1
|
Sundberg JP, Wang EHC, McElwee KJ. Current Protocols: Alopecia Areata Mouse Models for Drug Efficacy and Mechanism Studies. Curr Protoc 2024; 4:e1113. [PMID: 39105684 DOI: 10.1002/cpz1.1113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Alopecia areata is the second most common form of hair loss in humans after androgenetic alopecia. Although a variety of animal models for alopecia areata have been described, currently the C3H/HeJ mouse model is the most commonly used and accepted. Spontaneous hair loss occurs in 15%-25% of older mice in which the lesions wax and wane, similar to the human disease, with alopecia being more common and severe in female mice. Full-thickness skin grafts from mice with spontaneous alopecia areata to young, normal-haired, histocompatible mice provide a highly reproducible model with progressive lesions that makes it useful for drug efficacy and mechanism-based studies. As alopecia areata is a cell-mediated autoimmune disease, transfer of cultured lymph node cells from affected mice to unaffected, histocompatible recipients also promotes disease development and provides an alternative, nonsurgical protocol. Protocols are presented to produce these models such that they can be used to study alopecia areata and to develop novel drug therapies. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Full-thickness skin grafts to reproducibly induce alopecia areata in C3H/HeJ mice Basic Protocol 2: Adoptive transfer of cultured lymphoid cells provides a nonsurgical method to induce alopecia areata in C3H/HeJ mice.
Collapse
Affiliation(s)
- John P Sundberg
- The Jackson Laboratory, Bar Harbor, Maine
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eddy H C Wang
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin J McElwee
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Skin Science, University of Bradford, Bradford, United Kingdom
| |
Collapse
|
2
|
Sundberg JP, Rice RH. Phenotyping mice with skin, hair, or nail abnormalities: A systematic approach and methodologies from simple to complex. Vet Pathol 2023; 60:829-842. [PMID: 37191004 DOI: 10.1177/03009858231170329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The skin and adnexa can be difficult to interpret because they change dramatically with the hair cycle throughout life. However, a variety of methods are commonly available to collect skin and perform assays that can be useful for figuring out morphological and molecular changes. This overview provides information on basic approaches to evaluate skin and its molecular phenotype, with references for more detail, and interpretation of results on the skin and adnexa in the mouse. These approaches range from mouse genetic nomenclature, setting up a cutaneous phenotyping study, skin grafts, hair follicle reconstitution, wax stripping, electron microscopy, and Köbner reaction to very specific approaches such as lipid and protein analyses on a large scale.
Collapse
Affiliation(s)
- John P Sundberg
- The Jackson Laboratory, Bar Harbor, ME
- Vanderbilt University Medical Center, Nashville, TN
| | | |
Collapse
|
3
|
Buket Basmanav F, Betz RC. Recent advances in the genetics of alopecia areata. MED GENET-BERLIN 2023; 35:15-22. [PMID: 38835423 PMCID: PMC10842544 DOI: 10.1515/medgen-2023-2004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Alopecia areata (AA) is a common autoimmune-mediated hair loss disorder in humans with an estimated lifetime risk of approximately 2 %. Episodes of hair loss usually begin with isolated hairless patches that may progress to complete hair loss over the entire body. A familial occurrence of AA is well established, with recurrence risks of about 6-8 % in first-degree relatives. AA is a multifactorial disorder involving both environmental and genetic risk factors. Previous research has identified 14 susceptibility loci, most of which implicate genes involved in the immune response. The following review presents a summary of the latest findings from genome-wide association, sequencing and gene expression studies of AA, as well as their contribution to the recent therapeutic developments.
