1
|
Querfeld C, Palmer J, Han Z, Wu X, Yuan YC, Chen MH, Su C, Tsai NC, Smith DL, Hammond SN, Crisan L, Song JY, Pillai R, Rosen ST, Zain J. Phase 1 trial of durvalumab (anti-PD-L1) combined with lenalidomide in relapsed/refractory cutaneous T-cell lymphoma. Blood Adv 2025; 9:2247-2260. [PMID: 39951620 PMCID: PMC12088755 DOI: 10.1182/bloodadvances.2024014655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
ABSTRACT Selective targeting of the functionally exhausted malignant T cells in cutaneous T-cell lymphoma (CTCL) and distinct cells within the tumor microenvironment (TME) via programmed cell death 1/programmed cell death ligand 1 blockade (durvalumab) may restore an antitumor immune response. The oral immunomodulator lenalidomide, which has activity in CTCL, may enhance durvalumab immune checkpoint blockade. Our phase 1/2 clinical trial of durvalumab and lenalidomide in patients with refractory/advanced CTCL sought to assess the safety and tolerability and to identify the maximum tolerated dose and recommended phase 2 dose (RP2D) of lenalidomide plus fixed-dose durvalumab. Secondary and tertiary objectives were to investigate the efficacy and effects on the TME. Thirteen patients were evaluable for toxicities and 12 for dose decisions and response. No serious adverse events (AEs) or dose-limiting toxicities (DLTs) were observed during cycles 1 to 3 (DLT evaluation period), and dose level 3 was identified as the RP2D. The most frequent AEs were tumor flare, fatigue, neutropenia, and leukopenia. Three patients developed grade 1 or 2 autoimmune thyroiditis that resolved with treatment. Best overall and skin response rates were 58.3% (95% confidence interval (95% CI), 27.7-84.8%) and 75% (95% CI: 42.8-94.5%), respectively. The median cycles of treatment were 11, and the median duration of response was 25.5 months. The combination showed clinical activity with 7 partial responses and 4 stable disease. Potentially predictive immune signatures were downregulation of -α signaling via NF-κB, interferon gamma, and phosphoinositide 3 kinase-AKT-mammalian target of rapamycin signaling pathways in responders and upregulation of MYC targets and proinflammatory pathways in nonresponders. Profiling of immune cell compositions revealed changes in individual immune cell clusters based on treatment response. This trial was registered at www.ClinicalTrials.gov as #NCT03011814.
Collapse
Affiliation(s)
- Christiane Querfeld
- Division of Dermatology, City of Hope, Duarte, CA
- Department of Pathology, City of Hope, Duarte, CA
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA
- Beckman Research Institute, City of Hope, Duarte, CA
| | - Joycelynne Palmer
- Beckman Research Institute, City of Hope, Duarte, CA
- Division of Biostatistics, City of Hope, Duarte, CA
- Department of Computational and Quantitative Medicine, City of Hope, Duarte, CA
| | - Zhen Han
- Department of Pathology, City of Hope, Duarte, CA
- Beckman Research Institute, City of Hope, Duarte, CA
| | - Xiwei Wu
- Beckman Research Institute, City of Hope, Duarte, CA
- Department of Computational and Quantitative Medicine, City of Hope, Duarte, CA
- Integrative Genomics Core, City of Hope, Duarte, CA
| | - Yate-Ching Yuan
- Beckman Research Institute, City of Hope, Duarte, CA
- Department of Computational and Quantitative Medicine, City of Hope, Duarte, CA
- Department of Translational Bioinformatics, Center for Informatics, City of Hope, Duarte, CA
| | - Min-Hsuan Chen
- Beckman Research Institute, City of Hope, Duarte, CA
- Department of Computational and Quantitative Medicine, City of Hope, Duarte, CA
| | - Chingyu Su
- Department of Pathology, City of Hope, Duarte, CA
- Beckman Research Institute, City of Hope, Duarte, CA
| | - Ni-Chun Tsai
- Beckman Research Institute, City of Hope, Duarte, CA
- Division of Biostatistics, City of Hope, Duarte, CA
| | - D. Lynne Smith
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA
| | | | - Liliana Crisan
- Division of Dermatology, City of Hope, Duarte, CA
- Beckman Research Institute, City of Hope, Duarte, CA
| | - Joo Y. Song
- Department of Pathology, City of Hope, Duarte, CA
| | - Raju Pillai
- Department of Pathology, City of Hope, Duarte, CA
| | - Steven T. Rosen
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA
- Beckman Research Institute, City of Hope, Duarte, CA
| | - Jasmine Zain
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA
| |
Collapse
|
2
|
Martínez Villarreal A, Gantchev J, Xie P, Lefrançois P, Ramchatesingh B, Litvinov IV. Memory T-Cell Phenotype in Cutaneous T-Cell Lymphoma Is Modified by Germline Gene Gametocyte Specific Factor 1. Exp Dermatol 2025; 34:e70123. [PMID: 40369846 PMCID: PMC12078864 DOI: 10.1111/exd.70123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 04/10/2025] [Accepted: 05/01/2025] [Indexed: 05/16/2025]
Abstract
Cutaneous T-cell lymphoma (CTCL) is a heterogeneous group of lymphoproliferative disorders characterised by skin infiltration by malignant memory T cells. While most patients will present with an indolent disease, others will follow a highly aggressive clinical course. Currently, defining disease prognosis remains challenging. Ectopic expression of gametocyte-specific factor 1 (GTSF1) has emerged as a potential prognostic biomarker. However, its contribution to CTCL carcinogenesis remains unknown. Here, we report that GTSF1 contributes to carcinogenesis by partially modifying the memory/effector phenotype of the malignant T cells. GTSF1 knockdown in CTCL cells led to T-cell activation and production of IFNγ and TNFα. Advanced stages of the disease are associated with decreased production of these cytokines. Notably, we show that patients classified with high expression of GTSF1 are associated with a worse disease prognosis. Taken together, our findings indicate that GTSF1 expression in CTCL cells allows them to acquire memory T-cell phenotype. Malignant memory T cells have a decreased production of immune-responsive cytokines, leading to a diminished immune response and disease progression. GTSF1 is an important candidate as a prognostic biomarker. Furthermore, understanding the specific function of GTSF1 might help develop novel targeted treatment options for CTCL patients.
Collapse
Affiliation(s)
- Amelia Martínez Villarreal
- Faculty of Medicine and Health Sciences, Research Institute of the McGill University Health CentreMcGill UniversityMontrealQuebecCanada
- Division of Experimental Medicine, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
| | - Jennifer Gantchev
- Department of NeurosurgeryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Pingxing Xie
- Division of Dermatology, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
| | - Philippe Lefrançois
- Division of Experimental Medicine, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
- Division of Dermatology, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
- Lady Davis Institute for Medical ResearchJewish General Hospital, McGill UniversityMontrealQuebecCanada
| | - Brandon Ramchatesingh
- Faculty of Medicine and Health Sciences, Research Institute of the McGill University Health CentreMcGill UniversityMontrealQuebecCanada
- Division of Experimental Medicine, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
| | - Ivan V. Litvinov
- Faculty of Medicine and Health Sciences, Research Institute of the McGill University Health CentreMcGill UniversityMontrealQuebecCanada
- Division of Experimental Medicine, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
- Division of Dermatology, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
3
|
Pukhalskaya T, Finkelstein M, Miyake-Caballero DA, Tetzlaff MT, North JP, Cohen JN. Cytokine Profiling of Erythroderma Biopsies Reveals Types 2 and 17 Immune Activation Status. J Cutan Pathol 2025; 52:235-243. [PMID: 39665210 DOI: 10.1111/cup.14775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/25/2024] [Accepted: 12/01/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Erythroderma is a dermatologic condition characterized by widespread red and scaly skin. The causes include, but are not limited to, psoriasis, eczema, drug eruptions, pityriasis rubra pilaris (PRP), and cutaneous T-cell lymphoma. Most of these are typified by Type 2 (e.g., eczema) or Type 17 (e.g., psoriasis) immune activation. However, since the clinicopathologic features of erythroderma can be nonspecific, assays that determine the underlying immune activation status are desirable. METHODS IL-13 RNA in situ hybridization and IL-36 immunohistochemistry were performed on 30 specimens of erythroderma, to ascertain Type 2 and Type 17 immune signatures, respectively. RESULTS Specimens of erythrodermic psoriasis and PRP showed strong expression of IL-36 and less than one IL-13-positive cell per millimeter. Conversely, those of spongiotic dermatitis showed low expression of IL-36 and greater than one IL-13-positive cell per millimeter. Most specimens of spongiotic, psoriasiform dermatitis demonstrated low IL-36 expression and greater than one IL-13-positive cell per millimeter, but a subset showed high IL-36 expression and greater than one IL-13-positive cell per millimeter. CONCLUSIONS We developed a Type 2/17 immune signature classifier based on cytokine profiling, which showed that cases of erythroderma fall within distinct categories of immune activation. This categorization may have utility in guiding clinical decisions.
Collapse
Affiliation(s)
- Tatsiana Pukhalskaya
- Department of Dermatology and Pathology, University of California, California, USA
| | | | | | - Michael T Tetzlaff
- Department of Dermatology and Pathology, University of California, California, USA
| | - Jeffrey P North
- Department of Dermatology and Pathology, University of California, California, USA
| | - Jarish N Cohen
- Department of Dermatology and Pathology, University of California, California, USA
| |
Collapse
|
4
|
Guglielmo A, Zengarini C, Agostinelli C, Motta G, Sabattini E, Pileri A. The Role of Cytokines in Cutaneous T Cell Lymphoma: A Focus on the State of the Art and Possible Therapeutic Targets. Cells 2024; 13:584. [PMID: 38607023 PMCID: PMC11012008 DOI: 10.3390/cells13070584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Cutaneous T cell lymphomas (CTCLs), encompassing mycosis fungoides (MF) and Sézary syndrome (SS), present a complex landscape influenced by cytokines and cellular responses. In this work, the intricate relationship between these inflammatory proteins and disease pathogenesis is examined, focusing on what is known at the clinical and therapeutic levels regarding the most well-known inflammatory mediators. An in-depth look is given to their possible alterations caused by novel immunomodulatory drugs and how they may alter disease progression. From this narrative review of the actual scientific landscape, Interferon-gamma (IFN-γ) emerges as a central player, demonstrating a dual role in both promoting and inhibiting cancer immunity, but the work navigates through all the major interleukins known in inflammatory environments. Immunotherapeutic perspectives are elucidated, highlighting the crucial role of the cutaneous microenvironment in shaping dysfunctional cell trafficking, antitumor immunity, and angiogenesis in MF, showcasing advancements in understanding and targeting the immune phenotype in CTCL. In summary, this manuscript aims to comprehensively explore the multifaceted aspects of CTCL, from the immunopathogenesis and cytokine dynamics centred around TNF-α and IFN-γ to evolving therapeutic modalities. Including all the major known and studied cytokines in this analysis broadens our understanding of the intricate interplay influencing CTCL, paving the way for improved management of this complex lymphoma.
Collapse
Affiliation(s)
- Alba Guglielmo
- Institute of Dermatology, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), 33100 Udine, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
| | - Corrado Zengarini
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Claudio Agostinelli
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Giovanna Motta
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Elena Sabattini
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Alessandro Pileri
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
5
|
Wallimann A, Schenk M. IL-32 as a potential biomarker and therapeutic target in skin inflammation. Front Immunol 2023; 14:1264236. [PMID: 37727785 PMCID: PMC10505650 DOI: 10.3389/fimmu.2023.1264236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/15/2023] [Indexed: 09/21/2023] Open
Abstract
IL-32 is a recently described cytokine that performs a variety of functions under inflammatory conditions. Serum IL-32 has been shown to be elevated in several diseases, including type 2 diabetes, cancer, systemic lupus erythematosus, HIV infection, and atopic diseases including atopic dermatitis. There are nine different isoforms of IL-32, with IL-32γ being the most biologically active one. The following review summarizes the different roles of the various IL-32 isoforms in the context of skin inflammation, with a focus on atopic dermatitis.
Collapse
Affiliation(s)
- Alexandra Wallimann
- Christine Kühne – Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Mirjam Schenk
- Christine Kühne – Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
- Institute of Tissue Medicine and Pathology, Experimental Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
IL-32 Supports the Survival of Malignant T Cells in Cutaneous T-cell Lymphoma. J Invest Dermatol 2022; 142:2285-2288.e2. [PMID: 35143819 PMCID: PMC9329172 DOI: 10.1016/j.jid.2022.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 12/07/2021] [Accepted: 01/04/2022] [Indexed: 11/24/2022]
|
7
|
Single-cell transcriptomics links malignant T cells to the tumor immune landscape in cutaneous T cell lymphoma. Nat Commun 2022; 13:1158. [PMID: 35241665 PMCID: PMC8894386 DOI: 10.1038/s41467-022-28799-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Cutaneous T cell lymphoma (CTCL) represents a heterogeneous group of non-Hodgkin lymphoma distinguished by the presence of clonal malignant T cells. The heterogeneity of malignant T cells and the complex tumor microenvironment remain poorly characterized. With single-cell RNA analysis and bulk whole-exome sequencing on 19 skin lesions from 15 CTCL patients, we decipher the intra-tumor and inter-lesion diversity of CTCL patients and propose a multi-step tumor evolution model. We further establish a subtyping scheme based on the molecular features of malignant T cells and their pro-tumorigenic microenvironments: the TCyEM group, demonstrating a cytotoxic effector memory T cell phenotype, shows more M2 macrophages infiltration, while the TCM group, featured by a central memory T cell phenotype and adverse patient outcome, is infiltrated by highly exhausted CD8+ reactive T cells, B cells and Tregs with suppressive activities. Our results establish a solid basis for understanding the nature of CTCL and pave the way for future precision medicine for CTCL patients.
