1
|
Akkad N, Kodgule R, Duncavage EJ, Mehta-Shah N, Spencer DH, Watkins M, Shirai C, Myckatyn TM. Evaluation of Breast Implant-Associated Anaplastic Large Cell Lymphoma With Whole Exome and Genome Sequencing. Aesthet Surg J 2023; 43:318-328. [PMID: 36351182 DOI: 10.1093/asj/sjac282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is a rare malignancy originating from the periprosthetic capsule of a textured, most often macrotextured, breast implant. Identified in women whose indications for breast implants can be either aesthetic or reconstructive, the genomic underpinnings of this disease are only beginning to be elucidated. OBJECTIVES The aim of this study was to evaluate the exomes, and in some cases the entire genome, of patients with BIA-ALCL. Specific attention was paid to copy number alterations, chromosomal translocations, and other genomic abnormalities overrepresented in patients with BIA-ALCL. METHODS Whole-exome sequencing was performed on 6 patients, and whole-genome sequencing on 3 patients, with the Illumina NovaSeq 6000 sequencer. Data were analyzed with the Illumina DRAGEN Bio-IT Platform and the ChromoSeq pipeline. The Pathseq Genome Analysis Toolkit pipeline was used to detect the presence of microbial genomes in the sequenced samples. RESULTS Two cases with STAT3 mutations and 2 cases with NRAS mutations were noted. A critically deleted 7-Mb region was identified at the 11q22.3 region of chromosome 11, and multiple nonrecurrent chromosomal rearrangements were identified by whole-genome sequencing. Recurrent gene-level rearrangements, however, were not identified. None of the samples showed evidence of potential microbial pathogens. CONCLUSIONS Although no recurrent mutations were identified, this study identified mutations in genes not previously reported with BIA-ALCL or other forms of ALCL. Furthermore, not previously reported with BIA-ALCL, 11q22.3 deletions were consistent across whole-genome sequencing cases and present in some exomes. LEVEL OF EVIDENCE: 5
Collapse
Affiliation(s)
- Neha Akkad
- Resident of internal medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | | | | | | | | | - Marcus Watkins
- Research coordinator of medical oncology, Department of Medicine, Division of Hematology and Oncology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Cara Shirai
- Instructor of pathology and immunology, Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Terence M Myckatyn
- Professor of plastic and reconstructive surgery, Division of Plastic and Reconstruction Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
2
|
Genetic profiling and biomarkers in peripheral T-cell lymphomas: current role in the diagnostic work-up. Mod Pathol 2022; 35:306-318. [PMID: 34584212 DOI: 10.1038/s41379-021-00937-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/08/2022]
Abstract
Peripheral T-cell lymphomas are a heterogeneous, and usually aggressive, group of mature T-cell neoplasms with overlapping clinical, morphologic and immunologic features. A large subset of these neoplasms remains unclassifiable with current diagnostic methods ("not otherwise specified"). Genetic profiling and other molecular tools have emerged as widely applied and transformative technologies for discerning the biology of lymphomas and other hematopoietic neoplasms. Although the application of these technologies to peripheral T-cell lymphomas has lagged behind B-cell lymphomas and other cancers, molecular profiling has provided novel prognostic and diagnostic markers as well as an opportunity to understand the biologic mechanisms involved in the pathogenesis of these neoplasms. Some biomarkers are more prevalent in specific T-cell lymphoma subsets and are being used currently in the diagnosis and/or risk stratification of patients with peripheral T-cell lymphomas. Other biomarkers, while promising, need to be validated in larger clinical studies. In this review, we present a summary of our current understanding of the molecular profiles of the major types of peripheral T-cell lymphoma. We particularly focus on the use of biomarkers, including those that can be detected by conventional immunohistochemical studies and those that contribute to the diagnosis, classification, or risk stratification of these neoplasms.
Collapse
|
3
|
Di Napoli A, Vacca D, Bertolazzi G, Lopez G, Piane M, Germani A, Rogges E, Pepe G, Santanelli Di Pompeo F, Salgarello M, Jobanputra V, Hsiao S, Wrzeszczynski KO, Berti E, Bhagat G. RNA Sequencing of Primary Cutaneous and Breast-Implant Associated Anaplastic Large Cell Lymphomas Reveals Infrequent Fusion Transcripts and Upregulation of PI3K/AKT Signaling via Neurotrophin Pathway Genes. Cancers (Basel) 2021; 13:cancers13246174. [PMID: 34944796 PMCID: PMC8699465 DOI: 10.3390/cancers13246174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Cutaneous and breast implant-associated anaplastic large-cell lymphomas are usually localized neoplasms with an indolent clinical course compared to systemic ALCL. However comparative analyses of the molecular features of these two entities have not yet been reported. We performed targeted RNA sequencing, which revealed that fusion transcripts, although infrequent, might represent additional pathogenetic events in both diseases. We also found that these entities display upregulation of the PI3K/Akt pathway and show enrichment in genes of the neurotrophin signaling pathway. These findings advance our knowledge regarding the pathobiology of cALCL and BI-ALCL and point to additional therapeutic targets. Abstract Cutaneous and breast implant-associated anaplastic large-cell lymphomas (cALCLs and BI-ALCLs) are two localized forms of peripheral T-cell lymphomas (PTCLs) that are recognized as distinct entities within the family of ALCL. JAK-STAT signaling is a common feature of all ALCL subtypes, whereas DUSP22/IRF4, TP63 and TYK gene rearrangements have been reported in a proportion of ALK-negative sALCLs and cALCLs. Both cALCLs and BI-ALCLs differ in their gene expression profiles compared to PTCLs; however, a direct comparison of the genomic alterations and transcriptomes of these two entities is lacking. By performing RNA sequencing of 1385 genes (TruSight RNA Pan-Cancer, Illumina) in 12 cALCLs, 10 BI-ALCLs and two anaplastic lymphoma kinase (ALK)-positive sALCLs, we identified the previously reported TYK2-NPM1 fusion in 1 cALCL (1/12, 8%), and four new intrachromosomal gene fusions in 2 BI-ALCLs (2/10, 20%) involving genes on chromosome 1 (EPS15-GNG12 and ARNT-GOLPH3L) and on chromosome 17 (MYO18A-GIT1 and NF1-GOSR1). One of the two BI-ALCL samples showed a complex karyotype, raising the possibility that genomic instability may be responsible for intra-chromosomal fusions in BI-ALCL. Moreover, transcriptional analysis revealed similar upregulation of the PI3K/Akt pathway, associated with enrichment in the expression of neurotrophin signaling genes, which was more conspicuous in BI-ALCL, as well as differences, i.e., over-expression of genes involved in the RNA polymerase II transcription program in BI-ALCL and of the RNA splicing/processing program in cALCL.
Collapse
Affiliation(s)
- Arianna Di Napoli
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy; (G.L.); (M.P.); (A.G.); (E.R.); (G.P.)
- Correspondence:
| | - Davide Vacca
- Department of Surgical, Oncological and Oral Sciences, Palermo University, 90134 Palermo, Italy;
| | - Giorgio Bertolazzi
- Tumour Immunology Unit, Human Pathology Section, Department of Health Science, Palermo University, 90134 Palermo, Italy;
| | - Gianluca Lopez
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy; (G.L.); (M.P.); (A.G.); (E.R.); (G.P.)
| | - Maria Piane
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy; (G.L.); (M.P.); (A.G.); (E.R.); (G.P.)
| | - Aldo Germani
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy; (G.L.); (M.P.); (A.G.); (E.R.); (G.P.)
| | - Evelina Rogges
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy; (G.L.); (M.P.); (A.G.); (E.R.); (G.P.)
| | - Giuseppina Pepe
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy; (G.L.); (M.P.); (A.G.); (E.R.); (G.P.)
| | | | - Marzia Salgarello
- Department of Plastic Surgery, Catholic University of Sacred Heart, University Hospital Agostino Gemelli, 00168 Roma, Italy;
| | - Vaidehi Jobanputra
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY 10032, USA; (V.J.); (S.H.); (G.B.)