Collapse
Affiliation(s)
- F. Buket Basmanav
- University of BonnInstitute of Human Genetics, Medical Faculty & University Hospital BonnVenusberg Campus 1, Gebäude 1353127BonnDeutschland
| | - Regina C. Betz
- University of BonnInstitute of Human Genetics, Medical Faculty & University Hospital BonnVenusberg Campus 1, Gebäude 1353127BonnDeutschland
| |
Collapse
|
4
|
Basmanav FB, Betz RC. Translational impact of omics studies in alopecia areata: recent advances and future perspectives. Expert Rev Clin Immunol 2022; 18:845-857. [PMID: 35770930 DOI: 10.1080/1744666x.2022.2096590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Alopecia areata (AA) is a non-scarring, hair loss disorder and a common autoimmune-mediated disease with an estimated lifetime risk of about 2%. To date, the treatment of AA is mainly based on suppression or stimulation of the immune response. Genomics and transcriptomics studies generated important insights into the underlying pathophysiology, enabled discovery of molecular disease signatures, which were used in some of the recent clinical trials to monitor drug response and substantiated the consideration of new therapeutic modalities for the treatment of AA such as abatacept, dupilumab, ustekinumab and Janus Kinase (JAK) inhibitors. AREAS COVERED In this review, genomics and transcriptomics studies in AA are discussed in detail with particular emphasis on their past and prospective translational impacts. Microbiome studies are also briefly introduced. EXPERT OPINION The generation of large datasets using the new high-throughput technologies has revolutionized medical research and AA has also benefited from the wave of omics studies. However, the limitations associated with JAK inhibitors and clinical heterogeneity in AA patients underscore the necessity for continuing omics research in AA for discovery of novel therapeutic modalities and development of clinical tools for precision medicine.
Collapse
Affiliation(s)
- F Buket Basmanav
- Medical Faculty & University Hospital Bonn, Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Regina C Betz
- Medical Faculty & University Hospital Bonn, Institute of Human Genetics, University of Bonn, Bonn, Germany
| |
Collapse
|
5
|
Bertolini M, McElwee K, Gilhar A, Bulfone‐Paus S, Paus R. Hair follicle immune privilege and its collapse in alopecia areata. Exp Dermatol 2020; 29:703-725. [DOI: 10.1111/exd.14155] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/18/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022]
Affiliation(s)
| | - Kevin McElwee
- Monasterium Laboratory Münster Germany
- Centre for Skin Sciences University of Bradford Bradford UK
- Department of Dermatology and Skin Science University of British Columbia Vancouver British Columbia Canada
| | - Amos Gilhar
- Laboratory for Skin Research Rappaport Faculty of Medicine Technion‐Israel Institute of Technology Haifa Israel
| | - Silvia Bulfone‐Paus
- Monasterium Laboratory Münster Germany
- Centre for Dermatology Research University of Manchester and NIHR Manchester Biomedical Research Centre Manchester UK
| | - Ralf Paus
- Monasterium Laboratory Münster Germany
- Centre for Dermatology Research University of Manchester and NIHR Manchester Biomedical Research Centre Manchester UK
- Dr. Philip Frost Department of Dermatology & Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
| |
Collapse
|
6
|
Broadley D, McElwee KJ. A "hair-raising" history of alopecia areata. Exp Dermatol 2020; 29:208-222. [PMID: 31960494 DOI: 10.1111/exd.14073] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/19/2019] [Accepted: 01/09/2020] [Indexed: 12/15/2022]
Abstract
A 3500-year-old papyrus from ancient Egypt provides a list of treatments for many diseases including "bite hair loss," most likely alopecia areata (AA). The treatment of AA remained largely unchanged for over 1500 years. In 30 CE, Celsus described AA presenting as scalp alopecia in spots or the "windings of a snake" and suggested treatment with caustic compounds and scarification. The first "modern" description of AA came in 1813, though treatment still largely employed caustic agents. From the mid-19th century onwards, various hypotheses of AA development were put forward including infectious microbes (1843), nerve defects (1858), physical trauma and psychological stress (1881), focal inflammation (1891), diseased teeth (1902), toxins (1912) and endocrine disorders (1913). The 1950s brought new treatment developments with the first use of corticosteroid compounds (1952), and the first suggestion that AA was an autoimmune disease (1958). Research progressively shifted towards identifying hair follicle-specific autoantibodies (1995). The potential role of lymphocytes in AA was made implicit with immunohistological studies (1980s). However, studies confirming their functional role were not published until the development of rodent models (1990s). Genetic studies, particularly genome-wide association studies, have now come to the forefront and open up a new era of AA investigation (2000s). Today, AA research is actively focused on genetics, the microbiome, dietary modulators, the role of atopy, immune cell types in AA pathogenesis, primary antigenic targets, mechanisms by which immune cells influence hair growth, and of course the development of new treatments based on these discoveries.
