1
|
DeGeorgia S“N, Kaufman CK. Specific SOX10 enhancer elements modulate phenotype plasticity and drug resistance in melanoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.12.628224. [PMID: 39764051 PMCID: PMC11702536 DOI: 10.1101/2024.12.12.628224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Recent studies indicate that the development of drug resistance and increased invasiveness in melanoma is largely driven by transcriptional plasticity rather than canonical coding mutations. Understanding the mechanisms behind cell identity shifts in oncogenic transformation and cancer progression is crucial for advancing our understanding of melanoma and other aggressive cancers. While distinct melanoma phenotypic states have been well characterized, the processes and transcriptional controls that enable cells to shift between these states remain largely unknown. In this study, we initially leverage the well-established zebrafish melanoma model as a high-throughput system to dissect and analyze transcriptional control elements that are hijacked by melanoma. We identify key characteristics of these elements, making them translatable to human enhancer identification despite the lack of direct sequence conservation. Building on our identification of a zebrafish sox10 enhancer necessary for melanoma initiation, we extend these findings to human melanoma, identifying two human upstream enhancer elements that are critical for full SOX10 expression. Stable biallelic deletion of these enhancers using CRISPR-Cas9 induces a distinct phenotype shift across multiple human melanoma cell lines from a melanocytic phenotype towards an undifferentiated phenotype and is also characterized by an increase in drug resistance that mirrors clinical data including an upregulation of NTRK1, a tyrosine kinase, and potential therapeutic target. These results provide new insights into the transcriptional regulation of SOX10 in human melanoma and underscore the role of individual enhancer elements and potentially NTRK1 in driving melanoma phenotype plasticity and drug resistance. Our work lays the groundwork for future gene-based and combination kinase-inhibitor therapies targeting SOX10 regulation and NTRK1 as a potential avenue for enhancing the efficacy of current melanoma treatments.
Collapse
Affiliation(s)
- Sophia “Noah” DeGeorgia
- Division of Medical Oncology, Department of Medicine and Department of Developmental Biology, Washington University in Saint Louis, St. Louis, MO USA
| | - Charles K. Kaufman
- Division of Medical Oncology, Department of Medicine and Department of Developmental Biology, Washington University in Saint Louis, St. Louis, MO USA
| |
Collapse
|
2
|
Takahashi M, Chong HB, Zhang S, Yang TY, Lazarov MJ, Harry S, Maynard M, Hilbert B, White RD, Murrey HE, Tsou CC, Vordermark K, Assaad J, Gohar M, Dürr BR, Richter M, Patel H, Kryukov G, Brooijmans N, Alghali ASO, Rubio K, Villanueva A, Zhang J, Ge M, Makram F, Griesshaber H, Harrison D, Koglin AS, Ojeda S, Karakyriakou B, Healy A, Popoola G, Rachmin I, Khandelwal N, Neil JR, Tien PC, Chen N, Hosp T, van den Ouweland S, Hara T, Bussema L, Dong R, Shi L, Rasmussen MQ, Domingues AC, Lawless A, Fang J, Yoda S, Nguyen LP, Reeves SM, Wakefield FN, Acker A, Clark SE, Dubash T, Kastanos J, Oh E, Fisher DE, Maheswaran S, Haber DA, Boland GM, Sade-Feldman M, Jenkins RW, Hata AN, Bardeesy NM, Suvà ML, Martin BR, Liau BB, Ott CJ, Rivera MN, Lawrence MS, Bar-Peled L. DrugMap: A quantitative pan-cancer analysis of cysteine ligandability. Cell 2024; 187:2536-2556.e30. [PMID: 38653237 PMCID: PMC11143475 DOI: 10.1016/j.cell.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/15/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024]
Abstract
Cysteine-focused chemical proteomic platforms have accelerated the clinical development of covalent inhibitors for a wide range of targets in cancer. However, how different oncogenic contexts influence cysteine targeting remains unknown. To address this question, we have developed "DrugMap," an atlas of cysteine ligandability compiled across 416 cancer cell lines. We unexpectedly find that cysteine ligandability varies across cancer cell lines, and we attribute this to differences in cellular redox states, protein conformational changes, and genetic mutations. Leveraging these findings, we identify actionable cysteines in NF-κB1 and SOX10 and develop corresponding covalent ligands that block the activity of these transcription factors. We demonstrate that the NF-κB1 probe blocks DNA binding, whereas the SOX10 ligand increases SOX10-SOX10 interactions and disrupts melanoma transcriptional signaling. Our findings reveal heterogeneity in cysteine ligandability across cancers, pinpoint cell-intrinsic features driving cysteine targeting, and illustrate the use of covalent probes to disrupt oncogenic transcription-factor activity.
Collapse
Affiliation(s)
- Mariko Takahashi
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA.
| | - Harrison B Chong
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Siwen Zhang
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Tzu-Yi Yang
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Matthew J Lazarov
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Stefan Harry
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | | - Kira Vordermark
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Jonathan Assaad
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Magdy Gohar
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Benedikt R Dürr
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Marianne Richter
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Himani Patel
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | | | | | | | - Karla Rubio
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Antonio Villanueva
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Junbing Zhang
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Maolin Ge
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Farah Makram
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Hanna Griesshaber
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Drew Harrison
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Ann-Sophie Koglin
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Samuel Ojeda
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Barbara Karakyriakou
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Alexander Healy
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - George Popoola
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Inbal Rachmin
- Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Neha Khandelwal
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | | | - Pei-Chieh Tien
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Nicholas Chen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Tobias Hosp
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Sanne van den Ouweland
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Toshiro Hara
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lillian Bussema
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Rui Dong
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lei Shi
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Martin Q Rasmussen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Ana Carolina Domingues
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Aleigha Lawless
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jacy Fang
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Satoshi Yoda
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Linh Phuong Nguyen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Sarah Marie Reeves
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Farrah Nicole Wakefield
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Adam Acker
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Sarah Elizabeth Clark
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Taronish Dubash
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - John Kastanos
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Eugene Oh
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - David E Fisher
- Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Shyamala Maheswaran
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Daniel A Haber
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Genevieve M Boland
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Moshe Sade-Feldman
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Russell W Jenkins
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Aaron N Hata
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Nabeel M Bardeesy
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Mario L Suvà
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | | | - Brian B Liau
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Christopher J Ott
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Miguel N Rivera
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Michael S Lawrence
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA.
| | - Liron Bar-Peled
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
3
|
Abstract
Many cancer-related deaths including melanoma result from metastases that develop months or years after the initial cancer therapy. Even the most effective drugs and immune therapies rarely eradicate all tumor cells. Instead, they strongly reduce cancer burden, permitting dormant cancer cells to persist in niches, where they establish a cellular homeostasis with their host without causing clinical symptoms. Dormant cancers respond poorly to most drugs and therapies since they do not proliferate and hide in niches. It therefore remains a major challenge to develop novel therapies for dormant cancers. In this review we focus on the mechanisms regulating the initiation of cutaneous melanoma dormancy as well as those which are involved in reawakening of dormant cutaneous melanoma cells. In recent years the role of neutrophils and niche components in reawakening of melanoma cells came into focus and indicate possible future therapeutic applications. Sophisticated in vitro and in vivo melanoma dormancy models are needed to make progress in this field and are discussed.
Collapse
Affiliation(s)
- Kathrin Singvogel
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Liebermeisterstr. 25, D -72076 , Tübingen, Germany
| | - Birgit Schittek
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Liebermeisterstr. 25, D -72076 , Tübingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.
| |
Collapse
|
4
|
Ren S, Zhang X, Pang Y, Qi Y, Huo L, Wu F, Shang Y, Xi J. RNA sequencing analysis reveals that missense mutation in SOX10 is associated with iris color phenotype in quail. Anim Genet 2024; 55:79-86. [PMID: 37905379 DOI: 10.1111/age.13371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 11/02/2023]
Abstract
To investigate the molecular mechanisms underlying the differences in iris color in quail, the transcriptome of iris tissue from black quail and Korean quail at day 10 of hatching was RNA sequenced in this study. The differentially expressed genes (DEGs) were screened, functionally annotated and enriched after the quality control and mapping of the raw data. RT-qPCR validation was performed using EIF2S3 as an internal reference gene. The screened SNPs were studied by bioinformatics analysis and iris color correlation analysis. The results showed that there were 425 upregulated genes and 364 downregulated genes in 789 DEGs. Gene Ontology (GO) enrichment analysis revealed that 139 DEGs were significantly enriched in 154 GO terms. The Kyoto Encyclopedia of Genes and Genomes enrichment results showed that the Notch signaling pathway, melanogenesis and tyrosine metabolism were associated with pigment synthesis (p < 0.05). The expression levels of the ASIP, MLPH, PMEL, TYR and SOX10 genes were significantly different in black quail iris and Korean quail iris, as verified by RT-qPCR. The SOX10 gene c.324G>C mutation, which caused the replacement of p.Glu108Asp, had a highly significant correlation with iris color in black quail and Korean quail, which may be one of the reasons for different in iris color between these two quail species.
Collapse
Affiliation(s)
- Shiwei Ren
- College of Animal Science, Henan University of Science and Technology, Luoyang, China
| | - Xiaohui Zhang
- College of Animal Science, Henan University of Science and Technology, Luoyang, China
| | - Youzhi Pang
- Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang, China
| | - Yanxia Qi
- Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang, China
| | - Linke Huo
- College of Animal Science, Henan University of Science and Technology, Luoyang, China
| | - Fanghu Wu
- College of Animal Science, Henan University of Science and Technology, Luoyang, China
| | - Yuanyuan Shang
- College of Animal Science, Henan University of Science and Technology, Luoyang, China
| | - Jinquan Xi
- College of Animal Science, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
5
|
Han S, Zhang M, Qu X, Wu Z, Huang Z, Hu Y, Li Y, Cui L, Si L, Liu J, Shao Y. SOX10 deficiency-mediated LAMB3 upregulation determines the invasiveness of MAPKi-resistant melanoma. Oncogene 2024; 43:434-446. [PMID: 38102338 DOI: 10.1038/s41388-023-02917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
Melanoma that develops adaptive resistance to MAPK inhibitors (MAPKi) through transcriptional reprograming-mediated phenotype switching is associated with enhanced metastatic potential, yet the underlying mechanism of this improved invasiveness has not been fully elucidated. In this study, we show that MAPKi-resistant melanoma cells are more motile and invasive than the parental cells. We further show that LAMB3, a β subunit of the extracellular matrix protein laminin-332 is upregulated in MAPKi-resistant melanoma cells and that the LAMB3-Integrin α3/α6 signaling mediates the motile and invasive phenotype of resistant cells. In addition, we demonstrate that SOX10 deficiency in MAPKi-resistant melanoma cells drives LAMB3 upregulation through TGF-β signaling. Transcriptome profiling and functional studies further reveal a FAK/MMPs axis mediates the pro-invasiveness effect of LAMB3. Using a mouse lung metastasis model, we demonstrate LAMB3 depletion inhibits the metastatic potential of MAPKi-resistant cells in vivo. In summary, this study identifies a SOX10low/TGF-β/LAMB3/FAK/MMPs signaling pathway that determines the migration and invasion properties of MAPKi-resistant melanoma cells and provide rationales for co-targeting LAMB3 to curb the metastasis of melanoma cells in targeted therapy.
Collapse
Affiliation(s)
- Shujun Han
- Frontier Institute of Science and Technology, and Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Mo Zhang
- Frontier Institute of Science and Technology, and Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaoyan Qu
- Frontier Institute of Science and Technology, and Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zihao Wu
- Frontier Institute of Science and Technology, and Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zongguan Huang
- Frontier Institute of Science and Technology, and Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yiming Hu
- Department of Dermatology, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ying Li
- Department of Dermatology, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lanlan Cui
- Department of Dermatology, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lu Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Research Institute, Beijing, 100142, China
| | - Jiankang Liu
- Frontier Institute of Science and Technology, and Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
| | - Yongping Shao
- Frontier Institute of Science and Technology, and Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- Department of Dermatology, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
6
|
Abou-Hamad J, Hodgins JJ, Yakubovich E, Vanderhyden BC, Ardolino M, Sabourin LA. Sox10-Deficient Drug-Resistant Melanoma Cells Are Refractory to Oncolytic RNA Viruses. Cells 2023; 13:73. [PMID: 38201278 PMCID: PMC10777920 DOI: 10.3390/cells13010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Targeted therapy resistance frequently develops in melanoma due to intratumor heterogeneity and epigenetic reprogramming. This also typically induces cross-resistance to immunotherapies. Whether this includes additional modes of therapy has not been fully assessed. We show that co-treatments of MAPKi with VSV-based oncolytics do not function in a synergistic fashion; rather, the MAPKis block infection. Melanoma resistance to vemurafenib further perturbs the cells' ability to be infected by oncolytic viruses. Resistance to vemurafenib can be induced by the loss of SOX10, a common proliferative marker in melanoma. The loss of SOX10 promotes a cross-resistant state by further inhibiting viral infection and replication. Analysis of RNA-seq datasets revealed an upregulation of interferon-stimulated genes (ISGs) in SOX10 knockout populations and targeted therapy-resistant cells. Interestingly, the induction of ISGs appears to be independent of type I IFN production. Overall, our data suggest that the pathway mediating oncolytic resistance is due to the loss of SOX10 during acquired drug resistance in melanoma.
