1
|
Lv K, Song J, Wang J, Zhao W, Yang F, Feiya J, Bai L, Guan W, Liu J, Ho CT, Li S, Zhao H, Wang Z. Pterostilbene Alleviates Dextran Sodium Sulfate (DSS)-Induced Intestinal Barrier Dysfunction Involving Suppression of a S100A8-TLR-4-NF-κB Signaling Cascade. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18489-18496. [PMID: 39106077 DOI: 10.1021/acs.jafc.4c03258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Intestinal barrier hemostasis is the key to health. As a resveratrol analogue, pterostilbene (PT) has been reported to prevent dextran sodium sulfate (DSS)-induced intestinal barrier dysfunction mainly associated with the intestinal NF-κB signaling pathway. However, the exact underlying mechanisms are not yet well-defined yet. In this study, we performed RNA-sequencing analysis and unexpectedly found that alarmin S100A8 sensitively responded to DSS-induced intestinal injury. Accordingly, histologic assessments suggested that the high expression of S100A8 was accompanied by increased intestinal infiltration of macrophages, upregulated intestinal epithelial Toll-like receptor 4 (TLR-4), and activated NF-κB signaling pathway. Interestingly, the above phenomena were effectively counteracted upon the addition of PT. Furthermore, by using a coculture system of macrophage THP-1 cells and HT-29 colon cells, we identified macrophage-secreted S100A8 activated intestinal epithelial NF-κB signaling pathway through TLR-4. Taken together, these findings suggested that PT ameliorated DSS-induced intestinal barrier injury through suppression of the macrophage S100A8-intestinal epithelial TLR-4-NF-κB signaling cascade.
Collapse
Affiliation(s)
- Ke Lv
- Tianjin Key Laboratory of Food and Biotechnology, State Experimental and Training Centre of Food and Drug, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
- The State Key Laboratory of Medicinal Chemical Biology & College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jia Song
- Tianjin Key Laboratory of Food and Biotechnology, State Experimental and Training Centre of Food and Drug, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
- Department of Pi-Wei Disease, Xuanwu Traditional Chinese Medical Hospital, Beijing 100050, China
| | - Juan Wang
- Tianjin Key Laboratory of Food and Biotechnology, State Experimental and Training Centre of Food and Drug, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Wei Zhao
- Tianjin Key Laboratory of Food and Biotechnology, State Experimental and Training Centre of Food and Drug, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Fan Yang
- Tianjin Key Laboratory of Food and Biotechnology, State Experimental and Training Centre of Food and Drug, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Jiang Feiya
- Tianjin Key Laboratory of Food and Biotechnology, State Experimental and Training Centre of Food and Drug, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Liang Bai
- Tianjin Key Laboratory of Food and Biotechnology, State Experimental and Training Centre of Food and Drug, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Wenqiang Guan
- Tianjin Key Laboratory of Food and Biotechnology, State Experimental and Training Centre of Food and Drug, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Jianfu Liu
- Tianjin Key Laboratory of Food and Biotechnology, State Experimental and Training Centre of Food and Drug, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Shiming Li
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, Hubei 438000, China
| | - Hui Zhao
- Tianjin Key Laboratory of Food and Biotechnology, State Experimental and Training Centre of Food and Drug, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Zheng Wang
- Department of Pi-Wei Disease, Xuanwu Traditional Chinese Medical Hospital, Beijing 100050, China
| |
Collapse
|
2
|
Chen S, Yu R, Zhao F, Sun L, Yin Y, Zhang G, Chen Q, Shu Q. Network pharmacology and molecular docking to explore the mechanism of a clinical proved recipe for external use of clearing heat and removing dampness in the treatment of immune-related cutaneous adverse events. Medicine (Baltimore) 2024; 103:e37504. [PMID: 38489696 PMCID: PMC10939542 DOI: 10.1097/md.0000000000037504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/04/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
Immune-related cutaneous adverse events (ircAEs) will undermine the patients' quality of lives, and interrupt the antitumor therapy. A clinical proved recipe for external use of clearing heat and removing dampness (Qing-Re-Li-Shi Formula, hereinafter referred to as "QRLSF") is beneficial to the treatment of ircAEs in clinical practice. Our study will elucidate the mechanism of QRLSF against ircAEs based on network pharmacology and molecular docking. The active components and corresponding targets of QRLSF were collected through traditional Chinese medicine systems pharmacology database. GeneCards, online Mendelian inheritance in man, and pharmacogenomics knowledgebase were used to screen the targets of ircAEs. The intersecting targets between drug and disease were acquired by venn analysis. Cytoscape software was employed to construct "components-targets" network. Search tool for the retrieval of interacting genes/proteins database was applied to establish the protein-protein interaction network and then its core targets were identified. Gene ontology and Kyoto encyclopedia of genes and genomes analysis was performed to predict the mechanism. The molecular docking verification of key targets and related phytomolecules was accomplished by AutoDock Vina software. Thirty-nine intersecting targets related to QRLSF against ircAEs were recognized. The analysis of network clarified 5 core targets (STAT3, RELA, TNF, TP53, and NFKBIA) and 4 key components (quercetin, apigenin, luteolin, and ursolic acid). The activity of QRLSF against ircAEs could be attributed to the regulation of multiple biological effects via multi-pathways (PI3K-Akt pathway, cytokine-cytokine receptor interaction, JAK-STAT pathway, chemokine pathway, Th17 cell differentiation, IL-17 pathway, TNF pathway, and Toll-like receptor pathway). The binding activities were estimated as good level by molecular docking. These discoveries disclosed the multi-component, multi-target, and multi-pathway characteristics of QRLSF against ircAEs, providing a new strategy for such medical problem.
