatric Unit, Translational Medicine Department, Federico II University Hospital, Naples, Italy
| | - Giuseppe Merla
- grid.413503.00000 0004 1757 9135Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Daniela Melis
- Pediatric Unit, Translational Medicine Department, Federico II University Hospital, Naples, Italy. .,Pediatric Unit, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", (Salerno), Baronissi, Italy. .,Pediatric Unit, San Giovanni di Dio e Ruggi d'Aragona University Hospital, Via San Leonardo, 1 - 84131, Salerno, Italy.
| |
Collapse
|
15
|
Behbahanipour M, García-Pardo J, Ventura S. Decoding the role of coiled-coil motifs in human prion-like proteins. Prion 2021; 15:143-154. [PMID: 34428113 PMCID: PMC8386614 DOI: 10.1080/19336896.2021.1961569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 11/28/2022] Open
Abstract
Prions are self-propagating proteins that cause fatal neurodegenerative diseases in humans. However, increasing evidence suggests that eukaryotic cells exploit prion conformational conversion for functional purposes. A recent study delineated a group of twenty prion-like proteins in humans, characterized by the presence of low-complexity glutamine-rich sequences with overlapping coiled-coil (CCs) motifs. This is the case of Mediator complex subunit 15 (MED15), which is overexpressed in a wide range of human cancers. Biophysical studies demonstrated that the prion-like domain (PrLD) of MED15 forms homodimers in solution, sustained by CCs interactions. Furthermore, the same coiled-coil (CC) region plays a crucial role in the PrLD structural transition to a transmissible β-sheet amyloid state. In this review, we discuss the role of CCs motifs and their contribution to amyloid transitions in human prion-like domains (PrLDs), while providing a comprehensive overview of six predicted human prion-like proteins involved in transcription, gene expression, or DNA damage response and associated with human disease, whose PrLDs contain or overlap with CCs sequences. Finally, we try to rationalize how these molecular signatures might relate to both their function and involvement in disease.
Collapse
Affiliation(s)
- Molood Behbahanipour
- Institut De Biotecnologia I De Biomedicina (Ibb) and Departament De Bioquímica I Biologia Molecular, Universitat Autónoma De Barcelona, Barcelona, Spain
| | - Javier García-Pardo
- Institut De Biotecnologia I De Biomedicina (Ibb) and Departament De Bioquímica I Biologia Molecular, Universitat Autónoma De Barcelona, Barcelona, Spain
| | - Salvador Ventura
- Institut De Biotecnologia I De Biomedicina (Ibb) and Departament De Bioquímica I Biologia Molecular, Universitat Autónoma De Barcelona, Barcelona, Spain
| |
Collapse
|
16
|
KMT2D deficiency disturbs the proliferation and cell cycle activity of dental epithelial cell line (LS8) partially via Wnt signaling. Biosci Rep 2021; 41:230093. [PMID: 34724040 PMCID: PMC8607332 DOI: 10.1042/bsr20211148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
Lysine methyltransferase 2D (KMT2D), as one of the key histone methyltransferases responsible for histone 3 lysine 4 methylation (H3K4me), has been proved to be the main pathogenic gene of Kabuki syndrome disease. Kabuki patients with KMT2D mutation frequently present various dental abnormalities, including abnormal tooth number and crown morphology. However, the exact function of KMT2D in tooth development remains unclear. In this report, we systematically elucidate the expression pattern of KMT2D in early tooth development and outline the molecular mechanism of KMT2D in dental epithelial cell line. KMT2D and H3K4me mainly expressed in enamel organ and Kmt2d knockdown led to the reduction in cell proliferation activity and cell cycling activity in dental epithelial cell line (LS8). RNA-sequencing (RNA-seq) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis screened out several important pathways affected by Kmt2d knockdown including Wnt signaling. Consistently, Top/Fop assay confirmed the reduction in Wnt signaling activity in Kmt2d knockdown cells. Nuclear translocation of β-catenin was significantly reduced by Kmt2d knockdown, while lithium chloride (LiCl) partially reversed this phenomenon. Moreover, LiCl partially reversed the decrease in cell proliferation activity and G1 arrest, and the down-regulation of Wnt-related genes in Kmt2d knockdown cells. In summary, the present study uncovered a pivotal role of histone methyltransferase KMT2D in dental epithelium proliferation and cell cycle homeostasis partially through regulating Wnt/β-catenin signaling. The findings are important for understanding the role of KMT2D and histone methylation in tooth development.
Collapse
|
17
|
Boniel S, Szymańska K, Śmigiel R, Szczałuba K. Kabuki Syndrome-Clinical Review with Molecular Aspects. Genes (Basel) 2021; 12:468. [PMID: 33805950 PMCID: PMC8064399 DOI: 10.3390/genes12040468] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Kabuki syndrome (KS) is a rare developmental disorder principally comprised of developmental delay, hypotonia and a clearly defined dysmorphism: elongation of the structures surrounding the eyes, a shortened and depressed nose, thinning of the upper lip and thickening of the lower lip, large and prominent ears, hypertrichosis and scoliosis. Other characteristics include poor physical growth, cardiac, gastrointestinal and renal anomalies as well as variable behavioral issues, including autistic features. De novo or inherited pathogenic/likely pathogenic variants in the KMT2D gene are the most common cause of KS and account for up to 75% of patients. Variants in KDM6A cause up to 5% of cases (X-linked dominant inheritance), while the etiology of about 20% of cases remains unknown. Current KS diagnostic criteria include hypotonia during infancy, developmental delay and/or intellectual disability, typical dysmorphism and confirmed pathogenic/likely pathogenic variant in KMT2D or KDM6A. Care for KS patients includes the control of physical and psychomotor development during childhood, rehabilitation and multi-specialist care. This paper reviews the current clinical knowledge, provides molecular and scientific links and sheds light on the treatment of Kabuki syndrome individuals.
Collapse
Affiliation(s)
- Snir Boniel
- Department of Medical Genetics, Medical University, Pawinskiego 3c, 02-106 Warsaw, Poland;
| | - Krystyna Szymańska
- Mossakowski Medical Research Center, Department of Experimental and Clinical Neuropathology, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Robert Śmigiel
- Department of Paediatrics, Division of Propaedeutic of Paediatrics and Rare Disorders, Medical University, 51-618 Wroclaw, Poland;
| | - Krzysztof Szczałuba
- Department of Medical Genetics, Medical University, Pawinskiego 3c, 02-106 Warsaw, Poland;
| |
Collapse
|
18
|
DNA or Protein Methylation-Dependent Regulation of Activator Protein-1 Function. Cells 2021; 10:cells10020461. [PMID: 33670008 PMCID: PMC7926996 DOI: 10.3390/cells10020461] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetic regulation and modification govern the transcriptional mechanisms that promote disease initiation and progression, but can also control the oncogenic processes, cell signaling networks, immunogenicity, and immune cells involved in anti-inflammatory and anti-tumor responses. The study of epigenetic mechanisms could have important implications for the development of potential anti-inflammatory treatments and anti-cancer immunotherapies. In this review, we have described the key role of epigenetic progression: DNA methylation, histone methylation or modification, and protein methylation, with an emphasis on the activator protein-1 (AP-1) signaling pathway. Transcription factor AP-1 regulates multiple genes and is involved in diverse cellular processes, including survival, differentiation, apoptosis, and development. Here, the AP-1 regulatory mechanism by DNA, histone, or protein methylation was also reviewed. Various methyltransferases activate or suppress AP-1 activities in diverse ways. We summarize the current studies on epigenetic alterations, which regulate AP-1 signaling during inflammation, cancer, and autoimmune diseases, and discuss the epigenetic mechanisms involved in the regulation of AP-1 signaling.