Collapse
Affiliation(s)
- John Abou-Hamad
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada; (J.A.-H.); (E.Y.); (B.C.V.); (M.A.)
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Jonathan J. Hodgins
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada; (J.A.-H.); (E.Y.); (B.C.V.); (M.A.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Edward Yakubovich
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada; (J.A.-H.); (E.Y.); (B.C.V.); (M.A.)
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Barbara C. Vanderhyden
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada; (J.A.-H.); (E.Y.); (B.C.V.); (M.A.)
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Michele Ardolino
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada; (J.A.-H.); (E.Y.); (B.C.V.); (M.A.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Luc A. Sabourin
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada; (J.A.-H.); (E.Y.); (B.C.V.); (M.A.)
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
7
|
Cai C, Radhakrishnan A, Uhler C. Synthetic Lethality Screening with Recursive Feature Machines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.03.569803. [PMID: 38106093 PMCID: PMC10723282 DOI: 10.1101/2023.12.03.569803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Synthetic lethality refers to a genetic interaction where the simultaneous perturbation of gene pairs leads to cell death. Synthetically lethal gene pairs (SL pairs) provide a potential avenue for selectively targeting cancer cells based on genetic vulnerabilities. The rise of large-scale gene perturbation screens such as the Cancer Dependency Map (DepMap) offers the opportunity to identify SL pairs automatically using machine learning. We build on a recently developed class of feature learning kernel machines known as Recursive Feature Machines (RFMs) to develop a pipeline for identifying SL pairs based on CRISPR viability data from DepMap. In particular, we first train RFMs to predict viability scores for a given CRISPR gene knockout from cell line embeddings consisting of gene expression and mutation features. After training, RFMs use a statistical operator known as average gradient outer product to provide weights for each feature indicating the importance of each feature in predicting cellular viability. We subsequently apply correlation-based filters to re-weight RFM feature importances and identify those features that are most indicative of low cellular viability. Our resulting pipeline is computationally efficient, taking under 3 minutes for analyzing all 17, 453 knockouts from DepMap for candidate SL pairs. We show that our pipeline more accurately recovers experimentally verified SL pairs than prior approaches. Moreover, our pipeline finds new candidate SL pairs, thereby opening novel avenues for identifying genetic vulnerabilities in cancer.
Collapse
Affiliation(s)
- Cathy Cai
- Eric and Wendy Schmidt Center, Broad Institute of MIT and Harvard
- Laboratory of Information and Decision Systems, Massachusetts Institute of Technology
| | - Adityanarayanan Radhakrishnan
- Eric and Wendy Schmidt Center, Broad Institute of MIT and Harvard
- School of Engineering and Applied Sciences, Harvard University
| | - Caroline Uhler
- Eric and Wendy Schmidt Center, Broad Institute of MIT and Harvard
- Laboratory of Information and Decision Systems, Massachusetts Institute of Technology
| |
Collapse
|
8
|
Takahashi M, Chong HB, Zhang S, Lazarov MJ, Harry S, Maynard M, White R, Murrey HE, Hilbert B, Neil JR, Gohar M, Ge M, Zhang J, Durr BR, Kryukov G, Tsou CC, Brooijmans N, Alghali ASO, Rubio K, Vilanueva A, Harrison D, Koglin AS, Ojeda S, Karakyriakou B, Healy A, Assaad J, Makram F, Rachman I, Khandelwal N, Tien PC, Popoola G, Chen N, Vordermark K, Richter M, Patel H, Yang TY, Griesshaber H, Hosp T, van den Ouweland S, Hara T, Bussema L, Dong R, Shi L, Rasmussen MQ, Domingues AC, Lawless A, Fang J, Yoda S, Nguyen LP, Reeves SM, Wakefield FN, Acker A, Clark SE, Dubash T, Fisher DE, Maheswaran S, Haber DA, Boland G, Sade-Feldman M, Jenkins R, Hata A, Bardeesy N, Suva ML, Martin B, Liau B, Ott C, Rivera MN, Lawrence MS, Bar-Peled L. DrugMap: A quantitative pan-cancer analysis of cysteine ligandability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563287. [PMID: 37961514 PMCID: PMC10634688 DOI: 10.1101/2023.10.20.563287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cysteine-focused chemical proteomic platforms have accelerated the clinical development of covalent inhibitors of a wide-range of targets in cancer. However, how different oncogenic contexts influence cysteine targeting remains unknown. To address this question, we have developed DrugMap , an atlas of cysteine ligandability compiled across 416 cancer cell lines. We unexpectedly find that cysteine ligandability varies across cancer cell lines, and we attribute this to differences in cellular redox states, protein conformational changes, and genetic mutations. Leveraging these findings, we identify actionable cysteines in NFκB1 and SOX10 and develop corresponding covalent ligands that block the activity of these transcription factors. We demonstrate that the NFκB1 probe blocks DNA binding, whereas the SOX10 ligand increases SOX10-SOX10 interactions and disrupts melanoma transcriptional signaling. Our findings reveal heterogeneity in cysteine ligandability across cancers, pinpoint cell-intrinsic features driving cysteine targeting, and illustrate the use of covalent probes to disrupt oncogenic transcription factor activity.
Collapse
|
9
|
Subhadarshini S, Sahoo S, Debnath S, Somarelli JA, Jolly MK. Dynamical modeling of proliferative-invasive plasticity and IFNγ signaling in melanoma reveals mechanisms of PD-L1 expression heterogeneity. J Immunother Cancer 2023; 11:e006766. [PMID: 37678920 PMCID: PMC10496669 DOI: 10.1136/jitc-2023-006766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Phenotypic heterogeneity of melanoma cells contributes to drug tolerance, increased metastasis, and immune evasion in patients with progressive disease. Diverse mechanisms have been individually reported to shape extensive intra-tumor and inter-tumor phenotypic heterogeneity, such as IFNγ signaling and proliferative to invasive transition, but how their crosstalk impacts tumor progression remains largely elusive. METHODS Here, we integrate dynamical systems modeling with transcriptomic data analysis at bulk and single-cell levels to investigate underlying mechanisms behind phenotypic heterogeneity in melanoma and its impact on adaptation to targeted therapy and immune checkpoint inhibitors. We construct a minimal core regulatory network involving transcription factors implicated in this process and identify the multiple 'attractors' in the phenotypic landscape enabled by this network. Our model predictions about synergistic control of PD-L1 by IFNγ signaling and proliferative to invasive transition were validated experimentally in three melanoma cell lines-MALME3, SK-MEL-5 and A375. RESULTS We demonstrate that the emergent dynamics of our regulatory network comprising MITF, SOX10, SOX9, JUN and ZEB1 can recapitulate experimental observations about the co-existence of diverse phenotypes (proliferative, neural crest-like, invasive) and reversible cell-state transitions among them, including in response to targeted therapy and immune checkpoint inhibitors. These phenotypes have varied levels of PD-L1, driving heterogeneity in immunosuppression. This heterogeneity in PD-L1 can be aggravated by combinatorial dynamics of these regulators with IFNγ signaling. Our model predictions about changes in proliferative to invasive transition and PD-L1 levels as melanoma cells evade targeted therapy and immune checkpoint inhibitors were validated in multiple RNA-seq data sets from in vitro and in vivo experiments. CONCLUSION Our calibrated dynamical model offers a platform to test combinatorial therapies and provide rational avenues for the treatment of metastatic melanoma. This improved understanding of crosstalk among PD-L1 expression, proliferative to invasive transition and IFNγ signaling can be leveraged to improve the clinical management of therapy-resistant and metastatic melanoma.
Collapse
Affiliation(s)
| | - Sarthak Sahoo
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Shibjyoti Debnath
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Jason A Somarelli
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
10
|
Xu X, Zhang DD, Kong P, Gao YK, Huang XF, Song Y, Zhang WD, Guo RJ, Li CL, Chen BW, Sun Y, Zhao YB, Jia FY, Wang X, Zhang F, Han M. Sox10 escalates vascular inflammation by mediating vascular smooth muscle cell transdifferentiation and pyroptosis in neointimal hyperplasia. Cell Rep 2023; 42:112869. [PMID: 37481722 DOI: 10.1016/j.celrep.2023.112869] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/14/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) can transdifferentiate into macrophage-like cells in the context of sustained inflammatory injury, which drives vascular hyperplasia and atherosclerotic complications. Using single-cell RNA sequencing, we identify that macrophage-like VSMCs are the key cell population in mouse neointimal hyperplasia. Sex-determining region Y (SRY)-related HMG-box gene 10 (Sox10) upregulation is associated with macrophage-like VSMC accumulation and pyroptosis in vitro and in the neointimal hyperplasia of mice. Tumor necrosis factor α (TNF-α)-induced Sox10 lactylation in a phosphorylation-dependent manner by PI3K/AKT signaling drives transcriptional programs of VSMC transdifferentiation, contributing to pyroptosis. The regulator of G protein signaling 5 (RGS5) interacts with AKT and blocks PI3K/AKT signaling and Sox10 phosphorylation at S24. Sox10 silencing mitigates vascular inflammation and forestalls neointimal hyperplasia in RGS5 knockout mice. Collectively, this study shows that Sox10 is a regulator of vascular inflammation and a potential control point in inflammation-related vascular disease.
Collapse
Affiliation(s)
- Xin Xu
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Dan-Dan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Peng Kong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Ya-Kun Gao
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiao-Fu Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Yu Song
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Wen-Di Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Rui-Juan Guo
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Chang-Lin Li
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Bo-Wen Chen
- Department of Cardiac Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050017, China
| | - Yue Sun
- Department of Cardiac Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050017, China
| | - Yong-Bo Zhao
- Department of Cardiac Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050017, China
| | - Fang-Yue Jia
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Xu Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Fan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China.
| | - Mei Han
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China.
| |
Collapse
|
11
|
Subhadarshini S, Sahoo S, Debnath S, Somarelli JA, Jolly MK. Dynamical modelling of proliferative-invasive plasticity and IFNγ signaling in melanoma reveals mechanisms of PD-L1 expression heterogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523355. [PMID: 37398358 PMCID: PMC10312429 DOI: 10.1101/2023.01.09.523355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Phenotypic heterogeneity of melanoma cells contributes to drug tolerance, increased metastasis, and immune evasion in patients with progressive disease. Diverse mechanisms have been individually reported to shape extensive intra- and inter-tumoral phenotypic heterogeneity, such as IFNγ signaling and proliferative to invasive transition, but how their crosstalk impacts tumor progression remains largely elusive. Here, we integrate dynamical systems modeling with transcriptomic data analysis at bulk and single-cell levels to investigate underlying mechanisms behind phenotypic heterogeneity in melanoma and its impact on adaptation to targeted therapy and immune checkpoint inhibitors. We construct a minimal core regulatory network involving transcription factors implicated in this process and identify the multiple "attractors" in the phenotypic landscape enabled by this network. Our model predictions about synergistic control of PD-L1 by IFNγ signaling and proliferative to invasive transition were validated experimentally in three melanoma cell lines - MALME3, SK-MEL-5 and A375. We demonstrate that the emergent dynamics of our regulatory network comprising MITF, SOX10, SOX9, JUN and ZEB1 can recapitulate experimental observations about the co-existence of diverse phenotypes (proliferative, neural crest-like, invasive) and reversible cell-state transitions among them, including in response to targeted therapy and immune checkpoint inhibitors. These phenotypes have varied levels of PD-L1, driving heterogeneity in immune-suppression. This heterogeneity in PD-L1 can be aggravated by combinatorial dynamics of these regulators with IFNγ signaling. Our model predictions about changes in proliferative to invasive transition and PD-L1 levels as melanoma cells evade targeted therapy and immune checkpoint inhibitors were validated in multiple data sets from in vitro and in vivo experiments. Our calibrated dynamical model offers a platform to test combinatorial therapies and provide rational avenues for the treatment of metastatic melanoma. This improved understanding of crosstalk among PD-L1 expression, proliferative to invasive transition and IFNγ signaling can be leveraged to improve the clinical management of therapy-resistant and metastatic melanoma.