Collapse
Affiliation(s)
- Shuyi Chen
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Rui Yu
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Fangmin Zhao
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Lin Sun
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yudan Yin
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Gaochenxi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Qunwei Chen
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Qijin Shu
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Kondylis V, Kumari S, Vlantis K, Pasparakis M. The interplay of IKK, NF-κB and RIPK1 signaling in the regulation of cell death, tissue homeostasis and inflammation. Immunol Rev 2018; 277:113-127. [PMID: 28462531 DOI: 10.1111/imr.12550] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/07/2017] [Indexed: 12/12/2022]
Abstract
Regulated cell death pathways have important functions in host defense and tissue homeostasis. Studies in genetic mouse models provided evidence that cell death could cause inflammation in different tissues. Inhibition of RIPK3-MLKL-dependent necroptosis by FADD and caspase-8 was identified as a key mechanism preventing inflammation in epithelial barriers. Moreover, the interplay between IKK/NF-κB and RIPK1 signaling was recognized as a critical determinant of tissue homeostasis and inflammation. NEMO was shown to regulate RIPK1 kinase activity-mediated apoptosis by NF-κB-dependent and -independent functions, which are critical for averting chronic tissue injury and inflammation in the intestine and the liver. In addition, RIPK1 was shown to exhibit kinase activity-independent functions that are essential for preventing cell death, maintaining tissue architecture and inhibiting inflammation. In the intestine, RIPK1 acts as a scaffold to prevent epithelial cell apoptosis and preserve tissue integrity. In the skin, RIPK1 functions via its RHIM to counteract ZBP1/DAI-dependent activation of RIPK3-MLKL-dependent necroptosis and inflammation. Collectively, these studies provided evidence that the regulation of cell death signaling plays an important role in the maintenance of tissue homeostasis, and suggested that cell death could be causally involved in the pathogenesis of inflammatory diseases.
Collapse
Affiliation(s)
- Vangelis Kondylis
- Institute for Genetics, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Snehlata Kumari
- Institute for Genetics, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Katerina Vlantis
- Institute for Genetics, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Manolis Pasparakis
- Institute for Genetics, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
4
|
Acute inflammation regulates neuroregeneration through the NF-κB pathway in olfactory epithelium. Proc Natl Acad Sci U S A 2017; 114:8089-8094. [PMID: 28696292 DOI: 10.1073/pnas.1620664114] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Adult neural stem cells/progenitor cells residing in the basal layer of the olfactory epithelium are capable of reconstituting the neuroepithelium even after severe damage. The molecular events underlying this regenerative capacity remain elusive. Here we show that the repair of neuroepithelium after lesioning is accompanied by an acute, but self-limited, inflammatory process. Attenuation of inflammatory cell recruitment and cytokine production by dexamethasone impairs proliferation of progenitor horizontal basal cells (HBCs) and subsequent neuronal differentiation. Using TNF-α receptor-deficient mice, we identify TNF-α signaling as an important contributor to this inflammatory and reparative process, mainly through TNF-α receptor 1. HBC-selective genetic ablation of RelA (p65), the transcriptional activator of the NF-κB pathway, retards inflammation and impedes proliferation at the early stages of regeneration and suggests HBCs directly participate in cross-talk between immune response and neurogenesis. Loss of RelA in the regenerating neuroepithelium perturbs the homeostasis between proliferation and apoptosis while enhancing JNK signaling. Together, our results support a model in which acute inflammation after injury initiates important regenerative signals in part through NF-κB-mediated signaling that activates neural stem cells to reconstitute the olfactory epithelium.