Collapse
|
19
|
Khodaeian M, Jafarinia E, Bitarafan F, Shafeii S, Almadani N, Daneshmand MA, Garshasbi M. Kabuki Syndrome: Identification of Two Novel Variants in KMT2D and KDM6A. Mol Syndromol 2021; 12:118-126. [PMID: 34012382 DOI: 10.1159/000513199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/19/2020] [Indexed: 01/05/2023] Open
Abstract
Kabuki syndrome (KS) is a rare genetic disorder characterized by the following 5 crucial symptoms: dysmorphic facial features, growth retardation, skeletal abnormalities, intellectual disability, and dermatoglyphic malformations. Studies show that most of the KS cases are caused by mutations or large deletions in the KMT2D gene, while the other cases show mutations in KDM6A. We studied 2 patients with suspected KS in 2 unrelated families by whole-exome sequencing to identify the possible genetic cause(s) and by Sanger sequencing to validate the identified variants and check the segregation in other members of the families. Finally, the potential effects of the variants on the structure and function of respective proteins were tested using in silico predictions. Both affected members of the families showed typical manifestations of KS including intellectual disability, developmental delay, and abnormal facial characteristics. A novel heterozygous frameshift variant in the KMT2D gene, c.4981del; p.(Glu1661Serfs*61), and a novel hemizygote missense variant in the KDM6A gene, c.3301G>A; p.(Glu1101Lys), were detected in patients 1 and 2, respectively. The frameshift variant identified in the first family was de novo, while in the second family, the mother was also heterozygous for the missense variant. The frameshift variant in KMT2D is predicted to lead to a truncated protein which is functionally impaired. The Glu1101 residue of KDM6A (UTX) affected in the second patient is located in a conserved region on the surface of the Jumonji domain and predicted to be causative. Our findings provide evidence on the possible pathogenicity of these 2 variants; however, additional functional studies are necessary to confirm their impacts.
Collapse
Affiliation(s)
| | - Ehsan Jafarinia
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Teheran, Iran
| | | | | | - Navid Almadani
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Teheran, Iran
| |
Collapse
|
20
|
Roles of HIF and 2-Oxoglutarate-Dependent Dioxygenases in Controlling Gene Expression in Hypoxia. Cancers (Basel) 2021; 13:cancers13020350. [PMID: 33477877 PMCID: PMC7832865 DOI: 10.3390/cancers13020350] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hypoxia—reduction in oxygen availability—plays key roles in both physiological and pathological processes. Given the importance of oxygen for cell and organism viability, mechanisms to sense and respond to hypoxia are in place. A variety of enzymes utilise molecular oxygen, but of particular importance to oxygen sensing are the 2-oxoglutarate (2-OG) dependent dioxygenases (2-OGDs). Of these, Prolyl-hydroxylases have long been recognised to control the levels and function of Hypoxia Inducible Factor (HIF), a master transcriptional regulator in hypoxia, via their hydroxylase activity. However, recent studies are revealing that such dioxygenases are involved in almost all aspects of gene regulation, including chromatin organisation, transcription and translation. Abstract Hypoxia—reduction in oxygen availability—plays key roles in both physiological and pathological processes. Given the importance of oxygen for cell and organism viability, mechanisms to sense and respond to hypoxia are in place. A variety of enzymes utilise molecular oxygen, but of particular importance to oxygen sensing are the 2-oxoglutarate (2-OG) dependent dioxygenases (2-OGDs). Of these, Prolyl-hydroxylases have long been recognised to control the levels and function of Hypoxia Inducible Factor (HIF), a master transcriptional regulator in hypoxia, via their hydroxylase activity. However, recent studies are revealing that dioxygenases are involved in almost all aspects of gene regulation, including chromatin organisation, transcription and translation. We highlight the relevance of HIF and 2-OGDs in the control of gene expression in response to hypoxia and their relevance to human biology and health.
Collapse
|
21
|
Schwenty-Lara J, Pauli S, Borchers A. Using Xenopus to analyze neurocristopathies like Kabuki syndrome. Genesis 2020; 59:e23404. [PMID: 33351273 DOI: 10.1002/dvg.23404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 11/08/2022]
Abstract
Neurocristopathies are human congenital syndromes that arise from defects in neural crest (NC) development and are typically associated with malformations of the craniofacial skeleton. Genetic analyses have been very successful in identifying pathogenic mutations, however, model organisms are required to characterize how these mutations affect embryonic development thereby leading to complex clinical conditions. The African clawed frog Xenopus laevis provides a broad range of in vivo and in vitro tools allowing for a detailed characterization of NC development. Due to the conserved nature of craniofacial morphogenesis in vertebrates, Xenopus is an efficient and versatile system to dissect the morphological and cellular phenotypes as well as the signaling events leading to NC defects. Here, we review a set of techniques and resources how Xenopus can be used as a disease model to investigate the pathogenesis of Kabuki syndrome and neurocristopathies in a wider sense.
Collapse
Affiliation(s)
- Janina Schwenty-Lara
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Marburg, Germany
| | - Silke Pauli
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Annette Borchers
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Marburg, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
22
|
Xu B, Mulvey B, Salie M, Yang X, Matsui Y, Nityanandam A, Fan Y, Peng JC. UTX/KDM6A suppresses AP-1 and a gliogenesis program during neural differentiation of human pluripotent stem cells. Epigenetics Chromatin 2020; 13:38. [PMID: 32977832 PMCID: PMC7519529 DOI: 10.1186/s13072-020-00359-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 09/15/2020] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND UTX/KDM6A is known to interact and influence multiple different chromatin modifiers to promote an open chromatin environment to facilitate gene activation, but its molecular activities in developmental gene regulation remain unclear. RESULTS We report that in human neural stem cells, UTX binding correlates with both promotion and suppression of gene expression. These activities enable UTX to modulate neural stem cell self-renewal, promote neurogenesis, and suppress gliogenesis. In neural stem cells, UTX has a less influence over histone H3 lysine 27 and lysine 4 methylation but more predominantly affects histone H3 lysine 27 acetylation and chromatin accessibility. Furthermore, UTX suppresses components of AP-1 and, in turn, a gliogenesis program. CONCLUSIONS Our findings revealed that UTX coordinates dualistic gene regulation to govern neural stem cell properties and neurogenesis-gliogenesis switch.