Collapse
Affiliation(s)
| | - Sarthak Sahoo
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India
| | | | | | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
12
|
Xu X, Liu XQ, Liu XL, Wang X, Zhang WD, Huang XF, Jia FY, Kong P, Han M. SM22α Deletion Contributes to Neurocognitive Impairment in Mice through Modulating Vascular Smooth Muscle Cell Phenotypes. Int J Mol Sci 2023; 24:ijms24087117. [PMID: 37108281 PMCID: PMC10138350 DOI: 10.3390/ijms24087117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Considerable evidence now indicates that cognitive impairment is primarily a vascular disorder. The depletion of smooth muscle 22 alpha (SM22α) contributes to vascular smooth muscle cells (VSMCs) switching from contractile to synthetic and proinflammatory phenotypes in the context of inflammation. However, the role of VSMCs in the pathogenesis of cognitive impairment remains undetermined. Herein, we showed a possible link between VSMC phenotypic switching and neurodegenerative diseases via the integration of multi-omics data. SM22α knockout (Sm22α-/-) mice exhibited obvious cognitive impairment and cerebral pathological changes, which were visibly ameliorated by the administration of AAV-SM22α. Finally, we confirmed that SM22α disruption promotes the expression of SRY-related HMG-box gene 10 (Sox10) in VSMCs, thereby aggravating the systemic vascular inflammatory response and ultimately leading to cognitive impairment in the brain. Therefore, this study supports the idea of VSMCs and SM22α as promising therapeutic targets in cognitive impairment to improve memory and cognitive decline.
Collapse
Affiliation(s)
- Xin Xu
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Key Laboratory of Neural and Vascular Biology of Ministry of Education, Shijiazhuang 050017, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiao-Qin Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Key Laboratory of Neural and Vascular Biology of Ministry of Education, Shijiazhuang 050017, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Xin-Long Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Key Laboratory of Neural and Vascular Biology of Ministry of Education, Shijiazhuang 050017, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Xu Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Key Laboratory of Neural and Vascular Biology of Ministry of Education, Shijiazhuang 050017, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Wen-Di Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Key Laboratory of Neural and Vascular Biology of Ministry of Education, Shijiazhuang 050017, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiao-Fu Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Key Laboratory of Neural and Vascular Biology of Ministry of Education, Shijiazhuang 050017, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Fang-Yue Jia
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Key Laboratory of Neural and Vascular Biology of Ministry of Education, Shijiazhuang 050017, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Peng Kong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Key Laboratory of Neural and Vascular Biology of Ministry of Education, Shijiazhuang 050017, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Mei Han
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Key Laboratory of Neural and Vascular Biology of Ministry of Education, Shijiazhuang 050017, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|
13
|
Alver TN, Heintz K, Hovig E, Bøe SL. Cooperative induction of receptor tyrosine kinases contributes to adaptive MAPK drug resistance in melanoma through the PI3K pathway. Cancer Rep (Hoboken) 2023; 6:e1736. [PMID: 36251678 PMCID: PMC9940011 DOI: 10.1002/cnr2.1736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/05/2022] [Accepted: 09/07/2022] [Indexed: 02/22/2023] Open
Abstract
Vemurafenib-induced drug resistance in melanoma has been linked to receptor tyrosine kinase (RTK) upregulation. The MITF and SOX10 genes play roles as master regulators of melanocyte and melanoma development. Here, we aimed to explore the complex mechanisms behind the MITF/SOX10-controlled RTK-induced drug resistance in melanoma. To achieve this, we used a number of molecular techniques, including melanoma patient data from TCGA, vemurafenib-resistant melanoma cell lines, and knock-down studies. The melanoma cell lines were classified as proliferative or invasive based upon their MITF/AXL expression activity. We measured the change of expression activity for MITF/SOX10 and their receptor (AXL/ERBB3) and ligand (NRG1/GAS6) targets known to be involved in RTK-induced drug resistance after vemurafenib treatment. We find that melanoma cell lines characterized as proliferative (high MITF low AXL), transform into an invasive (low MITF, high AXL) cell state after vemurafenib resistance, indicating novel feedback loops and advanced compensatory regulation mechanisms between the master regulators, receptors, and ligands involved in vemurafenib-induced resistance. Together, our data disclose fine-tuned mechanisms involved in RTK-facilitated vemurafenib resistance that will be challenging to overcome by using single drug targeting strategies against melanoma.
Collapse
Affiliation(s)
- Tine Norman Alver
- Department of Tumor Biology, Institute for Cancer ResearchOslo University HospitalOsloNorway
- Department of Cancer Genetics, Institute for Cancer ResearchOslo University HospitalOsloNorway
- Faculty of MedicineUniversity of OsloOsloNorway
| | - Karen‐Marie Heintz
- Department of Tumor Biology, Institute for Cancer ResearchOslo University HospitalOsloNorway
- Faculty of MedicineUniversity of OsloOsloNorway
| | - Eivind Hovig
- Department of Tumor Biology, Institute for Cancer ResearchOslo University HospitalOsloNorway
- Department of InformaticsUniversity of OsloOsloNorway
| | - Sigurd L. Bøe
- Department of Medical BiochemistryOslo University Hospital, The Norwegian Radium HospitalOsloNorway
| |
Collapse
|
14
|
Donohue LK, Guo MG, Zhao Y, Jung N, Bussat RT, Kim DS, Neela PH, Kellman LN, Garcia OS, Meyers RM, Altman RB, Khavari PA. A cis-regulatory lexicon of DNA motif combinations mediating cell-type-specific gene regulation. CELL GENOMICS 2022; 2:100191. [PMID: 36742369 PMCID: PMC9894309 DOI: 10.1016/j.xgen.2022.100191] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Gene expression is controlled by transcription factors (TFs) that bind cognate DNA motif sequences in cis-regulatory elements (CREs). The combinations of DNA motifs acting within homeostasis and disease, however, are unclear. Gene expression, chromatin accessibility, TF footprinting, and H3K27ac-dependent DNA looping data were generated and a random-forest-based model was applied to identify 7,531 cell-type-specific cis-regulatory modules (CRMs) across 15 diploid human cell types. A co-enrichment framework within CRMs nominated 838 cell-type-specific, recurrent heterotypic DNA motif combinations (DMCs), which were functionally validated using massively parallel reporter assays. Cancer cells engaged DMCs linked to neoplasia-enabling processes operative in normal cells while also activating new DMCs only seen in the neoplastic state. This integrative approach identifies cell-type-specific cis-regulatory combinatorial DNA motifs in diverse normal and diseased human cells and represents a general framework for deciphering cis-regulatory sequence logic in gene regulation.
Collapse
Affiliation(s)
- Laura K.H. Donohue
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA,Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA,Synthego, Redwood City, CA, USA,These authors contributed equally
| | - Margaret G. Guo
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA,Stanford Program in Biomedical Informatics, Stanford University, Stanford, CA, USA,These authors contributed equally
| | - Yang Zhao
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA,Synthego, Redwood City, CA, USA
| | - Namyoung Jung
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA,Department of Life Science, Pohang University of Science and Technology, Pohang, Korea
| | - Rose T. Bussat
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA,23andMe, Inc., Sunnyvale, CA, USA
| | - Daniel S. Kim
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA,Stanford Program in Biomedical Informatics, Stanford University, Stanford, CA, USA
| | - Poornima H. Neela
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA,Fauna Bio, Emeryville, CA, USA
| | - Laura N. Kellman
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA,Stanford Program in Cancer Biology, Stanford University, Stanford, CA, USA
| | - Omar S. Garcia
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Robin M. Meyers
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA,Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Russ B. Altman
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA,Stanford Program in Biomedical Informatics, Stanford University, Stanford, CA, USA,Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Paul A. Khavari
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA,Stanford Program in Cancer Biology, Stanford University, Stanford, CA, USA,Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA,Lead contact,Correspondence:
| |
Collapse
|
15
|
Cattelani L, Fortino V. Improved NSGA-II algorithms for multi-objective biomarker discovery. Bioinformatics 2022; 38:ii20-ii26. [PMID: 36124794 DOI: 10.1093/bioinformatics/btac463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
MOTIVATION In modern translational research, the development of biomarkers heavily relies on use of omics technologies, but implementations with basic data mining algorithms frequently lead to false positives. Non-dominated Sorting Genetic Algorithm II (NSGA2) is an extremely effective algorithm for biomarker discovery but has been rarely evaluated against large-scale datasets. The exploration of the feature search space is the key to NSGA2 success but in specific cases NSGA2 expresses a shallow exploration of the space of possible feature combinations, possibly leading to models with low predictive performances. RESULTS We propose two improved NSGA2 algorithms for finding subsets of biomarkers exhibiting different trade-offs between accuracy and feature number. The performances are investigated on gene expression data of breast cancer patients. The results are compared with NSGA2 and LASSO. The benchmarking dataset includes internal and external validation sets. The results show that the proposed algorithms generate a better approximation of the optimal trade-offs between accuracy and set size. Moreover, validation and test accuracies are better than those provided by NSGA2 and LASSO. Remarkably, the GA-based methods provide biomarkers that achieve a very high prediction accuracy (>80%) with a small number of features (<10), representing a valid alternative to known biomarker models, such as Pam50 and MammaPrint. AVAILABILITY AND IMPLEMENTATION The software is publicly available on GitHub at github.com/UEFBiomedicalInformaticsLab/BIODAI/tree/main/MOO. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Luca Cattelani
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Vittorio Fortino
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
16
|
Qi J, Ma L, Guo W. Recent advances in the regulation mechanism of SOX10. J Otol 2022; 17:247-252. [PMID: 36249926 PMCID: PMC9547104 DOI: 10.1016/j.joto.2022.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Neural crest (NC) is the primitive neural structure in embryonic stage, which develops from ectodermal neural plate cells and epithelial cells. When the neural fold forms into neural tube, neural crest also forms a cord like structure above the neural tube and below the ectoderm. Neural crest cells (NCC) have strong migration and proliferation abilities. A number of tissue cells differentiate from neural crest cells, such as melanocytes, central and peripheral neurons, glial cells, craniofacial cells, osteoblasts, chondrocytes and smooth muscle cells. The migration and differentiation of neural crest cells are regulated by a gene network where a variety of genes, transcriptional factors, signal pathways and growth factors are involved.
Collapse
Affiliation(s)
- Jingcui Qi
- Department of Otorhinolaryngology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Long Ma
- PLA Rocket Force Characteristic Medical Center Department of Stomatology, China
| | - Weiwei Guo
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Lab of Hearing Science, Ministry of Education, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
- Corresponding author. College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
17
|
Hu F, Fong KO, Cheung MPL, Liu JA, Liang R, Li TW, Sharma R, IP PP, Yang X, Cheung M. DEPDC1B Promotes Melanoma Angiogenesis and Metastasis through Sequestration of Ubiquitin Ligase CDC16 to Stabilize Secreted SCUBE3. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105226. [PMID: 35088579 PMCID: PMC8981904 DOI: 10.1002/advs.202105226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/11/2022] [Indexed: 05/28/2023]
Abstract
The ability of melanoma to acquire metastasis through the induction of angiogenesis is one of the major causes of skin cancer death. Here, it is found that high transcript levels of DEP domain containing 1B (DEPDC1B) in cutaneous melanomas are significantly associated with a poor prognosis. Tissue microarray analysis indicates that DEPDC1B expression is positively correlated with SOX10 in the different stages of melanoma. Consistently, DEPDC1B is both required and sufficient for melanoma growth, metastasis, angiogenesis, and functions as a direct downstream target of SOX10 to partly mediate its oncogenic activity. In contrast to other tumor types, the DEPDC1B-mediated enhancement of melanoma metastatic potential is not dependent on the activities of RHO GTPase signaling and canonical Wnt signaling, but is acquired through secretion of signal peptide, CUB domain and EGF like domain containing 3 (SCUBE3), which is crucial for promoting angiogenesis in vitro and in vivo. Mechanistically, DEPDC1B regulates SCUBE3 protein stability through the competitive association with ubiquitin ligase cell division cycle 16 (CDC16) to prevent SCUBE3 from undergoing degradation via the ubiquitin-proteasome pathway. Importantly, expression of SOX10, DEPDC1B, and SCUBE3 are positively correlated with microvessel density in the advanced stage of melanomas. In conclusion, it is revealed that a SOX10-DEPDC1B-SCUBE3 regulatory axis promotes melanoma angiogenesis and metastasis, which suggests that targeting secreted SCUBE3 can be a therapeutic strategy against metastatic melanoma.