Collapse
Affiliation(s)
- David Broadley
- Centre for Skin Sciences, University of Bradford, Bradford, UK
| | - Kevin J McElwee
- Centre for Skin Sciences, University of Bradford, Bradford, UK.,Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Rajabi F, Drake LA, Senna MM, Rezaei N. Alopecia areata: a review of disease pathogenesis. Br J Dermatol 2018; 179:1033-1048. [PMID: 29791718 DOI: 10.1111/bjd.16808] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Alopecia areata is a disorder that results in nonscarring hair loss. The psychological impact can be significant, leading to feelings of depression and social isolation. Objectives In this article, we seek to review the pathophysiological mechanisms proposed in recent years in a narrative fashion. METHODS We searched MEDLINE and Scopus for articles related to alopecia areata, with a particular emphasis on its pathogenesis. RESULTS The main theory of alopecia areata pathogenesis is that it is an autoimmune phenomenon resulting from a disruption in hair follicle immune privilege. What causes this breakdown is an issue of debate. Some believe that a stressed hair follicle environment triggers antigen presentation, while others blame a dysregulation in the central immune system entangling the follicles. Evidence for the latter theory is provided by animal studies, as well investigations around the AIRE gene. Different immune-cell lines including plasmacytoid dendritic cells, natural killer cells and T cells, along with key molecules such as interferon-γ, interleukin-15, MICA and NKG2D, have been identified as contributing to the autoimmune process. CONCLUSIONS Alopecia areata remains incurable, although it has been studied for years. Available treatment options at best are beneficial for milder cases, and the rate of relapse is high. Understanding the exact mechanisms of hair loss in alopecia areata is therefore of utmost importance to help identify potential therapeutic targets.
Collapse
Affiliation(s)
- F Rajabi
- Department of Dermatology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - L A Drake
- Massachusetts General Hospital, Harvard Medical School, MA, U.S.A
| | - M M Senna
- Massachusetts General Hospital, Harvard Medical School, MA, U.S.A
| | - N Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Sheffield, U.K
| |
Collapse
|
8
|
Darwin E, Hirt PA, Fertig R, Doliner B, Delcanto G, Jimenez JJ. Alopecia Areata: Review of Epidemiology, Clinical Features, Pathogenesis, and New Treatment Options. Int J Trichology 2018; 10:51-60. [PMID: 29769777 PMCID: PMC5939003 DOI: 10.4103/ijt.ijt_99_17] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Alopecia areata (AA) is a complex autoimmune condition that causes nonscarring hair loss. It typically presents with sharply demarcated round patches of hair loss and may present at any age. In this article, we review the epidemiology, clinical features, pathogenesis, and new treatment options of AA, with a focus on the immunologic mechanism underlying the treatment. While traditional treatment options such as corticosteroids are moderately effective, a better understanding of the disease pathogenesis may lead to the development of new treatments that are more directed and effective against AA. Sources were gathered from PubMed, Embase, and the Cochrane database using the keywords: alopecia, alopecia areata, hair loss, trichoscopy, treatments, pathogenesis, and epidemiology.
Collapse
Affiliation(s)
- Evan Darwin
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Fl 33136, USA
| | - Penelope A Hirt
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Fl 33136, USA
| | - Raymond Fertig
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Fl 33136, USA
| | - Brett Doliner
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Fl 33136, USA
| | - Gina Delcanto
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Fl 33136, USA
| | - Joaquin J Jimenez
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Fl 33136, USA
| |
Collapse
|
9
|
Abstract
Alopecia areata is an autoimmune disorder characterized by transient, non-scarring hair loss and preservation of the hair follicle. Hair loss can take many forms ranging from loss in well-defined patches to diffuse or total hair loss, which can affect all hair-bearing sites. Patchy alopecia areata affecting the scalp is the most common type. Alopecia areata affects nearly 2% of the general population at some point during their lifetime. Skin biopsies of affected skin show a lymphocytic infiltrate in and around the bulb or the lower part of the hair follicle in the anagen (hair growth) phase. A breakdown of immune privilege of the hair follicle is thought to be an important driver of alopecia areata. Genetic studies in patients and mouse models have shown that alopecia areata is a complex, polygenic disease. Several genetic susceptibility loci were identified to be associated with signalling pathways that are important to hair follicle cycling and development. Alopecia areata is usually diagnosed based on clinical manifestations, but dermoscopy and histopathology can be helpful. Alopecia areata is difficult to manage medically, but recent advances in understanding the molecular mechanisms have revealed new treatments and the possibility of remission in the near future.