Collapse
Affiliation(s)
- Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Brett Mulvey
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Muneeb Salie
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xiaoyang Yang
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yurika Matsui
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Anjana Nityanandam
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jamy C Peng
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
23
|
Squeo GM, Augello B, Massa V, Milani D, Colombo EA, Mazza T, Castellana S, Piccione M, Maitz S, Petracca A, Prontera P, Accadia M, Della Monica M, Di Giacomo MC, Melis D, Selicorni A, Giglio S, Fischetto R, Di Fede E, Malerba N, Russo M, Castori M, Gervasini C, Merla G. Customised next-generation sequencing multigene panel to screen a large cohort of individuals with chromatin-related disorder. J Med Genet 2020; 57:760-768. [PMID: 32170002 DOI: 10.1136/jmedgenet-2019-106724] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/11/2020] [Accepted: 02/19/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND The regulation of the chromatin state by epigenetic mechanisms plays a central role in gene expression, cell function, and maintenance of cell identity. Hereditary disorders of chromatin regulation are a group of conditions caused by abnormalities of the various components of the epigenetic machinery, namely writers, erasers, readers, and chromatin remodelers. Although neurological dysfunction is almost ubiquitous in these disorders, the constellation of additional features characterizing many of these genes and the emerging clinical overlap among them indicate the existence of a community of syndromes. The introduction of high-throughput next generation sequencing (NGS) methods for testing multiple genes simultaneously is a logical step for the implementation of diagnostics of these disorders. METHODS We screened a heterogeneous cohort of 263 index patients by an NGS-targeted panel, containing 68 genes associated with more than 40 OMIM entries affecting chromatin function. RESULTS This strategy allowed us to identify clinically relevant variants in 87 patients (32%), including 30 for which an alternative clinical diagnosis was proposed after sequencing analysis and clinical re-evaluation. CONCLUSION Our findings indicate that this approach is effective not only in disorders with locus heterogeneity, but also in order to anticipate unexpected misdiagnoses due to clinical overlap among cognate disorders. Finally, this work highlights the utility of a prompt diagnosis in such a clinically and genetically heterogeneous group of disorders that we propose to group under the umbrella term of chromatinopathies.
Collapse
Affiliation(s)
- Gabriella Maria Squeo
- Division of Medical Genetics, IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Bartolomeo Augello
- Division of Medical Genetics, IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Valentina Massa
- Dipartimento di Scienze della Salute, Universita degli Studi di Milano Dipartimento di Scienze della Salute, Milano, Italy
| | - Donatella Milani
- UOSD Pediatria ad alta intensità di cura, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Adele Colombo
- Dipartimento di Scienze della Salute, Universita degli Studi di Milano Dipartimento di Scienze della Salute, Milano, Italy
| | - Tommaso Mazza
- Bioinformatics Unit, IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Stefano Castellana
- Bioinformatics Unit, IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Maria Piccione
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Silvia Maitz
- Clinical Pediatric Genetics Unit, Pediatrics Clinics, MBBM Foundation, Hospital San Gerardo, Monza, Italy
| | - Antonio Petracca
- Division of Medical Genetics, IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Paolo Prontera
- Medical Genetics Unit, University of Perugia Hospital SM della Misericordia, Perugia, Italy
| | - Maria Accadia
- Medical Genetics Service, Hospital "Cardinale G. Panico", Tricase, Italy
| | - Matteo Della Monica
- Medical Genetics Unit, Cardarelli Hospital, Largo A Cardarelli, Napoli, Italy
| | | | - Daniela Melis
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Napoli, Italy
| | - Angelo Selicorni
- Pediatric Department, ASST Lariana, Sant'Anna General Hospital, Como, Italy
| | - Sabrina Giglio
- Department of Biomedical, Experimental and Clinical Sciences 'Mario Serio', Medical Genetics Unit, University Hospital Meyer, Firenze, Italy
| | - Rita Fischetto
- Metabolic Diseases, Clinical Genetics and Diabetology Unit, Paediatric Hospital Giovanni XXIII, Bari, Italy
| | - Elisabetta Di Fede
- Dipartimento di Scienze della Salute, Universita degli Studi di Milano Dipartimento di Scienze della Salute, Milano, Italy
| | - Natascia Malerba
- Division of Medical Genetics, IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Matteo Russo
- Division of Medical Genetics, IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Marco Castori
- Division of Medical Genetics, IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Cristina Gervasini
- Dipartimento di Scienze della Salute, Universita degli Studi di Milano Dipartimento di Scienze della Salute, Milano, Italy
| | - Giuseppe Merla
- Division of Medical Genetics, IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| |
Collapse
|
24
|
Kaiwar C, Kruisselbrink TM, Kudva YC, Klee EW, Pichurin P. Exome sequencing confirms diagnosis of kabuki syndrome in an-adult with hodgkin lymphoma and unusually severe multisystem phenotype. Clin Immunol 2019; 207:55-57. [DOI: 10.1016/j.clim.2018.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 08/19/2018] [Accepted: 09/28/2018] [Indexed: 12/13/2022]
|
25
|
de Billy E, Strocchio L, Cacchione A, Agolini E, Gnazzo M, Novelli A, De Vito R, Capolino R, Digilio MC, Caruso R, Mastronuzzi A, Locatelli F. Burkitt lymphoma in a patient with Kabuki syndrome carrying a novel KMT2D mutation. Am J Med Genet A 2018; 179:113-117. [PMID: 30569626 DOI: 10.1002/ajmg.a.60674] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/09/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022]
Abstract
Kabuki syndrome (KS) is an extremely rare genetic disorder, mainly caused by germline mutations at specific epigenetic modifier genes, including KMT2D. Because the tumor suppressor gene KMT2D is also frequently altered in many cancer types, it has been suggested that KS may predispose to the development of cancer. However, KS being a rare disorder, few data are available on the incidence of cancer in KS patients. Here, we report the case of a 5-year-old boy affected by KS who developed Burkitt lymphoma (BL). Genetic analysis revealed the presence of a novel heterozygous mutation in the splice site of the intron 4 of KMT2D gene in both peripheral blood-extracted DNA and tumour cells. In addition, the tumour sample of the patient was positive for the classical somatic chromosomal translocation t(8;14) involving the c-MYC gene frequently identified in BL. We propose that the mutated KMT2D gene contributes to the development of both KS and BL observed in our patient and we suggest that strict surveillance must be performed in KS patients.
Collapse
Affiliation(s)
- Emmanuel de Billy
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, Rome, Italy
| | - Luisa Strocchio
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, Rome, Italy
| | - Antonella Cacchione
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, Rome, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, Rome, Italy
| | - Maria Gnazzo
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, Rome, Italy
| | - Rita De Vito
- Pathology Unit, Department of Pathology and Molecular Histopathology, Bambino Gesù Children's Hospital, Rome, Italy
| | - Rossella Capolino
- Medical Genetics Unit, Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Roberta Caruso
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, Rome, Italy
| | - Angela Mastronuzzi
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, Rome, Italy.,Department of Pediatric Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
26
|
Adam MP, Banka S, Bjornsson HT, Bodamer O, Chudley AE, Harris J, Kawame H, Lanpher BC, Lindsley AW, Merla G, Miyake N, Okamoto N, Stumpel CT, Niikawa N. Kabuki syndrome: international consensus diagnostic criteria. J Med Genet 2018; 56:89-95. [PMID: 30514738 DOI: 10.1136/jmedgenet-2018-105625] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Kabuki syndrome (KS) is a clinically recognisable syndrome in which 70% of patients have a pathogenic variant in KMT2D or KDM6A. Understanding the function of these genes opens the door to targeted therapies. The purpose of this report is to propose diagnostic criteria for KS, particularly when molecular genetic testing is equivocal. METHODS An international group of experts created consensus diagnostic criteria for KS. Systematic PubMed searches returned 70 peer-reviewed publications in which at least one individual with molecularly confirmed KS was reported. The clinical features of individuals with known mutations were reviewed. RESULTS The authors propose that a definitive diagnosis can be made in an individual of any age with a history of infantile hypotonia, developmental delay and/or intellectual disability, and one or both of the following major criteria: (1) a pathogenic or likely pathogenic variant in KMT2D or KDM6A; and (2) typical dysmorphic features (defined below) at some point of life. Typical dysmorphic features include long palpebral fissures with eversion of the lateral third of the lower eyelid and two or more of the following: (1) arched and broad eyebrows with the lateral third displaying notching or sparseness; (2) short columella with depressed nasal tip; (3) large, prominent or cupped ears; and (4) persistent fingertip pads. Further criteria for a probable and possible diagnosis, including a table of suggestive clinical features, are presented. CONCLUSION As targeted therapies for KS are being developed, it is important to be able to make the correct diagnosis, either with or without molecular genetic confirmation.