Collapse
Affiliation(s)
- Feng Hu
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Ki On Fong
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - May Pui Lai Cheung
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Jessica Aijia Liu
- Department of NeuroscienceCity University of Hong KongTat Chee AvenueHong KongChina
| | - Rui Liang
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Tsz Wai Li
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Rakesh Sharma
- Centre for PanorOmic SciencesProteomics and Metabolomics Core FacilityLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Philip Pun‐Ching IP
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Xintao Yang
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Martin Cheung
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| |
Collapse
|
18
|
Capparelli C, Purwin TJ, Glasheen M, Caksa S, Tiago M, Wilski N, Pomante D, Rosenbaum S, Nguyen MQ, Cai W, Franco-Barraza J, Zheng R, Kumar G, Chervoneva I, Shimada A, Rebecca VW, Snook AE, Hookim K, Xu X, Cukierman E, Herlyn M, Aplin AE. Targeting SOX10-deficient cells to reduce the dormant-invasive phenotype state in melanoma. Nat Commun 2022; 13:1381. [PMID: 35296667 PMCID: PMC8927161 DOI: 10.1038/s41467-022-28801-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Cellular plasticity contributes to intra-tumoral heterogeneity and phenotype switching, which enable adaptation to metastatic microenvironments and resistance to therapies. Mechanisms underlying tumor cell plasticity remain poorly understood. SOX10, a neural crest lineage transcription factor, is heterogeneously expressed in melanomas. Loss of SOX10 reduces proliferation, leads to invasive properties, including the expression of mesenchymal genes and extracellular matrix, and promotes tolerance to BRAF and/or MEK inhibitors. We identify the class of cellular inhibitor of apoptosis protein-1/2 (cIAP1/2) inhibitors as inducing cell death selectively in SOX10-deficient cells. Targeted therapy selects for SOX10 knockout cells underscoring their drug tolerant properties. Combining cIAP1/2 inhibitor with BRAF/MEK inhibitors delays the onset of acquired resistance in melanomas in vivo. These data suggest that SOX10 mediates phenotypic switching in cutaneous melanoma to produce a targeted inhibitor tolerant state that is likely a prelude to the acquisition of resistance. Furthermore, we provide a therapeutic strategy to selectively eliminate SOX10-deficient cells.
Collapse
Affiliation(s)
- Claudia Capparelli
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA. .,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - Timothy J. Purwin
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - McKenna Glasheen
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Signe Caksa
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Manoela Tiago
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Nicole Wilski
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Danielle Pomante
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Sheera Rosenbaum
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Mai Q. Nguyen
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Weijia Cai
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Janusz Franco-Barraza
- grid.249335.a0000 0001 2218 7820Cancer Signaling and Epigenetics Program, Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA 19111 USA
| | - Richard Zheng
- grid.265008.90000 0001 2166 5843Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Gaurav Kumar
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA ,grid.265008.90000 0001 2166 5843Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Inna Chervoneva
- grid.265008.90000 0001 2166 5843Division of Biostatistics, Thomas Jefferson University, Philadelphia, PA 19107 USA ,grid.265008.90000 0001 2166 5843Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Ayako Shimada
- grid.265008.90000 0001 2166 5843Division of Biostatistics, Thomas Jefferson University, Philadelphia, PA 19107 USA ,grid.265008.90000 0001 2166 5843Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Vito W. Rebecca
- grid.251075.40000 0001 1956 6678Melanoma Research Center, The Wistar Institute, Philadelphia, PA 19104 USA ,grid.21107.350000 0001 2171 9311Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | - Adam E. Snook
- grid.265008.90000 0001 2166 5843Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107 USA ,grid.265008.90000 0001 2166 5843Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Kim Hookim
- grid.265008.90000 0001 2166 5843Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Xiaowei Xu
- grid.25879.310000 0004 1936 8972Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Edna Cukierman
- grid.249335.a0000 0001 2218 7820Cancer Signaling and Epigenetics Program, Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA 19111 USA
| | - Meenhard Herlyn
- grid.251075.40000 0001 1956 6678Melanoma Research Center, The Wistar Institute, Philadelphia, PA 19104 USA
| | - Andrew E. Aplin
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA ,grid.265008.90000 0001 2166 5843Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107 USA
| |
Collapse
|
19
|
Lin R, Li J, Zhao F, Zhou M, Wang J, Xiao T. Transcriptome analysis of genes potentially associated with white and black plumage formation in Chinese indigenous ducks ( Anas platyrhynchos). Br Poult Sci 2022; 63:466-474. [PMID: 35094630 DOI: 10.1080/00071668.2022.2035676] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
1. Plumage colour is an important recognisable characteristic of duck (Anas platyrhynchos), but the coloration mechanisms remain largely unknown. To elucidate the molecular mechanisms underlying the formation of black and white plumage, the following study applied RNA sequencing (RNA-Seq) to catalogue the global gene expression profiles in the duck feather bulbs of black and white colours.2. Black feather bulbs were collected from Putian Black ducks (B-PTB) and black Longsheng Jade-green ducks (B-LS), while white feather bulbs were collected from Putian White ducks (W-PTW), Putian Black ducks (W-PTB) and Longsheng Jade-green ducks (W-LS). Sixteen cDNA libraries were constructed and sequenced for transcriptional analysis. Three comparison groups were employed to analyse differentially expressed genes (DEGs), including W-PTB versus B-PTB, W-PTW versus B-PTB and W-LS versus B-LS.3. The results showed 180 DEGs between W-PTB and B-PTB, 303 DEGs between W-PTW and B-PTB, and 108 DEGs between W-LS and B-LS. Further analysis showed that 18 DEGs were directly involved in the pigmentation process and melanogenesis signalling pathway. Additionally, the distribution of DEGs varied amongst groups whereby ASIP appeared only in the W-LS versus B-LS group, GNAI1 and ZEB2 appeared only in the W-PTW versus B-PTB group, and KITLG, EDN3 and FZD4 appeared only in W-PTB versus B-PTB.4. The findings suggested that the mechanism of feather albinism may differ between duck breeds. This study provided new information for discovering genes that are important for feather pigmentation and helps elucidate molecular mechanisms involved in black and white plumage in ducks.
Collapse
Affiliation(s)
- Ruiyi Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiaquan Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fanglu Zhao
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mai Zhou
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Junhui Wang
- The Animal Husbandry Station in Fujian Province, Fuzhou, China
| | - Tianfang Xiao
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
20
|
In Vivo Melanoma Cell Morphology Reflects Molecular Signature and Tumor Aggressiveness. J Invest Dermatol 2022; 142:2205-2216.e6. [PMID: 35007555 DOI: 10.1016/j.jid.2021.12.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 12/31/2022]
Abstract
Melanoma is the deadliest type of skin cancer, characterized by high cellular heterogeneity which contributes to therapy resistance and unpredictable disease outcome. Recently, by correlating Reflectance-Confocal-Microscopy (RCM) morphology with histopathological type, we identified four distinct melanoma-subtypes: dendritic-cell (DC), round-cell (RC), dermal-nest (DN), and combined-type (CT) melanomas. In the present study, each RCM-melanoma subtype expressed a specific biomolecular profile and biological behavior in vitro. Markers of tumor aggressiveness, including Ki67, MERTK, nestin and stemness markers, were highest in the most invasive CT and DN melanomas, as compared to DC and RC. This was also confirmed in multicellular tumor spheroids. Transcriptomic analysis showed a modulation of cancer progression-associated genes from DC to CT melanomas. The switch from E- to N-cadherin expression proved the epithelial-to-mesenchymal transition from DC to CT subtypes. The DN melanoma was predominantly located in the dermis, as also shown in skin reconstructs. It displayed a unique behavior and a molecular profile associated with a high degree of aggressiveness. Altogether, our results demonstrate that each RCM-melanoma subtype has a distinct biological and gene expression profile, related to tumor aggressiveness, confirming that RCM can be a dependable tool for in vivo detecting different types of melanoma and for early diagnostic screening.
Collapse
|
21
|
Lai X, Schmitz U, Vera J. The Role of MicroRNAs in Cancer Biology and Therapy from a Systems Biology Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1385:1-22. [DOI: 10.1007/978-3-031-08356-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Gene Expression and Mutational Profile in BAP-1 Inactivated Melanocytic Lesions of Progressive Malignancy from a Patient with Multiple Lesions. Genes (Basel) 2021; 13:genes13010010. [PMID: 35052351 PMCID: PMC8774463 DOI: 10.3390/genes13010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 12/22/2022] Open
Abstract
BAP-1 (BRCA1-associated protein 1) inactivated melanocytic lesions are a group of familial or sporadic lesions with unique histology and molecular features. They are of great clinical interest, at least in part due to the potential for malignant transformation and association with a familial cancer predisposition syndrome. Here, we describe a patient with multiple spatially and temporally distinct melanocytic lesions with loss of BAP1 expression by immunohistochemistry. RNA sequencing was performed on three independent lesions spanning the morphologic spectrum: a benign nevus, an atypical tumor, and a melanoma arising from a pre-existing BAP1-inactivated nevus. The three lesions demonstrated largely distinct gene expression and mutational profiles. Gene expression analysis revealed that genes involved in receptor protein kinase pathways were progressively upregulated from nevus to melanoma. Moreover, a clear enrichment of genes regulated in response to UV radiation was found in the melanoma from this patient, as well as upregulation of MAPK pathway-related genes and several transcription factors related to melanomagenesis.
Collapse
|
23
|
Abstract
Melanoma is the most lethal skin cancer that originates from the malignant transformation of melanocytes. Although melanoma has long been regarded as a cancerous malignancy with few therapeutic options, increased biological understanding and unprecedented innovations in therapies targeting mutated driver genes and immune checkpoints have substantially improved the prognosis of patients. However, the low response rate and inevitable occurrence of resistance to currently available targeted therapies have posed the obstacle in the path of melanoma management to obtain further amelioration. Therefore, it is necessary to understand the mechanisms underlying melanoma pathogenesis more comprehensively, which might lead to more substantial progress in therapeutic approaches and expand clinical options for melanoma therapy. In this review, we firstly make a brief introduction to melanoma epidemiology, clinical subtypes, risk factors, and current therapies. Then, the signal pathways orchestrating melanoma pathogenesis, including genetic mutations, key transcriptional regulators, epigenetic dysregulations, metabolic reprogramming, crucial metastasis-related signals, tumor-promoting inflammatory pathways, and pro-angiogenic factors, have been systemically reviewed and discussed. Subsequently, we outline current progresses in therapies targeting mutated driver genes and immune checkpoints, as well as the mechanisms underlying the treatment resistance. Finally, the prospects and challenges in the development of melanoma therapy, especially immunotherapy and related ongoing clinical trials, are summarized and discussed.
Collapse
Affiliation(s)
- Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, 710032, Xi'an, Shaanxi, China
| | - Huina Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, 710032, Xi'an, Shaanxi, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, 710032, Xi'an, Shaanxi, China.
| |
Collapse
|
24
|
Yokoyama S, Takahashi A, Kikuchi R, Nishibu S, Lo JA, Hejna M, Moon WM, Kato S, Zhou Y, Hodi FS, Song JS, Sakurai H, Fisher DE, Hayakawa Y. SOX10 regulates melanoma immunogenicity through an IRF4-IRF1 axis. Cancer Res 2021; 81:6131-6141. [PMID: 34728538 DOI: 10.1158/0008-5472.can-21-2078] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/15/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022]
Abstract
Loss-of-function mutations of JAK1/2 impair cancer cell responsiveness to IFN-γ and immunogenicity. Therefore, an understanding of compensatory pathways to activate IFN-γ signaling in cancer cells is clinically important for the success of immunotherapy. Here we demonstrate that the transcription factor SOX10 hinders immunogenicity of melanoma cells through the IRF4-IRF1 axis. Genetic and pharmacological approaches revealed that SOX10 repressed IRF1 transcription via direct induction of a negative regulator, IRF4. The SOX10-IRF4-IRF1 axis regulated PD-L1 expression independently of JAK-STAT pathway activity, and suppression of SOX10 increased the efficacy of combination therapy with an anti-PD-1 antibody and HDAC inhibitor against a clinically relevant melanoma model. Thus, the SOX10-IRF4-IRF1 axis serves as a potential target that can bypass JAK-STAT signaling to immunologically warm up melanoma with a "cold" tumor immune microenvironment.
