1
|
Walker MA, Chen H, Yadav A, Ritterhoff J, Villet O, McMillen T, Wang Y, Purcell H, Djukovic D, Raftery D, Isoherranen N, Tian R. Raising NAD + Level Stimulates Short-Chain Dehydrogenase/Reductase Proteins to Alleviate Heart Failure Independent of Mitochondrial Protein Deacetylation. Circulation 2023; 148:2038-2057. [PMID: 37965787 PMCID: PMC10842390 DOI: 10.1161/circulationaha.123.066039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/04/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Strategies to increase cellular NAD+ (oxidized nicotinamide adenine dinucleotide) level have prevented cardiac dysfunction in multiple models of heart failure, but molecular mechanisms remain unclear. Little is known about the benefits of NAD+-based therapies in failing hearts after the symptoms of heart failure have appeared. Most pretreatment regimens suggested mechanisms involving activation of sirtuin, especially Sirt3 (sirtuin 3), and mitochondrial protein acetylation. METHODS We induced cardiac dysfunction by pressure overload in SIRT3-deficient (knockout) mice and compared their response with nicotinamide riboside chloride treatment with wild-type mice. To model a therapeutic approach, we initiated the treatment in mice with established cardiac dysfunction. RESULTS We found nicotinamide riboside chloride improved mitochondrial function and blunted heart failure progression. Similar benefits were observed in wild-type and knockout mice. Boosting NAD+ level improved the function of NAD(H) redox-sensitive SDR (short-chain dehydrogenase/reductase) family proteins. Upregulation of Mrpp2 (mitochondrial ribonuclease P protein 2), a multifunctional SDR protein and a subunit of mitochondrial ribonuclease P, improves mitochondrial DNA transcripts processing and electron transport chain function. Activation of SDRs in the retinol metabolism pathway stimulates RXRα (retinoid X receptor α)/PPARα (proliferator-activated receptor α) signaling and restores mitochondrial oxidative metabolism. Downregulation of Mrpp2 and impaired mitochondrial ribonuclease P were found in human failing hearts, suggesting a shared mechanism of defective mitochondrial biogenesis in mouse and human heart failure. CONCLUSIONS These findings identify SDR proteins as important regulators of mitochondrial function and molecular targets of NAD+-based therapy. Furthermore, the benefit is observed regardless of Sirt3-mediated mitochondrial protein deacetylation, a widely held mechanism for NAD+-based therapy for heart failure. The data also show that NAD+-based therapy can be useful in pre-existing heart failure.
Collapse
Affiliation(s)
- Matthew A. Walker
- Mitochondria and Metabolism Center, Department of
Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
98109
| | - Hongye Chen
- Mitochondria and Metabolism Center, Department of
Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
98109
| | - Aprajita Yadav
- Department of Pharmaceutics, School of Pharmacy, University
of Washington, Seattle, WA 98195
| | - Julia Ritterhoff
- Mitochondria and Metabolism Center, Department of
Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
98109
| | - Outi Villet
- Mitochondria and Metabolism Center, Department of
Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
98109
| | - Tim McMillen
- Mitochondria and Metabolism Center, Department of
Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
98109
| | - Yuliang Wang
- Department of Computer Science & Engineering,
University of Washington, Seattle, WA 98195
| | - Hayley Purcell
- Mitochondria and Metabolism Center, Department of
Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
98109
| | - Danijel Djukovic
- Mitochondria and Metabolism Center, Department of
Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
98109
| | - Daniel Raftery
- Mitochondria and Metabolism Center, Department of
Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
98109
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University
of Washington, Seattle, WA 98195
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of
Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
98109
| |
Collapse
|
2
|
He XY, Frackowiak J, Dobkin C, Brown WT, Yang SY. Involvement of Type 10 17β-Hydroxysteroid Dehydrogenase in the Pathogenesis of Infantile Neurodegeneration and Alzheimer's Disease. Int J Mol Sci 2023; 24:17604. [PMID: 38139430 PMCID: PMC10743717 DOI: 10.3390/ijms242417604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/02/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Type 10 17β-hydroxysteroid dehydrogenase (17β-HSD10) is the HSD17B10 gene product playing an appreciable role in cognitive functions. It is the main hub of exercise-upregulated mitochondrial proteins and is involved in a variety of metabolic pathways including neurosteroid metabolism to regulate allopregnanolone homeostasis. Deacetylation of 17β-HSD10 by sirtuins helps regulate its catalytic activities. 17β-HSD10 may also play a critical role in the control of mitochondrial structure, morphology and dynamics by acting as a member of the Parkin/PINK1 pathway, and by binding to cyclophilin D to open mitochondrial permeability pore. 17β-HSD10 also serves as a component of RNase P necessary for mitochondrial tRNA maturation. This dehydrogenase can bind with the Aβ peptide thereby enhancing neurotoxicity to brain cells. Even in the absence of Aβ, its quantitative and qualitative variations can result in neurodegeneration. Since elevated levels of 17β-HSD10 were found in brain cells of Alzheimer's disease (AD) patients and mouse AD models, it is considered to be a key factor in AD pathogenesis. Since data underlying Aβ-binding-alcohol dehydrogenase (ABAD) were not secured from reported experiments, ABAD appears to be a fabricated alternative term for the HSD17B10 gene product. Results of this study would encourage researchers to solve the question why elevated levels of 17β-HSD10 are present in brains of AD patients and mouse AD models. Searching specific inhibitors of 17β-HSD10 may find candidates to reduce senile neurodegeneration and open new approaches for the treatment of AD.