- New York Genome Center, New York, NY 10013, USA;
| | - Susan Hsiao
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY 10032, USA; (V.J.); (S.H.); (G.B.)
| | | | - Emilio Berti
- Department of Dermatology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY 10032, USA; (V.J.); (S.H.); (G.B.)
| |
Collapse
|
4
|
Qiu L, Cho JH, Jelloul FZ, Vega F. SOHO State of the Art Updates and Next Questions: Pathology and Pathogenesis of Nodal Peripheral T-Cell Lymphomas. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 22:287-296. [PMID: 34776400 DOI: 10.1016/j.clml.2021.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/30/2021] [Accepted: 10/09/2021] [Indexed: 10/20/2022]
Abstract
Peripheral T-cell lymphomas (PTCLs) are a heterogeneous and often clinically aggressive group of neoplasms derived from mature post-thymic T-lymphocytes. These neoplasms are rare and usually diagnostically challenging. Our understanding of the pathogenesis of PTCL is increasing and this improved knowledge is leading us to better molecular characterization, more objective and accurate diagnostic criteria, more effective risk assessment, and potentially better treatments. The focus of this paper is to present a brief overview of the current pathology criteria and molecular and genetic features of nodal peripheral T-cell lymphomas focusing on distinct genetically and molecularly defined subgroups that are being recognized within each major nodal PTCL category. It is expected that the molecular stratification will improve the diagnosis and will provide novel therapeutic opportunities (biomarker-driven and targeted therapies) that might benefit and change the outcomes of patients with these neoplasms.
Collapse
Affiliation(s)
- Lianqun Qiu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeong Hee Cho
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Fatima Zahra Jelloul
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Francisco Vega
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas; UT Health Graduate School of Biomedical Sciences, Houston, Texas.
| |
Collapse
|
5
|
Genetic and epigenetic insights into cutaneous T-cell lymphoma. Blood 2021; 139:15-33. [PMID: 34570882 DOI: 10.1182/blood.2019004256] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/30/2021] [Indexed: 11/20/2022] Open
Abstract
Primary cutaneous T-cell lymphomas (CTCL) constitute a heterogeneous group of non-Hodgkin T-cell lymphomas that present in the skin. In recent years significant progress has been made in the understanding of the pathogenesis of CTCL. Progress in CTCL classifications combined with technical advances, in particular next generation sequencing (NGS), enabled a more detailed analysis of the genetic and epigenetic landscape and transcriptional changes in clearly defined diagnostic entities. These studies not only demonstrated extensive heterogeneity between different CTCL subtypes but also identified recurrent alterations that are highly characteristic for diagnostic subgroups of CTCL. The identified alterations in particular involve epigenetic remodelling, cell cycle regulation, and the constitutive activation of targetable, oncogenic pathways. In this respect, aberrant JAK-STAT signaling is a recurrent theme, however not universal for all CTCL and with seemingly different underlaying causes in different entities. A number of the mutated genes identified are potentially actionable targets for the development of novel therapeutic strategies. Moreover, these studies have produced an enormous amount of information that will be critically important for the further development of improved diagnostic and prognostic biomarkers that can assist in the clinical management of CTCL patients. In the present review the main findings of these studies in relation to their functional impact on the malignant transformation process are discussed for different subtypes of CTCL.
Collapse
|
6
|
Abstract
Primary cutaneous T cell lymphomas (CTCLs) are a heterogeneous group of lymphomas that present in the skin with no evidence of extracutaneous disease at the time of diagnosis. CTCL subtypes demonstrate a variety of clinical, histological, and molecular features, and can follow an indolent or a very aggressive course. The underlying pathogenetic mechanisms are not yet entirely understood. The pathophysiology of CTCL is complex and a single initiating factor has not yet been identified. Diagnosis is based on clinicopathological correlation and requires an interdisciplinary team. Treatment decision is made based on short-term and long-term goals. Therapy options comprise skin-directed therapies, such as topical steroids or phototherapy, and systemic therapies, such as monoclonal antibodies or chemotherapy. So far, the only curative treatment approach is allogeneic haematopoietic stem cell transplantation. Novel therapies, such as chimeric antigen receptor T cells, monoclonal antibodies or small molecules, are being investigated in clinical trials. Patients with CTCL have reduced quality of life and a lack of effective treatment options. Further research is needed to better identify the underlying mechanisms of CTCL development and course as well as to better tailor treatment strategies to individual patients.
Collapse
|
7
|
Los-de Vries GT, de Boer M, van Dijk E, Stathi P, Hijmering NJ, Roemer MGM, Mendeville M, Miedema DM, de Boer JP, Rakhorst HA, van Leeuwen FE, van der Hulst RRWJ, Ylstra B, de Jong D. Chromosome 20 loss is characteristic of breast implant-associated anaplastic large cell lymphoma. Blood 2020; 136:2927-2932. [PMID: 33331925 DOI: 10.1182/blood.2020005372] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022] Open
Abstract
Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is a very rare type of T-cell lymphoma that is uniquely caused by a single environmental stimulus. Here, we present a comprehensive genetic analysis of a relatively large series of BIA-ALCL (n = 29), for which genome-wide chromosomal copy number aberrations (CNAs) and mutational profiles for a subset (n = 7) were determined. For comparison, CNAs for anaplastic lymphoma kinase (ALK)- nodal anaplastic large cell lymphomas (ALCLs; n = 24) were obtained. CNAs were detected in 94% of BIA-ALCLs, with losses at chromosome 20q13.13 in 66% of the samples. Loss of 20q13.13 is characteristic of BIA-ALCL compared with other classes of ALCL, such as primary cutaneous ALCL and systemic type ALK+ and ALK- ALCL. Mutational patterns confirm that the interleukin-6-JAK1-STAT3 pathway is deregulated. Although this is commonly observed across various types of T-cell lymphomas, the extent of deregulation is significantly higher in BIA-ALCL, as indicated by phosphorylated STAT3 immunohistochemistry. The characteristic loss of chromosome 20 in BIA-ALCL provides further justification to recognize BIA-ALCL as a separate disease entity. Moreover, CNA analysis may serve as a parameter for future diagnostic assays for women with breast implants to distinguish seroma caused by BIA-ALCL from other causes of seroma accumulation, such as infection or trauma.