Collapse
Affiliation(s)
- C Herbert Pratt
- Department of Genetic Resource Sciences, The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Lloyd E King
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Angela M Christiano
- Departments of Dermatology and Genetics &Development, Columbia University, New York, New York, USA
| | - John P Sundberg
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Research and Development, The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine 04609-1500, USA
| |
Collapse
|
10
|
Gilhar A, Schrum AG, Etzioni A, Waldmann H, Paus R. Alopecia areata: Animal models illuminate autoimmune pathogenesis and novel immunotherapeutic strategies. Autoimmun Rev 2016; 15:726-35. [PMID: 26971464 DOI: 10.1016/j.autrev.2016.03.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/02/2016] [Indexed: 01/13/2023]
Abstract
One of the most common human autoimmune diseases, alopecia areata (AA), is characterized by sudden, often persisting and psychologically devastating hair loss. Animal models have helped greatly to elucidate critical cellular and molecular immune pathways in AA. The two most prominent ones are inbred C3H/HeJ mice which develop an AA-like hair phenotype spontaneously or after experimental induction, and healthy human scalp skin xenotransplanted onto SCID mice, in which a phenocopy of human AA is induced by injecting IL-2-stimulated PBMCs enriched for CD56+/NKG2D+ cells intradermally. The current review critically examines the pros and cons of the available AA animal models and how they have shaped our understanding of AA pathobiology, and the development of new therapeutic strategies. AA is thought to arise when the hair follicle's (HF) natural immune privilege (IP) collapses, inducing ectopic MHC class I expression in the HF epithelium and autoantigen presentation to autoreactive CD8+ T cells. In common with other autoimmune diseases, upregulation of IFN-γ and IL-15 is critically implicated in AA pathogenesis, as are NKG2D and its ligands, MICA, and ULBP3. The C3H/HeJ mouse model was used to identify key immune cell and molecular principles in murine AA, and proof-of-principle that Janus kinase (JAK) inhibitors are suitable agents for AA management in vivo, since both IFN-γ and IL-15 signal via the JAK pathway. Instead, the humanized mouse model of AA has been used to demonstrate the previously hypothesized key role of CD8+ T cells and NKG2D+ cells in AA pathogenesis and to discover human-specific pharmacologic targets like the potassium channel Kv1.3, and to show that the PDE4 inhibitor, apremilast, inhibits AA development in human skin. As such, AA provides a model disease, in which to contemplate general challenges, opportunities, and limitations one faces when selecting appropriate animal models in preclinical research for human autoimmune diseases.
Collapse
Affiliation(s)
- Amos Gilhar
- Skin Research Laboratory, Faculty of Medicine, Technion - Israel Institute of Technology, Flieman Medical Center, PO Box 9649, Haifa, Israel.
| | - Adam G Schrum
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Amos Etzioni
- Ruth Children Hospital, Haifa, Israel; Rappaport Medical School, Technion, Haifa, Israel
| | - Herman Waldmann
- Therapeutic Immunology Group, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Ralf Paus
- Centre for Dermatology Research, Inst. of Inflammation and Repair, University of Manchester, Manchester, UK; Department of Dermatology, University of Münster, Münster, Germany
| |
Collapse
|
11
|
Guo H, Cheng Y, Shapiro J, McElwee K. The role of lymphocytes in the development and treatment of alopecia areata. Expert Rev Clin Immunol 2015; 11:1335-51. [PMID: 26548356 DOI: 10.1586/1744666x.2015.1085306] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alopecia areata (AA) development is associated with both innate and adaptive immune cell activation, migration to peri- and intra-follicular regions, and hair follicle disruption. Both CD4(+) and CD8(+) lymphocytes are abundant in AA lesions; however, CD8(+) cytotoxic T lymphocytes are more likely to enter inside hair follicles, circumstantially suggesting that they have a significant role to play in AA development. Several rodent models recapitulate important features of the human autoimmune disease and demonstrate that CD8(+) cytotoxic T lymphocytes are fundamentally required for AA induction and perpetuation. However, the initiating events, the self-antigens involved, and the molecular signaling pathways, all need further exploration. Studying CD8(+) cytotoxic T lymphocytes and their fate decisions in AA development may reveal new and improved treatment approaches.
