1
|
Huang X, Mu M, Wang B, Zhang H, Liu Y, Yu L, Zhou M, Ma J, Wang D, Chen W. Associations of coal mine dust exposure with arterial stiffness and atherosclerotic cardiovascular disease risk in chinese coal miners. Int Arch Occup Environ Health 2024; 97:473-484. [PMID: 38530481 DOI: 10.1007/s00420-024-02062-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/09/2024] [Indexed: 03/28/2024]
Abstract
OBJECTIVE Whether coal mine dust exposure increases cardiovascular diseases (CVDs) risk was rarely explored. Our objective was to examine the association between coal mine dust exposure and cardiovascular risk. METHODS We estimated cumulative coal mine dust exposure (CDE) for 1327 coal miners by combining data on workplace dust concentrations and work history. We used brachial-ankle pulse wave velocity (baPWV, a representative indicator of arterial stiffness) and ten-year atherosclerotic cardiovascular disease (ASCVD) risk to assess potential CVD risk, exploring their associations with CDE. RESULTS Positive dose-response relationships of CDE with baPWV and ten-year ASCVD risk were observed after adjusting for covariates. Specifically, each 1 standard deviation (SD) increase in CDE was related to a 0.27 m/s (95% CI: 0.21, 0.34) increase in baPWV and a 1.29 (95% CI: 1.14, 1.46) elevation in OR (odds ratio) of risk of abnormal baPWV. Moreover, each 1 SD increase in CDE was associated with a 0.74% (95% CI: 0.63%, 0.85%) increase in scores of ten-year ASCVD and a 1.91 (95% CI: 1.62, 2.26) increase in OR of risk of ten-year ASCVD. When compared with groups unexposed to coal mine dust, significant increase in the risk of arterial stiffness and ten-year ASCVD in the highest CDE groups were detected. CONCLUSION The study suggested that cumulative exposure to coal mine dust was associated with elevated arterial stiffness and ten-year ASCVD risk in a dose-response manner. These findings contribute valuable insights for cardiovascular risk associated with coal mine dust.
Collapse
Affiliation(s)
- Xuezan Huang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Min Mu
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, 232000, Anhui, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Haozhe Zhang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yang Liu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Linling Yu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
2
|
Melatonin improves arsenic-induced hypertension through the inactivation of the Sirt1/autophagy pathway in rat. Biomed Pharmacother 2022; 151:113135. [PMID: 35598369 DOI: 10.1016/j.biopha.2022.113135] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 11/20/2022] Open
Abstract
Arsenic (As), a metalloid chemical element, is classified as heavy metal. Previous studies proposed that As induces vascular toxicity by inducing autophagy, apoptosis, and oxidative stress. It has been shown that melatonin (Mel) can decrease oxidative stress and apoptosis, and modulate autophagy in different pathological situations. Hence, this study aimed to investigate the Mel effect on As-induced vascular toxicity through apoptosis and autophagy regulation. Forty male rats were treated with As (15 mg/kg; oral gavage) and Mel (10 and 20 mg/kg, intraperitoneally; i.p.) for 28 days. The systolic blood pressure (SBP) changes, oxidative stress markers, the aorta histopathological injuries, contractile and relaxant responses, the level of apoptosis (Bnip3 and caspase-3) and autophagy (Sirt1, Beclin-1 and LC3 II/I ratio) proteins were determined in rats aorta. The As exposure significantly increased SBP and enhanced MDA level while reduced GSH content. The exposure to As caused substantial histological damage in aorta tissue and changed vasoconstriction and vasorelaxation responses to KCl, PE, and Ach in isolated rat aorta. The levels of HO-1 and Nrf-2, apoptosis markers, Sirt1, and autophagy proteins also enhanced in As group. Interestingly, Mel could reduce changes in oxidative stress, blood pressure, apoptosis, and autophagy induced by As. On the other hand, Mel led to more increased the levels of Nrf-2 and HO-1 proteins compared with the As group. In conclusion, our findings showed that Mel could have a protective effect against As-induced vascular toxicity by inhibiting apoptosis and the Sirt1/autophagy pathway.