Collapse
Affiliation(s)
- Xue-Ying He
- Department of Molecular Biology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Jannusz Frackowiak
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Carl Dobkin
- Department of Human Genetics, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - William Ted Brown
- Department of Human Genetics, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Song-Yu Yang
- Department of Molecular Biology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
- Ph.D. Program in Biology-Neuroscience, Graduate Center of the City, University of New York, New York, NY 10016, USA
| |
Collapse
|
3
|
Wohlfarter Y, Eidelpes R, Yu RD, Sailer S, Koch J, Karall D, Scholl-Bürgi S, Amberger A, Hillen HS, Zschocke J, Keller MA. ost in promiscuity? An evolutionary and biochemical evaluation of HSD10 function in cardiolipin metabolism. Cell Mol Life Sci 2022; 79:562. [PMID: 36271951 PMCID: PMC9587951 DOI: 10.1007/s00018-022-04579-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 01/12/2023]
Abstract
Multifunctional proteins are challenging as it can be difficult to confirm pathomechanisms associated with disease-causing genetic variants. The human 17β-hydroxysteroid dehydrogenase 10 (HSD10) is a moonlighting enzyme with at least two structurally and catalytically unrelated functions. HSD10 disease was originally described as a disorder of isoleucine metabolism, but the clinical manifestations were subsequently shown to be linked to impaired mtDNA transcript processing due to deficient function of HSD10 in the mtRNase P complex. A surprisingly large number of other, mostly enzymatic and potentially clinically relevant functions have been attributed to HSD10. Recently, HSD10 was reported to exhibit phospholipase C-like activity towards cardiolipins (CL), important mitochondrial phospholipids. To assess the physiological role of the proposed CL-cleaving function, we studied CL architectures in living cells and patient fibroblasts in different genetic backgrounds and lipid environments using our well-established LC-MS/MS cardiolipidomic pipeline. These experiments revealed no measurable effect on CLs, indicating that HSD10 does not have a physiologically relevant function towards CL metabolism. Evolutionary constraints could explain the broad range of reported substrates for HSD10 in vitro. The combination of an essential structural with a non-essential enzymatic function in the same protein could direct the evolutionary trajectory towards improvement of the former, thereby increasing the flexibility of the binding pocket, which is consistent with the results presented here.
Collapse
Affiliation(s)
- Yvonne Wohlfarter
- Institute of Human Genetics, Medical University of Innsbruck, Peter-Mayr-Str. 1/1.OG, 6020, Innsbruck, Austria
| | - Reiner Eidelpes
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Ryan D Yu
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sabrina Sailer
- Institute of Human Genetics, Medical University of Innsbruck, Peter-Mayr-Str. 1/1.OG, 6020, Innsbruck, Austria
| | - Jakob Koch
- Institute of Human Genetics, Medical University of Innsbruck, Peter-Mayr-Str. 1/1.OG, 6020, Innsbruck, Austria
| | - Daniela Karall
- Department of Paediatrics I (Inherited Metabolic Disorders), Medical University of Innsbruck, Innsbruck, Austria
| | - Sabine Scholl-Bürgi
- Department of Paediatrics I (Inherited Metabolic Disorders), Medical University of Innsbruck, Innsbruck, Austria
| | - Albert Amberger
- Institute of Human Genetics, Medical University of Innsbruck, Peter-Mayr-Str. 1/1.OG, 6020, Innsbruck, Austria
| | - Hauke S Hillen
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, Göttingen, Germany
| | - Johannes Zschocke
- Institute of Human Genetics, Medical University of Innsbruck, Peter-Mayr-Str. 1/1.OG, 6020, Innsbruck, Austria
| | - Markus A Keller
- Institute of Human Genetics, Medical University of Innsbruck, Peter-Mayr-Str. 1/1.OG, 6020, Innsbruck, Austria.
| |
Collapse
|
4
|
Upadia J, Walano N, Noh GS, Liu J, Li Y, Deputy S, Elliott LT, Wong J, Lee JA, Caylor RC, Andersson HC. HSD10 disease in a female: A case report and review of literature. JIMD Rep 2021; 62:35-43. [PMID: 34765396 PMCID: PMC8574182 DOI: 10.1002/jmd2.12250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 11/07/2022] Open
Abstract
HSD10 disease is a rare X-linked mitochondrial disorder caused by pathogenic variants in the HSD17B10 gene. The phenotype results from impaired 17β-hydroxysteroid dehydrogenase 10 (17β-HSD10) protein structure and function. HSD10 is a multifunctional protein involved in enzymatic degradation of isoleucine and branched-chain fatty acids, the metabolism of sex hormones and neurosteroids, as well as in regulating mitochondrial RNA maturation. HSD10 disease is characterised by progressive neurologic impairment. Disease onset is varied and includes neonatal-onset, infantile-onset and late-onset in males. Females can also be affected. Our index case is a 45-month-old female, who initially presented at 11 months of age with global developmental delay. She subsequently began to lose previously acquired cognitive and motor skills starting around 29 months of age. Brain MRI showed abnormalities in the basal ganglia indicative of possible mitochondrial disease. Urine organic acid analysis revealed elevations of 2-methyl-3-hydroxybutyric acid and tiglyglycine. HSD17B10 gene sequencing revealed a likely pathogenic variant, NM_001037811.2:c.439C>T (p.Arg147Cys) inherited from her mother, expected to be causative of HSD10 disease. Her X-chromosome inactivation study is consistent with a skewed X-inactivation pattern. We report a female patient with HSD10 disease caused by a missense pathogenic variant, Arg147Cys in the HSD17B10 gene. The patient is the fifth severely affected female with this disease. This case adds to the small number of known affected families with this highly variable disease in the literature. These findings support the possibility of X-inactivation patterns influencing the penetrance of HSD10 disease in females.