Collapse
Affiliation(s)
- Satoru Yokoyama
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama
| | - Atsushi Takahashi
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama
| | - Ryota Kikuchi
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama
| | - Soshi Nishibu
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama
| | | | | | | | - Shinichiro Kato
- Dermatology and Medical Oncology, Massachusetts General Hospital
| | - Yue Zhou
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama
| | | | - Jun S Song
- Physics, University of Illinois at Urbana-Champaign
| | - Hiroaki Sakurai
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama
| | - David E Fisher
- Dermatology and Medical Oncology, Massachusetts General Hospital
| | - Yoshihiro Hayakawa
- Section of Host Defences, Institute of Natural Medicine, University of Toyama
| |
Collapse
|
25
|
Bogusławska-Duch J, Ducher-Hanaka M, Zajkowska A, Czajka M, Małecki M. Therapeutic combination silencing VEGF and SOX10 increases the antiangiogenic effect in the mouse melanoma model B16-F10 - in vitro and in vivo studies. Postepy Dermatol Alergol 2021; 38:887-898. [PMID: 34849139 PMCID: PMC8610042 DOI: 10.5114/ada.2021.110461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/24/2020] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Gene therapy is an innovative form of treatment of genetic diseases, in which psiRNA molecules silencing specific genes are applied. AIM The study evaluated the anti-tumour effect of psiRNA silencing preparations of the vascular endothelial growth factor (VEGF) and Sry-related HMG-Box gene 10 (SOX10) on melanoma (B16-F10) by inhibiting angiogenesis. MATERIAL AND METHODS The preparations based on plasmid vectors psiRNA silencing the gene SOX10 and VEGF that form complexes with cationic lipid (psiRNA/carrier) have been developed. psiRNA preparations were tested on the mouse melanoma cell line B16-F10, both in vitro and in vivo. The silencing activity of transfected melanoma cells with the obtained psiRNA preparations was examined using the qPCR and Western blot methods. The anti-tumour activity of psiRNA preparations on melanoma tumour cells was then evaluated in a mouse in vivo model. RESULTS In vitro studies have shown that the B16-F10 cells efficiently transfect non-viral preparations - psiRNA: Lyovec (74-89%). Worth mentioning is the fact that silencing SOX10 in B16-F10 melanoma cells increases the expression of the COL18A1 gene (compared to the preparation inhibiting only VEGF), which codes the endostatin to stop angiogenesis. In vivo results show that the level of haemoglobin in tumours of mice treated with psiRNA formulations was over 6 times lower than controls and tumour mass was 60-80% lower. CONCLUSIONS The novel study proves that simultaneous inhibition of SOX10 and VEGF enhances the antiangiogenic action and thus contributes to a significant halt of disease development. In addition, these data expand knowledge about SOX10 regulation and functions.
Collapse
Affiliation(s)
| | | | - Agnieszka Zajkowska
- Department of Applied Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Milena Czajka
- Department of Applied Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Małecki
- Department of Applied Pharmacy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
26
|
Tang Y, Cao Y. SOX10 Knockdown Inhibits Melanoma Cell Proliferation via Notch Signaling Pathway. Cancer Manag Res 2021; 13:7225-7234. [PMID: 34557039 PMCID: PMC8455513 DOI: 10.2147/cmar.s329331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/19/2021] [Indexed: 12/18/2022] Open
Abstract
Purpose Melanoma is a serious and malignant disease worldwide. Seeking diagnostic markers and potential therapeutic targets is urgent for melanoma treatment. SOX10, a member of the SoxE family of genes, is a transcription factor which can regulate the transcription of a wide variety of genes in multiple cellular processes. Methods The mRNA level and protein expression of SOX10 is confirmed by bioinformatic analysis and IHC staining. MTT, clone formation and EdU analysis showed that SOX10 knockdown (KD) could significantly inhibit melanoma cell proliferation. FACS analysis showed that SOX10 KD could markedly enhance the level of cell apoptosis. The downstream target signaling pathway is predicted by RNA-seq based on the public GEO database. The activation of Notch signaling mediated by SOX10 is tested by qPCR and Western blot. Results Ectopic upregulation of SOX10 was found in melanoma patient tissues compared to normal nevus tissues in mRNA and protein levels. Furthermore, both mRNA and protein level of SOX10 were negatively correlated with melanoma patient's prognosis. SOX10 knockdown could obviously suppress the proliferation ability of melanoma cells by inactivating Notch signaling pathway. Conclusion Our study confirmed that SOX10 is an oncogene and activate Notch signaling pathway, which suggests the potential treatment for melanoma patients by target SOX10/Notch axis.
Collapse
Affiliation(s)
- Youqun Tang
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Yanming Cao
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China
| |
Collapse
|
27
|
PITX1 inhibits the growth and proliferation of melanoma cells through regulation of SOX family genes. Sci Rep 2021; 11:18405. [PMID: 34526609 PMCID: PMC8443576 DOI: 10.1038/s41598-021-97791-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/30/2021] [Indexed: 01/04/2023] Open
Abstract
Melanoma is one of the most aggressive types of cancer wherein resistance to treatment prevails. Therefore, it is important to discover novel molecular targets of melanoma progression as potential treatments. Here we show that paired-like homeodomain transcription factor 1 (PITX1) plays a crucial role in the inhibition of melanoma progression through regulation of SRY-box transcription factors (SOX) gene family mRNA transcription. Overexpression of PITX1 in melanoma cell lines resulted in a reduction in cell proliferation and an increase in apoptosis. Additionally, analysis of protein levels revealed an antagonistic cross-regulation between SOX9 and SOX10. Interestingly, PITX1 binds to the SOX9 promoter region as a positive regulatory transcription factor; PITX1 mRNA expression levels were positively correlated with SOX9 expression, and negatively correlated with SOX10 expression in melanoma tissues. Furthermore, transcription of the long noncoding RNA (lncRNA), survival-associated mitochondrial melanoma-specific oncogenic noncoding RNA (SAMMSON), was decreased in PITX1-overexpressing cells. Taken together, the findings in this study indicate that PITX1 may act as a negative regulatory factor in the development and progression of melanoma via direct targeting of the SOX signaling.
Collapse
|
28
|
Bi O, Anene CA, Nsengimana J, Shelton M, Roberts W, Newton-Bishop J, Boyne JR. SFPQ promotes an oncogenic transcriptomic state in melanoma. Oncogene 2021; 40:5192-5203. [PMID: 34218270 PMCID: PMC8376646 DOI: 10.1038/s41388-021-01912-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 06/17/2021] [Indexed: 02/06/2023]
Abstract
The multifunctional protein, splicing factor, proline- and glutamine-rich (SFPQ) has been implicated in numerous cancers often due to interaction with coding and non-coding RNAs, however, its role in melanoma remains unclear. We report that knockdown of SFPQ expression in melanoma cells decelerates several cancer-associated cell phenotypes, including cell growth, migration, epithelial to mesenchymal transition, apoptosis, and glycolysis. RIP-seq analysis revealed that the SFPQ-RNA interactome is reprogrammed in melanoma cells and specifically enriched with key melanoma-associated coding and long non-coding transcripts, including SOX10, AMIGO2 and LINC00511 and in most cases SFPQ is required for the efficient expression of these genes. Functional analysis of two SFPQ-enriched lncRNA, LINC00511 and LINC01234, demonstrated that these genes independently contribute to the melanoma phenotype and a more detailed analysis of LINC00511 indicated that this occurs in part via modulation of the miR-625-5p/PKM2 axis. Importantly, analysis of a large clinical cohort revealed that elevated expression of SFPQ in primary melanoma tumours may have utility as a prognostic biomarker. Together, these data suggest that SFPQ is an important driver of melanoma, likely due to SFPQ-RNA interactions promoting the expression of numerous oncogenic transcripts.
Collapse
Affiliation(s)
- O Bi
- School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - C A Anene
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - J Nsengimana
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - M Shelton
- School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - W Roberts
- School of Clinical and Applied Science, Leeds Beckett University, Leeds, UK
| | | | - J R Boyne
- School of Applied Sciences, University of Huddersfield, Huddersfield, UK.
| |
Collapse
|
29
|
Wessely A, Steeb T, Berking C, Heppt MV. How Neural Crest Transcription Factors Contribute to Melanoma Heterogeneity, Cellular Plasticity, and Treatment Resistance. Int J Mol Sci 2021; 22:ijms22115761. [PMID: 34071193 PMCID: PMC8198848 DOI: 10.3390/ijms22115761] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
Cutaneous melanoma represents one of the deadliest types of skin cancer. The prognosis strongly depends on the disease stage, thus early detection is crucial. New therapies, including BRAF and MEK inhibitors and immunotherapies, have significantly improved the survival of patients in the last decade. However, intrinsic and acquired resistance is still a challenge. In this review, we discuss two major aspects that contribute to the aggressiveness of melanoma, namely, the embryonic origin of melanocytes and melanoma cells and cellular plasticity. First, we summarize the physiological function of epidermal melanocytes and their development from precursor cells that originate from the neural crest (NC). Next, we discuss the concepts of intratumoral heterogeneity, cellular plasticity, and phenotype switching that enable melanoma to adapt to changes in the tumor microenvironment and promote disease progression and drug resistance. Finally, we further dissect the connection of these two aspects by focusing on the transcriptional regulators MSX1, MITF, SOX10, PAX3, and FOXD3. These factors play a key role in NC initiation, NC cell migration, and melanocyte formation, and we discuss how they contribute to cellular plasticity and drug resistance in melanoma.
Collapse
Affiliation(s)
- Anja Wessely
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.W.); (T.S.); (C.B.)
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Theresa Steeb
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.W.); (T.S.); (C.B.)
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Carola Berking
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.W.); (T.S.); (C.B.)
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Markus Vincent Heppt
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.W.); (T.S.); (C.B.)
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-85-35747
| |
Collapse
|
30
|
Pedri D, Karras P, Landeloos E, Marine JC, Rambow F. Epithelial-to-mesenchymal-like transition events in melanoma. FEBS J 2021; 289:1352-1368. [PMID: 33999497 DOI: 10.1111/febs.16021] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 11/30/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT), a process through which epithelial tumor cells acquire mesenchymal phenotypic properties, contributes to both metastatic dissemination and therapy resistance in cancer. Accumulating evidence indicates that nonepithelial tumors, including melanoma, can also gain mesenchymal-like properties that increase their metastatic propensity and decrease their sensitivity to therapy. In this review, we discuss recent findings, illustrating the striking similarities-but also knowledge gaps-between the biology of mesenchymal-like state(s) in melanoma and mesenchymal state(s) from epithelial cancers. Based on this comparative analysis, we suggest hypothesis-driven experimental approaches to further deepen our understanding of the EMT-like process in melanoma and how such investigations may pave the way towards the identification of clinically relevant biomarkers for prognosis and new therapeutic strategies.
Collapse
Affiliation(s)
- Dennis Pedri
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Belgium.,Laboratory of Membrane Trafficking, Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Panagiotis Karras
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Belgium
| | - Ewout Landeloos
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Belgium
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Belgium
| | - Florian Rambow
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Belgium
| |
Collapse
|
31
|
Ma Y, Wang L, He F, Yang J, Ding Y, Ge S, Fan X, Zhou Y, Xu X, Jia R. LACTB suppresses melanoma progression by attenuating PP1A and YAP interaction. Cancer Lett 2021; 506:67-82. [PMID: 33675985 DOI: 10.1016/j.canlet.2021.02.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 02/21/2021] [Accepted: 02/28/2021] [Indexed: 02/03/2023]
Abstract
Very limited progress has been made in the management of advanced melanoma, especially melanoma of uveal origin. Lactamase β (LACTB) is a novel tumor suppressor; however, its biological function in melanoma remains unknown. Herein we demonstrated markedly lower LACTB expression levels in melanoma tissues and cell lines. Overexpression of LACTB suppressed the proliferation, migration and invasion of melanoma cells in vitro. Mechanistically, LACTB inhibited the activity of yes-associated protein (YAP). We showed that the level of phospho-YAP (Serine 127) was increased upon LACTB overexpression, which prevented the translocation of YAP to the nucleus. Further, LACTB could directly bind to PP1A and attenuate the interaction between PP1A and YAP, resulting in decreased YAP dephosphorylation and inactivation in a LATS1-independent manner. Additionally, transfection of phosphorylation-defective YAP mutants reversed LACTB-induced tumor suppression. Upstream, we demonstrated that SOX10 binds to the LACTB promoter and negatively regulates its transcription. Overexpression of LACTB also suppressed the tumorigenicity and lung metastasis of MUM2B uveal melanoma cells in vivo. Taken together, our findings indicate a novel SOX10/LACTB/PP1A signaling cascade that renders YAP inactive and modulates melanoma progression, offering a new therapeutic target for melanoma treatment.