Collapse
Affiliation(s)
- Margaret P Adam
- Division of Genetic Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Hans T Bjornsson
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Department of Genetics and Molecular Medicine, Landspitali University Hospital, Reykjavik, Iceland
| | - Olaf Bodamer
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts, USA.,Division of Genetics and Genomics, Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA
| | - Albert E Chudley
- Department of Pediatrics and Child Health, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jaqueline Harris
- Departments of Neurology and Pediatrics, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Hiroshi Kawame
- Department of Education and Training, Tohoku University School of Medicine, Sendai, Japan
| | - Brendan C Lanpher
- Center for Individualized Medicine, Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA.,Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrew W Lindsley
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Giuseppe Merla
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Constanze T Stumpel
- Department of Clinical Genetics and GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Norio Niikawa
- President, the Research Institute of Personalized Health Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | | |
Collapse
|
27
|
Integrated facial analysis and targeted sequencing identifies a novel KDM6A pathogenic variant resulting in Kabuki syndrome. JOURNAL OF BIO-X RESEARCH 2018. [DOI: 10.1097/jbr.0000000000000022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
28
|
A comparative analysis of KMT2D missense variants in Kabuki syndrome, cancers and the general population. J Hum Genet 2018; 64:161-170. [PMID: 30459467 DOI: 10.1038/s10038-018-0536-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/10/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022]
Abstract
Determining the clinical significance of germline and somatic KMT2D missense variants (MVs) in Kabuki syndrome (KS) and cancers can be challenging. We analysed 1920 distinct KMT2D MVs that included 1535 germline MVs in controls (Control-MVs), 584 somatic MVs in cancers (Cancer-MVs) and 201 MV in individuals with KS (KS-MVs). The proportion of MVs likely to affect splicing was significantly higher for Cancer-MVs and KS-MVs than in Control-MVs (p = 0.000018). Our analysis identified significant clustering of Cancer-MVs and KS-MVs in the PHD#3 and #4, RING#4 and SET domains. Areas of enrichment restricted to just Cancer-MVs (FYR-C and between amino acids 3043-3248) or KS-MVs (coiled-coil#5, FYR-N and between amino acids 4995-5090) were also found. Cancer-MVs and KS-MVs tended to affect more conserved residues (lower BLOSUM scores, p < 0.001 and p = 0.007). KS-MVs are more likely to increase the energy for protein folding (higher ELASPIC ∆∆G scores, p = 0.03). Cancer-MVs are more likely to disrupt protein interactions (higher StructMAn scores, p = 0.019). We reclassify several presumed pathogenic MVs as benign or as variants of uncertain significance. We raise the possibility of as yet unrecognised 'non-KS' phenotype(s) associated with some germline pathogenic KMT2D MVs. Overall, this work provides insights into the disease mechanism of KMT2D variants and can be extended to other genes, mutations in which also cause developmental syndromes and cancer.
Collapse
|
29
|
Cocciadiferro D, Augello B, De Nittis P, Zhang J, Mandriani B, Malerba N, Squeo GM, Romano A, Piccinni B, Verri T, Micale L, Pasqualucci L, Merla G. Dissecting KMT2D missense mutations in Kabuki syndrome patients. Hum Mol Genet 2018; 27:3651-3668. [PMID: 30107592 PMCID: PMC6488975 DOI: 10.1093/hmg/ddy241] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/30/2018] [Accepted: 06/21/2018] [Indexed: 02/07/2023] Open
Abstract
Kabuki syndrome is a rare autosomal dominant condition characterized by facial features, various organs malformations, postnatal growth deficiency and intellectual disability. The discovery of frequent germline mutations in the histone methyltransferase KMT2D and the demethylase KDM6A revealed a causative role for histone modifiers in this disease. However, the role of missense mutations has remained unexplored. Here, we expanded the mutation spectrum of KMT2D and KDM6A in KS by identifying 37 new KMT2D sequence variants. Moreover, we functionally dissected 14 KMT2D missense variants, by investigating their impact on the protein enzymatic activity and the binding to members of the WRAD complex. We demonstrate impaired H3K4 methyltransferase activity in 9 of the 14 mutant alleles and show that this reduced activity is due in part to disruption of protein complex formation. These findings have relevant implications for diagnostic and counseling purposes in this disease.
Collapse
Affiliation(s)
- Dario Cocciadiferro
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
- PhD Program in Experimental and Regenerative Medicine, Faculty of Medicine, University of Foggia, Italy
| | - Bartolomeo Augello
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | | | - Jiyuan Zhang
- Department of Pathology and Cell Biology, Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Barbara Mandriani
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Naples, Italy
| | - Natascia Malerba
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
- PhD Program in Experimental and Regenerative Medicine, Faculty of Medicine, University of Foggia, Italy
| | - Gabriella M Squeo
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - Alessandro Romano
- Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Barbara Piccinni
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Tiziano Verri
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Lucia Micale
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - Laura Pasqualucci
- Department of Pathology and Cell Biology, Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Giuseppe Merla
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
| |
Collapse
|
30
|
Aref-Eshghi E, Schenkel LC, Lin H, Skinner C, Ainsworth P, Paré G, Rodenhiser D, Schwartz C, Sadikovic B. The defining DNA methylation signature of Kabuki syndrome enables functional assessment of genetic variants of unknown clinical significance. Epigenetics 2017; 12:923-933. [PMID: 28933623 DOI: 10.1080/15592294.2017.1381807] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Kabuki syndrome (KS) is caused by mutations in KMT2D, which is a histone methyltransferase involved in methylation of H3K4, a histone marker associated with DNA methylation. Analysis of >450,000 CpGs in 24 KS patients with pathogenic mutations in KMT2D and 216 controls, identified 24 genomic regions, along with 1,504 CpG sites with significant DNA methylation changes including a number of Hox genes and the MYO1F gene. Using the most differentiating and significant probes and regions we developed a "methylation variant pathogenicity (MVP) score," which enables 100% sensitive and specific identification of individuals with KS, which was confirmed using multiple public and internal patient DNA methylation databases. We also demonstrated the ability of the MVP score to accurately reclassify variants of unknown significance in subjects with apparent clinical features of KS, enabling its potential use in molecular diagnostics. These findings provide novel insights into the molecular etiology of KS and illustrate that DNA methylation patterns can be interpreted as 'epigenetic echoes' in certain clinical disorders.