Collapse
Affiliation(s)
- Hongwei Guo
- a 1 Department of Dermatology and Skin Science, University of British Columbia, Vancouver, Canada.,b 2 Department of Dermatology, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, China
| | - Yabin Cheng
- a 1 Department of Dermatology and Skin Science, University of British Columbia, Vancouver, Canada
| | - Jerry Shapiro
- a 1 Department of Dermatology and Skin Science, University of British Columbia, Vancouver, Canada.,c 3 Department of Dermatology, New York University, Langone Medical Center, New York, USA
| | - Kevin McElwee
- a 1 Department of Dermatology and Skin Science, University of British Columbia, Vancouver, Canada.,d 4 Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
12
|
Sundberg JP, Berndt A, Silva KA, Kennedy VE, Sundberg BA, Everts HB, Rice RH, King LE. Alopecia areata: updates from the mouse perspective. J Investig Dermatol Symp Proc 2014; 16:S23-4. [PMID: 24326543 DOI: 10.1038/jidsymp.2013.6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alopecia areata (AA) is a cell-mediated autoimmune disease that targets actively growing hair follicles in mammals, including humans and mice. Development of the C3H/HeJ spontaneous mouse model AA nearly 20 years ago provided a much needed tool to test the hypotheses and ultimately serve as a preclinical model for drug testing. Discoveries in both human AA patients and the mouse model supported each other and lead to discoveries on the incredibly complex genetic basis of this disease. The discovery that A/J, MRL/MpJ, SJL/J, and SWR/J strains also develop AA now allows genome-wide association mapping studies to expand the list of genes underlying this disease. Potential new targets for unraveling the pathogenesis of AA include the role of retinoic acid metabolism in the severity of disease and hair shaft proteins that may be either the inciting antigen or ultimate target of the immune reaction leading to breakage of the shaft causing clinical alopecia. Comparing these model systems with human and mouse clinical disease, for both discovery and validation of the discoveries, continues to resolve the complex questions surrounding AA.
Collapse
Affiliation(s)
- John P Sundberg
- 1] Department of Research, The Jackson Laboratory, Bar Harbor, Maine, USA [2] Division of Dermatology, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Paus R, Bertolini M. The role of hair follicle immune privilege collapse in alopecia areata: status and perspectives. J Investig Dermatol Symp Proc 2013; 16:S25-7. [PMID: 24326544 DOI: 10.1038/jidsymp.2013.7] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Alopecia areata (AA) may represent a CD8+T cell-mediated, organ-specific autoimmune disease in which as yet elusive autoantigens are recognized, once they become exposed by ectopic major histocompatibility complex class I expression by anagen hair follicles (HFs) that have lost their relative immune privilege (IP). On this basis, AA research is chiefly challenged with identifying the autoreactive CD8+T cells and their cognate autoantigens as well as key inducers of HF-IP collapse and "HF-IP guardians" that prevent and/or can restore IP collapse. However, natural killer group 2D-positive (NKG2D+) cells (incl. NK, NKT, and CD8+T cells) and NKG2D-activating ligands from the MICA (MHC I-related chain A) family may also have a key role in AA pathogenesis, as a massive infiltrate of IFN-γ-secreting NKG2D+ cells alone suffices to induce the AA phenotype. Therefore, we speculate that AA may represent a stereotypic, but distinct HF response pattern to inflammatory insults associated with HF-IP collapse.