Collapse
Affiliation(s)
- Yawen Ma
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Lihua Wang
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Fanglin He
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Jie Yang
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Yi Ding
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Yixiong Zhou
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Xiaofang Xu
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| |
Collapse
|
32
|
Yu L, Peng F, Dong X, Chen Y, Sun D, Jiang S, Deng C. Sex-Determining Region Y Chromosome-Related High-Mobility-Group Box 10 in Cancer: A Potential Therapeutic Target. Front Cell Dev Biol 2020; 8:564740. [PMID: 33344444 PMCID: PMC7744619 DOI: 10.3389/fcell.2020.564740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/17/2020] [Indexed: 01/20/2023] Open
Abstract
Sex-determining region Y-related high mobility group-box 10 (SOX10), a member of the SOX family, has recently been highlighted as an essential transcriptional factor involved in developmental biology. Recently, the functionality of SOX 10 has been increasingly revealed by researchers worldwide. It has been reported that SOX10 significantly regulates the proliferation, migration, and apoptosis of tumors and is closely associated with the progression of cancer. In this review, we first introduce the basic background of the SOX family and SOX10 and then discuss the pathophysiological roles of SOX10 in cancer. Besides, we enumerate the application of SOX10 in the pathological diagnosis and therapeutic potential of cancer. Eventually, we summarize the potential directions and perspectives of SOX10 in neoplastic theranostics. The information compiled herein may assist in additional studies and increase the potential of SOX10 as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Liming Yu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Fan Peng
- Department of Cardiology, Xijing Hopspital, The Airforce Military Medical University, Xi'an, China
| | - Xue Dong
- Outpatient Department of Liaoning Military Region, General Hospital of Northern Theater Command, Shenyang, China
| | - Ying Chen
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dongdong Sun
- Department of Cardiology, Xijing Hopspital, The Airforce Military Medical University, Xi'an, China
| | - Shuai Jiang
- Department of Cardiology, Xijing Hopspital, The Airforce Military Medical University, Xi'an, China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
33
|
Minnoye L, Taskiran II, Mauduit D, Fazio M, Van Aerschot L, Hulselmans G, Christiaens V, Makhzami S, Seltenhammer M, Karras P, Primot A, Cadieu E, van Rooijen E, Marine JC, Egidy G, Ghanem GE, Zon L, Wouters J, Aerts S. Cross-species analysis of enhancer logic using deep learning. Genome Res 2020; 30:1815-1834. [PMID: 32732264 PMCID: PMC7706731 DOI: 10.1101/gr.260844.120] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/15/2020] [Indexed: 12/23/2022]
Abstract
Deciphering the genomic regulatory code of enhancers is a key challenge in biology because this code underlies cellular identity. A better understanding of how enhancers work will improve the interpretation of noncoding genome variation and empower the generation of cell type-specific drivers for gene therapy. Here, we explore the combination of deep learning and cross-species chromatin accessibility profiling to build explainable enhancer models. We apply this strategy to decipher the enhancer code in melanoma, a relevant case study owing to the presence of distinct melanoma cell states. We trained and validated a deep learning model, called DeepMEL, using chromatin accessibility data of 26 melanoma samples across six different species. We show the accuracy of DeepMEL predictions on the CAGI5 challenge, where it significantly outperforms existing models on the melanoma enhancer of IRF4 Next, we exploit DeepMEL to analyze enhancer architectures and identify accurate transcription factor binding sites for the core regulatory complexes in the two different melanoma states, with distinct roles for each transcription factor, in terms of nucleosome displacement or enhancer activation. Finally, DeepMEL identifies orthologous enhancers across distantly related species, where sequence alignment fails, and the model highlights specific nucleotide substitutions that underlie enhancer turnover. DeepMEL can be used from the Kipoi database to predict and optimize candidate enhancers and to prioritize enhancer mutations. In addition, our computational strategy can be applied to other cancer or normal cell types.
Collapse
Affiliation(s)
- Liesbeth Minnoye
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium
| | - Ibrahim Ihsan Taskiran
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium
| | - David Mauduit
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium
| | - Maurizio Fazio
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| | - Linde Van Aerschot
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium
- Laboratory for Disease Mechanisms in Cancer, KU Leuven, 3000 Leuven, Belgium
| | - Gert Hulselmans
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium
| | - Valerie Christiaens
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium
| | - Samira Makhzami
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium
| | - Monika Seltenhammer
- Center for Forensic Medicine, Medical University of Vienna, 1090 Vienna, Austria
- Division of Livestock Sciences (NUWI) - BOKU University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| | - Panagiotis Karras
- VIB-KU Leuven Center for Cancer Biology, 3000 Leuven, Belgium
- KU Leuven, Department of Oncology KU Leuven, 3000 Leuven, Belgium
| | - Aline Primot
- CNRS-University of Rennes 1, UMR6290, Institute of Genetics and Development of Rennes, Faculty of Medicine, 35000 Rennes, France
| | - Edouard Cadieu
- CNRS-University of Rennes 1, UMR6290, Institute of Genetics and Development of Rennes, Faculty of Medicine, 35000 Rennes, France
| | - Ellen van Rooijen
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| | - Jean-Christophe Marine
- VIB-KU Leuven Center for Cancer Biology, 3000 Leuven, Belgium
- KU Leuven, Department of Oncology KU Leuven, 3000 Leuven, Belgium
| | - Giorgia Egidy
- Université Paris-Saclay, INRA, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
| | - Ghanem-Elias Ghanem
- Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Leonard Zon
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| | - Jasper Wouters
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium
| | - Stein Aerts
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
34
|
Amiri R, Tafvizi F, Ghanadan A. Comparison of SOX10 gene expression in melanoma and melanocytic nevus samples using Real-time PCR and immunohistochemistry. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Wolf J, Auw-Haedrich C, Schlecht A, Boneva S, Mittelviefhaus H, Lapp T, Agostini H, Reinhard T, Schlunck G, Lange CAK. Transcriptional characterization of conjunctival melanoma identifies the cellular tumor microenvironment and prognostic gene signatures. Sci Rep 2020; 10:17022. [PMID: 33046735 PMCID: PMC7550331 DOI: 10.1038/s41598-020-72864-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
This study characterizes the transcriptome and the cellular tumor microenvironment (TME) of conjunctival melanoma (CM) and identifies prognostically relevant biomarkers. 12 formalin-fixed and paraffin-embedded CM were analyzed by MACE RNA sequencing, including six cases each with good or poor clinical outcome, the latter being defined by local recurrence and/or systemic metastases. Eight healthy conjunctival specimens served as controls. The TME of CM, as determined by bioinformatic cell type enrichment analysis, was characterized by the enrichment of melanocytes, pericytes and especially various immune cell types, such as plasmacytoid dendritic cells, natural killer T cells, B cells and mast cells. Differentially expressed genes between CM and control were mainly involved in inhibition of apoptosis, proteolysis and response to growth factors. POU3F3, BIRC5 and 7 were among the top expressed genes associated with inhibition of apoptosis. 20 genes, among them CENPK, INHA, USP33, CASP3, SNORA73B, AAR2, SNRNP48 and GPN1, were identified as prognostically relevant factors reaching high classification accuracy (area under the curve: 1.0). The present study provides new insights into the TME and the transcriptional profile of CM and additionally identifies new prognostic biomarkers. These results add new diagnostic tools and may lead to new options of targeted therapy for CM.
Collapse
Affiliation(s)
- Julian Wolf
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Claudia Auw-Haedrich
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Anja Schlecht
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Stefaniya Boneva
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Hans Mittelviefhaus
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Thabo Lapp
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Hansjürgen Agostini
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Thomas Reinhard
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Günther Schlunck
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Clemens A K Lange
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany.
| |
Collapse
|
36
|
Choi KH, Kim ST, Bin BH, Park PJ. Effect of Konjac Glucomannan (KGM) on the Reconstitution of the Dermal Environment against UVB-Induced Condition. Nutrients 2020; 12:nu12092779. [PMID: 32932917 PMCID: PMC7551622 DOI: 10.3390/nu12092779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 01/15/2023] Open
Abstract
Skin layers serve as a barrier against unexpected critical changes in the body due to environmental factors. Excessive ultraviolet (UV) B exposure increases the levels of age-related factors, leading to senescent cells and damaged skin tissues. Widely used as a dietary supplement, konjac (Amorphophallus konjac) glucomannan (KGM) has shown skin regeneration potential in patch or sheet form with anti-inflammatory or immunosuppressive effects. However, the ability of KGM to reconstitute senescent/damaged skin following UV radiation has not been explored. Here, we demonstrate that KGM alleviates skin damage by increasing the proportion of young cell populations in UVB-exposed senescent human epidermal primary melanocytes. Young cell numbers increased depending on KGM dosage, but the senescent cells were not removed. Real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis showed that mRNA and protein levels of age- and pigmentation-related factors decreased in a manner dependent on the rate at which new cells were generated. Moreover, an analysis of mRNA and protein levels indicated that KGM facilitated youth by increasing cell proliferation in UVB-damaged human fibroblasts. Thus, KGM is a highly effective natural agent for maintaining skin homeostasis by promoting the reconstitution of the dermal environment against UVB-induced acute senescence or skin damage.
Collapse
Affiliation(s)
- Kyung Ho Choi
- Department of Applied Biology, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Korea;
| | - Sung Tae Kim
- Department of Pharmaceutical Engineering, Inje University, Gimhae-si, Gyeongsangnam-do 50834, Korea;
- Department of Nanoscience and Engineering, Inje University, Gimhae-si, Gyeongsangnam-do 50834, Korea
| | - Bum Ho Bin
- Department of Applied Biology, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Korea;
- Correspondence: (B.H.B.); (P.J.P.); Tel.: +82-31-219-2618 (B.H.B.); +82-31-280-5639 (P.J.P.)
| | - Phil June Park
- AMOREPACIFIC R&D Center, 1920 Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17074, Korea
- Correspondence: (B.H.B.); (P.J.P.); Tel.: +82-31-219-2618 (B.H.B.); +82-31-280-5639 (P.J.P.)
| |
Collapse
|
37
|
Janmaat VT, Liu H, da Silva RA, Wisse PHA, Spaander MCW, Ten Hagen TLM, Smits R, Bruno MJ, Fuhler GM, Peppelenbosch MP. HOXA9 mediates and marks premalignant compartment size expansion in colonic adenomas. Carcinogenesis 2020; 40:1514-1524. [PMID: 31099823 DOI: 10.1093/carcin/bgz038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/27/2019] [Accepted: 02/14/2019] [Indexed: 12/21/2022] Open
Abstract
The transformation of normal colonic epithelium to colorectal cancer (CRC) involves a relatively ordered progression, and understanding the molecular alterations involved may aid rational design of strategies aimed at preventing or counteracting disease. Homeobox A9 (HOXA9) is an oncogene in leukemia and has been implicated in CRC pathology, although its role in disease etiology remains obscure at best. We observe that HOXA9 expression is increased in colonic adenomas compared with location-matched healthy colon epithelium. Its forced expression results in dramatic genetic and signaling changes, with increased expression of growth factors IGF1 and FLT3, super-activity of the AKT survival pathway and a concomitant increase in compartment size. Furthermore, a reduced mRNA expression of the epithelial to mesenchymal transition marker N-cadherin as well as reduced activity of the actin cytoskeletal mediator PAK was seen, which is in apparent agreement with an observed reduced migratory response in HOXA9-overexpressing cells. Thus, HOXA9 appears closely linked with adenoma growth while impairing migration and metastasis and hence is both a marker and driver of premalignant polyp growth. Colonic polyps grow but remain premalignant for up to decades. Here, we show that HOXA9 drives growth in premalignant polyps, but simultaneously prevents further transformation.