Collapse
Affiliation(s)
- Erfan Aref-Eshghi
- a Department of Pathology and Laboratory Medicine , Western University , London , ON , Canada
| | - Laila C Schenkel
- a Department of Pathology and Laboratory Medicine , Western University , London , ON , Canada
| | - Hanxin Lin
- b Molecular Genetics Laboratory, Molecular Diagnostics Division , London Health Sciences Centre , London , ON , Canada . Children's Health Research Institute , London , ON , Canada
| | | | - Peter Ainsworth
- b Molecular Genetics Laboratory, Molecular Diagnostics Division , London Health Sciences Centre , London , ON , Canada . Children's Health Research Institute , London , ON , Canada
| | - Guillaume Paré
- d Department of Pathology and Molecular Medicine , McMaster University , Hamilton , ON , Canada
| | - David Rodenhiser
- e Departments of Paediatrics, Biochemistry and Oncology , Western University , London , ON , Canada
| | | | - Bekim Sadikovic
- a Department of Pathology and Laboratory Medicine , Western University , London , ON , Canada.,b Molecular Genetics Laboratory, Molecular Diagnostics Division , London Health Sciences Centre , London , ON , Canada . Children's Health Research Institute , London , ON , Canada
| |
Collapse
|
31
|
Shpargel KB, Starmer J, Wang C, Ge K, Magnuson T. UTX-guided neural crest function underlies craniofacial features of Kabuki syndrome. Proc Natl Acad Sci U S A 2017; 114:E9046-E9055. [PMID: 29073101 PMCID: PMC5664495 DOI: 10.1073/pnas.1705011114] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Kabuki syndrome, a congenital craniofacial disorder, manifests from mutations in an X-linked histone H3 lysine 27 demethylase (UTX/KDM6A) or a H3 lysine 4 methylase (KMT2D). However, the cellular and molecular etiology of histone-modifying enzymes in craniofacial disorders is unknown. We now establish Kabuki syndrome as a neurocristopathy, whereby the majority of clinical features are modeled in mice carrying neural crest (NC) deletion of UTX, including craniofacial dysmorphism, cardiac defects, and postnatal growth retardation. Female UTX NC knockout (FKO) demonstrates enhanced phenotypic severity over males (MKOs), due to partial redundancy with UTY, a Y-chromosome demethylase-dead homolog. Thus, NC cells may require demethylase-independent UTX activity. Consistently, Kabuki causative point mutations upstream of the JmjC domain do not disrupt UTX demethylation. We have isolated primary NC cells at a phenocritical postmigratory timepoint in both FKO and MKO mice, and genome-wide expression and histone profiling have revealed UTX molecular function in establishing appropriate chromatin structure to regulate crucial NC stem-cell signaling pathways. However, the majority of UTX regulated genes do not experience aberrations in H3K27me3 or H3K4me3, implicating alternative roles for UTX in transcriptional control. These findings are substantiated through demethylase-dead knockin mutation of UTX, which supports appropriate facial development.
Collapse
Affiliation(s)
- Karl B Shpargel
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-7264
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-7264
| | - Joshua Starmer
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-7264
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-7264
| | - Chaochen Wang
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Kai Ge
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Terry Magnuson
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-7264;
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-7264
| |
Collapse
|
32
|
Digilio MC, Gnazzo M, Lepri F, Dentici ML, Pisaneschi E, Baban A, Passarelli C, Capolino R, Angioni A, Novelli A, Marino B, Dallapiccola B. Congenital heart defects in molecularly proven Kabuki syndrome patients. Am J Med Genet A 2017; 173:2912-2922. [DOI: 10.1002/ajmg.a.38417] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 07/17/2017] [Accepted: 07/24/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Maria Cristina Digilio
- Medical Genetics Unit; Medical Genetics Laboratory; Pediatric Cardiology; Bambino Gesù Pediatric Hospital; IRCCS; Rome Italy
| | - Maria Gnazzo
- Medical Genetics Unit; Medical Genetics Laboratory; Pediatric Cardiology; Bambino Gesù Pediatric Hospital; IRCCS; Rome Italy
| | - Francesca Lepri
- Medical Genetics Unit; Medical Genetics Laboratory; Pediatric Cardiology; Bambino Gesù Pediatric Hospital; IRCCS; Rome Italy
| | - Maria Lisa Dentici
- Medical Genetics Unit; Medical Genetics Laboratory; Pediatric Cardiology; Bambino Gesù Pediatric Hospital; IRCCS; Rome Italy
| | - Elisa Pisaneschi
- Medical Genetics Unit; Medical Genetics Laboratory; Pediatric Cardiology; Bambino Gesù Pediatric Hospital; IRCCS; Rome Italy
| | - Anwar Baban
- Medical Genetics Unit; Medical Genetics Laboratory; Pediatric Cardiology; Bambino Gesù Pediatric Hospital; IRCCS; Rome Italy
| | - Chiara Passarelli
- Medical Genetics Unit; Medical Genetics Laboratory; Pediatric Cardiology; Bambino Gesù Pediatric Hospital; IRCCS; Rome Italy
| | - Rossella Capolino
- Medical Genetics Unit; Medical Genetics Laboratory; Pediatric Cardiology; Bambino Gesù Pediatric Hospital; IRCCS; Rome Italy
| | - Adriano Angioni
- Medical Genetics Unit; Medical Genetics Laboratory; Pediatric Cardiology; Bambino Gesù Pediatric Hospital; IRCCS; Rome Italy
| | - Antonio Novelli
- Medical Genetics Unit; Medical Genetics Laboratory; Pediatric Cardiology; Bambino Gesù Pediatric Hospital; IRCCS; Rome Italy
| | - Bruno Marino
- Department of Pediatrics; Pediatric Cardiology; Sapienza University; Rome Italy
| | - Bruno Dallapiccola
- Medical Genetics Unit; Medical Genetics Laboratory; Pediatric Cardiology; Bambino Gesù Pediatric Hospital; IRCCS; Rome Italy
| |
Collapse
|
33
|
Kurahashi N, Miyake N, Mizuno S, Koshimizu E, Kurahashi H, Yamada K, Natsume J, Aoki Y, Nakamura M, Taniai H, Maki Y, Abe-Hatano C, Matsumoto N, Maruyama K. Characteristics of epilepsy in patients with Kabuki syndrome with KMT2D mutations. Brain Dev 2017; 39:672-677. [PMID: 28404210 DOI: 10.1016/j.braindev.2017.03.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND The characteristics of epilepsy in patients with Kabuki syndrome with KMT2D mutations (KABUK1) have not yet been well documented. This is the first review to explore this. MATERIALS & METHODS We enrolled 14 patients with KABUK1, whose median age was 13.6years (range=4.1-21.3years). Their medical records from October 1981 to May 2016 were retrospectively analyzed. RESULTS Epilepsy was present in 5 (36%) patients. Four of these patients presented with nonsense mutations and one with missense mutations. None presented with brain abnormalities. Four patients presented with annual or monthly focal seizures, of which three evolved to bilateral convulsive seizures. Median onset age of focal epilepsy was 11.8years (range=9.5-12.8years). One presented with monthly myoclonic seizures from age 11.2, whose mother with no other KABUK1 features, had focal epilepsy. The cumulative incidence of epilepsy related to KABUK1 up until age 13 was 45%. Interictal electroencephalogram revealed focal paroxysmal epileptiform discharges (in frontal, central, and parietal regions) in three patients, diffuse high-voltage spike-and-waves in one patient, and normal sleep record in one patient. Myoclonic seizures were rapidly controlled by levetiracetam. In contrast, focal seizures were not controlled in the early period of antiepileptic therapy. CONCLUSION This long-term follow-up of patients with KABUK1 revealed a higher prevalence of epilepsy than previously reported. The age of epilepsy onset and rate of focal seizures evolving to bilateral convulsive seizures in KABUK1 were also higher than previously reported in patients with clinically diagnosed Kabuki syndrome. Although seizure outcome is reported to be favorable in Kabuki syndrome, focal seizures in patients with KABUK1 were not immediately responsive to medication.
Collapse
Affiliation(s)
- Naoko Kurahashi
- Department of Pediatric Neurology, Aichi Prefectural Colony Central Hospital, Japan.