Collapse
MESH Headings
- Breast Implants/adverse effects
- Breast Neoplasms/etiology
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Chromosome Deletion
- Chromosomes, Human, Pair 20/genetics
- Chromosomes, Human, Pair 20/metabolism
- Female
- Humans
- Lymphoma, Large-Cell, Anaplastic/etiology
- Lymphoma, Large-Cell, Anaplastic/genetics
- Lymphoma, Large-Cell, Anaplastic/metabolism
- Lymphoma, Large-Cell, Anaplastic/pathology
- Mutation
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Retrospective Studies
Collapse
Affiliation(s)
- G Tjitske Los-de Vries
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mintsje de Boer
- Plastic, Reconstructive, and Hand Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Erik van Dijk
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Phylicia Stathi
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Nathalie J Hijmering
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Margaretha G M Roemer
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Matias Mendeville
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Daniel M Miedema
- LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan Paul de Boer
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Hinne A Rakhorst
- Department of Plastic, Reconstructive, and Hand Surgery, Medisch Spectrum Twente, Enschede, The Netherlands; and
| | - Flora E van Leeuwen
- Department of Epidemiology and Biostatistics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - René R W J van der Hulst
- Plastic, Reconstructive, and Hand Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Bauke Ylstra
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Daphne de Jong
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Epigenetic Silencing of Tumor Suppressor miR-124 Directly Supports STAT3 Activation in Cutaneous T-Cell Lymphoma. Cells 2020; 9:cells9122692. [PMID: 33333886 PMCID: PMC7765332 DOI: 10.3390/cells9122692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence supports a potential role for STAT3 as a tumor driver in cutaneous T-cell lymphomas (CTCL). The mechanisms leading to STAT3 activation are not fully understood; however, we recently found that miR-124, a known STAT3 regulator, is robustly silenced in MF tumor-stage and CTCL cells. Objective: We studied here whether deregulation of miR-124 contributes to STAT3 pathway activation in CTCL. Methods: We measured the effect of ectopic mir-124 expression in active phosphorylated STAT3 (p-STAT3) levels and evaluated the transcriptional impact of miR-124-dependent STAT3 pathway regulation by expression microarray analysis. Results: We found that ectopic expression of miR-124 results in massive downregulation of activated STAT3 in different CTCL lines, which resulted in a significant alteration of genetic signatures related with gene transcription and proliferation such as MYC and E2F. Conclusions: Our study highlights the importance of the miR-124/STAT3 axis in CTCL and demonstrates that the STAT3 pathway is regulated through epigenetic mechanisms in these cells. Since deregulated STAT3 signaling has a major impact on CTCL initiation and progression, a better understanding of the molecular basis of the miR-124/STAT3 axis may provide useful information for future personalized therapies.
Collapse
|
9
|
Yan J, Wang ZH, Yan Y, Luo HN, Ren XY, Li N, Zheng GX, Hou J. RP11‑156L14.1 regulates SSR1 expression by competitively binding to miR‑548ao‑3p in hypopharyngeal squamous cell carcinoma. Oncol Rep 2020; 44:2080-2092. [PMID: 33000261 PMCID: PMC7551335 DOI: 10.3892/or.2020.7762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Emerging studies have demonstrated that long non-coding RNAs (lncRNAs) play essential roles in tumorigenesis. However, the role and function of lncRNAs in hypopharyngeal squamous cell carcinoma (HSCC) have not been completely elucidated. The present study explored the function of a novel lncRNA, RP11-156L14.1, in HSCC. RP11-156L14.1 was revealed to be highly expressed in HSCC tissues and cell lines. Knockdown of RP11-156L14.1 inhibited proliferation, migration, and invasion in HSCC cells. Furthermore, RP11-156L14.1 regulated epithelial-mesenchymal transition (EMT) by controlling EMT-related protein expression. Mechanistically, RP11-156L14.1 exerted its function as a competing endogenous RNA (ceRNA) and directly interacted with miR-548ao-3p. The present study also demonstrated that miR-548ao-3p regulated signal sequence receptor subunit 1 (SSR1) expression by targeting SSR1 3′-UTR. Moreover, the xenograft HSCC tumor model revealed that knockdown of RP11-156L14.1 markedly suppressed HSCC tumor growth in vivo. In summary, these findings indicated that the lncRNA RP11-156L14.1 functions as an oncogene in HSCC by competing with miR-548ao-3p in regulating SSR1 expression. The RP11-156L14.1/miR-548ao-3p/SSR1 axis could be utilized as a potential novel biomarker and therapeutic target for HSCC.
Collapse
Affiliation(s)
- Jing Yan
- Department of Otorhinolaryngology Head and Neck Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Zheng-Hui Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yan Yan
- Department of Otorhinolaryngology Head and Neck Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hua-Nan Luo
- Department of Otorhinolaryngology Head and Neck Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xiao-Yong Ren
- Department of Otorhinolaryngology Head and Neck Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Na Li
- Department of Otorhinolaryngology Head and Neck Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Guo-Xi Zheng
- Department of Otorhinolaryngology Head and Neck Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jin Hou
- Department of Otorhinolaryngology Head and Neck Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
10
|
Does Breast Implant–Associated ALCL Begin as a Lymphoproliferative Disorder? Plast Reconstr Surg 2020; 145:30e-38e. [DOI: 10.1097/prs.0000000000006390] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Abstract
Anaplastic large cell lymphomas are a rare subtype of peripheral/mature T-cell lymphomas which are clinically, pathologically and genetically heterogeneous. Both ALK-positive (ALK+) and ALK-negative (ALK-) ALCL are composed of large lymphoid cells with abundant cytoplasm and pleomorphic features with horseshoe-shaped and reniform nuclei. ALK+ ALCL were considered as a definite entity in the 2008 World Health Organization classification of hematopoietic and lymphoid tissues. ALK-ALCL was included as a provisional entity in the WHO 2008 edition and in the most recent 2017 edition, it is now considered a distinct entity that includes cytogenetic subsets that appear to have prognostic implications (e.g. 6p25 rearrangements at IRF4/DUSP22 locus). ALK+ ALCLs are distinct in epidemiology and pathogenetic origin and should be distinguished from ALK-ALCL, cutaneous ALCL and breast implant associated ALCL which have distinct clinical course and pathogenetic features. Breast implant-associated ALCL is now recognized as a new provisional entity distinct from other ALK-ALCL; notably that it is a noninvasive disease associated with excellent outcome. In this article, we will provide an overview of the salient themes relevant to the pathology and genetic mechanisms in ALCL.
Collapse
Affiliation(s)
- Vasiliki Leventaki
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Siddharth Bhattacharyya
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA United States
| | - Megan S Lim
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA United States.
| |
Collapse
|
12
|
How I treat primary cutaneous CD30+ lymphoproliferative disorders. Blood 2019; 134:515-524. [DOI: 10.1182/blood.2019000785] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022] Open
Abstract
Abstract
The primary cutaneous CD30+ lymphoproliferative disorders are a family of extranodal lymphoid neoplasms that arise from mature postthymic T cells and localize to the skin. Current classification systems recognize lymphomatoid papulosis (LyP), primary cutaneous anaplastic large cell lymphoma, and borderline cases. In the majority of patients, the prognosis of primary cutaneous CD30+ lymphoproliferative disorders is excellent; however, relapses are common, and complete cures are rare. Skin-directed and systemic therapies are used as monotherapy or in combination to achieve the best disease control and minimize overall toxicity. We discuss 3 distinct presentations of primary cutaneous CD30+ lymphoproliferative disorder and present recommendations for a multidisciplinary team approach to diagnosis, evaluation, and management of these conditions in keeping with existing consensus guidelines.