Collapse
|
3
|
Ahn J, Lamm SH, Ferdosi H, Boroje IJ. Aortic Elasticity and Arsenic Exposure: A Step Function rather than a Linear Function. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2021; 41:2293-2300. [PMID: 33998018 DOI: 10.1111/risa.13756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 02/26/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
While the dose-response relationship for the carcinogenic effects of arsenic exposure indicates nonlinearity with increases only above about 150 μg/L arsenic in drinking water, similar analyses of noncarcinogenic effects of arsenic exposure remain to be conducted. We present here an alternative analysis of data on a measure of aortic elasticity, a risk factor for hypertension, and its relationship to urinary arsenic levels. An occupational health study from Ankara, Turkey by Karakulak et al. compared urinary arsenic levels and a measure of aortic elasticity (specifically, aortic strain) in workers with a linear no-threshold model. We have examined these data with three alternative models-a fitted step-function, a stratified, and a weighted linear regression model. Discontinuity within the data revealed two subsets of data, one for workers with urinary arsenic levels ≤ 160 μg/L whose mean aortic strain level was 11.3% and one for workers with arsenic levels > 160 μg/L whose mean aortic stain level was 5.33 % (p < 0.0001). Several alternative models were examined that indicated the best model to be the threshold model with a threshold at a urinary arsenic level of 160 μg/L. Observation of a discontinuity in the data revealed their better fit to a threshold model (at a urinary arsenic level of 160 μg/L) than to a linear-no threshold model. Examinations with alternative models are recommended for studies of arsenic and hypertension and possibly other noncarcinogenic effects.
Collapse
Affiliation(s)
- Jaeil Ahn
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University School of Medicine, Washington, DC, USA
| | - Steven H Lamm
- Department of Pediatrics (Epidemiology), Georgetown University School of Medicine, Washington, DC, USA
- Center for Epidemiology and Environmental Health (CEOH, LLC), Washington, DC, USA
| | - Hamid Ferdosi
- Center for Epidemiology and Environmental Health (CEOH, LLC), Washington, DC, USA
- George Washington University School of Public Health, Washington, DC, USA
| | - Isabella J Boroje
- Center for Epidemiology and Environmental Health (CEOH, LLC), Washington, DC, USA
- George Washington University School of Public Health, Washington, DC, USA
- School of Behavioral Sciences, Liberty University, Lynchburg, VA, USA
| |
Collapse
|
5
|
Sobel MH, Sanchez TR, Jones MR, Kaufman JD, Francesconi KA, Blaha MJ, Vaidya D, Shimbo D, Gossler W, Gamble MV, Genkinger JM, Navas‐Acien A. Rice Intake, Arsenic Exposure, and Subclinical Cardiovascular Disease Among US Adults in MESA. J Am Heart Assoc 2020; 9:e015658. [PMID: 32067593 PMCID: PMC7070216 DOI: 10.1161/jaha.119.015658] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022]
Abstract
Background Arsenic-related cardiovascular effects at exposure levels below the US Environmental Protection Agency's standard of 10 μg/L are unclear. For these populations, food, especially rice, is a major source of exposure. We investigated associations of rice intake, a marker of arsenic exposure, with subclinical cardiovascular disease (CVD) markers in a multiethnic population. Methods and Results Between 2000 and 2002, MESA (Multi-Ethnic Study of Atherosclerosis) enrolled 6814 adults without clinical CVD. We included 5050 participants with baseline data on rice intake and markers of 3 CVD domains: inflammation (hsCRP [high-sensitivity C-reactive protein], interleukin-6, and fibrinogen), vascular function (aortic distensibility, carotid distensibility, and brachial flow-mediated dilation), and subclinical atherosclerosis at 3 vascular sites (carotid intima-media thickness, coronary artery calcification, and ankle-brachial index). We also evaluated endothelial-related biomarkers previously associated with arsenic. Rice intake was assessed by food frequency questionnaire. Urinary arsenic was measured in 310 participants. A total of 13% of participants consumed ≥1 serving of rice/day. Compared with individuals consuming <1 serving of rice/week, ≥1 serving of rice/day was not associated with subclinical markers after demographic, lifestyle, and CVD risk factor adjustment (eg, geometric mean ratio [95% CI] for hsCRP, 0.98 [0.86-1.11]; aortic distensibility, 0.99 [0.91-1.07]; and carotid intima-media thickness, 0.98 [0.91-1.06]). Associations with urinary arsenic were similar to those for rice intake. Conclusions Rice intake was not associated with subclinical CVD markers in a multiethnic US population. Research using urinary arsenic is needed to assess potential CVD effects of low-level arsenic exposure. Understanding the role of low-level arsenic as it relates to subclinical CVD may contribute to CVD prevention and control.
Collapse
Affiliation(s)
- Marisa H. Sobel
- Department of Environmental Health ScienceColumbia UniversityNew YorkNY
| | | | - Miranda R. Jones
- Department of EpidemiologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMD
| | | | | | | | | | | | | | - Mary V. Gamble
- Department of Environmental Health ScienceColumbia UniversityNew YorkNY
| | | | - Ana Navas‐Acien
- Department of Environmental Health ScienceColumbia UniversityNew YorkNY
| |
Collapse
|