Collapse
Affiliation(s)
- Jariya Upadia
- Hayward Genetics Center, Department of PediatricsTulane University School of MedicineNew OrleansLouisianaUSA
- Department of PediatricsTulane University School of MedicineNew OrleansLouisianaUSA
| | - Nicolette Walano
- Hayward Genetics Center, Department of PediatricsTulane University School of MedicineNew OrleansLouisianaUSA
- Department of PediatricsTulane University School of MedicineNew OrleansLouisianaUSA
| | - Grace S. Noh
- Hayward Genetics Center, Department of PediatricsTulane University School of MedicineNew OrleansLouisianaUSA
- Department of PediatricsTulane University School of MedicineNew OrleansLouisianaUSA
| | - Jiao Liu
- Hayward Genetics Center, Department of PediatricsTulane University School of MedicineNew OrleansLouisianaUSA
| | - Yuwen Li
- Hayward Genetics Center, Department of PediatricsTulane University School of MedicineNew OrleansLouisianaUSA
- Department of PediatricsTulane University School of MedicineNew OrleansLouisianaUSA
| | - Stephen Deputy
- Division of Pediatric Neurology, Department of PediatricsLouisiana State University Health Sciences Center/Children's HospitalNew OrleansLouisianaUSA
| | - Lindsay T. Elliott
- Department of Pediatric Physical Medicine and RehabilitationLouisiana State University Health Sciences Center/Children's HospitalNew OrleansLouisianaUSA
| | - Joaquin Wong
- Division of Pediatric Neurology, Department of PediatricsLouisiana State University Health Sciences Center/Children's HospitalNew OrleansLouisianaUSA
| | | | | | - Hans C. Andersson
- Hayward Genetics Center, Department of PediatricsTulane University School of MedicineNew OrleansLouisianaUSA
- Department of PediatricsTulane University School of MedicineNew OrleansLouisianaUSA
| |
Collapse
|
5
|
Bhatta A, Dienemann C, Cramer P, Hillen HS. Structural basis of RNA processing by human mitochondrial RNase P. Nat Struct Mol Biol 2021; 28:713-723. [PMID: 34489609 PMCID: PMC8437803 DOI: 10.1038/s41594-021-00637-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Human mitochondrial transcripts contain messenger and ribosomal RNAs flanked by transfer RNAs (tRNAs), which are excised by mitochondrial RNase (mtRNase) P and Z to liberate all RNA species. In contrast to nuclear or bacterial RNase P, mtRNase P is not a ribozyme but comprises three protein subunits that carry out RNA cleavage and methylation by unknown mechanisms. Here, we present the cryo-EM structure of human mtRNase P bound to precursor tRNA, which reveals a unique mechanism of substrate recognition and processing. Subunits TRMT10C and SDR5C1 form a subcomplex that binds conserved mitochondrial tRNA elements, including the anticodon loop, and positions the tRNA for methylation. The endonuclease PRORP is recruited and activated through interactions with its PPR and nuclease domains to ensure precise pre-tRNA cleavage. The structure provides the molecular basis for the first step of RNA processing in human mitochondria.
Collapse
Affiliation(s)
- Arjun Bhatta
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Research Group Structure and Function of Molecular Machines, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Christian Dienemann
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, Göttingen, Germany
| | - Hauke S Hillen
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany.
- Research Group Structure and Function of Molecular Machines, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
6
|
Lin Y, Yang Z, Yang C, Hu H, He H, Niu T, Liu M, Wang D, Sun Y, Shen Y, Li X, Yan H, Kong Y, Huang X. C4OH is a potential newborn screening marker-a multicenter retrospective study of patients with beta-ketothiolase deficiency in China. Orphanet J Rare Dis 2021; 16:224. [PMID: 34001203 PMCID: PMC8130433 DOI: 10.1186/s13023-021-01859-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/06/2021] [Indexed: 12/27/2022] Open
Abstract
Background Beta-ketothiolase deficiency (BKTD) is an autosomal recessive disorder caused by biallelic mutation of ACAT1 that affects both isoleucine catabolism and ketolysis. There is little information available regarding the incidence, newborn screening (NBS), and mutational spectrum of BKTD in China. Results We collected NBS, biochemical, clinical, and ACAT1 mutation data from 18 provinces or municipalities in China between January 2009 and May 2020, and systematically assessed all available published data from Chinese BKTD patients. A total of 16,088,190 newborns were screened and 14 patients were identified through NBS, with an estimated incidence of 1 per 1 million newborns in China. In total, twenty-nine patients were genetically diagnosed with BKTD, 12 of which were newly identified. Most patients exhibited typical blood acylcarnitine and urinary organic acid profiles. Interestingly, almost all patients (15/16, 94%) showed elevated 3-hydroxybutyrylcarnitine (C4OH) levels. Eighteen patients presented with acute metabolic decompensations and displayed variable clinical symptoms. The acute episodes of nine patients were triggered by infections, diarrhea, or an inflammatory response to vaccination. Approximately two-thirds of patients had favorable outcomes, one showed a developmental delay and three died. Twenty-seven distinct variants were identified in ACAT1, among which five were found to be novel. Conclusion This study presented the largest series of BKTD cohorts in China. Our results indicated that C4OH is a useful marker for the detection of BKTD. The performance of BKTD NBS could be improved by the addition of C4OH to the current panel of 3-hydroxyisovalerylcarnitine and tiglylcarnitine markers in NBS. The mutational spectrum and molecular profiles of ACAT1 in the Chinese population were expanded with five newly identified variants. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-01859-5.
Collapse
Affiliation(s)
- Yiming Lin
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310052, China.,Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, Quanzhou, China
| | - Zhantao Yang
- Continuing Medical Education and Research Center, Dian Diagnostics Group Co., Ltd, 329 Jinpeng Street, Xihu District, Hangzhou, 310030, China
| | - Chiju Yang
- Jining Maternal and Child Health Family Service Center, Jining, China
| | - Haili Hu
- Neonatal Disease Screening Center, Hefei Maternal and Child Health, Family Planning Service Center, Anhui, China
| | - Haiyan He
- Wuhu Maternal and Child Health Family Planning Service Center, Anhui, China
| | - Tingting Niu
- Shandong Provincial Maternal and Child Health Care Hospital, Shandong, China
| | - Mingfang Liu
- Liaocheng Maternal and Child Health Hospital, Shandong, China
| | - Dongjuan Wang
- Center for Clinical Molecular Medicine/Newborn Screening Center, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Yun Sun
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Jiangsu, China
| | - Yuyan Shen
- Neonatal Disease Screening Center, Huaihua Maternal and Child Health Hospital, Huaihua, China
| | - Xiaole Li
- Third Affiliated Hospital of Zhengzhou University, Henan, China
| | - Huiming Yan
- Department of Genetic Medicine, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Yuanyuan Kong
- Department of Newborn Screening, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, 251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, China
| | - Xinwen Huang
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310052, China.