Collapse
|
8
|
Gill RPK, Gantchev J, Martínez Villarreal A, Ramchatesingh B, Netchiporouk E, Akilov OE, Ødum N, Gniadecki R, Koralov SB, Litvinov IV. Understanding Cell Lines, Patient-Derived Xenograft and Genetically Engineered Mouse Models Used to Study Cutaneous T-Cell Lymphoma. Cells 2022; 11:cells11040593. [PMID: 35203244 PMCID: PMC8870189 DOI: 10.3390/cells11040593] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 02/04/2023] Open
Abstract
Cutaneous T cell lymphoma (CTCL) is a spectrum of lymphoproliferative disorders caused by the infiltration of malignant T cells into the skin. The most common variants of CTCL include mycosis fungoides (MF), Sézary syndrome (SS) and CD30+ Lymphoproliferative disorders (CD30+ LPDs). CD30+ LPDs include primary cutaneous anaplastic large cell lymphoma (pcALCL), lymphomatoid papulosis (LyP) and borderline CD30+ LPD. The frequency of MF, SS and CD30+ LPDs is ~40–50%, <5% and ~10–25%, respectively. Despite recent advances, CTCL remains challenging to diagnose. The mechanism of CTCL carcinogenesis still remains to be fully elucidated. Hence, experiments in patient-derived cell lines and xenografts/genetically engineered mouse models (GEMMs) are critical to advance our understanding of disease pathogenesis. To enable this, understanding the intricacies and limitations of each individual model system is highly important. Presently, 11 immortalized patient-derived cell lines and different xenograft/GEMMs are being used to study the pathogenesis of CTCL and evaluate the therapeutic efficacy of various treatment modalities prior to clinical trials. Gene expression studies, and the karyotyping analyses of cell lines demonstrated that the molecular profile of SeAx, Sez4, SZ4, H9 and Hut78 is consistent with SS origin; MyLa and HH resemble the molecular profile of advanced MF, while Mac2A and PB2B represent CD30+ LPDs. Molecular analysis of the other two frequently used Human T-Cell Lymphotropic Virus-1 (HTLV-1)+ cell lines, MJ and Hut102, were found to have characteristics of Adult T-cell Leukemia/Lymphoma (ATLL). Studies in mouse models demonstrated that xenograft tumors could be grown using MyLa, HH, H9, Hut78, PB2B and SZ4 cells in NSG (NOD Scid gamma mouse) mice, while several additional experimental GEMMs were established to study the pathogenesis, effect of drugs and inflammatory cytokines in CTCL. The current review summarizes cell lines and xenograft/GEMMs used to study and understand the etiology and heterogeneity of CTCL.
Collapse
Affiliation(s)
- Raman Preet Kaur Gill
- Division of Dermatology, McGill University, Montreal, QC H4A 3J1, Canada; (R.P.K.G.); (J.G.); (A.M.V.); (B.R.); (E.N.)
| | - Jennifer Gantchev
- Division of Dermatology, McGill University, Montreal, QC H4A 3J1, Canada; (R.P.K.G.); (J.G.); (A.M.V.); (B.R.); (E.N.)
| | - Amelia Martínez Villarreal
- Division of Dermatology, McGill University, Montreal, QC H4A 3J1, Canada; (R.P.K.G.); (J.G.); (A.M.V.); (B.R.); (E.N.)
| | - Brandon Ramchatesingh
- Division of Dermatology, McGill University, Montreal, QC H4A 3J1, Canada; (R.P.K.G.); (J.G.); (A.M.V.); (B.R.); (E.N.)
| | - Elena Netchiporouk
- Division of Dermatology, McGill University, Montreal, QC H4A 3J1, Canada; (R.P.K.G.); (J.G.); (A.M.V.); (B.R.); (E.N.)
| | - Oleg E. Akilov
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Niels Ødum
- Division of Dermatology, University of Alberta, Edmonton, AB T6G 2B7, Canada;
| | - Robert Gniadecki
- Skin Immunology Research Center, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| | - Sergei B. Koralov
- Department of Pathology, New York University, New York, NY 10016, USA;
| | - Ivan V. Litvinov
- Division of Dermatology, McGill University, Montreal, QC H4A 3J1, Canada; (R.P.K.G.); (J.G.); (A.M.V.); (B.R.); (E.N.)
- Correspondence: ; Tel.: +514-934-1934 (ext. 76140); Fax: +514-843-1570
| |
Collapse
|
9
|
Gu Y, Desai A, Corbett KD. Evolutionary Dynamics and Molecular Mechanisms of HORMA Domain Protein Signaling. Annu Rev Biochem 2022; 91:541-569. [PMID: 35041460 DOI: 10.1146/annurev-biochem-090920-103246] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Controlled assembly and disassembly of multi-protein complexes is central to cellular signaling. Proteins of the widespread and functionally diverse HORMA family nucleate assembly of signaling complexes by binding short peptide motifs through a distinctive safety-belt mechanism. HORMA proteins are now understood as key signaling proteins across kingdoms, serving as infection sensors in a bacterial immune system and playing central roles in eukaryotic cell cycle, genome stability, sexual reproduction, and cellular homeostasis pathways. Here, we describe how HORMA proteins' unique ability to adopt multiple conformational states underlies their functions in these diverse contexts. We also outline how a dedicated AAA+ ATPase regulator, Pch2/TRIP13, manipulates HORMA proteins' conformational states to activate or inactivate signaling in different cellular contexts. The emergence of Pch2/TRIP13 as a lynchpin for HORMA protein action in multiple genome-maintenance pathways accounts for its frequent misregulation in human cancers and highlights TRIP13 as a novel therapeutic target. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Yajie Gu
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, California, USA;
| | - Arshad Desai
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, California, USA; .,Section of Cell & Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California, USA.,Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, California, USA
| | - Kevin D Corbett
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
10
|
Rindler K, Jonak C, Alkon N, Thaler FM, Kurz H, Shaw LE, Stingl G, Weninger W, Halbritter F, Bauer WM, Farlik M, Brunner PM. Single-cell RNA sequencing reveals markers of disease progression in primary cutaneous T-cell lymphoma. Mol Cancer 2021; 20:124. [PMID: 34583709 PMCID: PMC8477535 DOI: 10.1186/s12943-021-01419-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/28/2021] [Indexed: 12/13/2022] Open
Abstract
Background In early-stage mycosis fungoides (MF), the most common primary cutaneous T-cell lymphoma, limited skin involvement with patches and plaques is associated with a favorable prognosis. Nevertheless, approximately 20–30% of cases progress to tumors or erythroderma, resulting in poor outcome. At present, factors contributing to this switch from indolent to aggressive disease are only insufficiently understood. Methods In patients with advanced-stage MF, we compared patches with longstanding history to newly developed plaques and tumors by using single-cell RNA sequencing, and compared results with early-stage MF as well as nonlesional MF and healthy control skin. Results Despite considerable inter-individual variability, lesion progression was uniformly associated with downregulation of the tissue residency markers CXCR4 and CD69, the heat shock protein HSPA1A, the tumor suppressors and immunoregulatory mediators ZFP36 and TXNIP, and the interleukin 7 receptor (IL7R) within the malignant clone, but not in benign T cells. This phenomenon was not only found in conventional TCR-αβ MF, but also in a case of TCR-γδ MF, suggesting a common mechanism across MF subtypes. Conversely, malignant cells in clinically unaffected skin from MF patients showed upregulation of these markers. Conclusions Our data reveal a specific panel of biomarkers that might be used for monitoring MF disease progression. Altered expression of these genes may underlie the switch in clinical phenotype observed in advanced-stage MF. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-021-01419-2.
Collapse
Affiliation(s)
- Katharina Rindler
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Constanze Jonak
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Natalia Alkon
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Felix M Thaler
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Harald Kurz
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Lisa E Shaw
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Georg Stingl
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Florian Halbritter
- St. Anna Children's Cancer Research Institute (CCRI), Zimmermannplatz 10, 1090, Vienna, Austria
| | - Wolfgang M Bauer
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Matthias Farlik
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Patrick M Brunner
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
11
|
Xiao MZX, Hennessey D, Iyer A, O'Keefe S, Zhang F, Sivanand A, Gniadecki R. Transcriptomic Changes During Stage Progression of Mycosis Fungoides. Br J Dermatol 2021; 186:520-531. [PMID: 34528236 DOI: 10.1111/bjd.20760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Mycosis fungoides (MF) is the most common cutaneous T cell lymphoma, which in the early patch/plaque stages runs an indolent course. However, ~25% of MF patients develop skin tumors, a hallmark of progression to the advanced stage and is associated with high mortality. The mechanisms involved in stage progression are poorly elucidated. METHODS We performed whole-transcriptome and whole-exome sequencing of malignant MF cells from skin biopsies obtained by laser-capture microdissection. We compared three types of MF lesions: early-stage plaques (ESP, n=12) as well as plaques and tumors from patients in late-stage disease (late-stage plaques [LSP], n=10, and tumors [TMR], n=15). Gene Ontology (GO) and KEGG analysis were used to determine pathway changes specific for different lesions which were linked to the recurrent somatic mutations overrepresented in MF tumors. RESULTS The key upregulated pathways during stage progression were those related to cell proliferation and survival (MEK/ERK, Akt-mTOR), Th2/Th9 signaling (IL4, STAT3, STAT5, STAT6), meiomitosis (CT45A1, CT45A3, STAG3, GTSF1, REC8) and DNA repair (PARP1, MYCN, OGG1). Principal coordinate clustering of the transcriptome revealed extensive gene expression differences between early (ESP) and advanced-stage lesions (LSP and TMR). LSP and TMR showed remarkable similarities at the level of the transcriptome, which we interpreted as evidence of cell percolation between lesions via hematogenous self-seeding. CONCLUSION Stage progression in MF is associated with Th2/Th9 polarization of malignant cells, activation of proliferation, survival, as well as increased genomic instability. Global transcriptomic changes in multiple lesions may be caused by hematogenous cell percolation between discrete skin lesions.
Collapse
Affiliation(s)
- M Z X Xiao
- Division of Dermatology, University of Alberta, Edmonton, AB, Canada
| | - D Hennessey
- Division of Dermatology, University of Alberta, Edmonton, AB, Canada
| | - A Iyer
- Division of Dermatology, University of Alberta, Edmonton, AB, Canada
| | - S O'Keefe
- Division of Dermatology, University of Alberta, Edmonton, AB, Canada
| | - F Zhang
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - A Sivanand
- Division of Dermatology, University of Alberta, Edmonton, AB, Canada
| | - R Gniadecki
- Division of Dermatology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
12
|
Ayaz G, Turan G, Olgun ÇE, Kars G, Karakaya B, Yavuz K, Demiralay ÖD, Can T, Muyan M, Yaşar P. A prelude to the proximity interaction mapping of CXXC5. Sci Rep 2021; 11:17587. [PMID: 34475492 PMCID: PMC8413330 DOI: 10.1038/s41598-021-97060-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/17/2021] [Indexed: 11/09/2022] Open
Abstract
CXXC5 is a member of the zinc-finger CXXC family proteins that interact with unmodified CpG dinucleotides through a conserved ZF-CXXC domain. CXXC5 is involved in the modulation of gene expressions that lead to alterations in diverse cellular events. However, the underlying mechanism of CXXC5-modulated gene expressions remains unclear. Proteins perform their functions in a network of proteins whose identities and amounts change spatiotemporally in response to various stimuli in a lineage-specific manner. Since CXXC5 lacks an intrinsic transcription regulatory function or enzymatic activity but is a DNA binder, CXXC5 by interacting with proteins could act as a scaffold to establish a chromatin state restrictive or permissive for transcription. To initially address this, we utilized the proximity-dependent biotinylation approach. Proximity interaction partners of CXXC5 include DNA and chromatin modifiers, transcription factors/co-regulators, and RNA processors. Of these, CXXC5 through its CXXC domain interacted with EMD, MAZ, and MeCP2. Furthermore, an interplay between CXXC5 and MeCP2 was critical for a subset of CXXC5 target gene expressions. It appears that CXXC5 may act as a nucleation factor in modulating gene expressions. Providing a prelude for CXXC5 actions, our results could also contribute to a better understanding of CXXC5-mediated cellular processes in physiology and pathophysiology.
Collapse
Affiliation(s)
- Gamze Ayaz
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey. .,Cancer and Stem Cell Epigenetics Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Gizem Turan
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey
| | - Çağla Ece Olgun
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey
| | - Gizem Kars
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey
| | - Burcu Karakaya
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey
| | - Kerim Yavuz
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey
| | - Öykü Deniz Demiralay
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey
| | - Tolga Can
- Department of Computer Engineering Middle, East Technical University, 06800, Ankara, Turkey
| | - Mesut Muyan
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey. .,Cansyl Laboratories, Middle East Technical University, 06800, Ankara, Turkey.
| | - Pelin Yaşar
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey.,Epigenetics and Stem Cell Biology Laboratory, Single Cell Dynamics Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
13
|
Motamedi M, Xiao MZX, Iyer A, Gniadecki R. Patterns of Gene Expression in Cutaneous T-Cell Lymphoma: Systematic Review of Transcriptomic Studies in Mycosis Fungoides. Cells 2021; 10:cells10061409. [PMID: 34204115 PMCID: PMC8229125 DOI: 10.3390/cells10061409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023] Open
Abstract
Mycosis fungoides (MF) is the most prevalent type of skin lymphoma. In its early stages, it has a favorable prognosis. However, in its late stages, it is associated with an increased risk of mortality. This systematic review aimed to identify the transcriptomic changes involved in MF pathogenesis and progression. A literature search was conducted using the database PubMed, followed by the extraction of 2245 genes which were further filtered to 150 recurrent genes that appeared in two or more publications. Categorization of these genes identified activated pathways involved in pathways such as cell cycle and proliferation, chromosomal instability, and DNA repair. We identified 15 genes implicated in MF progression, which were involved in cell proliferation, immune checkpoints, resistance to apoptosis, and immune response. In highlighting the discrepancies in the way MF transcriptomic data is obtained, further research can focus on not only unifying their approach but also focus on the 150 pertinent genes identified in this review.