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Japan
| | - Seiji Mizuno
- Department of Pediatrics, Aichi Prefectural Colony Central Hospital, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Japan
| | - Hirokazu Kurahashi
- Department of Pediatric Neurology, Aichi Prefectural Colony Central Hospital, Japan; Department of Pediatrics, Aichi Medical University, Japan
| | - Keitaro Yamada
- Department of Pediatric Neurology, Aichi Prefectural Colony Central Hospital, Japan
| | - Jun Natsume
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Japan
| | - Yusuke Aoki
- Department of Neurology, Aichi Children's Health and Medical Center, Japan
| | - Miho Nakamura
- Department of Functioning Science, Institute for Developmental Research, Aichi Human Service Center, Japan
| | - Hiroko Taniai
- Department of Pediatrics, Aichi Prefectural Colony Central Hospital, Japan; Department of Pediatrics, Nagoya Central Care Center for Disabled Children, Japan
| | - Yuki Maki
- Department of Pediatric Neurology, Aichi Prefectural Colony Central Hospital, Japan
| | - Chihiro Abe-Hatano
- Department of Pediatric Neurology, Aichi Prefectural Colony Central Hospital, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Japan
| | - Koichi Maruyama
- Department of Pediatric Neurology, Aichi Prefectural Colony Central Hospital, Japan
| |
Collapse
|
34
|
Chen XS, Reader RH, Hoischen A, Veltman JA, Simpson NH, Francks C, Newbury DF, Fisher SE. Next-generation DNA sequencing identifies novel gene variants and pathways involved in specific language impairment. Sci Rep 2017; 7:46105. [PMID: 28440294 PMCID: PMC5404330 DOI: 10.1038/srep46105] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/08/2017] [Indexed: 12/22/2022] Open
Abstract
A significant proportion of children have unexplained problems acquiring proficient linguistic skills despite adequate intelligence and opportunity. Developmental language disorders are highly heritable with substantial societal impact. Molecular studies have begun to identify candidate loci, but much of the underlying genetic architecture remains undetermined. We performed whole-exome sequencing of 43 unrelated probands affected by severe specific language impairment, followed by independent validations with Sanger sequencing, and analyses of segregation patterns in parents and siblings, to shed new light on aetiology. By first focusing on a pre-defined set of known candidates from the literature, we identified potentially pathogenic variants in genes already implicated in diverse language-related syndromes, including ERC1, GRIN2A, and SRPX2. Complementary analyses suggested novel putative candidates carrying validated variants which were predicted to have functional effects, such as OXR1, SCN9A and KMT2D. We also searched for potential "multiple-hit" cases; one proband carried a rare AUTS2 variant in combination with a rare inherited haplotype affecting STARD9, while another carried a novel nonsynonymous variant in SEMA6D together with a rare stop-gain in SYNPR. On broadening scope to all rare and novel variants throughout the exomes, we identified biological themes that were enriched for such variants, including microtubule transport and cytoskeletal regulation.
Collapse
Affiliation(s)
- Xiaowei Sylvia Chen
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Rose H. Reader
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joris A. Veltman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Clinical Genetics, University of Maastricht, Maastricht, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Nuala H. Simpson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Dianne F. Newbury
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Simon E. Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
35
|
Whole-exome sequencing in Tricho-rhino-phalangeal syndrome (TRPS) type I in a Korean family. Genes Genomics 2017. [DOI: 10.1007/s13258-016-0508-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Lintas C, Persico AM. Unraveling molecular pathways shared by Kabuki and Kabuki-like syndromes. Clin Genet 2017; 94:283-295. [PMID: 28139835 DOI: 10.1111/cge.12983] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/19/2017] [Indexed: 12/12/2022]
Abstract
Kabuki syndrome (KS) is a rare genetic syndrome characterized by a typical facial gestalt, variable degrees of intellectual disability, organ malformations, postnatal growth retardation and skeletal abnormalities. So far, KMT2D or KDM6A mutation has been identified as the main cause of KS, accounting for 56%-75% and 3%-8% of cases, respectively. Patients without mutations in 1 of the 2 causative KS genes are often referred to as affected by Kabuki-like syndrome. Overall, they represent approximately 30% of KS cases, pointing toward substantial genetic heterogeneity for this condition. Here, we review all currently available literature describing KS-like phenotypes (or phenocopies) associated with genetic variants located in loci different from KMT2D and KDM6A . We also report on a new KS phenocopy harboring a 5 Mb de novo deletion in chr10p11.22-11.21. An enrichment analysis aimed at identifying functional Gene Ontology classes shared by the 2 known KS causative genes and by new candidate genes currently associated with KS-like phenotypes primarily converges upon abnormal chromatin remodeling and transcriptional dysregulation as pivotal to the pathophysiology of KS phenotypic hallmarks. The identification of mutations in genes belonging to the same functional pathways of KMT2D and KDM6A can help design molecular screenings targeted to KS-like phenotypes.
Collapse
Affiliation(s)
- C Lintas
- Unit of Child and Adolescent NeuroPsychiatry, University Campus Bio-Medico, Rome, Italy.,Laboratory of Molecular Psychiatry and Neurogenetics, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - A M Persico
- Unit of Child and Adolescent NeuroPsychiatry, "G. Martino" University Hospital, University of Messina, Messina, Italy.,Mafalda Luce Center for Pervasive Developmental Disorders, Milan, Italy
| |
Collapse
|
37
|
Variations in Multiple Syndromic Deafness Genes Mimic Non-syndromic Hearing Loss. Sci Rep 2016; 6:31622. [PMID: 27562378 PMCID: PMC4999867 DOI: 10.1038/srep31622] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/20/2016] [Indexed: 12/18/2022] Open
Abstract
The genetics of both syndromic (SHL) and non-syndromic hearing loss (NSHL) is characterized by a high degree of genetic heterogeneity. We analyzed whole exome sequencing data of 102 unrelated probands with apparently NSHL without a causative variant in known NSHL genes. We detected five causative variants in different SHL genes (SOX10, MITF, PTPN11, CHD7, and KMT2D) in five (4.9%) probands. Clinical re-evaluation of these probands shows that some of them have subtle syndromic findings, while none of them meets clinical criteria for the diagnosis of the associated syndrome (Waardenburg (SOX10 and MITF), Kallmann (CHD7 and SOX10), Noonan/LEOPARD (PTPN11), CHARGE (CHD7), or Kabuki (KMT2D). This study demonstrates that individuals who are evaluated for NSHL can have pathogenic variants in SHL genes that are not usually considered for etiologic studies.