Collapse
|
13
|
Di Napoli A, De Cecco L, Piccaluga PP, Navari M, Cancila V, Cippitelli C, Pepe G, Lopez G, Monardo F, Bianchi A, D'Amore ESG, Gianelli U, Facchetti F, Berti E, Bhagat G. Transcriptional analysis distinguishes breast implant-associated anaplastic large cell lymphoma from other peripheral T-cell lymphomas. Mod Pathol 2019; 32:216-230. [PMID: 30206415 DOI: 10.1038/s41379-018-0130-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 11/08/2022]
Abstract
Breast implant-associated anaplastic large cell lymphoma is a new provisional entity in the revised World Health Organization classification of lymphoid malignancies, the pathogenesis and cell of origin of which are still unknown. We performed gene expression profiling of microdissected breast implant-associated anaplastic large cell lymphoma samples and compared their transcriptional profiles with those previously obtained from normal T-cells and other peripheral T-cell lymphomas and validated expression of selected markers by immunohistochemistry. Our results indicate that most breast implant-associated anaplastic large cell lymphomas exhibit an activated CD4+ memory T-cell phenotype, which is associated with CD25 and FoxP3 expression. Gene ontology analyses revealed upregulation of genes involved in cell motility programs (e.g., CCR6, MET, HGF, CXCL14) in breast implant-associated anaplastic large cell lymphomas compared to normal CD4+ T-cells and upregulation of genes involved in myeloid cell differentiation (e.g., PPARg, JAK2, SPI-1, GAB2) and viral gene transcription (e.g., RPS10, RPL17, RPS29, RPL18A) compared to other types of peripheral T-cell lymphomas. Gene set enrichment analyses also revealed shared features between the molecular profiles of breast implant-associated anaplastic large cell lymphomas and other types of anaplastic large cell lymphomas, including downregulation of T-cell receptor signaling and STAT3 activation. Our findings provide novel insights into the biology of this rare disease and further evidence that breast implant-associated anaplastic large cell lymphoma represents a distinct peripheral T-cell lymphoma entity.
Collapse
Affiliation(s)
- Arianna Di Napoli
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant'Andrea Hospital, Rome, Italy.
| | - Loris De Cecco
- Integrated Biology Platform, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Pier Paolo Piccaluga
- Department of Experimental, Diagnostic and Experimental Medicine, Bologna University School of Medicine, Bologna, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139, Palermo, Italy
| | - Mohsen Navari
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Valeria Cancila
- Tumor Immunology Unit, Dipartimento per la Promozione della Salute e Materno Infantile "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Claudia Cippitelli
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Giuseppina Pepe
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Gianluca Lopez
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant'Andrea Hospital, Rome, Italy
| | | | | | | | - Umberto Gianelli
- Hematopathology Unit, Department of Physiopathology and Transplantation, IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Fabio Facchetti
- Pathology Section, Department of Molecular and Translational Medicine, University-Spedali Civili of Brescia, Spedali Civili di Brescia, Brescia, Italy
| | - Emilio Berti
- Dermatology Unit, Department of Physiopathology and Transplantation, IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY, USA.
| |
Collapse
|
14
|
Prieto-Torres L, Rodriguez-Pinilla SM, Onaindia A, Ara M, Requena L, Piris MÁ. CD30-positive primary cutaneous lymphoproliferative disorders: molecular alterations and targeted therapies. Haematologica 2019; 104:226-235. [PMID: 30630983 PMCID: PMC6355473 DOI: 10.3324/haematol.2018.197152] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/07/2018] [Indexed: 01/06/2023] Open
Abstract
Primary cutaneous CD30-positive T-cell lymphoproliferative disorders are the second most common subgroup of cutaneous T-cell lymphomas. They include two clinically different entities with some overlapping features and borderline cases: lymphomatoid papulosis and primary cutaneous anaplastic large cell lymphoma. Molecular studies of primary cutaneous anaplastic large cell lymphoma reveal an increasing level of heterogeneity that is associated with histological and immunophenotypic features of the cases and their response to specific therapies. Here, we review the most significant genetic, epigenetic and molecular alterations described to date in primary cutaneous CD30-positive T-cell lymphoproliferative disorders, and their potential as therapeutic targets.
Collapse
Affiliation(s)
| | - Socorro M Rodriguez-Pinilla
- Department of Pathology, Hospital Universitario Fundación Jiménez Díaz, Madrid.,Hospital Universitario Fundación Jiménez Díaz, Madrid, CIBERONC, Madrid
| | - Arantza Onaindia
- Pathology, Hospital Universitario Marques de Valdecilla, Santander
| | - Mariano Ara
- Dermatology Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | | | - Miguel Á Piris
- Department of Pathology, Hospital Universitario Fundación Jiménez Díaz, Madrid.,Hospital Universitario Fundación Jiménez Díaz, Madrid, CIBERONC, Madrid
| |
Collapse
|
15
|
Abstract
Primary cutaneous CD30-positive lymphoproliferative disorders (CD30+ LPD) encompass lymphomatoid papulosis (LyP), primary cutaneous anaplastic large cell lymphoma (pcALCL), and borderline lesions [1]. CD30+ LPD are the second most common cutaneous T-cell lymphomas (CTCL) after mycosis fungoides (MF) and represent approximately 25% of all CTCL cases [2]. Their common phenotypic hallmark is an expression of the CD30 antigen, a cytokine receptor belonging to the tumor necrosis factor (TNF) receptor superfamily. Both LyP and pcALCL show numerous clinical, histological and immunophenotypic variants, and generally have an indolent course with a favorable prognosis. Overlapping features of LyP and pcALCL with other CD30+ T-cell lymphomas, inflammatory, and/or infectious conditions emphasize the importance of careful clinicopathologic correlation and staging.
Collapse
Affiliation(s)
- Liana Nikolaenko
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA.
| | - Jasmine Zain
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
- Toni Stephenson Lymphoma Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Steven T Rosen
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
- Toni Stephenson Lymphoma Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Christiane Querfeld
- Division of Dermatology, City of Hope National Medical Center, Duarte, CA, USA
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
- Toni Stephenson Lymphoma Center, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
16
|
An Immune Suppression-associated EBV-positive Anaplastic Large Cell Lymphoma With a BRAF V600E Mutation. Am J Surg Pathol 2019; 43:140-146. [DOI: 10.1097/pas.0000000000001174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
17
|
Chernova NG, Badmazhapova DS, Kovrigina AM, Karamova AE, Vorontsova AA, Sinitcina MN, Sidorova YV, Grebenyuk LA, Nefedova MA, Znamenskaya LF, Zvonkov EE, Savchenko VG. Successful experience in treating primary cutaneous anaplastic large cell lymphoma occuring with common lesions of the skin and lung tissue. VESTNIK DERMATOLOGII I VENEROLOGII 2018. [DOI: 10.25208/0042-4609-2018-94-4-30-42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The aim of the study is to present a successful case in treating primary cutaneous anaplastic large cell lymphoma (PCALCL) occurring with common lesions of the skin and lung tissue.Materials and methods. For the verification of the diagnosis in a patient with three types of skin elements (spot, thin plaque with and without ulceration), differential diagnosis was performed between ulcerative pyoderma gangrenosum, PCALCL, large-cell transformation of mycosis fungoides, and secondary skin lesions under the nodal ALK-negtaive ALCL. A complex of studies, including histological, immunohisto - chemical, cytogenetic studies of skin tumor biopsy, allowed the verification of the PCALCL diagnosis. For the treatment of the patient, intensive induction chemotherapy was used followed by high-dose consolidation and autologous transplantation of hematopoietic stem cells.Results. The selected treatment tactics allowed a long-term complete remission of the disease to be achieved in a patient from the poor prognosis group.Conclusion. An algorithm for the differential diagnosis and tactics of treating is presented for a patient with primary anaplastic large cell lymphoma with a widespread skin lesion and extradermal foci.