Collapse
Affiliation(s)
- Melika Motamedi
- Division of Dermatology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada; (M.M.); (M.Z.X.X.); (A.I.)
| | - Maggie Z. X. Xiao
- Division of Dermatology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada; (M.M.); (M.Z.X.X.); (A.I.)
| | - Aishwarya Iyer
- Division of Dermatology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada; (M.M.); (M.Z.X.X.); (A.I.)
| | - Robert Gniadecki
- Division of Dermatology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada; (M.M.); (M.Z.X.X.); (A.I.)
- 8-112 Clinical Sciences Building, University of Alberta, Edmonton, AB T6G 2G3, Canada
- Correspondence: ; Tel.: +1-(780)-407-1555
| |
Collapse
|
14
|
Xu T, Rao T, Yu WM, Ning JZ, Yu X, Zhu SM, Yang K, Bai T, Cheng F. Upregulation of NFKBIZ affects bladder cancer progression via the PTEN/PI3K/Akt signaling pathway. Int J Mol Med 2021; 47:109. [PMID: 33907827 PMCID: PMC8057294 DOI: 10.3892/ijmm.2021.4942] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/26/2021] [Indexed: 12/14/2022] Open
Abstract
NF‑κB inhibitor ζ (NFKBIZ), a member of the IκB family that interacts with NF‑κB, has been reported to be an important regulator of inflammation, cell proliferation and survival. However, the role of NFKBIZ in bladder cancer (BC) remains unknown. The present study aimed to investigate the functions of NFKBIZ in BC. First, the expression levels of NFKBIZ and the associations between NFKBIZ expression and the clinical survival of patients were determined using BC tissue samples, BC cell lines and datasets from different databases. Two BC cell lines (T24 and 5637) were selected to overexpress NFKBIZ, and the proliferative, migratory and invasive abilities of cells were determined; additionally, tumor growth following transplantation in in vivo mouse models was analyzed using T24 cells overexpressing NFKBIZ. Subsequently, the association between NFKBIZ and PTEN was determined using data from databases and immunohistochemistry analysis of clinical and nude mice tumor tissues. Finally, the interactions between NFKBIZ, PTEN and the downstream PI3K/AKT/mTOR signaling pathway were evaluated using western blotting. In conclusion, the present results indicated that NFKBIZ expression was low in BC, and NFKBIZ inhibited the proliferation of BC cells through the PTEN/PI3K/Akt signaling pathway, suggesting that NFKBIZ may represent a novel prognostic biomarker in BC and may provide a potential therapeutic tumor‑associated antigen for BC.
Collapse
Affiliation(s)
- Tao Xu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ting Rao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wei-Ming Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jin-Zhuo Ning
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xi Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shao-Ming Zhu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Kang Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Tao Bai
- Department of Urology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430060, P.R. China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
15
|
Serum and cutaneous transcriptional expression levels of IL31 are minimal in cutaneous T cell lymphoma variants. Biochem Biophys Rep 2021; 26:101007. [PMID: 34027133 PMCID: PMC8121649 DOI: 10.1016/j.bbrep.2021.101007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 12/20/2022] Open
Abstract
Aim Recent studies suggested a role for IL31 in the pathogenesis of pruritus and disease severity in patients with cutaneous T cell lymphomas (CTCL). However, discrepant results were reported for IL31 serum levels, transcriptional expression levels or immunohistochemistry studies and its relation to pruritus intensity and/or disease severity in CTCL. Most studies did not distinguish between different CTCL variants. We investigated IL31 serum levels in different subtypes of CTCL, including Mycosis Fungoides (MF) (typically not pruritic), Folliculotropic Mycosis Fungoides (FMF) and Sézary syndrome (SS) (both often pruritic). Methods From 54 CTCL patients (17 SS, 21 FMF and 16 classic MF) serum samples were analyzed with a high sensitivity V-PLEX immunoassay for IL31. The study group included 35/54 (65%) patients with complaints of pruritus. Thirty-five patients had advanced stage disease (≥stage IIB). A visual analog scale score (VAS score) for pruritus was available in 29 CTCL patients (7 SS, 9 FMF and 13 classic MF) and in other cases complaints of pruritus were retrieved from medical records. qPCR analyses for IL31 expression were performed in lesional skin biopsies from 8 CTCL patients. Serum samples from 4 healthy individuals without pruritus and from 5 atopic dermatitis (AD) patients with severe pruritus were included as controls. Results In 11/54 (20%) of CTCL patients low serum levels of IL31 were detected (mean 0.48 pg/mL, range 0.20–1.39 pg/mL) including 6/17 (35%) SS patients (mean 0.57 pg/mL) and 5/21 (24%) FMF patients (mean 0.33 pg/mL). All 11 patients with detectable levels of IL31 reported complaints of moderate to severe pruritus and 9/11 patients presented with advanced stage disease (≥IIB). qPCR analyses resulted in lowly expressed IL31 expression levels in 4 of 8 patients; these patients all suffered from pruritus and advanced stage disease. Conclusions Translational and transcriptional expression levels of IL31 were very low or undetectable in CTCL patients. Detectable low IL31 serum levels were exclusively observed in SS and FMF patients and not in patients with classic MF. However, these marginal IL31 levels in a small proportion of CTCL patients do not support an essential role for IL31 in CTCL patients. Interleukin 31 (IL31) is suggested to play a key role in pruritus. Cutaneous T cell lymphoma (CTCL) patients may suffer from severe pruritus. Previous reports show variable results regarding the role of IL31 in CTCL patients. Minimal to undetectable IL31 serum levels were found in 54 CTCL patients. These observations do not support a prominent role for IL31 in CTCL.
Collapse
|
16
|
Söylemez Z, Arıkan ES, Solak M, Arıkan Y, Tokyol Ç, Şeker H. Investigation of the expression levels of CPEB4, APC, TRIP13, EIF2S3, EIF4A1, IFNg, PIK3CA and CTNNB1 genes in different stage colorectal tumors. Turk J Med Sci 2021; 51:661-674. [PMID: 33237662 PMCID: PMC8208508 DOI: 10.3906/sag-2010-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/24/2020] [Indexed: 12/24/2022] Open
Abstract
Background/aim The aim of the study is to assess expression levels of CPEB4, APC, TRIP13, EIF2S3, EIF4A1, IFNg, PIK3CA and CTNNB1 genes in tumors and peripheral bloods of colorectal cancer patients in stages I–IV. Materials and methods The mRNA levels of the genes were determined in tumor tissues and peripheral blood samples of 45 colorectal cancer patients and colon tissues and peripheral blood samples of 5 healthy individuals. Real-time polymerase chain reaction method was used for the analysis. Results The mRNA level of the CPEB4 gene was significantly downregulated in colorectal tumor tissues and was upregulated in the peripheral blood of colorectal cancer patients relative to the controls (P < 0.05). APC mRNA level was significantly downregulated in tissues and upregulated in the peripheral blood (P < 0.05). TRIP13 mRNA level was upregulated in peripheral blood and also significantly upregulated in colorectal tumor tissues (P < 0.05). EIF2S3 mRNA level was upregulated in tissues and also significantly upregulated in peripheral blood (P < 0.05). PIK3CA mRNA level was downregulated in tissues and upregulated in peripheral blood. EIF4A1 mRNA level was downregulated in tissues and significantly upregulated in peripheral blood (P < 0.05). CTNNB1 mRNA level was downregulated in tissues and upregulated in peripheral blood. IFNg mRNA level was upregulated in both colorectal cancer tumor tissues and peripheral blood. Conclusion: TRIP13 and CPEB4 mRNA up regulation in the peripheral blood of patients with colorectal cancer may be a potential target for early stage diagnosis. In addition to this evaluation, although there is not much study on EIF2S3 and EIF4A1 mRNA changes in cases with colorectal cancer, upregulation in peripheral blood draws attention in our study. These data will shed light on the new comprehensive studies.
Collapse
Affiliation(s)
- Zafer Söylemez
- Department of Medical Biology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Evrim Suna Arıkan
- Department of Medical Biology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Mustafa Solak
- Department of Medical Genetic, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Yüksel Arıkan
- General Surgery Department, Park Hayat Hospital, Afyonkarahisar, Turkey
| | - Çiğdem Tokyol
- Department of Patology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Hüseyin Şeker
- School of Computing and Digital Technologies, Staffordshire University, Stroke-on-Trent, United Kingdom
| |
Collapse
|
17
|
Gene Expression Comparison between Sézary Syndrome and Lymphocytic-Variant Hypereosinophilic Syndrome Refines Biomarkers for Sézary Syndrome. Cells 2020; 9:cells9091992. [PMID: 32872487 PMCID: PMC7563155 DOI: 10.3390/cells9091992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Sézary syndrome (SS), an aggressive cutaneous T-cell lymphoma (CTCL) with poor prognosis, is characterized by the clinical hallmarks of circulating malignant T cells, erythroderma and lymphadenopathy. However, highly variable clinical skin manifestations and similarities with benign mimickers can lead to significant diagnostic delay and inappropriate therapy that can lead to disease progression and mortality. SS has been the focus of numerous transcriptomic-profiling studies to identify sensitive and specific diagnostic and prognostic biomarkers. Benign inflammatory disease controls (e.g., psoriasis, atopic dermatitis) have served to identify chronic inflammatory phenotypes in gene expression profiles, but provide limited insight into the lymphoproliferative and oncogenic roles of abnormal gene expression in SS. This perspective was recently clarified by a transcriptome meta-analysis comparing SS and lymphocytic-variant hypereosinophilic syndrome, a benign yet often clonal T-cell lymphoproliferation, with clinical features similar to SS. Here we review the rationale for selecting lymphocytic-variant hypereosinophilic syndrome (L-HES) as a disease control for SS, and discuss differentially expressed genes that may distinguish benign from malignant lymphoproliferative phenotypes, including additional context from prior gene expression studies to improve understanding of genes important in SS.
Collapse
|
18
|
Single-Cell Heterogeneity of Cutaneous T-Cell Lymphomas Revealed Using RNA-Seq Technologies. Cancers (Basel) 2020; 12:cancers12082129. [PMID: 32751918 PMCID: PMC7464763 DOI: 10.3390/cancers12082129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/16/2020] [Accepted: 07/29/2020] [Indexed: 01/04/2023] Open
Abstract
Cutaneous T-cell lymphomas (CTCLs) represent a large, heterogeneous group of non-Hodgkin lymphomas that primarily affect the skin. Among multiple CTCL variants, the most prevalent types are mycosis fungoides (MF) and Sézary syndrome (SS). In the past decade, the molecular genetics of CTCL have been the target of intense study, increasing the knowledge of CTCL genomic alterations, discovering novel biomarkers, and potential targets for patient-specific therapy. However, the detailed pathogenesis of CTCL development still needs to be discovered. This review aims to summarize the novel insights into molecular heterogeneity of malignant cells using high-throughput technologies, such as RNA sequencing and single-cell RNA sequencing, which might be useful to identify tumour-specific molecular signatures and, therefore, offer guidance for therapy, diagnosis, and prognosis of CTCL.
Collapse
|
19
|
Gru AA, McHargue C, Salavaggione AL. A Systematic Approach to the Cutaneous Lymphoid Infiltrates: A Clinical, Morphologic, and Immunophenotypic Evaluation. Arch Pathol Lab Med 2020; 143:958-979. [PMID: 31339758 DOI: 10.5858/arpa.2018-0294-ra] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT.— The evaluation of cutaneous lymphoid infiltrates, both neoplastic and inflammatory, occurs very frequently in routine dermatopathologic examination and consultation practices. The "tough" cutaneous lymphoid infiltrate is feared by many pathologists; skin biopsies are relatively small, whereas diagnostic possibilities are relatively broad. It is true that cutaneous lymphomas can be difficult to diagnose and that in many circumstances multiple biopsies are required to establish a correct diagnostic interpretation. As a reminder, one should understand that low-grade cutaneous lymphomas are indolent disorders that usually linger for decades and that therapy does not result in disease cure. It is also important to remember that in most circumstances, those patients will die from another process that is completely unrelated to a diagnosis of skin lymphoma (even in the absence of specific therapy). OBJECTIVE.— To use a clinicopathologic, immunophenotypic, and molecular approach in the evaluation of common lymphocytic infiltrates. DATA SOURCES.— An in-depth analysis of updated literature in the field of cutaneous lymphomas was done, with particular emphasis on updated terminology from the most recent World Health Organization classification of skin and hematologic tumors. CONCLUSIONS.— A diagnosis of cutaneous lymphoid infiltrates can be adequately approached using a systematic scheme following the proposed ABCDE system. Overall, cutaneous T- and B-cell lymphomas are rare and "reactive" infiltrates are more common. Evaluation of lymphoid proliferations should start with a good sense of knowledge of the clinical presentation of the lesions, the clinical differential considerations, and a conscientious and appropriate use of immunohistochemistry and molecular tools.