| |
Collapse
|
7
|
Vinklarova L, Schmidt M, Benek O, Kuca K, Gunn-Moore F, Musilek K. Friend or enemy? Review of 17β-HSD10 and its role in human health or disease. J Neurochem 2020; 155:231-249. [PMID: 32306391 DOI: 10.1111/jnc.15027] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/26/2020] [Accepted: 04/10/2020] [Indexed: 12/17/2022]
Abstract
17β-hydroxysteroid dehydrogenase (17β-HSD10) is a multifunctional human enzyme with important roles both as a structural component and also as a catalyst of many metabolic pathways. This mitochondrial enzyme has important functions in the metabolism, development and aging of the neural system, where it is involved in the homeostasis of neurosteroids, especially in regard to estradiol, changes in which make it an essential part of neurodegenerative pathology. These roles therefore, indicate that 17β-HSD10 may be a possible druggable target for neurodegenerative diseases including Alzheimer's disease (AD), and in hormone-dependent cancer. The objective of this review was to provide a summary about physiological functions and pathological roles of 17β-HSD10 and the modulators of its activity.
Collapse
Affiliation(s)
- Lucie Vinklarova
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Monika Schmidt
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ondrej Benek
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | | | - Kamil Musilek
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
8
|
Waters PJ, Lace B, Buhas D, Gravel S, Cyr D, Boucher RM, Bernard G, Lévesque S, Maranda B. HSD10 mitochondrial disease: p.Leu122Val variant, mild clinical phenotype, and founder effect in French-Canadian patients from Quebec. Mol Genet Genomic Med 2019; 7:e1000. [PMID: 31654490 PMCID: PMC6900358 DOI: 10.1002/mgg3.1000] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/28/2019] [Accepted: 09/03/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND HSD10 mitochondrial disease (HSD10MD), originally described as a deficiency of 2-methyl-3-hydroxybutyryl-CoA dehydrogenase (MHBD), is a rare X-linked disorder of a moonlighting protein encoded by the HSD17B10. The diagnosis is usually first suspected on finding elevated isoleucine degradation metabolites in urine, reflecting decreased MHBD activity. However, it is now known that clinical disease pathogenesis reflects other independent functions of the HSD10 protein; particularly its essential role in mitochondrial transcript processing and tRNA maturation. The classical phenotype of HSD10MD in affected males is an infantile-onset progressive neurodegenerative disorder associated with severe mitochondrial dysfunction. PATIENTS, METHODS, AND RESULTS In four unrelated families, we identified index patients with MHBD deficiency, which implied a diagnosis of HSD10MD. Each index patient was independently investigated because of neurological or developmental concerns. All had persistent elevations of urinary 2-methyl-3-hydroxybutyric acid and tiglylglycine. Analysis of HSD17B10 identified a single missense variant, c.364C>G, p.Leu122Val, in each case. This rare variant (1/183336 alleles in gnomAD) was previously reported in one Dutch patient and was described as pathogenic. The geographic origins of our families and results of haplotype analysis together provide evidence of a founder effect for this variant in Quebec. Notably, we identified an asymptomatic hemizygous adult male in one family, while a second independent genetic disorder contributed substantially to the clinical phenotypes observed in probands from two other families. CONCLUSION The phenotype associated with p.Leu122Val in HSD17B10 currently appears to be attenuated and nonprogressive. This report widens the spectrum of phenotypic severity of HSD10MD and contributes to genotype-phenotype correlation. At present, we consider p.Leu122Val a "variant of uncertain significance." Nonetheless, careful follow-up of our patients remains advisable, to assess long-term clinical course and ensure appropriate management. It will also be important to identify other potential patients in our population and to characterize their phenotype.
Collapse
Affiliation(s)
- Paula J Waters
- Medical Genetics, Department of Pediatrics, Université de Sherbrooke-CHUS, Sherbrooke, QC, Canada.,CRCHUS, Sherbrooke, QC, Canada
| | - Baiba Lace
- Medical Genetics, Department of Pediatrics, CHU de Québec-Université Laval, Quebec, Canada
| | - Daniela Buhas
- Medical Genetics, Department of Specialized Medicine, MUHC, Montreal, Canada.,Department of Human Genetics, McGill University, Montreal, Canada
| | - Serge Gravel
- Medical Genetics, Department of Pediatrics, Université de Sherbrooke-CHUS, Sherbrooke, QC, Canada.,CRCHUS, Sherbrooke, QC, Canada
| | - Denis Cyr
- Medical Genetics, Department of Pediatrics, Université de Sherbrooke-CHUS, Sherbrooke, QC, Canada.,CRCHUS, Sherbrooke, QC, Canada
| | - Renée-Myriam Boucher
- Neurology, Department of Pediatrics, CHU de Québec-Université Laval, Quebec, QC, Canada
| | - Geneviève Bernard
- Medical Genetics, Department of Specialized Medicine, MUHC, Montreal, Canada.,Department of Human Genetics, McGill University, Montreal, Canada.,Departments of Neurology/Neurosurgery and Pediatrics, McGill University, Montreal, Canada.,RI-MUHC, Montreal, Canada
| | - Sébastien Lévesque
- Medical Genetics, Department of Pediatrics, Université de Sherbrooke-CHUS, Sherbrooke, QC, Canada.,CRCHUS, Sherbrooke, QC, Canada
| | - Bruno Maranda
- Medical Genetics, Department of Pediatrics, Université de Sherbrooke-CHUS, Sherbrooke, QC, Canada.,CRCHUS, Sherbrooke, QC, Canada
| |
Collapse
|
9
|
He XY, Dobkin C, Yang SY. 17β-Hydroxysteroid dehydrogenases and neurosteroid metabolism in the central nervous system. Mol Cell Endocrinol 2019; 489:92-97. [PMID: 30321584 DOI: 10.1016/j.mce.2018.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 08/21/2018] [Accepted: 10/04/2018] [Indexed: 12/21/2022]
Abstract