Collapse
|
18
|
Alberti-Violetti S, Fanoni D, Provasi M, Corti L, Venegoni L, Berti E. Primary cutaneous acral CD8 positive T-cell lymphoma with extra-cutaneous involvement: A long-standing case with an unexpected progression. J Cutan Pathol 2017; 44:964-968. [PMID: 28796362 DOI: 10.1111/cup.13020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/24/2017] [Accepted: 08/06/2017] [Indexed: 01/13/2023]
Abstract
Primary cutaneous acral CD8+ T-cell lymphoma (acral CD8+ TCL) is a new provisional entity characterized by acral skin lesions and an indolent course. We describe an extraordinary case characterized by relapsed nodules with CD8+ cytotoxic infiltrates on the left ear. After 35 years, the skin lesions spread to other acral sites, and a mass with the same histological features as the other skin lesions appeared on the nose. Multiple courses of chemotherapy led to stable disease. Histological examinations carried out at different times showed the gradual transformation of the neoplastic cells, with an increased proliferation index. Genomic analysis revealed losses in the regions harboring the genes involved in cell cycle control. This is the first case of an acral CD8+ TCL with a very long history of indolent nodular lesions progressing to extra-cutaneous sites.
Collapse
Affiliation(s)
| | - Daniele Fanoni
- UOC Dermatologia, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Matteo Provasi
- UOC Dermatologia, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy.,Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy
| | - Laura Corti
- UOC Dermatologia, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Luigia Venegoni
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy
| | - Emilio Berti
- UOC Dermatologia, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy.,Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Peripheral T cell lymphomas (PTCLs) are markedly heterogeneous at the clinical, pathological, and molecular levels. This review will discuss genetic findings in PTCL with special emphasis on how they impact lymphoma classification. RECENT FINDINGS Sequencing studies have identified recurrent genetic alterations in nearly every PTCL subtype. In anaplastic large cell lymphoma, these studies have revealed novel chromosomal rearrangements and mutations that have prognostic significance and may suggest new therapeutic approaches. Angioimmunoblastic T cell lymphoma has been found to have mutations overlapping some cases of PTCL, not otherwise specified with a T follicular helper cell phenotype. Across various subtypes, recurrent mutations and structural alterations affecting genes involved in epigenetic regulation, T cell receptor signaling, and immune response may represent targets for precision therapy approaches. New genetic findings are refining the classification of PTCLs and are beginning to be used clinically for diagnosis, risk stratification, and individualized therapy.
Collapse
|
20
|
Brown RA, Fernandez-Pol S, Kim J. Primary cutaneous anaplastic large cell lymphoma. J Cutan Pathol 2017; 44:570-577. [PMID: 28342276 DOI: 10.1111/cup.12937] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/15/2017] [Accepted: 03/21/2017] [Indexed: 12/26/2022]
Abstract
Primary cutaneous anaplastic large cell lymphoma (PC-ALCL) is a CD30+ lymphoproliferative disorder (LPD) of the skin with a relatively good prognosis in the absence of high-stage disease. CD30+ LPDs comprise approximately 25%-30% of primary cutaneous lymphomas and as a group represent the second most common clonal T-cell neoplasm of the skin behind mycosis fungoides. Diagnosis of PC-ALCL relies strongly on clinicopathologic correlation given the potential morphologic, clinical and molecular overlap with the other cutaneous CD30+ LPD, lymphomatoid papulosis, and more aggressive hematolymphoid neoplasms.
Collapse
Affiliation(s)
- Ryanne A Brown
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | | | - Jinah Kim
- Department of Pathology, Stanford University School of Medicine, Stanford, California.,Department of Dermatology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
21
|
Abstract
Cutaneous CD30+ T-cell lymphoproliferative disorders (CD30+ T-LPD) represent a spectrum encompassing lymphomatoid papulosis (LyP), primary cutaneous anaplastic large-cell lymphoma (pcALCL) and borderline lesions. They share the expression of CD30 as a common phenotypic marker. They differ however in their clinical presentation, the histological features and clinical course. Moreover, LyP and PcALCL show numerous clinical, histological and phenotypic variants. Overlapping features of LyP and pcALCL with themselves and with other cutaneous and systemic lymphomas emphasize the importance of careful clinicopathologic correlation and staging in the diagnosis of CD30+ T-LPD. Furthermore, an increasing number of inflammatory and infectious skin disorders harboring medium-sized to large CD30+ cells have to be considered in the differential diagnosis. Whereas the expression of CD30 in cutaneous CD30+ T-LPD stands for a favourable prognosis, its expression in other cutaneous and systemic lymphomas has a divergent impact. The assessment of CD30 expression does not only provide prognostic information, but is of potential therapeutic relevance as CD30 can serve as a therapeutic target. This review focuses on the clinicopathological and phenotypic spectrum of CD30+ T-LPD, its differential diagnoses and the role of CD30 as a diagnostic, prognostic and therapeutic marker.
Collapse
Affiliation(s)
- Werner Kempf
- Kempf und Pfaltz, Histologische Diagnostik, Zürich, Switzerland; Department of Dermatology, University Hospital Zurich, CH-8091, Zurich, Switzerland.
| |
Collapse
|
22
|
Alberti-Violetti S, Torres-Cabala CA, Talpur R, Corti L, Fanoni D, Venegoni L, Berti E, Duvic M. Clinicopathological and molecular study of primary cutaneous CD4+ small/medium-sized pleomorphic T-cell lymphoma. J Cutan Pathol 2016; 43:1121-1130. [DOI: 10.1111/cup.12806] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 08/11/2016] [Accepted: 08/17/2016] [Indexed: 12/25/2022]
Affiliation(s)
| | - Carlos A Torres-Cabala
- Department of Pathology, Dermatopathology Section; University of Texas, MD Anderson Cancer Center; Houston TX USA
- Department of Dermatology; University of Texas, MD Anderson Cancer Center; Houston TX USA
| | - Rakhshandra Talpur
- Department of Dermatology; University of Texas, MD Anderson Cancer Center; Houston TX USA
| | - Laura Corti
- UOC Dermatologia; Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico; Milan Italy
| | - Daniele Fanoni
- UOC Dermatologia; Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico; Milan Italy
| | - Luigia Venegoni
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti; Università degli Studi di Milano; Milan Italy
| | - Emilio Berti
- UOC Dermatologia; Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico; Milan Italy
- Dipartimento di Scienze della Salute; Università degli Studi di Milano-Bicocca; Milan Italy
| | - Madeleine Duvic
- Department of Dermatology; University of Texas, MD Anderson Cancer Center; Houston TX USA
| |
Collapse
|
23
|
Thestrup-Pedersen K. Cutaneous T-Cell Lymphoma. A hypothesis on disease pathophysiology involving deficiency in DNA repair. J Eur Acad Dermatol Venereol 2016; 30:1682-1685. [DOI: 10.1111/jdv.13852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/24/2016] [Indexed: 11/28/2022]
|
24
|
Expression of the chemokine receptor gene, CCR8, is associated With DUSP22 rearrangements in anaplastic large cell lymphoma. Appl Immunohistochem Mol Morphol 2016; 23:580-9. [PMID: 25390351 DOI: 10.1097/pai.0000000000000118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Anaplastic large cell lymphoma (ALCL) is one of the most common T-cell non-Hodgkin lymphomas and has 2 main subtypes: an anaplastic lymphoma kinase (ALK)-positive subtype characterized by ALK gene rearrangements and an ALK-negative subtype that is poorly understood. We recently identified recurrent rearrangements of the DUSP22 locus on 6p25.3 in both primary cutaneous and systemic ALK-negative ALCLs. This study aimed to determine the relationship between these rearrangements and expression of the chemokine receptor gene, CCR8. CCR8 has skin-homing properties and has been suggested to play a role in limiting extracutaneous spread of primary cutaneous ALCLs. However, overexpression of CCR8 has also been reported in systemic ALK-negative ALCLs. As available antibodies for CCR8 have shown lack of specificity, we examined CCR8 expression using quantitative real-time PCR in frozen tissue and RNA in situ hybridization (ISH) in paraffin tissue. Both approaches showed higher CCR8 expression in ALCLs with DUSP22 rearrangements than in nonrearranged cases (PCR: 19.5-fold increase, P=0.01; ISH: 3.3-fold increase, P=0.0008). CCR8 expression was not associated with cutaneous presentation, cutaneous biopsy site, or cutaneous involvement during the disease course. These findings suggest that CCR8 expression in ALCL is more closely related to the presence of DUSP22 rearrangements than to cutaneous involvement and that the function of CCR8 may extend beyond its skin-homing properties in this disease. This study also underscores the utility of RNA-ISH as a paraffin-based method for investigating gene expression when reliable antibodies for immunohistochemical analysis are not available.