Collapse
|
38
|
Bögershausen N, Gatinois V, Riehmer V, Kayserili H, Becker J, Thoenes M, Simsek-Kiper PÖ, Barat-Houari M, Elcioglu NH, Wieczorek D, Tinschert S, Sarrabay G, Strom TM, Fabre A, Baynam G, Sanchez E, Nürnberg G, Altunoglu U, Capri Y, Isidor B, Lacombe D, Corsini C, Cormier-Daire V, Sanlaville D, Giuliano F, Le Quan Sang KH, Kayirangwa H, Nürnberg P, Meitinger T, Boduroglu K, Zoll B, Lyonnet S, Tzschach A, Verloes A, Di Donato N, Touitou I, Netzer C, Li Y, Geneviève D, Yigit G, Wollnik B. Mutation Update for Kabuki Syndrome GenesKMT2DandKDM6Aand Further Delineation of X-Linked Kabuki Syndrome Subtype 2. Hum Mutat 2016; 37:847-64. [DOI: 10.1002/humu.23026] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 05/26/2016] [Indexed: 12/29/2022]
|
39
|
Abstract
Kabuki syndrome is a rare genetic malformation syndrome that is characterized by distinct facies, structural defects and intellectual disability. Kabuki syndrome may be caused by mutations in one of two histone methyltransferase genes: KMT2D and KDM6A. We describe a male child of nonconsanguineous Irish parents presenting with multiple malformations, including bilateral extreme microphthalmia; cleft palate; congenital diaphragmatic hernia; duplex kidney; as well as facial features of Kabuki syndrome, including interrupted eyebrows and lower lid ectropion. A de-novo germline mutation in KMT2D was identified. Whole-exome sequencing failed to reveal mutations in any of the known microphthalmia/anopthalmia genes. We also identified four other patients with Kabuki syndrome and microphthalmia. We postulate that Kabuki syndrome may produce this type of ocular phenotype as a result of extensive interaction between KMT2D, WAR complex proteins and PAXIP1. Children presenting with microphthalmia/anophthalmia should be examined closely for other signs of Kabuki syndrome, especially at an age where the facial gestalt might be less readily appreciable.
Collapse
|
40
|
Stagi S, Gulino AV, Lapi E, Rigante D. Epigenetic control of the immune system: a lesson from Kabuki syndrome. Immunol Res 2016; 64:345-359. [PMID: 26411453 DOI: 10.1007/s12026-015-8707-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Kabuki syndrome (KS) is a rare multi-systemic disorder characterized by a distinct face, postnatal growth deficiency, mild-to-moderate intellectual disability, skeletal and visceral (mainly cardiovascular, renal, and skeletal) malformations, dermatoglyphic abnormalities. Its cause is related to mutations of two genes: KMT2D (histone-lysine N-methyltransferase 2D) and KDM6A (lysine-specific demethylase 6A), both functioning as epigenetic modulators through histone modifications in the course of embryogenesis and in several biological processes. Epigenetic regulation is defined as the complex of hereditable modifications to DNA and histone proteins that modulates gene expression in the absence of DNA nucleotide sequence changes. Different human disorders are caused by mutations of genes involved in the epigenetic regulation, and not surprisingly, all these share developmental defects, disturbed growth (in excess or defect), multiple congenital organ malformations, and also hematological and immunological defects. In particular, most KS patients show increased susceptibility to infections and have reduced serum immunoglobulin levels, while some suffer also from autoimmune manifestations, such as idiopathic thrombocytopenic purpura, hemolytic anemia, autoimmune thyroiditis, and vitiligo. Herein we review the immunological aspects of KS and propose a novel model to account for the immune dysfunction observed in this condition.
Collapse
Affiliation(s)
- Stefano Stagi
- Health Sciences Department, University of Florence, Anna Meyer Children's University Hospital, Florence, Italy.
| | | | - Elisabetta Lapi
- Health Sciences Department, University of Florence, Anna Meyer Children's University Hospital, Florence, Italy
| | - Donato Rigante
- Institute of Pediatrics, Fondazione Policlinico Universitario Agostino Gemelli, Università Cattolica Sacro Cuore, Rome, Italy
| |
Collapse
|
41
|
Yang P, Tan H, Xia Y, Yu Q, Wei X, Guo R, Peng Y, Chen C, Li H, Mei L, Huang Y, Liang D, Wu L. De novo exonic deletion of KDM6A in a Chinese girl with Kabuki syndrome: A case report and brief literature review. Am J Med Genet A 2016; 170:1613-21. [PMID: 27028180 DOI: 10.1002/ajmg.a.37634] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 03/07/2016] [Indexed: 12/15/2022]
Abstract
Kabuki syndrome (KS) is a rare condition with multiple congenital anomalies and mental retardation. Exonic deletions, disrupting the lysine (K)-specific demethylase 6A (KDM6A) gene have been demonstrated as rare cause of KS. Here, we report a de novo 227-kb deletion in chromosome Xp11.3 of a 7-year-old Chinese girl with KS. Besides the symptoms of KS, the patient also presented with skin allergic manifestations, which were considered to be a new, rare feature of the phenotypic spectrum. The deletion includes the upstream region and exons 1-2 of KDM6A and potentially causes haploinsuffiency of the gene. We also discuss the mutation spectrum of KDM6A and clinical variability of patients with KDM6A deletion through a literature review. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Pu Yang
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, P.R. China
| | - Hu Tan
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, P.R. China
| | - Yan Xia
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, P.R. China
| | - Qian Yu
- Department of Haematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Xianda Wei
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, P.R. China
| | - Ruolan Guo
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, P.R. China
| | - Ying Peng
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, P.R. China
| | - Chen Chen
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, P.R. China.,Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Haoxian Li
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, P.R. China
| | - Libin Mei
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, P.R. China
| | - Yanru Huang
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, P.R. China
| | - Desheng Liang
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, P.R. China
| | - Lingqian Wu
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
42
|
Abstract
Approximately 50% of all congenital anomalies cannot be linked to any specific genetic etiology, but in recent years cost effective high throughput sequencing has emerged as an efficient strategy for identifying single nucleotide polymorphisms (SNPs) associated with disease. However, in many cases there is not enough evidence to determine if these SNPs underlie disease. To bridge this gap in our understanding advances in functional analyses are warranted. Several preclinical model systems are currently being utilized to provide such evidence, including the advantageous zebrafish embryo. While every system exhibits disadvantages and caveats, a new era of multidisciplinary research has evolved, which uses a broad spectrum of functional analysis tools. This approach will make it possible to identify potential therapeutic targets for both common and rare human disorders.
Collapse
Affiliation(s)
- Anita M Quintana
- Department of Biological Sciences, The University of Texas at El Paso, 500 West University Avenue, El Paso TX 79934
| |
Collapse
|
43
|
Nam TS, Li W, Heo SH, Lee KH, Cho A, Shin JH, Kim YO, Chae JH, Kim DS, Kim MK, Choi SY. A novel mutation in DNAJB6, p.(Phe91Leu), in childhood-onset LGMD1D with a severe phenotype. Neuromuscul Disord 2015; 25:843-51. [DOI: 10.1016/j.nmd.2015.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/01/2015] [Accepted: 08/04/2015] [Indexed: 01/15/2023]
|
44
|
Cheon CK, Ko JM. Kabuki syndrome: clinical and molecular characteristics. KOREAN JOURNAL OF PEDIATRICS 2015; 58:317-324. [PMID: 26512256 PMCID: PMC4623449 DOI: 10.3345/kjp.2015.58.9.317] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/22/2015] [Indexed: 12/13/2022]
Abstract
Kabuki syndrome (KS) is a rare syndrome characterized by multiple congenital anomalies and mental retardation. Other characteristics include a peculiar facial gestalt, short stature, skeletal and visceral abnormalities, cardiac anomalies, and immunological defects. Whole exome sequencing has uncovered the genetic basis of KS. Prior to 2013, there was no molecular genetic information about KS in Korean patients. More recently, direct Sanger sequencing and exome sequencing revealed KMT2D variants in 11 Korean patients and a KDM6A variant in one Korean patient. The high detection rate of KMT2D and KDM6A mutations (92.3%) is expected owing to the strict criteria used to establish a clinical diagnosis. Increased awareness and understanding of KS among clinicians is important for diagnosis and management of KS and for primary care of KS patients. Because mutation detection rates rely on the accuracy of the clinical diagnosis and the inclusion or exclusion of atypical cases, recognition of KS will facilitate the identification of novel mutations. A brief review of KS is provided, highlighting the clinical and genetic characteristics of patients with KS.