Collapse
Affiliation(s)
- Vincent T Janmaat
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, The Netherlands
| | - Hui Liu
- Department of Surgery, Laboratory Experimental Surgical Oncology, Section Surgical Oncology, Erasmus MC - University Medical Center Rotterdam, The Netherlands
| | - Rodrigo A da Silva
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, The Netherlands
| | - Pieter H A Wisse
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, The Netherlands
| | - Manon C W Spaander
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, The Netherlands
| | - Timo L M Ten Hagen
- Department of Surgery, Laboratory Experimental Surgical Oncology, Section Surgical Oncology, Erasmus MC - University Medical Center Rotterdam, The Netherlands
| | - Ron Smits
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, The Netherlands
| | - Marco J Bruno
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, The Netherlands
| | - Gwenny M Fuhler
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, The Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, The Netherlands
| |
Collapse
|
38
|
Yang X, Hu F, Liu JA, Yu S, Cheung MPL, Liu X, Ng IOL, Guan XY, Wong KKW, Sharma R, Lung HL, Jiao Y, Lee LTO, Cheung M. Nuclear DLC1 exerts oncogenic function through association with FOXK1 for cooperative activation of MMP9 expression in melanoma. Oncogene 2020; 39:4061-4076. [PMID: 32214200 PMCID: PMC7220869 DOI: 10.1038/s41388-020-1274-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/16/2022]
Abstract
A Rho GTPase-activating protein (RhoGAP), deleted in liver cancer 1 (DLC1), is known to function as a tumor suppressor in various cancer types; however, whether DLC1 is a tumor-suppressor gene or an oncogene in melanoma remains to be clarified. Here we revealed that high DLC1 expression was detected in most of the melanoma tissues where it was localized in both the nuclei and the cytoplasm. Functional studies unveiled that DLC1 was both required and sufficient for melanoma growth and metastasis. These tumorigenic events were mediated by nuclear-localized DLC1 in a RhoGAP-independent manner. Mechanistically, mass spectrometry analysis identified a DLC1-associated protein, FOXK1 transcription factor, which mediated oncogenic events in melanoma by translocating and retaining DLC1 into the nucleus. RNA-sequencing profiling studies further revealed MMP9 as a direct target of FOXK1 through DLC1-regulated promoter occupancy for cooperative activation of MMP9 expression to promote melanoma invasion and metastasis. Concerted action of DLC1-FOXK1 in MMP9 gene regulation was further supported by their highly correlated expression in melanoma patients' samples and cell lines. Together, our results not only unravel a mechanism by which nuclear DLC1 functions as an oncogene in melanoma but also suggest an unexpected role of RhoGAP protein in transcriptional regulation.
Collapse
Affiliation(s)
- Xintao Yang
- Shenzhen Institute of Research and Innovation (HKU-SIRI), The University of Hong Kong, Shenzhen, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Feng Hu
- Shenzhen Institute of Research and Innovation (HKU-SIRI), The University of Hong Kong, Shenzhen, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jessica Aijia Liu
- Department of Anaesthesiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shan Yu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - May Pui Lai Cheung
- Shenzhen Institute of Research and Innovation (HKU-SIRI), The University of Hong Kong, Shenzhen, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xuelai Liu
- Department of Pediatric Surgery, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Irene Oi-Lin Ng
- State Key Laboratory of Liver Research and Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kelvin K W Wong
- Centre for PanorOmic Sciences, Proteomics and Metabolomics Core Facility, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Rakesh Sharma
- Centre for PanorOmic Sciences, Proteomics and Metabolomics Core Facility, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hong Lok Lung
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
| | - Yufei Jiao
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Leo Tsz On Lee
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Martin Cheung
- Shenzhen Institute of Research and Innovation (HKU-SIRI), The University of Hong Kong, Shenzhen, China.
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
39
|
Tian Y, Guo W. A Review of the Molecular Pathways Involved in Resistance to BRAF Inhibitors in Patients with Advanced-Stage Melanoma. Med Sci Monit 2020; 26:e920957. [PMID: 32273491 PMCID: PMC7169438 DOI: 10.12659/msm.920957] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Melanoma is an aggressive malignancy of melanocytes and most commonly arises in the skin. In 2002, BRAF gene mutations were identified in melanoma, and this finding resulted in the development of several small-molecule molecular inhibitors that specifically targeted the BRAF V600E mutation. The development of targeted therapies for advanced-stage melanoma, including tyrosine kinase inhibitors (TKIs) of the BRAF (V600E) kinase, vemurafenib and dabrafenib, have been approved for the treatment of advanced melanoma leading to improved clinical outcomes. However, the development of BRAF inhibitor (BRAFi) resistance has significantly reduced the therapeutic efficacy after prolonged treatment. Recent studies have identified the molecular mechanisms for BRAFi resistance. This review aims to describe the impact of BRAFi resistance on the pathogenesis of melanoma, the current status of molecular pathways involved in BRAFi resistance, including intrinsic resistance, adaptive resistance, and acquired resistance. This review will discuss how an understanding of the mechanisms associated with BRAFi resistance may aid the identification of useful strategies for overcoming the resistance to BRAF-targeted therapy in patients with advanced-stage melanoma.
Collapse
Affiliation(s)
- Yangzi Tian
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
40
|
Presta I, Donato A, Chirchiglia D, Malara N, Donato G. Cardiac myxoma and neural crests: a tense relationship. Cardiovasc Pathol 2019; 44:107163. [PMID: 31760243 DOI: 10.1016/j.carpath.2019.107163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 01/30/2023] Open
Abstract
In cardiac myxomas, the malignant transformation process, selecting incidental gene mutations and leading to loss of proliferation control, has not a so drastic effects in terms of growth rate of tumor mass, but frequently the particular location of lesion engrosses the high risk for health. For accurate cancer cell profiling, it is important to establish the embryologic origin of malignant cells and their initial commitments, above all, in the sight of therapeutic strategies and solutions. Here, we advance, for cardiac myxoma, the hypothesis of an origin from cardiac neural crest cells and we attempt to support it by an integrated discussion of current knowledge about embryological characteristics of neural crest cells and most recent studies focusing cardiac myxomas. We discuss the relationship between the basic plasticity of cardiac neural crest cells and some typical mutations arising in neoplastic lesions as well as the expression of typical cell markers of neural crests derivatives. Dysfunctions in proliferative and migratory programs, focused in other studies, are evaluated in the context of the topological and histopathological characteristics of cardiac myxomas.
Collapse
Affiliation(s)
- Ivan Presta
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy.
| | - Annalidia Donato
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Domenico Chirchiglia
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Natalia Malara
- Department of Clinical and Experimental Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Giuseppe Donato
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| |
Collapse
|
41
|
Kappelmann-Fenzl M, Kuphal S, Krupar R, Schadendorf D, Umansky V, Vardimon L, Hellerbrand C, Bosserhoff AK. Complex Formation with Monomeric α-Tubulin and Importin 13 Fosters c-Jun Protein Stability and Is Required for c-Jun's Nuclear Translocation and Activity. Cancers (Basel) 2019; 11:cancers11111806. [PMID: 31744174 PMCID: PMC6895814 DOI: 10.3390/cancers11111806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/25/2022] Open
Abstract
Microtubules are highly dynamic structures, which consist of α- and β-tubulin heterodimers. They are essential for a number of cellular processes, including intracellular trafficking and mitosis. Tubulin-binding chemotherapeutics are used to treat different types of tumors, including malignant melanoma. The transcription factor c-Jun is a central driver of melanoma development and progression. Here, we identify the microtubule network as a main regulator of c-Jun activity. Monomeric α-tubulin fosters c-Jun protein stability by protein-protein interaction. In addition, this complex formation is necessary for c-Jun's nuclear localization sequence binding to importin 13, and consequent nuclear import and activity of c-Jun. A reduction in monomeric α-tubulin levels by treatment with the chemotherapeutic paclitaxel resulted in a decline in the nuclear accumulation of c-Jun in melanoma cells in an experimental murine model and in patients' tissues. These findings add important knowledge to the mechanism of the action of microtubule-targeting drugs and indicate the newly discovered regulation of c-Jun by the microtubule cytoskeleton as a novel therapeutic target for melanoma and potentially also other types of cancer.
Collapse
Affiliation(s)
- Melanie Kappelmann-Fenzl
- Institute of Biochemistry (Emil-Fischer Center), Friedrich-Alexander University, Erlangen-Nürnberg, 91054 Erlangen, Germany (S.K.); (C.H.)
- Faculty of Applied Health Care Sciences, University of Applied Science Deggendorf, 94469 Deggendorf, Germany
| | - Silke Kuphal
- Institute of Biochemistry (Emil-Fischer Center), Friedrich-Alexander University, Erlangen-Nürnberg, 91054 Erlangen, Germany (S.K.); (C.H.)
| | - Rosemarie Krupar
- Pathology of the University Medical Center Schleswig-Holstein, Campus Lübeck and Research Center Borstel, Leibniz Center for Medicine and Biosciences, 23566 Lübeck, Germany;
| | - Dirk Schadendorf
- Department of Dermatology, University Duisburg-Essen, 45355 Essen, Germany;
| | - Viktor Umansky
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 69117 Heidelberg, Germany;
| | - Lily Vardimon
- Department of Biochemistry and Molecular Biology, Tel Aviv University, 69978 Tel Aviv, Israel;
| | - Claus Hellerbrand
- Institute of Biochemistry (Emil-Fischer Center), Friedrich-Alexander University, Erlangen-Nürnberg, 91054 Erlangen, Germany (S.K.); (C.H.)
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany
| | - Anja-Katrin Bosserhoff
- Institute of Biochemistry (Emil-Fischer Center), Friedrich-Alexander University, Erlangen-Nürnberg, 91054 Erlangen, Germany (S.K.); (C.H.)
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-8524191
| |
Collapse
|
42
|
Wu Z, Huang R, Yuan L. Crosstalk of intracellular post-translational modifications in cancer. Arch Biochem Biophys 2019; 676:108138. [PMID: 31606391 DOI: 10.1016/j.abb.2019.108138] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/29/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022]
Abstract
Post-translational modifications (PTMs) have been reported to play pivotal roles in numerous cellular biochemical and physiological processes. Multiple PTMs can influence the actions of each other positively or negatively, termed as PTM crosstalk or PTM code. During recent years, development of identification strategies for PTMs co-occurrence has revealed abundant information of interplay between PTMs. Increasing evidence demonstrates that deregulation of PTMs crosstalk is involved in the genesis and development of various diseases. Insight into the complexity of PTMs crosstalk will help us better understand etiology and provide novel targets for drug therapy. In the present review, we will discuss the important functional roles of PTMs crosstalk in proteins associated with cancer diseases.
Collapse
Affiliation(s)
- Zheng Wu
- School of Kinesiology and Health, Capital University of Physical Education and Sports, Beijing, 100191, China.
| | - Rongting Huang
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Liang Yuan
- Peking University International Hospital, Beijing, 102200, China
| |
Collapse
|
43
|
Mureb M, Benjamin C, Sen C, Spino M, Krasnozhen-Ratush O, Zagzag D, Pavlick AC, Kondziolka D. Gamma Knife Radiosurgery and Immunotherapy as Primary Treatment for a Malignant Tumor of the Cranial Base Beginning as Lentigo Maligna: A Case Report. Pract Radiat Oncol 2019; 9:e608-e612. [PMID: 31129314 DOI: 10.1016/j.prro.2019.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 11/15/2022]
Affiliation(s)
- Monica Mureb
- Department of Neurosurgery, New York University School of Medicine, New York, New York
| | - Carolina Benjamin
- Department of Neurosurgery, New York University School of Medicine, New York, New York
| | - Chandranath Sen
- Department of Neurosurgery, New York University School of Medicine, New York, New York
| | - Marissa Spino
- Department of Pathology, New York University School of Medicine, New York, New York
| | | | - David Zagzag
- Department of Neurosurgery, New York University School of Medicine, New York, New York; Department of Pathology, New York University School of Medicine, New York, New York
| | - Anna C Pavlick
- Department of Medical Oncology, New York University School of Medicine, New York, New York
| | - Douglas Kondziolka
- Department of Neurosurgery, New York University School of Medicine, New York, New York.