Collapse
|
25
|
Abstract
Anaplastic large cell lymphoma (ALCL) comprises a group of T-cell non-Hodgkin lymphomas unified by common morphologic and immunophenotypic characteristics, but with a spectrum of clinical presentations and behaviors. Early identification of anaplastic lymphoma kinase (ALK) gene rearrangements in some ALCLs led to recognition of ALK as an important diagnostic and prognostic biomarker, and a key driver of ALCL pathobiology. Rearrangements and other genetic abnormalities of ALK subsequently were identified in diverse other human malignancies. Recent clinical, pathologic, and genetic data have begun to shed light on ALK-negative ALCLs, revealing significant heterogeneity within this more ill-defined entity.
Collapse
Affiliation(s)
- Yu Zeng
- a Department of Laboratory Medicine and Pathology , Mayo Clinic , Rochester , MN , USA.,b Department of Pathology , Tongji Hospital, Tongji University School of Medicine , Shanghai , China
| | - Andrew L Feldman
- a Department of Laboratory Medicine and Pathology , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
26
|
MicroRNA Expression Profiling and DNA Methylation Signature for Deregulated MicroRNA in Cutaneous T-Cell Lymphoma. J Invest Dermatol 2015; 135:1128-1137. [DOI: 10.1038/jid.2014.487] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 10/07/2014] [Accepted: 10/25/2014] [Indexed: 02/07/2023]
|
27
|
Nicolae-Cristea AR, Benner MF, Zoutman WH, van Eijk R, Jansen PM, Tensen CP, Willemze R. Diagnostic and prognostic significance of CDKN2A/CDKN2B deletions in patients with transformed mycosis fungoides and primary cutaneous CD30-positive lymphoproliferative disease. Br J Dermatol 2015; 172:784-8. [PMID: 25308604 DOI: 10.1111/bjd.13476] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- A R Nicolae-Cristea
- Department of Pathology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
28
|
Xing X, Feldman AL. Anaplastic large cell lymphomas: ALK positive, ALK negative, and primary cutaneous. Adv Anat Pathol 2015; 22:29-49. [PMID: 25461779 DOI: 10.1097/pap.0000000000000047] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Anaplastic large cell lymphomas (ALCLs) comprise a group of CD30-positive non-Hodgkin lymphomas that generally are of T-cell origin and share common morphologic and phenotypic characteristics. The World Health Organization recognizes 3 entities: primary cutaneous ALCL (pcALCL), anaplastic lymphoma kinase (ALK)-positive ALCL, and, provisionally, ALK-negative ALCL. Despite overlapping pathologic features, these tumors differ in clinical behavior and genetics. pcALCL presents in the skin and, while it may involve locoregional lymph nodes, rarely disseminates. Outcomes typically are excellent. ALK-positive ALCL and ALK-negative ALCL are systemic diseases. ALK-positive ALCLs consistently have chromosomal rearrangements involving the ALK gene with varied gene partners, and generally have a favorable prognosis. ALK-negative ALCLs lack ALK rearrangements and their genetic and clinical features are more variable. A subset of ALK-negative ALCLs has rearrangements in or near the DUSP22 gene and has a favorable prognosis similar to that of ALK-positive ALCL. DUSP22 rearrangements also are seen in a subset of pcALCLs. In this review, we discuss the clinical, morphologic, phenotypic, genetic, and biological features of ALCLs.
Collapse
|
29
|
Abstract
Cutaneous CD30+ lymphoproliferative disorders are the second most common types of cutaneous T-cell lymphomas. They represent a well-defined spectrum encompassing lymphomatoid papulosis (LyP), primary cutaneous anaplastic large-cell lymphoma (pcALCL), and borderline lesions. They share the expression of CD30 as a common phenotypic hallmark, but they differ in their clinical presentation, course, and histologic features. New variants have been recently identified, including CD8+ epidermotropic LyP type D, angioinvasive LyP type E, and ALK-positive pcALCL. This review describes clinical, histopathologic, and phenotypic variants; their differential diagnoses (benign and malignant); and the role of CD30 as a diagnostic, prognostic, and therapeutic marker.
Collapse
Affiliation(s)
- Werner Kempf
- Kempf und Pfaltz, Histologische Diagnostik, Seminarstrasse 1, Zürich CH-8042, Switzerland; Department of Dermatology, University Hospital, Zürich CH-8091, Switzerland.
| |
Collapse
|
30
|
|
31
|
Abstract
Telomere erosion may be counteracted by telomerase. Here we explored telomere length (TL) and telomerase activity (TA) in primary cutaneous T-cell lymphoma (CTCL) by using quantitative polymerase chain reaction and interphase quantitative fluorescence in situ hybridization assays. Samples from patients with Sézary syndrome (SS), transformed mycosis fungoides (T-MF), and cutaneous anaplastic large cell lymphoma were studied in parallel with corresponding cell lines to evaluate the relevance of TL and TA as target candidates for diagnostic and therapeutic purposes. Compared with controls, short telomeres were observed in aggressive CTCL subtypes such as SS and T-MF and were restricted to neoplastic cells in SS. While no genomic alteration of the hTERT (human telomerase catalytic subunit) locus was observed in patients' tumor cells, TA was detected. To understand the role of telomerase in CTCL, we manipulated its expression in CTCL cell lines. Telomerase inhibition rapidly impeded in vitro cell proliferation and led to cell death, while telomerase overexpression stimulated in vitro proliferation and clonogenicity properties and favored tumor development in immunodeficient mice. Our data indicate that, besides maintenance of TL, telomerase exerts additional functions in CTCL. Therefore, targeting these functions might represent an attractive therapeutic strategy, especially in aggressive CTCL.
Collapse
|
32
|
|
33
|
The role of molecular pathology in the diagnosis of cutaneous lymphomas. PATHOLOGY RESEARCH INTERNATIONAL 2012; 2012:913523. [PMID: 23213624 PMCID: PMC3506916 DOI: 10.1155/2012/913523] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 10/18/2012] [Indexed: 01/17/2023]
Abstract
Primary cutaneous lymphomas can be difficult to be distinguished from reactive mimics, even when integrating histologic, immunophenotypic, and clinical findings. Molecular studies, especially PCR-based antigen receptor gene rearrangement (ARGR) analysis, are frequently useful ancillary studies in the evaluation of cutaneous lymphoproliferations. The biologic basis of ARGR studies is discussed, as well as a comparison of various current protocols. The pitfalls and limitations of ARGR analysis are also highlighted. Recent advances in the understanding of the molecular pathogenesis of various cutaneous lymphomas are discussed. Some of these nascent discoveries may lead to the development of diagnostically useful molecular assays.