17β-Hydroxysteroid dehydrogenases are indispensable for downstream enzyme steps of the neurosteroidogenesis. Neurosteroids are synthesized de novo in neurons and glia from cholesterol transported into mitochondria, or by conversion from proneurosteroids, e. g. dehydroepiandrosterone (DHEA) and pregnenolone, through the same metabolic pathway as revealed in the de novo neurosteroidogenesis. Hormonal steroids generated from endocrine glands are transported into brain from the circulation to exert neuronal activity via genomic pathway, whereas neurosteroids produced in brain cells without genomic targets identified could bind to cell surface targets, e.g., GABAA or NMDA receptors and elicit antidepressant, anxiolytic, anticonvulsant and anesthetic effects by regulating neuroexcitability. In a broad sense, neurosteroids include hormonal steroids in brain, and they are irrespective of origin playing important roles in brain development including neuroprotection, neurogenesis and neural plasticity. They are also a critical element in cognitive and memory functions. Mitochondrial 17β-HSD10, encoded by the HSD17B10 gene mapping to Xp11.2, is found in various brain regions, essential for the maintenance of neurosteroid homeostasis. Mutations identified in this gene resulted in two distinct brain diseases, namely HSD10 deficiency and MRXS10, of which clinical presentations and pathogenetic mechanisms are quite different. Since elevated levels of 17β-HSD10 was found in brains of Alzheimer's disease patients and AD mouse model, it may also act as an adverse factor in the AD pathogenesis due to an imbalance of neurosteroid metabolism.
Collapse
Affiliation(s)
- Xue-Ying He
- Laboratory of Medical Biochemistry, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY, 10314, USA
| | - Carl Dobkin
- Department of Molecular Genetics, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY, 10314, USA
| | - Song-Yu Yang
- Laboratory of Medical Biochemistry, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY, 10314, USA; Ph.D. Program in Biology-Neuroscience, Graduate Center of the City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
10
|
Alijanpour M, Sasai H, Abdelkreem E, Ago Y, Soleimani S, Moslemi L, Yamaguchi S, Rezapour M, Hakimi MT, Matsumoto H, Fukao T. Beta-ketothiolase deficiency: A case with unusual presentation of nonketotic hypoglycemic episodes due to coexistent probable secondary carnitine deficiency. JIMD Rep 2019; 46:23-27. [PMID: 31240151 PMCID: PMC6498828 DOI: 10.1002/jmd2.12022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Beta-ketothiolase (T2, mitochondrial acetoacetyl-CoA thiolase) deficiency is an autosomal recessive disorder of isoleucine catabolism and ketone body metabolism that is characterized by increased urinary excretion of 2-methylacetoacetate, 2-methyl-3-hydroxybutyrate, and tiglylglycine. Most patients with T2 deficiency develop their first severe ketoacidotic events between 5 and 24 months of age. We encountered a case of T2 deficiency who developed the first hypoglycemic crisis without ketosis during her neonatal period and repeated such nonketotic hypoglycemic crisis during her infancy and early childhood. This is a very atypical clinical phenotype in T2 deficiency. We finally realized that she also has severe carnitine deficiency which might suppress beta-oxidation resulting in nonketotic hypoglycemia. After carnitine supplementation, she actually developed episodes with ketonuria. Her carnitine deficiency was probably a secondary deficiency which is rare in T2 deficiency but if present, may modify the clinical manifestation of T2 deficiency from ketoacidotic events to hypoketotic hypoglycemic events.
Collapse
Affiliation(s)
- Morteza Alijanpour
- Department of PediatricsNon‐Communicable Pediatric Diseases Research Center, Health Research Institute, Babol University of Medical SciencesBabolIR Iran
| | - Hideo Sasai
- Department of Pediatrics, Graduate School of MedicineGifu UniversityGifuJapan
| | - Elsayed Abdelkreem
- Department of Pediatrics, Graduate School of MedicineGifu UniversityGifuJapan
- Department of Pediatrics, Faculty of MedicineSohag UniversitySohagEgypt
| | - Yasuhiko Ago
- Department of Pediatrics, Graduate School of MedicineGifu UniversityGifuJapan
| | | | - Leila Moslemi
- Department of PediatricsNon‐Communicable Pediatric Diseases Research Center, Health Research Institute, Babol University of Medical SciencesBabolIR Iran
| | - Seiji Yamaguchi
- Department of PediatricsShimane University School of MedicineIzumoJapan
| | - Masomeh Rezapour
- School of Traditional Medicine, Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical SciencesBabolIR Iran
| | | | - Hideki Matsumoto
- Department of Pediatrics, Graduate School of MedicineGifu UniversityGifuJapan
| | - Toshiyuki Fukao
- Department of Pediatrics, Graduate School of MedicineGifu UniversityGifuJapan
| |
Collapse
|
11
|
Su L, Li X, Lin R, Sheng H, Feng Z, Liu L. Clinical and molecular analysis of 6 Chinese patients with isoleucine metabolism defects: identification of 3 novel mutations in the HSD17B10 and ACAT1 gene. Metab Brain Dis 2017; 32:2063-2071. [PMID: 28875337 DOI: 10.1007/s11011-017-0097-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 08/16/2017] [Indexed: 01/16/2023]
Abstract
Hydroxysteroid (17β) dehydrogenase 10 (HSD10) and mitochondrial acetoacetyl-CoA thiolase (β-KT) are two adjacent enzymes for the degradation of isoleucine, thus HSD10 and β-KT deficiencies are confusing at an early stage because of nearly the same elevation of typical metabolites in urine, such as 2-methyl-3-hydroxybutyric acid (2M3HBA) and tiglylglycine (TG). In order to better understand the differences between these two disorders, we described the clinical and molecular characteristics of two HSD10 deficiency patients and four β-KT deficiency patients. β-KT deficiency patients had a much more favorable outcome than that of HSD10 deficiency patients, indicating that the multifunction of HSD10, especially neurosteroid metabolic activity, other than only enzymatic degradation of isoleucine, is involved in the pathogenesis of HSD10 deficiency. Two different mutations, a novel mutation p.Ile175Met and a reported mutation p.Arg226Gln, were detected in the HSD17B10 gene of HSD10 deficiency patients. Six different mutations, including four known mutations: p.Ala333Pro, p.Thr297Lys, c.83_84delAT, c.1006-1G > C, and two novel mutations: p.Thr277Pro and c.121-3C > G were identified in the ACAT1 gene of β-KT deficiency patients. In general, DNA diagnosis played an important role in distinguishing between these two disorders.