Collapse
Affiliation(s)
- Ralf Paus
- 1] Department of Dermatology, University of Lübeck, Lübeck, Germany [2] Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | | |
Collapse
|
14
|
[Alopecia areata]. Hautarzt 2013; 64:806-9. [PMID: 24177663 DOI: 10.1007/s00105-013-2576-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The epidemiology of alopecia areata as well as murine models of this disease and genome-wide association studies support the concept of alopecia areata as an autoimmune disease. In addition, the genome-wide association studies have led to the identification of new potential therapeutic targets such as CTLA4; these results have already led to the initiation of clinical studies, for example, with abatacept. Currently topical and intralesional corticosteroids as well as immunotherapy with diphenylcyclopropenone are most common therapeutic approaches.
Collapse
|
15
|
Silva KA, Sundberg JP. Surgical methods for full-thickness skin grafts to induce alopecia areata in C3H/HeJ mice. Comp Med 2013; 63:392-7. [PMID: 24210015 PMCID: PMC3796749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/02/2013] [Accepted: 04/15/2013] [Indexed: 06/02/2023]
Abstract
Alopecia areata is a cell-mediated autoimmune disease of humans and many domestic and laboratory animal species. C3H/HeJ inbred mice spontaneously develop alopecia areata at a low frequency (approximately 20% by 12 mo of age). Transferring full-thickness skin grafts from affected, older mice to young mice of the same strain reliably reproduces alopecia areata, thus enabling investigators to study disease pathogenesis or intervention with a variety of therapeutic approaches. We here describe in detail how to perform full-thickness skin grafts and the follow-up procedures necessary to consistently generate mice with alopecia areata. These engrafted mice can be used to study the pathogenesis of cell-mediated autoimmune disease and for drug-efficacy trials. This standard protocol can be used for many other purposes when studying abnormal skin phenotypes in laboratory mice.
Collapse
|
16
|
McElwee KJ, Gilhar A, Tobin DJ, Ramot Y, Sundberg JP, Nakamura M, Bertolini M, Inui S, Tokura Y, Jr LEK, Duque-Estrada B, Tosti A, Keren A, Itami S, Shoenfeld Y, Zlotogorski A, Paus R. What causes alopecia areata? Exp Dermatol 2013; 22:609-26. [PMID: 23947678 PMCID: PMC4094373 DOI: 10.1111/exd.12209] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The pathobiology of alopecia areata (AA), one of the most frequent autoimmune diseases and a major unsolved clinical problem, has intrigued dermatologists, hair biologists and immunologists for decades. Simultaneously, both affected patients and the physicians who take care of them are increasingly frustrated that there is still no fully satisfactory treatment. Much of this frustration results from the fact that the pathobiology of AA remains unclear, and no single AA pathogenesis concept can claim to be universally accepted. In fact, some investigators still harbour doubts whether this even is an autoimmune disease, and the relative importance of CD8(+) T cells, CD4(+) T cells and NKGD2(+) NK or NKT cells and the exact role of genetic factors in AA pathogenesis remain bones of contention. Also, is AA one disease, a spectrum of distinct disease entities or only a response pattern of normal hair follicles to immunologically mediated damage? During the past decade, substantial progress has been made in basic AA-related research, in the development of new models for translationally relevant AA research and in the identification of new therapeutic agents and targets for future AA management. This calls for a re-evaluation and public debate of currently prevalent AA pathobiology concepts. The present Controversies feature takes on this challenge, hoping to attract more skin biologists, immunologists and professional autoimmunity experts to this biologically fascinating and clinically important model disease.