Collapse
|
34
|
A Meta-Analysis of Gene Expression Data Identifies a Molecular Signature Characteristic for Tumor-Stage Mycosis Fungoides. J Invest Dermatol 2012; 132:2050-9. [DOI: 10.1038/jid.2012.117] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Mucosal CD30-positive T-cell lymphoproliferations of the head and neck show a clinicopathologic spectrum similar to cutaneous CD30-positive T-cell lymphoproliferative disorders. Mod Pathol 2012; 25:983-92. [PMID: 22388754 DOI: 10.1038/modpathol.2012.38] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CD30-positive T-cell lymphoproliferative disorders are classified as cutaneous (primary cutaneous anaplastic large cell lymphoma and lymphomatoid papulosis) or systemic. As extent of disease dictates prognosis and treatment, patients with skin involvement need clinical staging to determine whether systemic lymphoma also is present. Similar processes may involve mucosal sites of the head and neck, constituting a spectrum that includes both neoplasms and reactive conditions (eg, traumatic ulcerative granuloma with stromal eosinophilia). However, no standard classification exists for mucosal CD30-positive T-cell lymphoproliferations. To improve our understanding of these processes, we identified 15 such patients and examined clinical presentation, treatment and outcome, morphology, phenotype using immunohistochemistry, and genetics using gene rearrangement studies and fluorescence in situ hybridization. The 15 patients (11 M, 4 F; mean age, 57 years) had disease involving the oral cavity/lip/tongue (9), orbit/conjunctiva (3) or nasal cavity/sinuses (3). Of 14 patients with staging data, 7 had mucosal disease only; 2 had mucocutaneous disease; and 5 had systemic anaplastic large cell lymphoma. Patients with mucosal or mucocutaneous disease only had a favorable prognosis and none developed systemic spread (follow-up, 4-93 months). Three of five patients with systemic disease died of lymphoma after 1-48 months. Morphologic and phenotypic features were similar regardless of extent of disease. One anaplastic lymphoma kinase-positive case was associated with systemic disease. Two cases had rearrangements of the DUSP22-IRF4 locus on chromosome 6p25.3, seen most frequently in primary cutaneous anaplastic large cell lymphoma. Our findings suggest mucosal CD30-positive T-cell lymphoproliferations share features with cutaneous CD30-positive T-cell lymphoproliferative disorders, and require clinical staging for stratification into primary and secondary types. Primary cases have clinicopathologic features closer to primary cutaneous disease than to systemic anaplastic large cell lymphoma, including indolent clinical behavior. Understanding the spectrum of mucosal CD30-positive T-cell lymphoproliferations is important to avoid possible overtreatment resulting from a diagnosis of overt T-cell lymphoma.
Collapse
|
36
|
Boi M, Stathis A, Zucca E, Inghirami G, Bertoni F. Genetic alterations in systemic nodal and extranodal non-cutaneous lymphomas derived from mature T cells and natural killer cells. Cancer Sci 2012; 103:1397-404. [PMID: 22568409 DOI: 10.1111/j.1349-7006.2012.02321.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 04/25/2012] [Accepted: 05/01/2012] [Indexed: 12/12/2022] Open
Abstract
Mature (peripheral) T-cell and natural killer (NK)-cell lymphomas comprise a series of rather different neoplasms. Based on morphologic, immunophenotypic, genetic, and clinical data, the World Health Organization classification recognizes more than 20 entities or provisional entities. The variable clinical presentations, the objective recognition and pathological stratification, the difficulties regarding treatment, and the hardly predictable response to therapy indicate that the management of these entities requires novel tools. In contrast to B-cell lymphomas or precursor T-cell neoplasms, few recurrent translocations have been identified so far in T-cell non-Hodgkin's and NK-cell lymphomas. Additionally, some of the entities recognized by the World Health Organization classification are very rare and very scarce molecular data are available for T-cell lymphomas. Here, we have reviewed published reports focusing on the genetic lesions and gene expression profiling underlying systemic nodal and extranodal non-cutaneous mature T-cell and NK-cell lymphomas. We also provide a summary of new agents in clinical development and outline some future directions.
Collapse
Affiliation(s)
- Michela Boi
- Institute of Oncology Research, Bellinzona, Switzerland
| | | | | | | | | |
Collapse
|
37
|
Salgado R, Gallardo F, Servitje O, Estrach T, García-Muret MP, Romagosa V, Florensa L, Serrano S, Salido M, Solé F, Pujol RM, Espinet B. Absence of TCR loci chromosomal translocations in cutaneous T-cell lymphomas. Cancer Genet 2011; 204:405-9. [PMID: 21872828 DOI: 10.1016/j.cancergen.2011.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 05/05/2011] [Accepted: 05/11/2011] [Indexed: 11/26/2022]
Abstract
Chromosomal aberrations involving T-cell receptor (TCR) gene loci have been described in several T-cell malignancies. In primary cutaneous T-cell lymphomas (CTCL), the frequency of these aberrations has not yet been well established. We analyzed TCR gene loci (TCRAD, TCRB, and TCRG) status in CTCLs by fluorescence in situ hybridization (FISH). Twenty-five patients with CTCLs were included in the study: 13 Sézary syndromes (SS), six tumoral stage mycosis fungoides (MFt), and six primary cutaneous anaplastic large cell lymphomas CD30(+) (cALCL-CD30(+)). FISH was performed with three break-apart probes flanking TCRAD (14q11), TCRB (7q34), and TCRG (7p14) loci in each case. TCR gene chromosomal rearrangements were not detected in any of the analyzed cases. Gains of TCRB and TCRG genes were observed in 23% (3 of 13) of SS and 50% (3 of 6) of MFt, reflecting the presence of trisomy and/or tetrasomy of chromosome 7 already detected by conventional cytogenetics and array comparative genetic hybridization techniques. TCR loci rearrangements are not frequent in CTCLs; however, we cannot exclude a pathogenic role in these malignancies.
Collapse
Affiliation(s)
- Rocío Salgado
- Laboratori de Citogenètica Molecular, Laboratori de Citologia Hematològica, Servei de Patologia, Hospital del Mar-Parc de Salut Mar, IMIM-Institut de Recerca de l'Hospital del Mar, Programa de Recerca en Càncer, GRETNHE, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Chisholm C, Cockerell CJ. Functions and uses of immunohistochemical stains in cutaneous infiltrates of hematopoietic origin: a review for the practicing dermatologist. J Cutan Med Surg 2011; 15:65-83. [PMID: 21477554 DOI: 10.2310/7750.2011.10024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Immunohistochemical stains, particularly those for cutaneous lymphomas, have similar-sounding names, which may lead to confusion among dermatologists who are not well versed in the terminology of the tools used for pathologic diagnosis. Also aiding in this is the fact that some familiar stains are constantly investigated for novel utility in different tumors, and a plethora of new stains regularly emerge in the peer-reviewed literature. OBJECTIVE To review the major stains encountered in dermatopathologic reports for cutaneous lymphomas. A select number of other stains are reviewed that are either new and under investigation in several cutaneous processes or have a new use described in recent reports. METHODS The peer-reviewed literature was searched and analyzed for the accepted purposes of using these markers. RESULTS All pertinent findings for these immunostains are reported with the purpose of educating the dermatology community. CONCLUSION This review serves as a reference to clarify potentially confusing immunohistochemical stains.