| |
Collapse
|
44
|
Yang X, Liang R, Liu C, Liu JA, Cheung MPL, Liu X, Man OY, Guan XY, Lung HL, Cheung M. SOX9 is a dose-dependent metastatic fate determinant in melanoma. J Exp Clin Cancer Res 2019; 38:17. [PMID: 30642390 PMCID: PMC6330758 DOI: 10.1186/s13046-018-0998-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/06/2018] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND In this research, we aimed to resolve contradictory results whether SOX9 plays a positive or negative role in melanoma progression and determine whether SOX9 and its closely related member SOX10 share the same or distinct targets in mediating their functions in melanoma. METHODS Immunofluorescence, TCGA database and qPCR were used to analyze the correlation between the expression patterns and levels of SOX9, SOX10 and NEDD9 in melanoma patient samples. AlamarBlue, transwell invasion and colony formation assays in melanoma cell lines were conducted to investigate the epistatic relationship between SOX10 and NEDD9, as well as the effects of graded SOX9 expression levels. Lung metastasis was determined by tail vein injection assay. Live cell imaging was conducted to monitor dynamics of melanoma migratory behavior. RHOA and RAC1 activation assays measured the activity of Rho GTPases. RESULTS High SOX9 expression was predominantly detected in patients with distant melanoma metastases whereas SOX10 was present in the different stages of melanoma. Both SOX9 and SOX10 exhibited distinct but overlapping expression patterns with metastatic marker NEDD9. Accordingly, SOX10 was required for NEDD9 expression, which partly mediated its oncogenic functions in melanoma cells. Compensatory upregulation of SOX9 expression in SOX10-inhibited melanoma cells reduced growth and migratory capacity, partly due to elevated expression of cyclin-dependent kinase inhibitor p21 and lack of NEDD9 induction. Conversely, opposite phenomenon was observed when SOX9 expression was further elevated to a range of high SOX9 expression levels in metastatic melanoma specimens, and that high levels of SOX9 can restore melanoma progression in the absence of SOX10 both in vitro and in vivo. In addition, overexpression of SOX9 can also promote invasiveness of the parental melanoma cells by modulating the expression of various matrix metalloproteinases. SOX10 or high SOX9 expression regulates melanoma mesenchymal migration through the NEDD9-mediated focal adhesion dynamics and Rho GTPase signaling. CONCLUSIONS These results unravel NEDD9 as a common target for SOX10 or high SOX9 to partly mediate their oncogenic events, and most importantly, reconcile previous discrepancies that suboptimal level of SOX9 expression is anti-metastatic whereas high level of SOX9 is metastatic in a heterogeneous population of melanoma.
Collapse
Affiliation(s)
- Xintao Yang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Rui Liang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Chunxi Liu
- Department of Anesthesiology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang China
| | - Jessica Aijia Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - May Pui Lai Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Xuelai Liu
- Department of Pediatric Surgery, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei China
| | - On Ying Man
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hong Lok Lung
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
| | - Martin Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| |
Collapse
|
45
|
Graf SA, Heppt MV, Wessely A, Krebs S, Kammerbauer C, Hornig E, Strieder A, Blum H, Bosserhoff AK, Berking C. The myelin protein PMP2 is regulated by SOX10 and drives melanoma cell invasion. Pigment Cell Melanoma Res 2018; 32:424-434. [PMID: 30506895 DOI: 10.1111/pcmr.12760] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/05/2018] [Accepted: 11/20/2018] [Indexed: 12/22/2022]
Abstract
The transcription factor sex determining region Y-box 10 (SOX10) plays a key role in the development of melanocytes and glial cells from neural crest precursors. SOX10 is involved in melanoma initiation, proliferation, invasion, and survival. However, specific mediators which impart its oncogenic properties remain widely unknown. To identify target genes of SOX10, we performed RNA sequencing after ectopic expression of SOX10 in human melanoma cells. Among nine differentially regulated genes, peripheral myelin protein 2 (PMP2) was consistently upregulated in several cell lines. Direct regulation of PMP2 by SOX10 was shown by chromatin immunoprecipitation, electrophoretic mobility shift, and luciferase reporter assays. Moreover, a coregulation of PMP2 by SOX10 and early growth response 2 in melanoma cells was found. Phenotypical investigation demonstrated that PMP2 expression can increase melanoma cell invasion. As PMP2 protein was detected only in a subset of melanoma cell lines, it might contribute to melanoma heterogeneity.
Collapse
Affiliation(s)
- Saskia Anna Graf
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Markus Vincent Heppt
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Anja Wessely
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Stefan Krebs
- Gene Center, Ludwig-Maximilian University of Munich, Munich, Germany
| | - Claudia Kammerbauer
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Eva Hornig
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Annamarie Strieder
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Helmut Blum
- Gene Center, Ludwig-Maximilian University of Munich, Munich, Germany
| | - Anja-Katrin Bosserhoff
- Department of Biochemistry and Molecular Medicine, Institute of Biochemistry, Emil Fischer Center, University of Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany
| | - Carola Berking
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
46
|
Jin Y, Qin X, Jia G. SOX10-dependent CMTM7 expression inhibits cell proliferation and tumor growth in gastric carcinoma. Biochem Biophys Res Commun 2018; 507:91-99. [DOI: 10.1016/j.bbrc.2018.10.172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 10/28/2018] [Indexed: 12/31/2022]
|
47
|
Dikshit A, Jin YJ, Degan S, Hwang J, Foster MW, Li CY, Zhang JY. UBE2N Promotes Melanoma Growth via MEK/FRA1/SOX10 Signaling. Cancer Res 2018; 78:6462-6472. [PMID: 30224375 DOI: 10.1158/0008-5472.can-18-1040] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 08/16/2018] [Accepted: 09/12/2018] [Indexed: 12/18/2022]
Abstract
UBE2N is a K63-specific ubiquitin conjugase linked to various immune disorders and cancer. Here, we demonstrate that UBE2N and its partners UBE2V1 and UBE2V2 are highly expressed in malignant melanoma. Silencing of UBE2N and its partners significantly decreased melanoma cell proliferation and subcutaneous tumor growth. This was accompanied by increased expression of E-cadherin, p16, and MC1R and decreased expression of melanoma malignancy markers including SOX10, Nestin, and ABCB5. Mass spectrometry-based phosphoproteomic analysis revealed that UBE2N loss resulted in distinct alterations to the signaling landscape: MEK/ERK signaling was impaired, FRA1 and SOX10 gene regulators were downregulated, and p53 and p16 tumor suppressors were upregulated. Similar to inhibition of UBE2N and MEK, silencing FRA1 decreased SOX10 expression and cell proliferation. Conversely, exogenous expression of active FRA1 increased pMEK and SOX10 expression, and restored anchorage-independent cell growth of cells with UBE2N loss. Systemic delivery of NSC697923, a small-molecule inhibitor of UBE2N, significantly decreased melanoma xenograft growth. These data indicate that UBE2N is a novel regulator of the MEK/FRA1/SOX10 signaling cascade and is indispensable for malignant melanoma growth. Our findings establish the basis for targeting UBE2N as a potential treatment strategy for melanoma.Significance: These findings identify ubiquitin conjugase UBE2N and its variant partners as novel regulators of MAPK signaling and potential therapeutic targets in melanoma. Cancer Res; 78(22); 6462-72. ©2018 AACR.
Collapse
Affiliation(s)
- Anushka Dikshit
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina
| | - Yingai J Jin
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina
| | - Simone Degan
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina
| | - Jihwan Hwang
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina
| | - Matthew W Foster
- Duke Proteomics and Metabolomics Shared Resource, Duke University, Durham, North Carolina
| | - Chuan-Yuan Li
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina
| | - Jennifer Y Zhang
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
48
|
Eliades P, Abraham BJ, Ji Z, Miller DM, Christensen CL, Kwiatkowski N, Kumar R, Njauw CN, Taylor M, Miao B, Zhang T, Wong KK, Gray NS, Young RA, Tsao H. High MITF Expression Is Associated with Super-Enhancers and Suppressed by CDK7 Inhibition in Melanoma. J Invest Dermatol 2018; 138:1582-1590. [PMID: 29408204 PMCID: PMC6019629 DOI: 10.1016/j.jid.2017.09.056] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/15/2017] [Accepted: 09/20/2017] [Indexed: 01/04/2023]
Abstract
Cutaneous melanoma is an aggressive tumor that accounts for most skin cancer deaths. Among the physiological barriers against therapeutic success is a strong survival program driven by genes such as MITF that specify melanocyte identity, a phenomenon known in melanoma biology as lineage dependency. MITF overexpression is occasionally explained by gene amplification, but here we show that super-enhancers are also important determinants of MITF overexpression in some melanoma cell lines and tumors. Although compounds that directly inhibit MITF are unavailable, a covalent CDK7 inhibitor, THZ1, has recently been shown to potently suppress the growth of various cancers through the depletion of master transcription-regulating oncogenes and the disruption of their attendant super-enhancers. We also show that melanoma cells are highly sensitive to CDK7 inhibition both in vitro and in vivo and that THZ1 can dismantle the super-enhancer apparatus at MITF and SOX10 in some cell lines, thereby extinguishing their intracellular levels. Our results show a dimension to MITF regulation in melanoma cells and point to CDK7 inhibition as a potential strategy to deprive oncogenic transcription and suppress tumor growth in melanoma.
Collapse
Affiliation(s)
- Philip Eliades
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Dermatology, Weill Cornell Medical College, New York, New York, USA; Signature Healthcare Brockton Hospital, Brockton, Massachusetts, USA
| | - Brian J Abraham
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Zhenyu Ji
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David M Miller
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Camilla L Christensen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Nicholas Kwiatkowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Raj Kumar
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ching Ni Njauw
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Taylor
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Benchun Miao
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tinghu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kwok-Kin Wong
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Hensin Tsao
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
49
|
Fane ME, Chhabra Y, Smith AG, Sturm RA. BRN2, a POUerful driver of melanoma phenotype switching and metastasis. Pigment Cell Melanoma Res 2018; 32:9-24. [PMID: 29781575 DOI: 10.1111/pcmr.12710] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/18/2018] [Accepted: 04/25/2018] [Indexed: 12/30/2022]
Abstract
The POU domain family of transcription factors play a central role in embryogenesis and are highly expressed in neural crest cells and the developing brain. BRN2 is a class III POU domain protein that is a key mediator of neuroendocrine and melanocytic development and differentiation. While BRN2 is a central regulator in numerous developmental programs, it has also emerged as a major player in the biology of tumourigenesis. In melanoma, BRN2 has been implicated as one of the master regulators of the acquisition of invasive behaviour within the phenotype switching model of progression. As a mediator of melanoma cell phenotype switching, it coordinates the transition to a dedifferentiated, slow cycling and highly motile cell type. Its inverse expression relationship with MITF is believed to mediate tumour progression and metastasis within this model. Recent evidence has now outlined a potential epigenetic switching mechanism in melanoma cells driven by BRN2 expression that induces melanoma cell invasion. We summarize the role of BRN2 in tumour cell dissemination and metastasis in melanoma, while also examining it as a potential metastatic regulator in other tumour models.
Collapse
Affiliation(s)
- Mitchell E Fane
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia.,Dermatology Research Centre, UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Yash Chhabra
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia.,Dermatology Research Centre, UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Aaron G Smith
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Richard A Sturm
- Dermatology Research Centre, UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
50
|
A unique gene expression signature is significantly differentially expressed in tumor-positive or tumor-negative sentinel lymph nodes in patients with melanoma. Melanoma Res 2018; 27:429-438. [PMID: 28825947 DOI: 10.1097/cmr.0000000000000383] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The purpose of this study was to learn whether molecular characterization through gene expression profiling of node-positive and node-negative sentinel lymph nodes (SLNs) in patients with clinical stage I and II melanoma may improve the understanding of mechanisms of metastasis and identify gene signatures for SLNs/SLNs that correlate with diagnosis or clinical outcome. Gene expression profiling was performed on SLN biopsies of 48 (24 SLN and 24 SLN) patients (T3a/b-T4a/b) who underwent staging of SLNs using transcriptome profiling analysis on 5 μm sections of fresh SLNs. U133A 2.0 Affymetrix gene chips were used. Significance analysis of microarrays was used to test the association between gene expression level and SLN status. Genes with fold change more than 1.5 and q value less than 0.05 were considered differentially expressed. Pathway analysis was performed using Ingenuity Pathway Analysis. The Benjamini and Hochberg method was used to adjust for multiple testing in pathway analysis. We identified 89 probe sets that were significantly differentially expressed (1.5-27-fold; q<0.05). Upon performing the pathway analysis, it was found that 25 genes were common among the most significant and biologically relevant canonical pathways. The molecules and pathways that achieved differential expression of highest statistical significance were notably related to melanoma and its microenvironment and to signaling pathways implicated in immunosuppression and development of cancer. A 25-gene signature is significantly differentially expressed between SLN and SLN and is related to melanoma oncogenesis and immunosuppression. The identified expression profile provides a signature of melanoma nodal involvement. These findings warrant further investigation into the mechanisms of metastasis, melanoma metastasis diagnosis, and prediction of outcome.
Collapse
|