Collapse
Affiliation(s)
- Alejandro A Gru
- From the Departments of Pathology (Drs Gru and Salavaggione) and Dermatology (Dr Gru), University of Virginia, Charlottesville; and the Department of Dermatology (Dr McHargue), Henry Ford Health System, Detroit, Michigan
| | - Chauncey McHargue
- From the Departments of Pathology (Drs Gru and Salavaggione) and Dermatology (Dr Gru), University of Virginia, Charlottesville; and the Department of Dermatology (Dr McHargue), Henry Ford Health System, Detroit, Michigan
| | - Andrea L Salavaggione
- From the Departments of Pathology (Drs Gru and Salavaggione) and Dermatology (Dr Gru), University of Virginia, Charlottesville; and the Department of Dermatology (Dr McHargue), Henry Ford Health System, Detroit, Michigan
| |
Collapse
|
20
|
Abstract
Interleukin-32 (IL-32) was originally identified in natural killer (NK) cells activated by IL-2 in 1992. Thus, it was named NK cell transcript 4 (NK4) because of its unknown function at that time. The function of IL-32 has been elucidated over the last decade. IL-32 is primarily considered to be a booster of inflammatory reactions because it is induced by pro-inflammatory cytokines and stimulates the production of those cytokines and vice versa. Therefore, many studies have been devoted to studying the roles of IL-32 in inflammation-associated cancers, including gastric, colon cancer, and hepatocellular carcinoma. At the same time, roles of IL-32 have also been discovered in other cancers. Collectively, IL-32 fosters the tumor progression by nuclear factor-κB (NF-κB)-mediated cytokines and metalloproteinase production, as well as stimulation of differentiation into immunosuppressive cell types in some cancer types. However, it is also able to induce tumor cell apoptosis and enhance NK and cytotoxic T cell sensitivity in other cancer types. In this review, we will address the function of each IL-32 isoform in different cancer types studied to date, and suggest further strategies to comprehensively elucidate the roles of IL-32 in a context-dependent manner.
Collapse
Affiliation(s)
- Sora Han
- Research Institute for Women's Health, Sookmyung Women's University, Seoul 04310, Korea
| | - Young Yang
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Korea
| |
Collapse
|
21
|
Lu S, Qian J, Guo M, Gu C, Yang Y. Insights into a Crucial Role of TRIP13 in Human Cancer. Comput Struct Biotechnol J 2019; 17:854-861. [PMID: 31321001 PMCID: PMC6612527 DOI: 10.1016/j.csbj.2019.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 06/05/2019] [Accepted: 06/08/2019] [Indexed: 01/06/2023] Open
Abstract
Thyroid Hormone Receptor Interacting Protein 13 (TRIP13) plays a key role in regulating mitotic processes, including spindle assembly checkpoint and DNA repair pathways, which may account for Chromosome instability (CIN). As CIN is a predominant hallmark of cancer, TRIP13 may act as a tumor susceptibility locus. Amplification of TRIP13 has been observed in various human cancers and implicated in several aspects of malignant transformation, including cancer cell proliferation, drug resistance and tumor progression. Here, we discussed the functional significance of TRIP13 in cell progression, highlighted the recent findings on the aberrant expression in human cancers and emphasized its significance for the therapeutic potential.
Collapse
Affiliation(s)
- S Lu
- The Third Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210023, China.,School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - J Qian
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - M Guo
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - C Gu
- The Third Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210023, China.,School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Y Yang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China.,School of Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023 0Nanjing, China
| |
Collapse
|
22
|
Dong L, Ding H, Li Y, Xue D, Li Z, Liu Y, Zhang T, Zhou J, Wang P. TRIP13 is a predictor for poor prognosis and regulates cell proliferation, migration and invasion in prostate cancer. Int J Biol Macromol 2018; 121:200-206. [PMID: 30267820 DOI: 10.1016/j.ijbiomac.2018.09.168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 09/22/2018] [Accepted: 09/25/2018] [Indexed: 12/14/2022]
Abstract
Thyroid hormone receptor interactor 13 (TRIP13) has been reported to be overexpressed in serval types of human cancers, and regulate tumor cell proliferation, migration and invasion. However, the role of TRIP13 in prostate cancer was still unclear. In our study, the correlation between TRIP13 expression and clinical parameters including prognosis was evaluated in 160 prostate cancer patients. Moreover, the MTT assay, cell migration and invasion assays were performed to assess the effect of TRIP13 on prostate cancer cell biological behaviour. In our results, the expression status of TRIP13 was observed to be elevated in prostate cancer tissue samples through analyzing microarray (GSE55945). Furthermore, mRNA and protein TRIP13 expression were confirmed to be overexpressed in prostate cancer tissue samples and cell lines. High-expression of TRIP13 was correlated with present lymph node involvement, distant metastasis, high Gleason score, levels of serum PSA and poor prognosis in prostate cancer patients. The gain-of-function and loss-of-function studies suggested that TRIP13 functioned as oncogene to regulate prostate cancer cell proliferation, migration, invasion through controlling YWHAZ and epithelial-mesenchymal transition (EMT)-associated genes. In conclusion, TRIP13 is correlated with clinical progression and poor prognosis, and serves as oncogene in prostate cancer.
Collapse
Affiliation(s)
- Liming Dong
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110000, Liaoning, China
| | - Honglin Ding
- Department of Urology, The Affiliated Hospital of Chifeng Medical College, Chifeng 024000, Inner Mongolia, China
| | - Yanpei Li
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110000, Liaoning, China
| | - Dongwei Xue
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110000, Liaoning, China
| | - Zhi Li
- Department of Ethnpharmacology, School of Pharmaeutical Scineces, China Medical University, Shenyang 110000, Liaoning, China
| | - Yili Liu
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110000, Liaoning, China
| | - Teng Zhang
- Department of Urology, Tachengqu Hospital Affiliated of China Medical University, Tacheng 834700, Xinjiang, China
| | - Jian Zhou
- Department of Urology, Tachengqu Hospital Affiliated of China Medical University, Tacheng 834700, Xinjiang, China
| | - Ping Wang
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110000, Liaoning, China.
| |
Collapse
|
23
|
Seto AG, Beatty X, Lynch JM, Hermreck M, Tetzlaff M, Duvic M, Jackson AL. Cobomarsen, an oligonucleotide inhibitor of miR-155, co-ordinately regulates multiple survival pathways to reduce cellular proliferation and survival in cutaneous T-cell lymphoma. Br J Haematol 2018; 183:428-444. [PMID: 30125933 DOI: 10.1111/bjh.15547] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/19/2018] [Indexed: 12/15/2022]
Abstract
miR-155, a microRNA associated with poor prognosis in lymphoma and leukaemia, has been implicated in the progression of mycosis fungoides (MF), the most common form of cutaneous T-cell lymphoma (CTCL). In this study, we developed and tested cobomarsen (MRG-106), a locked nucleic acid-modified oligonucleotide inhibitor of miR-155. In MF and human lymphotropic virus type 1 (HTLV-1+) CTCL cell lines in vitro, inhibition of miR-155 with cobomarsen de-repressed direct miR-155 targets, decreased expression of multiple gene pathways associated with cell survival, reduced survival signalling, decreased cell proliferation and activated apoptosis. We identified a set of genes that are significantly regulated by cobomarsen, including direct and downstream targets of miR-155. Using clinical biopsies from MF patients, we demonstrated that expression of these pharmacodynamic biomarkers is dysregulated in MF and associated with miR-155 expression level and MF lesion severity. Further, we demonstrated that miR-155 simultaneously regulates multiple parallel survival pathways (including JAK/STAT, MAPK/ERK and PI3K/AKT) previously associated with the pathogenesis of MF, and that these survival pathways are inhibited by cobomarsen in vitro. A first-in-human phase 1 clinical trial of cobomarsen in patients with CTCL is currently underway, in which the panel of proposed biomarkers will be leveraged to assess pharmacodynamic response to cobomarsen therapy.
Collapse
Affiliation(s)
| | - Xuan Beatty
- miRagen Therapeutics, Inc., Boulder, CO, USA
| | | | | | - Michael Tetzlaff
- Section of Dermatopathology, Department of Pathology, Department of Translational and Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Madeleine Duvic
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
24
|
Tao Y, Yang G, Yang H, Song D, Hu L, Xie B, Wang H, Gao L, Gao M, Xu H, Xu Z, Wu X, Zhang Y, Zhu W, Zhan F, Shi J. TRIP13 impairs mitotic checkpoint surveillance and is associated with poor prognosis in multiple myeloma. Oncotarget 2018; 8:26718-26731. [PMID: 28157697 PMCID: PMC5432292 DOI: 10.18632/oncotarget.14957] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 01/10/2017] [Indexed: 11/25/2022] Open
Abstract
AAA-ATPase TRIP13 is one of the chromosome instability gene recently established in multiple myeloma (MM), the second most common and incurable hematological malignancy. However, the specific function of TRIP13 in MM is largely unknown. Using sequential gene expression profiling, we demonstrated that high TRIP13 expression levels were positively correlated with progression, disease relapse, and poor prognosis in MM patients. Overexpressing human TRIP13 in myeloma cells prompted cell growth and drug resistance, and overexpressing murine TRIP13, which shares 93% sequence identity with human TRIP13, led to colony formation of NIH/3T3 fibroblasts in vitro and tumor formation in vivo. Meanwhile, the knockdown of TRIP13 inhibited myeloma cell growth, induced cell apoptosis, and reduced tumor burden in xenograft MM mice. Mechanistically, we observed that the overexpression of TRIP13 abrogated the spindle checkpoint and induced proteasome-mediated degradation of MAD2 primarily through the Akt pathway. Thus, our results demonstrate that TRIP13 may serve as a biomarker for MM disease development and prognosis, making it a potential target for future therapies.
Collapse
Affiliation(s)
- Yi Tao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Guang Yang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Hongxing Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China.,Shanghai Chenshan Plant Science Research Center, Chienes Academy of Sciences, Shanghai 201602, China
| | - Dongliang Song
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Liangning Hu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Bingqian Xie
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Houcai Wang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Lu Gao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Minjie Gao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Hongwei Xu
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Zhijian Xu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaosong Wu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yiwen Zhang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Weiliang Zhu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fenghuang Zhan
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Jumei Shi
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
25
|
Gao DY, Ling Y, Lou XL, Wang YY, Liu LM. GTSF1 gene may serve as a novel potential diagnostic biomarker for liver cancer. Oncol Lett 2018; 15:3133-3140. [PMID: 29435047 PMCID: PMC5778804 DOI: 10.3892/ol.2017.7695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/26/2017] [Indexed: 12/16/2022] Open
Abstract
The gametocyte-specific factor 1 (GTSF1) gene participates in DNA methylation and retrotransposon activation in germ cells, particularly during cell proliferation. The present study aimed to assess the level of GTSF1 gene expression in liver cancer tumor tissues, and its role in human hepatoma cell lines in vitro and in a nude mouse model in vivo. GTSF1 gene expression was detected in liver cancer tumor tissues, compared with in healthy controls, via reverse transcription quantitative polymerase chain reaction. An adeno-associated virus vector was used to study tumor stem cell proliferation in vivo. A plasmid expressing GTSF1 was constructed and transfected into various human hepatoma cell lines, in order to analyze the cellular proliferation and apoptosis of liver cancer cells using small interfering (si)RNAs in vitro. In the present study, GTSF1 gene expression was detected in 18/24 (75.0%) liver cancer tumor tissues from patients with hepatocellular carcinoma (HCC), and elevated GTSF1 expression was identified in the tissue of one of 32 healthy control samples (3.13%; P<0.05). Notably, the GTSF1 gene was expressed at a higher frequency in AFP-positive HCC samples (14/16, 87.50%) compared with in AFP-negative HCC samples (4/8, 50.0%; P=0.129). In addition, there was no statistical significance between GTSF1 expression in non-HBV-infected (71.42%) and HBV-infected HCC specimens (76.47%), as determined by a χ2 test (P=0.921). It was demonstrated that GTSF1 significantly increased the tumorigenicity of Ad-shNC-transfected (GTSF1-positive) HepG2 cells in the nude mouse xenograft model, whereas the sizes and weights of the tumors in the GTSF1-negative group were dercreased in comparison with the GTSF1-positive group (P<0.05). Reduced levels of GTSF1 mRNA, along with fewer and smaller colonies, were identified in two groups of human liver cancer cells treated with with GTSF1-targeting siRNA, when compared with cells without GTSF1 mRNA interference (P<0.05). In summary, the present study elucidated the GTSF1 mRNA expression pattern in liver cancer, and investigated the potential role of GTSF1 in tumorigenesis. The data suggest an important role for the GTSF1 gene in the molecular etiology of hepatocarcinogenesis, and indicate a potential application of GTSF1 mRNA expression in liver cancer diagnosis and therapy.
Collapse
Affiliation(s)
- De-Yong Gao
- Department of Infectious Diseases, Songjiang Hospital Affiliated to Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai 201600, P.R. China
| | - Yun Ling
- Department of Infectious Diseases, Shanghai Public Health Clinical Center Affiliated to Fudan University, Shanghai 200083, P.R. China
| | - Xiao-Li Lou
- Department of Infectious Diseases, Songjiang Hospital Affiliated to Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai 201600, P.R. China
| | - Ying-Ying Wang
- Department of Infectious Diseases, Songjiang Hospital Affiliated to Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai 201600, P.R. China
| | - Liang-Ming Liu
- Department of Infectious Diseases, Songjiang Hospital Affiliated to Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai 201600, P.R. China
| |
Collapse
|
26
|
Willems M, Dubois N, Musumeci L, Bours V, Robe PA. IκBζ: an emerging player in cancer. Oncotarget 2018; 7:66310-66322. [PMID: 27579619 PMCID: PMC5323236 DOI: 10.18632/oncotarget.11624] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 08/23/2016] [Indexed: 01/12/2023] Open
Abstract
IκBζ, an atypical member of the nuclear IκB family of proteins, is expressed at low levels in most resting cells, but is induced upon stimulation of Toll-like/IL-1 receptors through an IRAK1/IRAK4/NFκB-dependent pathway. Like its homolog Bcl3, IκBζ can regulate the transcription of a set of inflamatory genes through its association with the p50 or p52 subunits of NF-κB. Long studied as a key component of the immune response, IκBζ emerges as an important regulator of inflammation, cell proliferation and survival. As a result, growing evidence support the role of this transcription factor in the pathogenesis number of human hematological and solid malignancies.