Collapse
MESH Headings
- 3-Hydroxyacyl CoA Dehydrogenases/genetics
- Acetyl-CoA C-Acetyltransferase/genetics
- Acetyl-CoA C-Acyltransferase/deficiency
- Acetyl-CoA C-Acyltransferase/genetics
- Acetyl-CoA C-Acyltransferase/metabolism
- Amino Acid Metabolism, Inborn Errors/diagnosis
- Amino Acid Metabolism, Inborn Errors/diagnostic imaging
- Amino Acid Metabolism, Inborn Errors/genetics
- Amino Acid Metabolism, Inborn Errors/metabolism
- Brain/diagnostic imaging
- Child, Preschool
- China
- Diagnosis, Differential
- Dyskinesias/diagnosis
- Dyskinesias/diagnostic imaging
- Dyskinesias/genetics
- Dyskinesias/metabolism
- Epilepsy/genetics
- Epilepsy/metabolism
- Female
- Humans
- Infant
- Isoleucine/metabolism
- Male
- Mental Retardation, X-Linked/diagnosis
- Mental Retardation, X-Linked/diagnostic imaging
- Mental Retardation, X-Linked/genetics
- Mental Retardation, X-Linked/metabolism
- Models, Molecular
- Mutation
- Retrospective Studies
Collapse
Affiliation(s)
- Ling Su
- Southern Medical University, Guangzhou, 510515, China
| | - Xiuzhen Li
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
| | - Ruizhu Lin
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
| | - Huiying Sheng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
| | - Zhichun Feng
- Southern Medical University, Guangzhou, 510515, China.
- Department of Neonatology, Affiliated Bayi Children's Hospital, Clinical Medical College in PLA Army General Hospital, Southern Medical University, Beijing, 100007, China.
| | - Li Liu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China.
| |
Collapse
|
12
|
Oerum S, Roovers M, Leichsenring M, Acquaviva-Bourdain C, Beermann F, Gemperle-Britschgi C, Fouilhoux A, Korwitz-Reichelt A, Bailey HJ, Droogmans L, Oppermann U, Sass JO, Yue WW. Novel patient missense mutations in the HSD17B10 gene affect dehydrogenase and mitochondrial tRNA modification functions of the encoded protein. Biochim Biophys Acta Mol Basis Dis 2017; 1863:3294-3302. [PMID: 28888424 DOI: 10.1016/j.bbadis.2017.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 08/16/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022]
Abstract
MRPP2 (also known as HSD10/SDR5C1) is a multifunctional protein that harbours both catalytic and non-catalytic functions. The protein belongs to the short-chain dehydrogenase/reductases (SDR) family and is involved in the catabolism of isoleucine in vivo and steroid metabolism in vitro. MRPP2 also moonlights in a complex with the MRPP1 (also known as TRMT10C) protein for N1-methylation of purines at position 9 of mitochondrial tRNA, and in a complex with MRPP1 and MRPP3 (also known as PRORP) proteins for 5'-end processing of mitochondrial precursor tRNA. Inherited mutations in the HSD17B10 gene encoding MRPP2 protein lead to a childhood disorder characterised by progressive neurodegeneration, cardiomyopathy or both. Here we report two patients with novel missense mutations in the HSD17B10 gene (c.34G>C and c.526G>A), resulting in the p.V12L and p.V176M substitutions. Val12 and Val176 are highly conserved residues located at different regions of the MRPP2 structure. Recombinant mutant proteins were expressed and characterised biochemically to investigate their effects towards the functions of MRPP2 and associated complexes in vitro. Both mutant proteins showed significant reduction in the dehydrogenase, methyltransferase and tRNA processing activities compared to wildtype, associated with reduced stability for protein with p.V12L, whereas the protein carrying p.V176M showed impaired kinetics and complex formation. This study therefore identified two distinctive molecular mechanisms to explain the biochemical defects for the novel missense patient mutations.
Collapse
Affiliation(s)
- Stephanie Oerum
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, OX3 7DQ Oxford, UK
| | - Martine Roovers
- Institut de Recherches Microbiologiques Jean-Marie Wiame, Bruxelles, Belgium
| | - Michael Leichsenring
- Department for Children and Adolescent Medicine, Ulm University Medical School, Ulm, Germany
| | - Cécile Acquaviva-Bourdain
- Groupement Hospitalier Est, Centre de Biologie Est, Service Maladies Héréditaires du Métabolisme, Bron, France
| | - Frauke Beermann
- University of Freiburg Children's Hospital, Laboratory of Clinical Biochemistry and Metabolism, Freiburg, Germany
| | - Corinne Gemperle-Britschgi
- University Children's Hospital and Children's Research Center, Clinical Chemistry & Biochemistry, Zürich, Switzerland
| | - Alain Fouilhoux
- Centre de Référence des Maladies Héréditaires du Métabolisme, HCL, Bron, France
| | - Anne Korwitz-Reichelt
- Bonn-Rhein-Sieg University of Applied Sciences, Department of Natural Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany
| | - Henry J Bailey
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, OX3 7DQ Oxford, UK
| | - Louis Droogmans
- Laboratoire de Microbiologie, Universite libre de Bruxelles, Belgium
| | - Udo Oppermann
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, OX3 7DQ Oxford, UK; Botnar Research Centre, NIHR Oxford Biomedical Research Unit, Oxford, UK
| | - Jörn Oliver Sass
- University of Freiburg Children's Hospital, Laboratory of Clinical Biochemistry and Metabolism, Freiburg, Germany; University Children's Hospital and Children's Research Center, Clinical Chemistry & Biochemistry, Zürich, Switzerland; Bonn-Rhein-Sieg University of Applied Sciences, Department of Natural Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany.