Collapse
Affiliation(s)
- Chong-Kun Cheon
- Department of Pediatrics, Pusan National University Children's Hospital, Pusan National University School of Medicine, Yangsan, Korea
| | - Jung Min Ko
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
45
|
Yoon JK, Ahn KJ, Kwon BS, Kim GB, Bae EJ, Noh CI, Ko JM. The strong association of left-side heart anomalies with Kabuki syndrome. KOREAN JOURNAL OF PEDIATRICS 2015; 58:256-62. [PMID: 26300940 PMCID: PMC4543185 DOI: 10.3345/kjp.2015.58.7.256] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/18/2014] [Accepted: 09/26/2014] [Indexed: 12/14/2022]
Abstract
PURPOSE Kabuki syndrome is a multiple congenital malformation syndrome, with characteristic facial features, mental retardation, and skeletal and congenital heart anomalies. However, the cardiac anomalies are not well described in the Korean population. We analyzed the cardiac anomalies and clinical features of Kabuki syndrome in a single tertiary center. METHODS A retrospective analysis was conducted for a total of 13 patients with Kabuki syndrome. RESULTS The median age at diagnosis of was 5.9 years (range, 9 days to 11 years and 8 months). All patients showed the characteristic facial dysmorphisms and congenital anomalies in multiple organs, and the diagnosis was delayed by 5.9 years (range, 9 days to 11 years and 5 months) after the first visit. Noncardiac anomalies were found in 84% of patients, and congenital heart diseases were found in 9 patients (69%). All 9 patients exhibited left-side heart anomalies, including hypoplastic left heart syndrome in 3, coarctation of the aorta in 4, aortic valve stenosis in 1, and mitral valve stenosis in 1. None had right-side heart disease or isolated septal defects. Genetic testing in 10 patients revealed 9 novel MLL2 mutations. All 11 patients who were available for follow-up exhibited developmental delays during the median 4 years (range, 9 days to 11 years 11 months) of follow-up. The leading cause of death was hypoplastic left heart syndrome. CONCLUSION Pediatric cardiologist should recognize Kabuki syndrome and the high prevalence of left heart anomalies with Kabuki syndrome. Genetic testing can be helpful for early diagnosis and counseling.
Collapse
Affiliation(s)
- Ja Kyoung Yoon
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Kyung Jin Ahn
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Bo Sang Kwon
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Gi Beom Kim
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Jung Bae
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Chung Il Noh
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Min Ko
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
46
|
Liu S, Hong X, Shen C, Shi Q, Wang J, Xiong F, Qiu Z. Kabuki syndrome: a Chinese case series and systematic review of the spectrum of mutations. BMC MEDICAL GENETICS 2015; 16:26. [PMID: 25896430 PMCID: PMC4630853 DOI: 10.1186/s12881-015-0171-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 03/30/2015] [Indexed: 11/17/2022]
Abstract
Background Kabuki syndrome is a rare hereditary disease affecting multiple organs. The causative genes identified to date are KMT2D and KDMA6. The aim of this study is to evaluate the clinical manifestations and the spectrum of mutations of KMT2D. Methods We retrospectively retrieved a series of eight patients from two hospitals in China and conducted Sanger sequencing for all of the patients and their parents if available. We also reviewed the literature and plotted the mutation spectrum of KMT2D. Results The patients generally presented with typical clinical manifestations as previously reported in other countries. Uncommon symptoms included spinal bifida and Dandy-Walker malformation. With respect to the mutations, five mutations were found in five patients, including two frameshift indels, one nonsense mutation and two missense mutations. Conclusions This is the first case series on Kabuki syndrome in Mainland China. Unusual symptoms, such as spinal bifida and Dandy-Walker syndrome, suggested that neurological developmental defects may accompany Kabuki syndrome. This case series helps broaden the mutation spectrum of Kabuki syndrome and adds information regarding the manifestations of Kabuki syndrome.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Xiafei Hong
- Peking Union Medical College, Beijing, China.
| | - Cheng Shen
- Peking Union Medical College, Beijing, China.
| | | | - Jian Wang
- Peking Union Medical College, Beijing, China.
| | - Feng Xiong
- Endocrinology Department, Children's hospital of ChongQing Medical University, ChongQing, China.
| | - Zhengqing Qiu
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
47
|
Shyr C, Tarailo-Graovac M, Gottlieb M, Lee JJY, van Karnebeek C, Wasserman WW. FLAGS, frequently mutated genes in public exomes. BMC Med Genomics 2014; 7:64. [PMID: 25466818 PMCID: PMC4267152 DOI: 10.1186/s12920-014-0064-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/24/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Dramatic improvements in DNA-sequencing technologies and computational analyses have led to wide use of whole exome sequencing (WES) to identify the genetic basis of Mendelian disorders. More than 180 novel rare-disease-causing genes with Mendelian inheritance patterns have been discovered through sequencing the exomes of just a few unrelated individuals or family members. As rare/novel genetic variants continue to be uncovered, there is a major challenge in distinguishing true pathogenic variants from rare benign mutations. METHODS We used publicly available exome cohorts, together with the dbSNP database, to derive a list of genes (n = 100) that most frequently exhibit rare (<1%) non-synonymous/splice-site variants in general populations. We termed these genes FLAGS for FrequentLy mutAted GeneS and analyzed their properties. RESULTS Analysis of FLAGS revealed that these genes have significantly longer protein coding sequences, a greater number of paralogs and display less evolutionarily selective pressure than expected. FLAGS are more frequently reported in PubMed clinical literature and more frequently associated with diseased phenotypes compared to the set of human protein-coding genes. We demonstrated an overlap between FLAGS and the rare-disease causing genes recently discovered through WES studies (n = 10) and the need for replication studies and rigorous statistical and biological analyses when associating FLAGS to rare disease. Finally, we showed how FLAGS are applied in disease-causing variant prioritization approach on exome data from a family affected by an unknown rare genetic disorder. CONCLUSIONS We showed that some genes are frequently affected by rare, likely functional variants in general population, and are frequently observed in WES studies analyzing diverse rare phenotypes. We found that the rate at which genes accumulate rare mutations is beneficial information for prioritizing candidates. We provided a ranking system based on the mutation accumulation rates for prioritizing exome-captured human genes, and propose that clinical reports associating any disease/phenotype to FLAGS be evaluated with extra caution.
Collapse
Affiliation(s)
- Casper Shyr
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, BC, Canada. .,Treatable Intellectual Disability Endeavour in British Columbia, Vancouver, Canada. .,Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC, Canada.
| | - Maja Tarailo-Graovac
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, BC, Canada. .,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada. .,Treatable Intellectual Disability Endeavour in British Columbia, Vancouver, Canada.
| | - Michael Gottlieb
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, BC, Canada.
| | - Jessica J Y Lee
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, BC, Canada. .,Genome Science and Technology Graduate Program, University of British Columbia, Vancouver, BC, Canada.
| | - Clara van Karnebeek
- Treatable Intellectual Disability Endeavour in British Columbia, Vancouver, Canada. .,Division of Biochemical Diseases, BC Children's Hospital, Vancouver, BC, Canada. .,Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.
| | - Wyeth W Wasserman
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, BC, Canada. .,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada. .,Treatable Intellectual Disability Endeavour in British Columbia, Vancouver, Canada.
| |
Collapse
|