Collapse
Affiliation(s)
- Marie Willems
- Department of Human Genetics and GIGA Research Center, University of Liège, Liege, Belgium
| | - Nadège Dubois
- Department of Human Genetics and GIGA Research Center, University of Liège, Liege, Belgium
| | - Lucia Musumeci
- Department of Human Genetics and GIGA Research Center, University of Liège, Liege, Belgium
| | - Vincent Bours
- Department of Human Genetics and GIGA Research Center, University of Liège, Liege, Belgium
| | - Pierre A Robe
- Department of Human Genetics and GIGA Research Center, University of Liège, Liege, Belgium.,Department of Neurology and Neurosurgery, T&P Bohnenn Laboratory for Neuro-Oncology, Brain Center Rudolf Magnus, University Medical Center of Utrecht, Heidelberglaan, Utrecht, The Netherlands
| |
Collapse
|
27
|
Netchiporouk E, Gantchev J, Tsang M, Thibault P, Watters AK, Hughes JDM, Ghazawi FM, Woetmann A, Ødum N, Sasseville D, Litvinov IV. Analysis of CTCL cell lines reveals important differences between mycosis fungoides/Sézary syndrome vs. HTLV-1+ leukemic cell lines. Oncotarget 2017; 8:95981-95998. [PMID: 29221181 PMCID: PMC5707075 DOI: 10.18632/oncotarget.21619] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/26/2017] [Indexed: 11/25/2022] Open
Abstract
HTLV-1 is estimated to affect ~20 million people worldwide and in ~5% of carriers it produces Adult T-Cell Leukemia/Lymphoma (ATLL), which can often masquerade and present with classic erythematous pruritic patches and plaques that are typically seen in Mycosis Fungoides (MF) and Sézary Syndrome (SS), the most recognized variants of Cutaneous T-Cell Lymphomas (CTCL). For many years the role of HTLV-1 in the pathogenesis of MF/SS has been hotly debated. In this study we analyzed CTCL vs. HTLV-1+ leukemic cells. We performed G-banding/spectral karyotyping, extensive gene expression analysis, TP53 sequencing in the 11 patient-derived HTLV-1+ (MJ and Hut102) vs. HTLV-1- (Myla, Mac2a, PB2B, HH, H9, Hut78, SZ4, Sez4 and SeAx) CTCL cell lines. We further tested drug sensitivities to commonly used CTCL therapies and studied the ability of these cells to produce subcutaneous xenograft tumors in NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice. Our work demonstrates that unlike classic advanced MF/SS cells that acquire many ongoing balanced and unbalanced chromosomal translocations, HTLV-1+ CTCL leukemia cells are diploid and exhibit only a minimal number of non-specific chromosomal alterations. Our results indicate that HTLV-1 virus is likely not involved in the pathogenesis of classic MF/SS since it drives a very different pathway of lymphomagenesis based on our findings in these cells. This study also provides for the first time a comprehensive characterization of the CTCL cells with respect to gene expression profiling, TP53 mutation status, ability to produce tumors in mice and response to commonly used therapies.
Collapse
Affiliation(s)
| | - Jennifer Gantchev
- Division of Dermatology, McGill University, Montréal, Québec, Canada
| | - Matthew Tsang
- Division of Dermatology, University of Ottawa, Ottawa, Ontario, Canada
| | - Philippe Thibault
- Université de Sherbrooke Rnomics Platform, Sherbrooke, Québec, Canada
| | - Andrew K Watters
- Department of Pathology, McGill University Health Centre, Montreal, Québec, Canada
| | | | - Feras M Ghazawi
- Division of Dermatology, University of Ottawa, Ottawa, Ontario, Canada
| | - Anders Woetmann
- Department of International Health, Immunology, and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Niels Ødum
- Department of International Health, Immunology, and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Denis Sasseville
- Division of Dermatology, McGill University, Montréal, Québec, Canada
| | - Ivan V Litvinov
- Division of Dermatology, McGill University, Montréal, Québec, Canada.,Division of Dermatology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
28
|
Petersen DL, Berthelsen J, Willerslev-Olsen A, Fredholm S, Dabelsteen S, Bonefeld CM, Geisler C, Woetmann A. A novel BLK-induced tumor model. Tumour Biol 2017; 39:1010428317714196. [PMID: 28670978 DOI: 10.1177/1010428317714196] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
B-lymphoid tyrosine kinase (BLK) is a non-receptor tyrosine kinase belonging to the SRC family kinases. BLK is known to be functionally involved in B-cell receptor signaling and B-cell development. New evidence suggests that B-lymphoid tyrosine kinase is ectopically expressed and is a putative oncogene in cutaneous T-cell lymphoma and other T-cell malignancies. However, little is known about the role of BLK in lymphomagenesis, and the oncogenic function seems to depend on the cellular context. Importantly, BLK is also ectopically expressed in other hematological and multiple non-hematological malignancies including breast, kidney, and lung cancers, suggesting that BLK could be a new potential target for therapy. Here, we studied the oncogenic potential of human BLK. We found that engrafted Ba/F3 cells stably expressing constitutive active human BLK formed tumors in mice, whereas neither Ba/F3 cells expressing wild type BLK nor non-transfected Ba/F3 cells did. Inhibition of BLK with the clinical grade and broadly reacting SRC family kinase inhibitor dasatinib inhibited growth of BLK-induced tumors. In conclusion, our study provides evidence that human BLK is a true proto-oncogene capable of inducing tumors, and we demonstrate a novel BLK activity-dependent tumor model suitable for studies of BLK-driven lymphomagenesis and screening of novel BLK inhibitors in vivo.
Collapse
Affiliation(s)
- David Leander Petersen
- 1 Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jens Berthelsen
- 1 Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | - Simon Fredholm
- 1 Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Sally Dabelsteen
- 2 Department of Odontology, University of Copenhagen, Copenhagen, Denmark
| | | | - Carsten Geisler
- 1 Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- 1 Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Ghazawi FM, Netchiporouk E, Rahme E, Tsang M, Moreau L, Glassman S, Provost N, Gilbert M, Jean SE, Pehr K, Sasseville D, Litvinov IV. Comprehensive analysis of cutaneous T-cell lymphoma (CTCL) incidence and mortality in Canada reveals changing trends and geographic clustering for this malignancy. Cancer 2017; 123:3550-3567. [DOI: 10.1002/cncr.30758] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 01/25/2023]
Affiliation(s)
- Feras M. Ghazawi
- Division of Dermatology; McGill University; Montreal Quebec Canada
- Division of Dermatology; University of Ottawa; Ottawa Ontario Canada
| | | | - Elham Rahme
- Division of Clinical Epidemiology; McGill University; Montreal Quebec Canada
| | - Matthew Tsang
- Division of Dermatology; University of Ottawa; Ottawa Ontario Canada
| | - Linda Moreau
- Division of Dermatology; McGill University; Montreal Quebec Canada
| | - Steven Glassman
- Division of Dermatology; University of Ottawa; Ottawa Ontario Canada
| | - Nathalie Provost
- Division of Dermatology; University of Montreal; Montreal Quebec Canada
| | - Martin Gilbert
- Division of Dermatology; Laval University; Quebec City Quebec Canada
| | | | - Kevin Pehr
- Division of Dermatology; McGill University; Montreal Quebec Canada
| | - Denis Sasseville
- Division of Dermatology; McGill University; Montreal Quebec Canada
| | - Ivan V. Litvinov
- Division of Dermatology; University of Ottawa; Ottawa Ontario Canada
| |
Collapse
|
30
|
Litvinov IV, Tetzlaff MT, Thibault P, Gangar P, Moreau L, Watters AK, Netchiporouk E, Pehr K, Prieto VG, Rahme E, Provost N, Gilbert M, Sasseville D, Duvic M. Gene expression analysis in Cutaneous T-Cell Lymphomas (CTCL) highlights disease heterogeneity and potential diagnostic and prognostic indicators. Oncoimmunology 2017. [PMID: 28638728 DOI: 10.1080/2162402x.2017.1306618] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cutaneous T-Cell Lymphomas (CTCL) are rare, but potentially devastating malignancies, whose pathogenesis remains poorly elucidated. Unfortunately, currently it is not possible to predict based on the available criteria in which patients the cancer will progress and which patients will experience an indolent disease course. Furthermore, at early stages this malignancy often masquerades as psoriasis, chronic eczema or other benign inflammatory dermatoses. As a result, it takes on average 6 y to diagnose this lymphoma since its initial presentation. In this study, we performed transcription expression profiling using TruSeq targeted RNA gene expression on 181 fresh and formalin-fixed and paraffin-embedded (FFPE) skin samples from CTCL patients and patients affected by benign inflammatory dermatoses that often mimic CTCL clinically and on histology (e.g., psoriasis, chronic eczema, etc.) We also analyzed multiple longitudinal biopsies that were obtained from the same patients over time. Our results underscore significant molecular heterogeneity with respect to gene expression between different patients and even within the same patients over time. Our study also confirmed TOX, FYB, LEF1, CCR4, ITK, EED, POU2AF, IL26, STAT5, BLK, GTSF1 and PSORS1C2 genes as being differentially expressed between CTCL and benign skin biopsies. In addition, we found that differential expression for a subset of these markers (e.g., TOX, FYB, GTSF1 and CCR4) may be useful in prognosticating this disease. This research, combined with other molecular analyses, prepares the foundation for the development of personalized molecular approach toward diagnosis and management of CTCL.
Collapse
Affiliation(s)
- Ivan V Litvinov
- Division of Dermatology, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Michael T Tetzlaff
- Department of Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Pamela Gangar
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Linda Moreau
- Division of Dermatology, McGill University Health Centre, Montreal, QC, Canada
| | - Andrew K Watters
- Department of Pathology, McGill University Health Centre, Montreal, QC, Canada
| | - Elena Netchiporouk
- Division of Dermatology, McGill University Health Centre, Montreal, QC, Canada
| | - Kevin Pehr
- Division of Dermatology, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Victor G Prieto
- Department of Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elham Rahme
- Division of Clinical Epidemiology, McGill University Health Centre, Montréal, QC, Canada
| | - Nathalie Provost
- Division of Dermatology, Université de Montréal, Montréal, QC, Canada
| | - Martin Gilbert
- Division of Dermatology, Université Laval, Québec QC, Canada
| | - Denis Sasseville
- Division of Dermatology, McGill University Health Centre, Montreal, QC, Canada
| | - Madeleine Duvic
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
31
|
Malignant inflammation in cutaneous T-cell lymphoma-a hostile takeover. Semin Immunopathol 2016; 39:269-282. [PMID: 27717961 PMCID: PMC5368200 DOI: 10.1007/s00281-016-0594-9] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 09/14/2016] [Indexed: 01/05/2023]
Abstract
Cutaneous T-cell lymphomas (CTCL) are characterized by the presence of chronically inflamed skin lesions containing malignant T cells. Early disease presents as limited skin patches or plaques and exhibits an indolent behavior. For many patients, the disease never progresses beyond this stage, but in approximately one third of patients, the disease becomes progressive, and the skin lesions start to expand and evolve. Eventually, overt tumors develop and the malignant T cells may disseminate to the blood, lymph nodes, bone marrow, and visceral organs, often with a fatal outcome. The transition from early indolent to progressive and advanced disease is accompanied by a significant shift in the nature of the tumor-associated inflammation. This shift does not appear to be an epiphenomenon but rather a critical step in disease progression. Emerging evidence supports that the malignant T cells take control of the inflammatory environment, suppressing cellular immunity and anti-tumor responses while promoting a chronic inflammatory milieu that fuels their own expansion. Here, we review the inflammatory changes associated with disease progression in CTCL and point to their wider relevance in other cancer contexts. We further define the term "malignant inflammation" as a pro-tumorigenic inflammatory environment orchestrated by the tumor cells and discuss some of the mechanisms driving the development of malignant inflammation in CTCL.