Collapse
|
5
|
Urgard E, Lorents A, Klaas M, Padari K, Viil J, Runnel T, Langel K, Kingo K, Tkaczyk E, Langel Ü, Maimets T, Jaks V, Pooga M, Rebane A. Pre-administration of PepFect6-microRNA-146a nanocomplexes inhibits inflammatory responses in keratinocytes and in a mouse model of irritant contact dermatitis. J Control Release 2016; 235:195-204. [PMID: 27269729 DOI: 10.1016/j.jconrel.2016.06.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/02/2016] [Indexed: 11/30/2022]
Abstract
The skin is a difficult to access tissue for efficient delivery of large and/or charged macromolecules, including therapeutic DNA and RNA oligonucleotides. Cell-penetrating peptide PepFect6 (PF6) has been shown to be suitable transport vehicle for siRNAs in cell culture and systemically in vivo in mice. MiR-146a is known as anti-inflammatory miRNA that inhibits multiple factors from the nuclear factor (NF)-κB pathway in various cell types, including keratinocytes. In this study, PF6 was shown to form unimodal nanocomplexes with miR-146a mimic that entered into human primary keratinocytes, where miR-146a inhibited the expression of its direct targets from the NF-κB pathway and the genes known to be activated by NF-κB, C-C motif ligand (CCL)5 and interleukin (IL)-8. The transfection of miR-146a mimic with PF6 was more efficient in sub-confluent keratinocyte cultures, affected keratinocyte proliferation less and had similar effect on cell viability when compared with a lipid based agent. Subcutaneous pre-administration of PF6-miR-146a nanocomplexes attenuated ear-swelling and reduced the expression of pro-inflammatory cytokines and chemokines IL-6, CCL11, CCL24 and C-X-C motif ligand 1 (CXCL1) in a mouse model of irritant contact dermatitis. Our data demonstrates that PF6-miR-146a nanoparticles might have potential in the development of therapeutics to target inflammatory skin diseases.
Collapse
Affiliation(s)
- Egon Urgard
- Institute of Biomedicine and Translational Medicine, University of Tartu, Estonia; Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Annely Lorents
- Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Mariliis Klaas
- Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Kärt Padari
- Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Janeli Viil
- Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Toomas Runnel
- Institute of Biomedicine and Translational Medicine, University of Tartu, Estonia; Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Kent Langel
- Institute of Technology, University of Tartu, Estonia
| | - Külli Kingo
- Department of Dermatology and Venereology, University of Tartu, Tartu, Estonia; Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Eric Tkaczyk
- Institute of Biomedicine and Translational Medicine, University of Tartu, Estonia; Department of Medicine, Vanderbilt University Medical Center, United States
| | - Ülo Langel
- Institute of Technology, University of Tartu, Estonia; Department of Neurochemistry, Stockholm University, Sweden
| | - Toivo Maimets
- Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Viljar Jaks
- Institute of Molecular and Cell Biology, University of Tartu, Estonia; Department of Bioscience, Karolinska Institute, Sweden
| | - Margus Pooga
- Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Ana Rebane
- Institute of Biomedicine and Translational Medicine, University of Tartu, Estonia.
| |
Collapse
|
6
|
Grinberg-Bleyer Y, Dainichi T, Oh H, Heise N, Klein U, Schmid RM, Hayden MS, Ghosh S. Cutting edge: NF-κB p65 and c-Rel control epidermal development and immune homeostasis in the skin. THE JOURNAL OF IMMUNOLOGY 2015; 194:2472-6. [PMID: 25681334 DOI: 10.4049/jimmunol.1402608] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Psoriasis is an inflammatory skin disease in which activated immune cells and the proinflammatory cytokine TNF are well-known mediators of pathogenesis. The transcription factor NF-κB is a key regulator of TNF production and TNF-induced proinflammatory gene expression, and both the psoriatic transcriptome and genetic susceptibility further implicate NF-κB in psoriasis etiopathology. However, the role of NF-κB in psoriasis remains controversial. We analyzed the function of canonical NF-κB in the epidermis using CRE-mediated deletion of p65 and c-Rel in keratinocytes. In contrast to animals lacking p65 or c-Rel alone, mice lacking both subunits developed severe dermatitis after birth. Consistent with its partial histological similarity to human psoriasis, this condition could be prevented by anti-TNF treatment. Moreover, regulatory T cells in lesional skin played an important role in disease remission. Our results demonstrate that canonical NF-κB in keratinocytes is essential for the maintenance of skin immune homeostasis and is protective against spontaneous dermatitis.
Collapse
Affiliation(s)
- Yenkel Grinberg-Bleyer
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Teruki Dainichi
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Hyunju Oh
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Nicole Heise
- Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Ulf Klein
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032; Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032; Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Roland M Schmid
- Medizinische Klinik, Klinikum Rechts der Isar, Technische Universität Munich, Munich 80333, Germany; and
| | - Matthew S Hayden
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032; Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Sankar Ghosh
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032;
| |
Collapse
|