| | - Wyatt W Yue
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, OX3 7DQ Oxford, UK.
| |
Collapse
|
13
|
Japanese Male Siblings with 2-Methyl-3-Hydroxybutyryl-CoA Dehydrogenase Deficiency (HSD10 Disease) Without Neurological Regression. JIMD Rep 2016. [PMID: 27306202 DOI: 10.1007/8904_2016_570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2023] Open
Abstract
2-Methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency (HSD10 disease) is a rare X-linked disorder caused by a mutation in the HSD17B10 gene. Fewer than 30 patients with this disorder have been reported worldwide. The classical infantile form of HSD10 disease is characterized by a progressive neurodegenerative course with retinopathy and cardiomyopathy, although HSD10 disease has broad clinical heterogeneity. However, several male patients have not shown neurological regression. Here, we describe two Japanese siblings with HSD10 disease without neurological regression. A 4-year-old boy presented with unconsciousness due to severe hypoglycemia. Laboratory testing on admission showed mild metabolic acidosis and mild hyperammonemia. Urinary organic acid analysis in the acute phase showed elevated excretion of 2-methyl-3-hydroxybutyric acid, tiglylglycine, and ketones. However, 2-methylacetoacetate was not elevated. HSD10 disease was suspected based on urinary organic acid data. The patient had a novel hemizygous c.470C>T (p.A157V) mutation in the HSD17B10 gene. His mother was a heterozygous carrier of this mutation. The patient's older brother also had the c.470C>T (p.A157V) mutation. Neurological development was normal at the time of evaluation. The pilot newborn screening results using tandem mass spectrometry of the proband were reevaluated retrospectively and showed a high C5:1 carnitine level of 0.070 nmol/mL (upper cutoff limit, 0.05 nmol/mL) and a normal C5-OH carnitine level of 0.290 nmol/mL (upper cutoff limit, 1.0 nmol/mL). His affected brother and another patient with the atypical form of HSD10 disease having p.A154T also showed elevated C5:1 but not C5-OH in serum acylcarnitine analysis. Thus, these data suggested that some patients with this disorder may be identified using newborn screening.
Collapse
|
14
|
Richardson A, Berry GT, Garganta C, Abbott MA. Hydroxysteroid 17-Beta Dehydrogenase Type 10 Disease in Siblings. JIMD Rep 2016; 32:25-32. [PMID: 27295195 PMCID: PMC5355379 DOI: 10.1007/8904_2016_547] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 01/30/2023] Open
Abstract
Hydroxysteroid 17-beta dehydrogenase type 10 (HSD10) deficiency (HSD10 disease) is a rare X-linked neurodegenerative condition caused by abnormalities in the HSD17B10 gene. A total of 10 mutations have been reported in the literature since 2000. Described phenotypes include a severe neonatal or progressive infantile form with hypotonia, choreoathetosis, seizures, cardiomyopathy, neurodegeneration, and death, as well as an attenuated form with variable regression. Here we present the second report of a c.194T>C (p.V65A) mutation in two half-brothers with a clinical phenotype characterized by neurodevelopmental delay, choreoathetosis, visual loss, cardiac findings, and behavioral abnormalities, with regressions now noted in the older sibling. Neither has experienced a metabolic crisis. Both of the siblings had normal tandem mass spectroscopy analysis of their newborn screening samples. The older brother's phenotype may be complicated by the presence of a 3q29 microduplication. Diagnosis requires a high index of suspicion, as the characteristic urine organic acid pattern may escape detection. The exact pathogenic mechanism of disease remains to be elucidated, but may involve the non-dehydrogenase functionalities of the HSD10 protein. Our report highlights clinical features of two patients with the less fulminant phenotype associated with a V65A mutation, compares the reported phenotypes to date, and reviews recent findings regarding the potential pathophysiology of this condition.Summary Sentence Hydroxysteroid 17-beta dehydrogenase type 10 (HSD10) disease (HSD10 disease) is a rare X-linked neurodegenerative condition with a variable clinical phenotype; diagnosis requires a high index of suspicion.
Collapse
Affiliation(s)
- Annely Richardson
- Department of Pediatrics, Baystate Children's Hospital, Springfield, MA, 01199, USA.
| | | | | | - Mary-Alice Abbott
- Department of Pediatrics, Baystate Children's Hospital, Springfield, MA, 01199, USA
| |
Collapse
|
15
|
Falk MJ, Gai X, Shigematsu M, Vilardo E, Takase R, McCormick E, Christian T, Place E, Pierce EA, Consugar M, Gamper HB, Rossmanith W, Hou YM. A novel HSD17B10 mutation impairing the activities of the mitochondrial RNase P complex causes X-linked intractable epilepsy and neurodevelopmental regression. RNA Biol 2016; 13:477-85. [PMID: 26950678 DOI: 10.1080/15476286.2016.1159381] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
We report a Caucasian boy with intractable epilepsy and global developmental delay. Whole-exome sequencing identified the likely genetic etiology as a novel p.K212E mutation in the X-linked gene HSD17B10 for mitochondrial short-chain dehydrogenase/reductase SDR5C1. Mutations in HSD17B10 cause the HSD10 disease, traditionally classified as a metabolic disorder due to the role of SDR5C1 in fatty and amino acid metabolism. However, SDR5C1 is also an essential subunit of human mitochondrial RNase P, the enzyme responsible for 5'-processing and methylation of purine-9 of mitochondrial tRNAs. Here we show that the p.K212E mutation impairs the SDR5C1-dependent mitochondrial RNase P activities, and suggest that the pathogenicity of p.K212E is due to a general mitochondrial dysfunction caused by reduction in SDR5C1-dependent maturation of mitochondrial tRNAs.