Collapse
|
32
|
Huntriss J, Lu J, Hemmings K, Bayne R, Anderson R, Rutherford A, Balen A, Elder K, Picton HM. Isolation and expression of the human gametocyte-specific factor 1 gene (GTSF1) in fetal ovary, oocytes, and preimplantation embryos. J Assist Reprod Genet 2016; 34:23-31. [PMID: 27646122 PMCID: PMC5330970 DOI: 10.1007/s10815-016-0795-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 08/16/2016] [Indexed: 01/23/2023] Open
Abstract
Purpose Gametocyte-specific factor 1 has been shown in other species to be required for the silencing of retrotransposons via the Piwi-interacting RNA (piRNA) pathway. In this study, we aimed to isolate and assess expression of transcripts of the gametocyte-specific factor 1 (GTSF1) gene in the human female germline and in preimplantation embryos. Methods Complementary DNA (cDNA) libraries from human fetal ovaries and testes, human oocytes and preimplantation embryos and ovarian follicles isolated from an adult ovarian cortex biopsy were used to as templates for PCR, cloning and sequencing, and real time PCR experiments of GTSF1 expression. Results GTSF1 cDNA clones that covered the entire coding region were isolated from human oocytes and preimplantation embryos. GTSF1 mRNA expression was detected in archived cDNAs from staged human ovarian follicles, germinal vesicle (GV) stage oocytes, metaphase II oocytes, and morula and blastocyst stage preimplantation embryos. Within the adult female germline, expression was highest in GV oocytes. GTSF1 mRNA expression was also assessed in human fetal ovary and was observed to increase during gestation, from 8 to 21 weeks, during which time oogonia enter meiosis and primordial follicle formation first occurs. In human fetal testis, GTSF1 expression also increased from 8 to 19 weeks. Conclusions To our knowledge, this report is the first to describe the expression of the human GTSF1 gene in human gametes and preimplantation embryos. Electronic supplementary material The online version of this article (doi:10.1007/s10815-016-0795-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- John Huntriss
- Division of Reproduction and Early Development, Leeds Institute of Cardiovascular and Metabolic Medicine, Clarendon Way, University of Leeds, Leeds, LS2 9JT, UK.
| | - Jianping Lu
- Division of Reproduction and Early Development, Leeds Institute of Cardiovascular and Metabolic Medicine, Clarendon Way, University of Leeds, Leeds, LS2 9JT, UK
| | - Karen Hemmings
- Division of Reproduction and Early Development, Leeds Institute of Cardiovascular and Metabolic Medicine, Clarendon Way, University of Leeds, Leeds, LS2 9JT, UK
| | - Rosemary Bayne
- MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, EH16 4TJ, UK
| | - Richard Anderson
- MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, EH16 4TJ, UK
| | - Anthony Rutherford
- Leeds Centre for Reproductive Medicine, Leeds Teaching Hospital NHS Trust, Seacroft Hospital, York Road, Leeds, LS14 6UH, UK
| | - Adam Balen
- Leeds Centre for Reproductive Medicine, Leeds Teaching Hospital NHS Trust, Seacroft Hospital, York Road, Leeds, LS14 6UH, UK
| | - Kay Elder
- Bourn Hall Clinic, Cambridge, CB23 2TN, UK
| | - Helen M Picton
- Division of Reproduction and Early Development, Leeds Institute of Cardiovascular and Metabolic Medicine, Clarendon Way, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
33
|
Bagdonaite I, Wandall HH, Litvinov IV, Nastasi C, Becker JC, Dabelsteen S, Geisler C, Bonefeld CM, Zhang Q, Wasik MA, Zhou Y, Sasseville D, Ødum N, Woetmann A. Ectopic expression of a novel CD22 splice-variant regulates survival and proliferation in malignant T cells from cutaneous T cell lymphoma (CTCL) patients. Oncotarget 2016; 6:14374-84. [PMID: 25957418 PMCID: PMC4546473 DOI: 10.18632/oncotarget.3720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/03/2015] [Indexed: 02/07/2023] Open
Abstract
CD22 is a member of the Sialic acid-binding Ig-like lectin (Siglec) family of lectins described to be exclusively present in B lymphocytes and B cell-derived neoplasms. Here, we describe a novel splice form of CD22 (designated CD22âN), which lacks the N-terminal domain as demonstrated by exon-specific RT-PCR and differential recognition by anti-CD22 antibodies. Importantly, CD22âN mRNA is expressed in skin lesions from 39 out of 60 patients with cutaneous T cell lymphoma (CTCL), whereas few patients (6 out of 60) expresses full-length, wild type CD22 (CD22wt). In addition, IHC staining of tumor biopsies confirmed the expression of CD22 in CD4+ T cells. Moreover, four out of four malignant T cell lines express CD22: Two cell lines express CD22âN (MyLa2059 and PB2B) and two express CD22wt (MAC-1 and MAC-2A). siRNA-mediated silencing of CD22 impairs proliferation and survival of malignant T cells, demonstrating a functional role for both CD22âN and CD22wt in these cells.In conclusion, we provide the first evidence for an ectopic expression of CD22 and a novel splice variant regulating malignant proliferation and survival in CTCL. Analysis of expression and function of CD22 in cutaneous lymphomas may form the basis for development of novel targeted therapies for our patients.
Collapse
Affiliation(s)
- Ieva Bagdonaite
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ivan V Litvinov
- Division of Dermatology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Claudia Nastasi
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jürgen C Becker
- General Dermatology, Medical University of Graz, Graz, Austria
| | - Sally Dabelsteen
- Department of Oral Medicine and Pathology, School of Dentistry, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Geisler
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte M Bonefeld
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Qian Zhang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, USA
| | - Mariusz A Wasik
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, USA
| | - Youwen Zhou
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada
| | - Denis Sasseville
- Division of Dermatology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Niels Ødum
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
34
|
Ohmatsu H, Humme D, Gonzalez J, Gulati N, Möbs M, Sterry W, Krueger JG. IL-32 induces indoleamine 2,3-dioxygenase +CD1c + dendritic cells and indoleamine 2,3-dioxygenase +CD163 + macrophages: Relevance to mycosis fungoides progression. Oncoimmunology 2016; 6:e1181237. [PMID: 28344860 PMCID: PMC5353917 DOI: 10.1080/2162402x.2016.1181237] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 04/15/2016] [Accepted: 04/15/2016] [Indexed: 10/21/2022] Open
Abstract
Mycosis fungoides (MF) progresses from patch to tumor stage by expansion of malignant T-cells that fail to be controlled by protective immune mechanisms. In this study, we focused on IL-32, a cytokine, highly expressed in MF lesions. Depending on the other cytokines (IL-4, GM-CSF) present during in vitro culture of healthy volunteers' monocytes, IL-32 increased the maturation of CD11c+ myeloid dendritic cells (mDC) and/or CD163+ macrophages, but IL-32 alone showed a clear ability to promote dendritic cell (DC) differentiation from monocytes. DCs matured by IL-32 had the phenotype of skin-resident DCs (CD1c+), but more importantly, also had high expression of indoleamine 2,3-dioxygenase. The presence of DCs with these markers was demonstrated in MF skin lesions. At a molecular level, indoleamine 2,3-dioxygenase messenger RNA (mRNA) levels in MF lesions were higher than those in healthy volunteers, and there was a high correlation between indoleamine 2,3-dioxygenase and IL-32 expression. In contrast, Foxp3 mRNA levels decreased from patch to tumor stage. Increasing expression of IL-10 across MF lesions was highly correlated with IL-32 and indoleamine 2,3-dioxygenase, but not with Foxp3 expression. Thus, IL-32 could contribute to progressive immune dysregulation in MF by directly fostering development of immunosuppressive mDC or macrophages, possibly in association with IL-10.
Collapse
Affiliation(s)
- Hanako Ohmatsu
- Laboratory for Investigative Dermatology, The Rockefeller University , New York, NY, USA
| | - Daniel Humme
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité- Universitätsmedizin Berlin , Berlin, Germany
| | - Juana Gonzalez
- Rockefeller University Center for Clinical and Translational Science , New York, NY, USA
| | - Nicholas Gulati
- Laboratory for Investigative Dermatology, The Rockefeller University , New York, NY, USA
| | - Markus Möbs
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité- Universitätsmedizin Berlin , Berlin, Germany
| | - Wolfram Sterry
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité- Universitätsmedizin Berlin , Berlin, Germany
| | - James G Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University , New York, NY, USA
| |
Collapse
|
35
|
TRIP13 Regulates Both the Activation and Inactivation of the Spindle-Assembly Checkpoint. Cell Rep 2016; 14:1086-1099. [PMID: 26832417 DOI: 10.1016/j.celrep.2016.01.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/03/2015] [Accepted: 12/23/2015] [Indexed: 11/21/2022] Open
Abstract
Biochemical studies have indicated that p31(comet) and TRIP13 are critical for inactivating MAD2. To address unequivocally whether p31(comet) and TRIP13 are required for mitotic exit at the cellular level, their genes were ablated either individually or together in human cells. Neither p31(comet) nor TRIP13 were absolutely required for unperturbed mitosis. MAD2 inactivation was only partially impaired in p31(comet)-deficient cells. In contrast, TRIP13-deficient cells contained MAD2 exclusively in the C-MAD2 conformation. Our results indicate that although p31(comet) enhanced TRIP13-mediated MAD2 conversion, it was not absolutely necessary for the process. Paradoxically, TRIP13-deficient cells were unable to activate the spindle-assembly checkpoint, revealing that cells lacking the ability to inactivate MAD2 were incapable in mounting a checkpoint response. These results establish a paradigm of the roles of p31(comet) and TRIP13 in both checkpoint activation and inactivation.
Collapse
|
36
|
Maurizio E, Wiśniewski JR, Ciani Y, Amato A, Arnoldo L, Penzo C, Pegoraro S, Giancotti V, Zambelli A, Piazza S, Manfioletti G, Sgarra R. Translating Proteomic Into Functional Data: An High Mobility Group A1 (HMGA1) Proteomic Signature Has Prognostic Value in Breast Cancer. Mol Cell Proteomics 2015; 15:109-23. [PMID: 26527623 PMCID: PMC4762532 DOI: 10.1074/mcp.m115.050401] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Indexed: 12/11/2022] Open
Abstract
Cancer is a very heterogeneous disease, and biological variability adds a further level of complexity, thus limiting the ability to identify new genes involved in cancer development. Oncogenes whose expression levels control cell aggressiveness are very useful for developing cellular models that permit differential expression screenings in isogenic contexts. HMGA1 protein has this unique property because it is a master regulator in breast cancer cells that control the transition from a nontumorigenic epithelial-like phenotype toward a highly aggressive mesenchymal-like one. The proteins extracted from HMGA1-silenced and control MDA-MB-231 cells were analyzed using label-free shotgun mass spectrometry. The differentially expressed proteins were cross-referenced with DNA microarray data obtained using the same cellular model and the overlapping genes were filtered for factors linked to poor prognosis in breast cancer gene expression meta-data sets, resulting in an HMGA1 protein signature composed of 21 members (HRS, HMGA1 reduced signature). This signature had a prognostic value (overall survival, relapse-free survival, and distant metastasis-free survival) in breast cancer. qRT-PCR, Western blot, and immunohistochemistry analyses validated the link of three members of this signature (KIFC1, LRRC59, and TRIP13) with HMGA1 expression levels both in vitro and in vivo and wound healing assays demonstrated that these three proteins are involved in modulating tumor cell motility. Combining proteomic and genomic data with the aid of bioinformatic tools, our results highlight the potential involvement in neoplastic transformation of a restricted list of factors with an as-yet-unexplored role in cancer. These factors are druggable targets that could be exploited for the development of new, targeted therapeutic approaches in triple-negative breast cancer.
Collapse
Affiliation(s)
- Elisa Maurizio
- From the ‡Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Jacek R Wiśniewski
- §Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Yari Ciani
- ¶Laboratorio Nazionale CIB, (LNCIB), Area Science Park, 34149 Trieste, Italy
| | - Angela Amato
- ¶¶Laboratory of Experimental Oncology and Pharmacogenomics IRCCS - Salvatore Maugeri Foundation, 27100 Pavia, Italy
| | - Laura Arnoldo
- From the ‡Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Carlotta Penzo
- From the ‡Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Silvia Pegoraro
- From the ‡Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Vincenzo Giancotti
- From the ‡Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Alberto Zambelli
- ‖Department of Medical Oncology, Hospital Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Silvano Piazza
- ¶Laboratorio Nazionale CIB, (LNCIB), Area Science Park, 34149 Trieste, Italy
| | | | - Riccardo Sgarra
- From the ‡Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
37
|
Hameetman L, van der Fits L, Zoutman WH, Out-Luiting JJ, Siegal G, de Esch IJP, Vermeer MH, Tensen CP. EPHA4 is overexpressed but not functionally active in Sézary syndrome. Oncotarget 2015; 6:31868-76. [PMID: 26376612 PMCID: PMC4741646 DOI: 10.18632/oncotarget.5573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/15/2015] [Indexed: 01/29/2023] Open
Abstract
EPHA4 belongs to the largest subfamily of receptor tyrosine kinases. In addition to its function during development, overexpression of EPHA4 in tumors has been correlated with increased proliferation, migration and poor survival. Several genome-wide transcription profiling studies have demonstrated high EPHA4 expression in Sézary syndrome (SS), a leukemic variant of cutaneous CD4+ T-cell lymphoma (CTCL) with an aggressive clinical course and poor prognosis. In this study we set out to explore the functional role of EPHA4 in SS. Both high EPHA4 mRNA and protein expression was found in circulating SS-cells of patients compared to healthy CD4+ T-cells. However, using a phosphospecific EPHA4 antibody, phosphorylation of the EPHA4 kinase domain was not detected in either circulating or skin residing SS cells. Moreover, treatment with the phosphatase inhibitor pervanadate did not result in detectable phosphorylation of the EPHA4 kinase domain, in either SS cells or in healthy CD4+ T-cells. Thus, the results from our study confirm high EPHA4 expression in SS cells both on the mRNA and protein levels, making EPHA4 a good diagnostic marker. However, the overexpressed EPHA4 does not appear to be functionally active and its overexpression might be secondary to other oncogenic drivers in SS, like STAT3 and TWIST1.