Collapse
Affiliation(s)
- Cary Chisholm
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | | |
Collapse
|
40
|
Kinney MC, Higgins RA, Medina EA. Anaplastic large cell lymphoma: twenty-five years of discovery. Arch Pathol Lab Med 2011; 135:19-43. [PMID: 21204709 DOI: 10.5858/2010-0507-rar.1] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT The year 2010 commemorates the 25th year since the seminal publication by Karl Lennert and Harald Stein and others in Kiel, West Germany, describing an unusual large cell lymphoma now known as anaplastic large cell lymphoma (ALCL). Investigators at many universities and hospitals worldwide have contributed to our current in-depth understanding of this unique peripheral T-cell lymphoma, which in its systemic form, principally occurs in children and young adults. OBJECTIVE To summarize our current knowledge of the clinical and pathologic features of systemic and primary cutaneous ALCL. Particular emphasis is given to the biology and pathogenesis of ALCL. DATA SOURCES Search of the medical literature (Ovid MEDLINE In-Process & Other Non-Indexed Citations and Ovid MEDLINE: 1950 to Present [National Library of Medicine]) and more than 20 years of diagnostic experience were used as the source of data for review. CONCLUSIONS Based on immunostaining for activation antigen CD30 and the presence of dysregulation of the anaplastic lymphoma kinase gene (2p23), the diagnosis of ALCL has become relatively straightforward for most patients. Major strides have been made during the last decade in our understanding of the complex pathogenesis of ALCL. Constitutive NPM-ALK signaling has been shown to drive oncogenesis via an intricate network of redundant and interacting pathways that regulate cell proliferation, cell fate, and cytoskeletal modeling. Nevertheless, pathomechanistic, therapeutic, and diagnostic challenges remain that should be resolved as we embark on the next generation of discovery.
Collapse
Affiliation(s)
- Marsha C Kinney
- Department of Pathology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229-3900, USA.
| | | | | |
Collapse
|
41
|
Sánchez-Schmidt JM, Salgado R, Servitje O, Gallardo F, Ortiz-Romero PL, Karpova MB, Zipser MC, García-Muret MP, Estrach T, Rodríguez-Pinilla SM, Climent F, Suela J, Ferreira BI, Cigudosa JC, Salido M, Barranco C, Serrano S, Dummer R, Solé F, Pujol RM, Espinet B. Primary cutaneous CD30+ anaplastic large-cell lymphomas show a heterogeneous genomic profile: an oligonucleotide arrayCGH approach. J Invest Dermatol 2010; 131:269-71. [PMID: 20844552 DOI: 10.1038/jid.2010.271] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Elder JT. What can psoriasis teach us about the genetic basis of cutaneous T-cell lymphoma? CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2010; 10 Suppl 2:S70-3. [PMID: 20826401 DOI: 10.3816/clml.2010.s.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- James T Elder
- Department of Dermatology, University of Michigan Medical School, Ann Arbor Ann Arbor Veteran Affairs Medical Center, MI
| |
Collapse
|
43
|
|
44
|
Cutaneous extranodal NK/T-cell lymphoma: a clinicopathologic study of 5 patients with array-based comparative genomic hybridization. Blood 2010; 116:165-70. [DOI: 10.1182/blood-2009-11-252957] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Extranodal natural killer/T-cell (ENK/T) lymphoma is a rare neoplasm, subcategorized into ENK/T-nasal (ENK/T-N) and ENK/T-nasal type (ENK/T-NT) lymphomas. ENK/T-NT lymphoma with initial presentation in the skin is known as primary cutaneous ENK/T-NT (PC-ENK/T-NT) lymphoma. The aim of this study was to investigate pathogenesis, genomic alterations, and prognosis of cutaneous ENK/T lymphomas to provide further insights into clinicopathologic features and genetic mechanism of lymphomagenesis. A retrospective case study of 5 white patients affected by ENK/T lymphoma (4 PC-ENK/T-NT and 1 ENK/T-N with cutaneous involvement) was performed. Most of the cases presented with multiple nodules and ulcerations localized on the extremities. A considerable percentage had disease in advanced stage with a 12-month survival rate of 40%. Genomic alterations were detected by array-based comparative genomic hybridization that showed gains of 1q, 7q and loss of 17p in the cases of PC-ENK/T-NT lymphomas and gain of 7q and loss of 9p, 12p, 12q in the case of ENK/T-N lymphoma. In conclusion, ENK/T lymphoma is a very aggressive entity, and, in our cases, the exclusively cutaneous presentation was not associated with a better prognosis. The results of our array comparative genomic hybridization analysis could be useful to better define the different ENK/T lymphoma subgroups with cutaneous involvement.
Collapse
|
45
|
Wozniak MB, Piris MA. Cutaneous T-cell lymphoma: two faces of the same coin. J Invest Dermatol 2010; 130:348-51. [PMID: 20081890 DOI: 10.1038/jid.2009.373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Primary cutaneous anaplastic large-cell lymphoma (C-ALCL) and cutaneous peripheral T-cell lymphoma not otherwise specified (C-PTL-NOS) are cutaneous T-cell lymphomas with distinct clinical behaviors. Whereas C-ALCL has a favorable prognosis with frequent spontaneous disease regression, C-PTL-NOS runs a more aggressive course. The molecular pathogenesis of these cutaneous T-cell lymphoma types has not yet been studied in detail. In this issue, van Kester et al. report new imbalances that could contribute to our understanding of the differences between these two lymphoma types.
Collapse
Affiliation(s)
- Magdalena B Wozniak
- Molecular Pathology Program, Spanish National Cancer Research Centre, Madrid, Spain
| | | |
Collapse
|
46
|
Genome-wide analysis of cutaneous T-cell lymphomas identifies three clinically relevant classes. J Invest Dermatol 2010; 130:1707-18. [PMID: 20130593 DOI: 10.1038/jid.2010.8] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This study was undertaken to identify recurrent genetic alterations of the three main types of cutaneous T-cell lymphomas (CTCLs): mycosis fungoides (MF), Sézary syndrome (SS), and cutaneous anaplastic large-cell lymphoma (CALCL). Using array-based comparative genomic hybridization, the molecular cytogenetic profiles of 72 samples obtained from 58 patients with CTCL corresponding to 24 transformed MF (T-MF), 16 SS, and 18 CALCLs were determined. T-MF was characterized by gains of 1q25-31, 7p22-11.2, 7q21, 7q31, and 17q12, and losses of 9p21, 10p11.2, and 10q26. SS exhibited gains of 8q23-24.3 and 17q23-24, as well as losses of 9p21, 10p12-11.2, 10q22-24, 10q25-26, and 17p13-q11.1. Finally, CALCL exhibited 6q27 and 13q34 losses. Such imbalances were statistically associated with one CTCL subtype. Unsupervised hierarchical clustering defined three categories of clinical relevance: (1) CALCL apart from epidermotropic-CTCL, (2) an SS-only category, and (3) a mixed category with T-MF and SS cases, with both primary and secondary SS cases. In rare cases, the genetic classification did not correspond to the inclusion diagnosis, possibly reflecting the association of two diseases in the same patient or initial misdiagnosis according to follow-up. Finally, different samples in the same patient clustered together, showing reproducibility of such a classifier.
Collapse
|