Collapse
Affiliation(s)
- Marni J Falk
- a Division of Human Genetics , Department of Pediatrics, The Children's Hospital of Philadelphia , Philadelphia , PA , USA.,b Department of Pediatrics , University of Pennsylvania Perelman School of Medicine , Philadelphia , PA , USA
| | - Xiaowu Gai
- c Center for Personalized Medicine, Children's Hospital Los Angeles , Los Angeles , CA , USA
| | - Megumi Shigematsu
- d Department of Biochemistry and Molecular Biology , Thomas Jefferson University , Philadelphia , PA , USA
| | - Elisa Vilardo
- e Center for Anatomy and Cell Biology, Medical University of Vienna , Vienna , Austria
| | - Ryuichi Takase
- d Department of Biochemistry and Molecular Biology , Thomas Jefferson University , Philadelphia , PA , USA
| | - Elizabeth McCormick
- a Division of Human Genetics , Department of Pediatrics, The Children's Hospital of Philadelphia , Philadelphia , PA , USA
| | - Thomas Christian
- d Department of Biochemistry and Molecular Biology , Thomas Jefferson University , Philadelphia , PA , USA
| | - Emily Place
- a Division of Human Genetics , Department of Pediatrics, The Children's Hospital of Philadelphia , Philadelphia , PA , USA.,f Massachusetts Eye and Ear Infirmary, Harvard Medical School , Boston , MA , USA
| | - Eric A Pierce
- f Massachusetts Eye and Ear Infirmary, Harvard Medical School , Boston , MA , USA
| | - Mark Consugar
- f Massachusetts Eye and Ear Infirmary, Harvard Medical School , Boston , MA , USA
| | - Howard B Gamper
- d Department of Biochemistry and Molecular Biology , Thomas Jefferson University , Philadelphia , PA , USA
| | - Walter Rossmanith
- e Center for Anatomy and Cell Biology, Medical University of Vienna , Vienna , Austria
| | - Ya-Ming Hou
- d Department of Biochemistry and Molecular Biology , Thomas Jefferson University , Philadelphia , PA , USA
| |
Collapse
|
16
|
Vilardo E, Rossmanith W. Molecular insights into HSD10 disease: impact of SDR5C1 mutations on the human mitochondrial RNase P complex. Nucleic Acids Res 2015; 43:5112-9. [PMID: 25925575 PMCID: PMC4446446 DOI: 10.1093/nar/gkv408] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/16/2015] [Indexed: 11/25/2022] Open
Abstract
SDR5C1 is an amino and fatty acid dehydrogenase/reductase, moonlighting as a component of human mitochondrial RNase P, which is the enzyme removing 5′-extensions of tRNAs, an early and crucial step in tRNA maturation. Moreover, a subcomplex of mitochondrial RNase P catalyzes the N1-methylation of purines at position 9, a modification found in most mitochondrial tRNAs and thought to stabilize their structure. Missense mutations in SDR5C1 cause a disease characterized by progressive neurodegeneration and cardiomyopathy, called HSD10 disease. We have investigated the effect of selected mutations on SDR5C1's functions. We show that pathogenic mutations impair SDR5C1-dependent dehydrogenation, tRNA processing and methylation. Some mutations disrupt the homotetramerization of SDR5C1 and/or impair its interaction with TRMT10C, the methyltransferase subunit of the mitochondrial RNase P complex. We propose that the structural and functional alterations of SDR5C1 impair mitochondrial RNA processing and modification, leading to the mitochondrial dysfunction observed in HSD10 patients.
Collapse
Affiliation(s)
- Elisa Vilardo
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Walter Rossmanith
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
17
|
Hori T, Yamaguchi S, Shinkaku H, Horikawa R, Shigematsu Y, Takayanagi M, Fukao T. Inborn errors of ketone body utilization. Pediatr Int 2015; 57:41-8. [PMID: 25559898 DOI: 10.1111/ped.12585] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 12/01/2014] [Accepted: 12/15/2014] [Indexed: 11/28/2022]
Abstract
Succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency and mitochondrial acetoacetyl-CoA thiolase (beta-ketothiolase or T2) deficiency are classified as autosomal recessive disorders of ketone body utilization characterized by intermittent ketoacidosis. Patients with mutations retaining no residual activity on analysis of expression of mutant cDNA are designated as severe genotype, and patients with at least one mutation retaining significant residual activity, as mild genotype. Permanent ketosis is a pathognomonic characteristic of SCOT-deficient patients with severe genotype. Patients with mild genotype, however, may not have permanent ketosis, although they may develop severe ketoacidotic episodes similar to patients with severe genotype. Permanent ketosis has not been reported in T2 deficiency. In T2-deficient patients with severe genotype, biochemical diagnosis is done on urinary organic acid analysis and blood acylcarnitine analysis to observe characteristic findings during both ketoacidosis and non-episodic conditions. In Japan, however, it was found that T2-deficient patients with mild genotype are common, and typical profiles were not identified on these analyses. Based on a clinical study of ketone body utilization disorders both in Japan and worldwide, we have developed guidelines for disease diagnosis and treatment. These diseases are treatable by avoiding fasting and by providing early infusion of glucose, which enable the patients to grow without sequelae.
Collapse
Affiliation(s)
- Tomohiro Hori
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | | | | | | | | | | | | |
Collapse
|