Collapse
Affiliation(s)
- Liesbeth Hameetman
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Leslie van der Fits
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Willem H Zoutman
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacoba J Out-Luiting
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gregg Siegal
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Iwan J P de Esch
- Leiden/Amsterdam Center for Drug Research (LACDR), Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Maarten H Vermeer
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Cornelis P Tensen
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
38
|
Litvinov IV, Tetzlaff MT, Rahme E, Jennings MA, Risser DR, Gangar P, Netchiporouk E, Moreau L, Prieto VG, Sasseville D, Duvic M. Demographic patterns of cutaneous T-cell lymphoma incidence in Texas based on two different cancer registries. Cancer Med 2015; 4:1440-7. [PMID: 26136403 PMCID: PMC4567029 DOI: 10.1002/cam4.472] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 04/08/2015] [Indexed: 12/29/2022] Open
Abstract
Cutaneous T-cell lymohomas (CTCLs) are rare, but potentially devastating malignancies, with Mycosis fungoides and Sézary Syndrome being the most common. In our previous study, we identified and described regions of geographic clustering of CTCL cases in Texas by analyzing ∼1990 patients using two distinct cancer registries. In the current work, we describe in detail demographic patterns for this malignancy in our study population and apply logistic regression models to analyze the incidence of CTCL by sex, race, age, and clinical stage at the time of diagnosis. Furthermore, using Fisher's exact test, we analyze changes in incidence over time in the identified Houston communities with unusually high CTCL incidence. While CTCL primarily affects Caucasian individuals >55 years old, we confirm that it presents at a younger age and with more advanced disease stages in African-American and Hispanic individuals. Also, we demonstrate a significant increase in CTCL incidence over time in the identified communities. Spring, Katy, and Houston Memorial areas had high baseline rates. Furthermore, a statistically significant disease surge was observed in these areas after ∼2005. This report supplements our initial study documenting the existence of geographic clustering of CTCL cases in Texas and in greater detail describes demographic trends for our patient population. The observed surge in CTCL incidence in the three identified communities further argues that this malignancy may be triggered by one or more external etiologic agents.
Collapse
Affiliation(s)
- Ivan V Litvinov
- Division of Dermatology, McGill University, Montreal, Quebec, Canada
| | - Michael T Tetzlaff
- Section of Dermatopathology, Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elham Rahme
- Division of Clinical Epidemiology, McGill University, Montreal, Quebec, Canada
| | - Michelle A Jennings
- Section of Dermatopathology, Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David R Risser
- Cancer Epidemiology and Surveillance Branch, Texas Cancer Registry, Department of State Health Services, Austin, Texas
| | - Pamela Gangar
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Linda Moreau
- Division of Dermatology, McGill University, Montreal, Quebec, Canada
| | - Victor G Prieto
- Section of Dermatopathology, Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Denis Sasseville
- Division of Dermatology, McGill University, Montreal, Quebec, Canada
| | - Madeleine Duvic
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
39
|
Abstract
In this issue of Blood, Huang et al show that aberrant expression of TOX plays a central role in malignant survival, proliferation, and tumor formation in cutaneous T-cell lymphoma (CTCL).
Collapse
|
40
|
Krem MM, Press OW, Horwitz MS, Tidwell T. Mechanisms and clinical applications of chromosomal instability in lymphoid malignancy. Br J Haematol 2015; 171:13-28. [PMID: 26018193 DOI: 10.1111/bjh.13507] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lymphocytes are unique among cells in that they undergo programmed DNA breaks and translocations, but that special property predisposes them to chromosomal instability (CIN), a cardinal feature of neoplastic lymphoid cells that manifests as whole chromosome- or translocation-based aneuploidy. In several lymphoid malignancies translocations may be the defining or diagnostic markers of the diseases. CIN is a cornerstone of the mutational architecture supporting lymphoid neoplasia, though it is perhaps one of the least understood components of malignant transformation in terms of its molecular mechanisms. CIN is associated with prognosis and response to treatment, making it a key area for impacting treatment outcomes and predicting prognoses. Here we will review the types and mechanisms of CIN found in Hodgkin lymphoma, non-Hodgkin lymphoma, multiple myeloma and the lymphoid leukaemias, with emphasis placed on pathogenic mutations affecting DNA recombination, replication and repair; telomere function; and mitotic regulation of spindle attachment, centrosome function, and chromosomal segregation. We will discuss the means by which chromosome-level genetic aberrations may give rise to multiple pathogenic mutations required for carcinogenesis and conclude with a discussion of the clinical applications of CIN and aneuploidy to diagnosis, prognosis and therapy.
Collapse
Affiliation(s)
- Maxwell M Krem
- Department of Medicine and Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Oliver W Press
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Marshall S Horwitz
- Department of Pathology and Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Timothy Tidwell
- Department of Pathology and Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
41
|
Silverman-Gavrila RV, Silverman-Gavrila LB, Bilal KH, Bendeck MP. Spectrin alpha is important for rear polarization of the microtubule organizing center during migration and spindle pole assembly during division of neointimal smooth muscle cells. Cytoskeleton (Hoboken) 2015; 72:157-70. [DOI: 10.1002/cm.21222] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 01/31/2015] [Accepted: 04/07/2015] [Indexed: 01/18/2023]
Affiliation(s)
| | | | - Khawaja Hasan Bilal
- Department of Laboratory Medicine and Pathobiology; University of Toronto; Toronto Canada
| | - Michelle P. Bendeck
- Department of Laboratory Medicine and Pathobiology; University of Toronto; Toronto Canada
| |
Collapse
|
42
|
Ye Q, Rosenberg SC, Moeller A, Speir JA, Su TY, Corbett KD. TRIP13 is a protein-remodeling AAA+ ATPase that catalyzes MAD2 conformation switching. eLife 2015; 4. [PMID: 25918846 PMCID: PMC4439613 DOI: 10.7554/elife.07367] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 04/21/2015] [Indexed: 12/15/2022] Open
Abstract
The AAA+ family ATPase TRIP13 is a key regulator of meiotic recombination and the spindle assembly checkpoint, acting on signaling proteins of the conserved HORMA domain family. Here we present the structure of the Caenorhabditis elegans TRIP13 ortholog PCH-2, revealing a new family of AAA+ ATPase protein remodelers. PCH-2 possesses a substrate-recognition domain related to those of the protein remodelers NSF and p97, while its overall hexameric architecture and likely structural mechanism bear close similarities to the bacterial protein unfoldase ClpX. We find that TRIP13, aided by the adapter protein p31(comet), converts the HORMA-family spindle checkpoint protein MAD2 from a signaling-active ‘closed’ conformer to an inactive ‘open’ conformer. We propose that TRIP13 and p31(comet) collaborate to inactivate the spindle assembly checkpoint through MAD2 conformational conversion and disassembly of mitotic checkpoint complexes. A parallel HORMA protein disassembly activity likely underlies TRIP13's critical regulatory functions in meiotic chromosome structure and recombination. DOI:http://dx.doi.org/10.7554/eLife.07367.001 The genetic material inside human and other animal cells is made of DNA and is packaged in structures called chromosomes. Before a cell divides, the entire set of chromosomes is copied so that each chromosome is now made of two identical sister ‘chromatids’. Next, the chromosomes line up on a structure called the spindle, which is made of filaments called microtubules. Cells have a surveillance system known as the spindle assembly checkpoint that halts cell division until every chromosome is correctly aligned on the spindle. Once the chromosomes are in place, the checkpoint is turned off and the spindle pulls the chromatids apart so that each daughter cell receives a complete set of chromosomes. A protein called MAD2 plays an important role in the spindle assembly checkpoint. It can adopt two distinct shapes: in the ‘closed’ shape it is active and halts cell division, but in the ‘open’ shape it is inactive and allows cell division to proceed. Another protein called TRIP13 can help turn off the checkpoint, but it is not clear how this works or whether TRIP13 acts on MAD2 directly. Here, Ye et al. studied these proteins using a technique called X-ray crystallography and several biochemical techniques. The experiments show that TRIP13 belongs to a family of proteins known as ‘AAA-ATPases’, which can unfold proteins to alter their activity. Ye et al. found that TRIP13 binds to an adaptor protein that allows it to bind to the closed form of MAD2. TRIP13 then unfolds a part of the MAD2 protein, converting MAD2 into the open shape. Ye et al. propose that, once all chromosomes are lined up on the spindle, TRIP13 turns off the spindle assembly checkpoint by converting closed MAD2 to open MAD2. Also, when cells are not undergoing cell division, TRIP13 may maintain MAD2 in the open shape to prevent cells from turning on the spindle assembly checkpoint at the wrong time. Further work will be needed to show how TRIP13 recognizes the closed form of MAD2, and whether it can act in a similar way on other proteins in the cell. DOI:http://dx.doi.org/10.7554/eLife.07367.002
Collapse
Affiliation(s)
- Qiaozhen Ye
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, United States
| | - Scott C Rosenberg
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, United States
| | - Arne Moeller
- National Resource for Automated Molecular Microscopy, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, United States
| | - Jeffrey A Speir
- National Resource for Automated Molecular Microscopy, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, United States
| | - Tiffany Y Su
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, United States
| | - Kevin D Corbett
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, United States
| |
Collapse
|
43
|
Humme D, Haider A, Möbs M, Mitsui H, Suárez-Fariñas M, Ohmatsu H, Isabell Geilen C, Eberle J, Krueger JG, Beyer M, Hummel M, Anagnostopoulos I, Sterry W, Assaf C. Aurora Kinase A Is Upregulated in Cutaneous T-Cell Lymphoma and Represents a Potential Therapeutic Target. J Invest Dermatol 2015; 135:2292-2300. [PMID: 25848977 DOI: 10.1038/jid.2015.139] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 03/02/2015] [Accepted: 03/09/2015] [Indexed: 01/01/2023]
Abstract
Cutaneous T-cell lymphomas (CTCLs) form a heterogeneous group of non-Hodgkin's lymphomas characterized by only poor prognosis in advanced stage. Despite significant progress made in the identification of novel genes and pathways involved in the pathogenesis of cutaneous lymphoma, the therapeutic value of these findings has still to be proven. Here, we demonstrate by gene expression arrays that Aurora kinase A is one of the highly overexpressed genes of the serine/threonine kinase in CTCL. The finding was confirmed by quantitative reverse transcriptase-PCR, western blotting, and immunohistochemistry in CTCL cell lines and primary patient samples. Moreover, treatment with a specific Aurora kinase A inhibitor blocks cell proliferation by inducing cell cycle arrest in G2 phase, as well as apoptosis in CTCL cell lines. These data provide a promising rationale for using Aurora kinase A inhibition as a therapeutic modality of CTCL.
Collapse
Affiliation(s)
- Daniel Humme
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Ahmed Haider
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany; These authors contributed equally to this work
| | - Markus Möbs
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany; Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Hiroshi Mitsui
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Mayte Suárez-Fariñas
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Hanako Ohmatsu
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Cyprienne Isabell Geilen
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jürgen Eberle
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - James G Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Marc Beyer
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Hummel
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Wolfram Sterry
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Chalid Assaf
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany; HELIOS Klinikum Krefeld, Krefeld, Germany.
| |
Collapse
|
44
|
Litvinov IV, Netchiporouk E, Cordeiro B, Doré MA, Moreau L, Pehr K, Gilbert M, Zhou Y, Sasseville D, Kupper TS. The Use of Transcriptional Profiling to Improve Personalized Diagnosis and Management of Cutaneous T-cell Lymphoma (CTCL). Clin Cancer Res 2015; 21:2820-9. [PMID: 25779945 DOI: 10.1158/1078-0432.ccr-14-3322] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/07/2015] [Indexed: 12/18/2022]
Abstract
PURPOSE Although many patients with mycosis fungoides presenting with stage I disease enjoy an indolent disease course and normal life expectancy, about 15% to 20% of them progress to higher stages and most ultimately succumb to their disease. Currently, it is not possible to predict which patients will progress and which patients will have a stable disease. Previously, we conducted microarray analyses with RT-PCR validation of gene expression in biopsy specimens from 60 patients with stage I-IV cutaneous T-cell lymphoma (CTCL), identified three distinct clusters based upon transcription profile, and correlated our molecular findings with 6 years of clinical follow-up. EXPERIMENTAL DESIGN We test by RT-PCR within our prediction model the expression of about 240 genes that were previously reported to play an important role in CTCL carcinogenesis. We further extend the clinical follow-up of our patients to 11 years. We compare the expression of selected genes between mycosis fungoides/Sézary syndrome and benign inflammatory dermatoses that often mimic this cancer. RESULTS Our findings demonstrate that 52 of the about 240 genes can be classified into cluster 1-3 expression patterns and such expression is consistent with their suggested biologic roles. Moreover, we determined that 17 genes (CCL18, CCL26, FYB, T3JAM, MMP12, LEF1, LCK, ITK, GNLY, IL2RA, IL26, IL22, CCR4, GTSF1, SYCP1, STAT5A, and TOX) are able to both identify patients who are at risk of progression and also distinguish mycosis fungoides/Sézary syndrome from benign mimickers. CONCLUSIONS This study, combined with other gene expression analyses, prepares the foundation for the development of personalized molecular approach toward diagnosis and treatment of CTCL.