Collapse
Affiliation(s)
- K. J. McElwee
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada
| | - A. Gilhar
- Laboratory for Skin, Research, Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa, Israel Marta Bertolini
| | - D. J. Tobin
- Centre for Skin Sciences, School of Life Sciences, University of Bradford, Bradford, West Yorkshire, BD7 1DP, UK
| | - Y. Ramot
- Department of Dermatology, Hadassah- Hebrew University Medical Center, Jerusalem 91120, Israel
| | - J. P. Sundberg
- The Jackson Laboratory, Bar Harbor, ME, USA; Division of Dermatology, Skin Disease Research Center, Vanderbilt University, Nashville, TN, USA
| | - M. Nakamura
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Japan Yoshiki Tokura
| | - M. Bertolini
- Department of Dermatology, University of Lübeck, Germany Yehuda Shoenfeld
| | - S. Inui
- Department of Regenerative Dermatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Y. Tokura
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - L. E. King Jr
- The Jackson Laboratory, Bar Harbor, ME, USA; Division of Dermatology, Skin Disease Research Center, Vanderbilt University, Nashville, TN, USA
| | - B. Duque-Estrada
- Instituto de Dermatologia Prof. Rubem David Azulay, Rio de Janeiro, Brazil Antonella Tosti
| | - A Tosti
- Department of Dermatology, University of Miami, Miami, FL, USA
| | - A. Keren
- Laboratory for Skin, Research, Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa, Israel Marta Bertolini
| | - S. Itami
- Department of Regenerative Dermatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Y. Shoenfeld
- Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer and Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - A. Zlotogorski
- Department of Dermatology, Hadassah- Hebrew University Medical Center, Jerusalem 91120, Israel
| | - R. Paus
- Department of Dermatology, University of Lübeck, Germany; Institute of Inflammation and Repair, University of Manchester, Manchester, UK ,
| |
Collapse
|
17
|
Duncan FJ, Silva KA, Johnson C, King B, Szatkiewicz JP, Kamdar S, Ong DE, Napoli JL, Wang J, King LE, Whiting DA, McElwee KJ, Sundberg JP, Everts HB. Endogenous retinoids in the pathogenesis of alopecia areata. J Invest Dermatol 2013; 133:334-43. [PMID: 23014334 PMCID: PMC3546144 DOI: 10.1038/jid.2012.344] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Alopecia areata (AA) is an autoimmune disease that attacks anagen hair follicles. Gene array in graft-induced C3H/HeJ mice revealed that genes involved in retinoic acid (RA) synthesis were increased, whereas RA degradation genes were decreased in AA compared with sham controls. This was confirmed by immunohistochemistry in biopsies from patients with AA and both mouse and rat AA models. RA levels were also increased in C3H/HeJ mice with AA. C3H/HeJ mice were fed a purified diet containing one of the four levels of dietary vitamin A or an unpurified diet 2 weeks before grafting and disease progression followed. High vitamin A accelerated AA, whereas mice that were not fed vitamin A had more severe disease by the end of the study. More hair follicles were in anagen in mice fed high vitamin A. Both the number and localization of granzyme B-positive cells were altered by vitamin A. IFNγ was also the lowest and IL13 highest in mice fed high vitamin A. Other cytokines were reduced and chemokines increased as the disease progressed, but no additional effects of vitamin A were seen. Combined, these results suggest that vitamin A regulates both the hair cycle and immune response to alter the progression of AA.
Collapse
Affiliation(s)
- F. Jason Duncan
- Department of Nutrition, The Ohio State University, Columbus, OH
| | | | - Charles Johnson
- Department of Nutrition, The Ohio State University, Columbus, OH
| | | | | | | | - David E. Ong
- Vanderbilt University Medical Center, Nashville, TN
| | | | | | | | | | | | - John P. Sundberg
- The Jackson Laboratory, Bar Harbor, ME
- Vanderbilt University Medical Center, Nashville, TN
| | - Helen B. Everts
- Department of Nutrition, The Ohio State University, Columbus, OH
| |
Collapse
|
18
|
|
19
|
Jabbari A, Petukhova L, Cabral RM, Clynes R, Christiano AM. Genetic basis of alopecia areata: a roadmap for translational research. Dermatol Clin 2012; 31:109-17. [PMID: 23159180 DOI: 10.1016/j.det.2012.08.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alopecia areata (AA) is a recurrent autoimmune type of hair loss that affects about 5.3 million people in the United States alone. Despite being the most prevalent autoimmune disease, the molecular and cellular mechanisms underlying this complex disease are still poorly understood, and rational treatments are lacking. Further efforts are necessary to clearly pinpoint the causes and molecular pathways leading to this disease and to find evidence-based treatments for AA. The authors focus on the central role of genetics for gaining insight into disease pathogenesis and setting the stage for the rational development of novel effective therapeutic approaches.
Collapse
Affiliation(s)
- Ali Jabbari
- Department of Dermatology, Russ Berrie Medical Science Pavilion, Columbia University, 1150 Saint Nicholas Avenue, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|