Collapse
Affiliation(s)
- Ivan V Litvinov
- Division of Dermatology, McGill University Health Centre, Montréal, Quebec, Canada
| | - Elena Netchiporouk
- Division of Dermatology, McGill University Health Centre, Montréal, Quebec, Canada
| | - Brendan Cordeiro
- Division of Dermatology, McGill University Health Centre, Montréal, Quebec, Canada
| | | | - Linda Moreau
- Division of Dermatology, McGill University Health Centre, Montréal, Quebec, Canada
| | - Kevin Pehr
- Division of Dermatology, McGill University Health Centre, Montréal, Quebec, Canada. Division of Dermatology, Jewish General Hospital, Montréal, Quebec, Canada
| | - Martin Gilbert
- Division of Dermatology, Université Laval, Québec, Canada
| | - Youwen Zhou
- Department of Dermatology and Skin Science, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Denis Sasseville
- Division of Dermatology, McGill University Health Centre, Montréal, Quebec, Canada.
| | - Thomas S Kupper
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women's Hospital, Harvard University, Boston, Massachusetts.
| |
Collapse
|
45
|
Litvinov IV, Tetzlaff MT, Rahme E, Habel Y, Risser DR, Gangar P, Jennings MA, Pehr K, Prieto VG, Sasseville D, Duvic M. Identification of geographic clustering and regions spared by cutaneous T-cell lymphoma in Texas using 2 distinct cancer registries. Cancer 2015; 121:1993-2003. [PMID: 25728286 DOI: 10.1002/cncr.29301] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 01/07/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND Cutaneous T-cell lymphomas (CTCLs) (mycosis fungoides and its leukemic variant, Sezary syndrome) are rare malignancies. Reports of the occurrence of mycosis fungoides in married couples and families raise the possibility of an environmental trigger for this cancer. Although it has been suggested that CTCL arises from inappropriate T-cell stimulation, to the authors' knowledge no preventable trigger has been identified to date. METHODS Using region, zip code, age, sex, and ethnicity, the authors analyzed the demographic data of 1047 patients from Texas who were seen in a CTCL clinic at The University of Texas MD Anderson Cancer Center during 2000 through 2012 (the MDACC database) and 1990 patients who were recorded in the population-based Texas Cancer Registry between 1996 and 2010. Subsequently, data from both databases were cross-analyzed and compared. RESULTS The current study findings, based on the MDACC database, documented geographic clustering of patients in 3 communities within the Houston metropolitan area, in which CTCL incidence rates were 5 to 20 times higher than the expected population rate. Analysis of the Texas Cancer Registry database defined the CTCL population rate for the state to be 5.8 cases per million individuals per year (95% confidence interval, 5.5-6.0 per million individuals per year), thus confirming the observations from the MDACC database and further highlighting additional areas of geographic clustering and regions spared from CTCL in Texas. CONCLUSIONS The current study documented geographic clustering of CTCL cases in Texas and argued for the existence of yet unknown external causes/triggers for this rare malignancy.
Collapse
Affiliation(s)
- Ivan V Litvinov
- Division of Dermatology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Michael T Tetzlaff
- Section of Dermatopathology, Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elham Rahme
- Division of Clinical Epidemiology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Youssef Habel
- Division of Clinical Epidemiology, McGill University Health Centre, Montreal, Quebec, Canada
| | - David R Risser
- Cancer Epidemiology and Surveillance Branch, Texas Cancer Registry, Department of State Health Services, Austin, Texas
| | - Pamela Gangar
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michelle A Jennings
- Section of Dermatopathology, Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kevin Pehr
- Division of Dermatology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Victor G Prieto
- Section of Dermatopathology, Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Denis Sasseville
- Division of Dermatology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Madeleine Duvic
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
46
|
Abstract
Mycosis fungoides (MF), the most common form of cutaneous lymphoma is derived from postthymic T cells that migrate to the skin likely under the influence of chronic antigen stimulation. Less common histomorphologic variants are diagnostically challenging because of their resemblance to reactive conditions. Three men aged 46, 73, and 74 years and one 83-year-old woman were encountered in the files of one of the authors and represented the patients. The patients had a longstanding eruption for several years. In 2 cases, the clinical course was aggressive with extracutaneous lymph node and/or peripheral blood dissemination. One patient had vesicles noted clinically. In all cases, vesiculation was a prominent feature histologically, which lead to an erroneous categorization initially as a reactive process. Basilar colonization by cerebriform lymphocytes along with the mucinous quality of the vesicle was diagnostic clue histologically, whereas the phenotypic and molecular profile was typical for MF. Strong expression of interleukin 5 and interleukin 10 in atypical lymphocytes in comparison with interferon gamma suggested a T-helper type 2-dominant cytokine microenvironment. In reviewing the literature of the 6 previously reported cases, 3 patients died of the disease; all these patients had vesicular lesions both clinically and histologically. We concluded that vesicular MF is a distinct histological and in some instances clinical variant of MF. The correlation of the vesicular eczematous quality of the eruption and a more aggressive clinical course may reflect the skewing toward a T-helper type 2-dominant cytokine milieu typical of advanced disease.
Collapse
|
47
|
Litvinov IV, Netchiporouk E, Cordeiro B, Zargham H, Pehr K, Gilbert M, Zhou Y, Moreau L, Woetmann A, Ødum N, Kupper TS, Sasseville D. Ectopic expression of embryonic stem cell and other developmental genes in cutaneous T-cell lymphoma. Oncoimmunology 2014; 3:e970025. [PMID: 25941598 DOI: 10.4161/21624011.2014.970025] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/23/2014] [Indexed: 11/19/2022] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is a potentially devastating malignancy. The pathogenesis of this cancer remains poorly elucidated. Previous studies focused on analysis of expression and function of known oncogenes and tumor suppressor genes. However, emerging reports highlight that it is also important to analyze the expression of genes that are ectopically expressed in CTCL (e.g., embryonic stem cell genes (ESC), cancer testis (CT) genes, etc.). Currently, it is not known whether ESC genes are expressed in CTCL. In the current work, we analyze by RT-PCR the expression of 26 ESC genes, many of which are known to regulate pluripotency and promote cancer stem cell-like phenotype, in a historic cohort of 60 patients from Boston and in a panel of 11 patient-derived CTCL cell lines and compare such expression to benign inflammatory dermatoses that often clinically mimic CTCL. Our findings document that many critical ESC genes including NANOG, SOX2, OCT4 (POU5F1) and their upstream and downstream signaling members are expressed in CTCL. Similarly, polycomb repressive complex 2 (PRC2) genes (i.e., EZH2, EED, and SUZ12) are also expressed in CTCL lesional skin. Furthermore, select ESC genes (OCT4, EED, TCF3, THAP11, CHD7, TIP60, TRIM28) are preferentially expressed in CTCL samples when compared to benign skin biopsies. Our work suggests that ESC genes are ectopically expressed together with CT genes, thymocyte development genes and B cell-specific genes and may be working in concert to promote tumorigenesis. Specifically, while ESC genes may be promoting cancer stem cell-like phenotype, CT genes may be contributing to aneuploidy and genomic instability by producing aberrant chromosomal translocations. Further analysis of ESC expression and function in this cancer will greatly enhance our fundamental understanding of CTCL and will help us identify novel therapeutic targets.
Collapse
Key Words
- ALCL, Anaplastic Large Cell Lymphoma
- BLK, B-lymphoid kinase
- C-ALCL, Cutaneous Anaplastic Large Cell Lymphoma
- CSC, Cancer Stem Cell
- CTCL, Cutaneous T-Cell Lymphoma
- DMC1, Disrupted Meiotic cDNA 1
- ESC, Embryonic Stem Cell
- EVA1, Epithelial C-like antigen 1
- MF, Mycosis Fungoides
- PBMC, Peripheral Blood Mononucleated Cells
- PLS3, Plastin-3
- PRC1, Polycomb Repressive Complex 1
- PRC2, Polycomb Repressive Complex 2
- SS, Sézary Syndrome
- SYCP1, Synaptonemal Complex Protein 1
- TOX, Thymocyte selection–associated high mobility group box
- ZFX, Zinc finger protein X-linked
- cancer testis genes
- cutaneous T cell lymphoma (CTCL)
- embryonic stem cell genes
- mycosis fungoides (MF)
- polycomb repressive complex 2 (PRC2)
- sézary syndrome (SS)
- thymocyte development genes
Collapse
Affiliation(s)
- Ivan V Litvinov
- Division of Dermatology; McGill University Health Centre ; Montréal, QC Canada
| | - Elena Netchiporouk
- Division of Dermatology; McGill University Health Centre ; Montréal, QC Canada
| | - Brendan Cordeiro
- Division of Dermatology; McGill University Health Centre ; Montréal, QC Canada
| | - Hanieh Zargham
- Division of Dermatology; McGill University Health Centre ; Montréal, QC Canada
| | - Kevin Pehr
- Division of Dermatology; McGill University Health Centre ; Montréal, QC Canada
| | - Martin Gilbert
- Division of Dermatology; Université Laval ; Québec City, QC Canada
| | - Youwen Zhou
- Department of Dermatology and Skin Science; University of British Columbia ; Vancouver, BC Canada
| | - Linda Moreau
- Division of Dermatology; McGill University Health Centre ; Montréal, QC Canada
| | - Anders Woetmann
- Department of International Health, Immunology, and Microbiology; University of Copenhagen ; Copenhagen, Denmark
| | - Niels Ødum
- Department of International Health, Immunology, and Microbiology; University of Copenhagen ; Copenhagen, Denmark
| | - Thomas S Kupper
- Department of Dermatology; Harvard Skin Disease Research Center; Brigham and Women's Hospital; Harvard University ; Boston, MA USA
| | - Denis Sasseville
- Division of Dermatology; McGill University Health Centre ; Montréal, QC Canada
| |
Collapse
|
48
|
Dulmage BO, Geskin LJ. Lessons learned from gene expression profiling of cutaneous T-cell lymphoma. Br J Dermatol 2014; 169:1188-97. [PMID: 23937674 DOI: 10.1111/bjd.12578] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2013] [Indexed: 12/14/2022]
Abstract
Gene expression studies of cutaneous T-cell lymphoma (CTCL) span a decade, yet the pathogenesis is poorly understood and diagnosis remains a challenge. This review examines the varied approaches to gene expression analysis of CTCL, with emphasis on cell populations, control selection and expression data collection. Despite discordant results, several dysregulated genes have been identified across multiple studies, including PLS3, KIR3DL2, TWIST1 and STAT4. Here, we provide an overview of the most consistently expressed genes across different studies and bring them together through common pathways biologically relevant to CTCL. Four pathways - evasion of activation-induced cell death, T helper 2 lymphocyte differentiation, transforming growth factor-β receptor expression, and tumour necrosis factor receptor ligands - appear to encompass the most frequently affected genes, hypothetically providing insight into the disease pathogenesis.
Collapse
Affiliation(s)
- B O Dulmage
- Department of Dermatology, University of Pittsburgh, 200 Lothrop St, Pittsburgh, PA, 15213, U.S.A
| | | |
Collapse
|
49
|
Banerjee R, Russo N, Liu M, Basrur V, Bellile E, Palanisamy N, Scanlon CS, van Tubergen E, Inglehart RC, Metwally T, Mani RS, Yocum A, Nyati MK, Castilho RM, Varambally S, Chinnaiyan AM, D'Silva NJ. TRIP13 promotes error-prone nonhomologous end joining and induces chemoresistance in head and neck cancer. Nat Commun 2014; 5:4527. [PMID: 25078033 PMCID: PMC4130352 DOI: 10.1038/ncomms5527] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 06/27/2014] [Indexed: 12/12/2022] Open
Abstract
Head and neck cancer (SCCHN) is a common, aggressive, treatment-resistant cancer with a high recurrence rate and mortality, but the mechanism of treatment-resistance remains unclear. Here we describe a mechanism where the AAA-ATPase TRIP13 promotes treatment-resistance. Overexpression of TRIP13 in non-malignant cells results in malignant transformation. High expression of TRIP13 in SCCHN leads to aggressive, treatment-resistant tumors and enhanced repair of DNA damage. Using mass spectrometry, we identify DNA-PKcs complex proteins that mediate non homologous end joining (NHEJ), as TRIP13 binding partners. Using repair-deficient reporter systems, we show that TRIP13 promotes NHEJ, even when homologous recombination is intact. Importantly, overexpression of TRIP13 sensitizes SCCHN to an inhibitor of DNA-PKcs. Thus, this study defines a new mechanism of treatment resistance in SCCHN and underscores the importance of targeting NHEJ to overcome treatment failure in SCCHN and potentially in other cancers that overexpress TRIP13.
Collapse
Affiliation(s)
- Rajat Banerjee
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Nickole Russo
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Min Liu
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Venkatesha Basrur
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Emily Bellile
- Center for Cancer Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Nallasivam Palanisamy
- 1] Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA [2] Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Christina S Scanlon
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Elizabeth van Tubergen
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ronald C Inglehart
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Tarek Metwally
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ram-Shankar Mani
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Anastasia Yocum
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Mukesh K Nyati
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Rogerio M Castilho
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Sooryanarayana Varambally
- 1] Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA [2] Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Arul M Chinnaiyan
- 1] Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA [2] Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA [3] Department of Urology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Nisha J D'Silva
- 1] Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, USA [2] Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA [3] Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
50
|
Scarisbrick J, Kim Y, Whittaker S, Wood G, Vermeer M, Prince H, Quaglino P. Prognostic factors, prognostic indices and staging in mycosis fungoides and Sézary syndrome: where are we now? Br J Dermatol 2014; 170:1226-36. [DOI: 10.1111/bjd.12909] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2014] [Indexed: 12/28/2022]
Affiliation(s)
- J.J. Scarisbrick
- Department of Dermatology; University Hospital Birmingham; Birmingham U.K
| | - Y.H. Kim
- Stanford Cancer Centre & School of Medicine; Stanford CA U.S.A
| | - S.J. Whittaker
- Department of Dermatology; Guy's and St Thomas' NHS Trust; London U.K
| | - G.S. Wood
- Department of Dermatology; University of Wisconsin and Middleton VA Medical Center; Madison WI U.S.A
| | - M.H. Vermeer
- Department of Dermatology; Leiden University Medical Centre; Leiden the Netherlands
| | - H.M. Prince
- Peter MacCallum Cancer Centre and University of Melbourne; Melbourne VIC Australia
| | - P. Quaglino
- Department of Medical Sciences; Dermatologic Clinic; University of Torino; Turin Italy
| |
Collapse
|