1
|
Lu L, Wang Y, Ding Y, Wang Y, Zhu Z, Lu J, Yang L, Zhang P, Yang C. Profiling Phenotypic Heterogeneity of Circulating Tumor Cells through Spatially Resolved Immunocapture on Nanoporous Micropillar Arrays. ACS NANO 2024; 18:31135-31147. [PMID: 39492759 DOI: 10.1021/acsnano.4c08893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The phenotype of circulating tumor cells (CTCs) offers valuable insights into monitoring cancer metastasis and recurrence. While microfluidics presents a promising approach for capturing these rare cells in blood, the phenotypic profiling of CTCs remains technically challenging. Herein, we developed a nanoporous micropillar array chip enabling highly efficient capture and in situ phenotypic analysis of CTCs through enhanced and tunable on-chip immunoaffinity binding. The nanoporous micropillar array addresses the fundamental limits in fluidic mass transfer, surface stagnant flow boundary effect, and interface topographic and multivalent reactions simultaneously within a single device, resulting in a synergistic enhancement of CTC immunocapture efficiency. The CTC capture efficiency increased by approximately 40% for cancer cells with low surface marker expressing. By manipulating fluidic velocity (hydrodynamic drag force) on the chip, a cell adhesion gradient was generated in the capture chamber, enabling individual CTCs with varying expression levels of epithelial cellular adhesion molecules to be immunocaptured at the corresponding spatial locations where equilibrium drag force is provided. The clinical utility of the nanoporous micropillar array was demonstrated by accurately distinguishing early and advanced stages of breast cancer and further longitudinally monitoring treatment response. We envision that the nanoporous micropillar array chip will provide an in situ capture and molecular profiling approach for CTCs and enhance the clinical application of CTC liquid biopsy.
Collapse
Affiliation(s)
- Lianyu Lu
- Institute of Molecular Medicine, Department of Breast Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P. R. China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Yaohui Wang
- Institute of Molecular Medicine, Department of Breast Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P. R. China
| | - Yue Ding
- Institute of Molecular Medicine, Department of Breast Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P. R. China
| | - Yuqing Wang
- Institute of Molecular Medicine, Department of Breast Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P. R. China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jinsong Lu
- Institute of Molecular Medicine, Department of Breast Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P. R. China
| | - Liu Yang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Peng Zhang
- Institute of Molecular Medicine, Department of Breast Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P. R. China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Department of Breast Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P. R. China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
2
|
Bos MK, Kraan J, Starmans MPA, Helmijr JCA, Verschoor N, De Jonge MJA, Joosse A, van der Veldt AAM, te Boekhorst PAW, Martens JWM, Sleijfer S, Wilting SM. Comprehensive characterization of circulating tumor cells and cell-free DNA in patients with metastatic melanoma. Mol Oncol 2024; 18:2770-2782. [PMID: 38790134 PMCID: PMC11547238 DOI: 10.1002/1878-0261.13650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/03/2024] [Accepted: 03/27/2024] [Indexed: 05/26/2024] Open
Abstract
Advances in therapeutic approaches for melanoma urge the need for biomarkers that can identify patients at risk for recurrence and to guide treatment. The potential use of liquid biopsies in identifying biomarkers is increasingly being recognized. Here, we present a head-to-head comparison of several techniques to analyze circulating tumor cells (CTCs) and cell-free DNA (cfDNA) in 20 patients with metastatic melanoma. In this study, we investigated whether diagnostic leukapheresis (DLA) combined with multimarker flow cytometry (FCM) increased the detection of CTCs in blood compared to the CellSearch platform. Additionally, we characterized cfDNA at the level of somatic mutations, extent of aneuploidy and genome-wide DNA methylation. Both CTCs and cfDNA measures were compared to tumor markers and extracranial tumor burden on radiological imaging. Compared to the CellSearch method applied on peripheral blood, DLA combined with FCM increased the proportion of patients with detectable CTCs from 35% to 70% (P = 0.06). However, the median percentage of cells that could be recovered by the DLA procedure was 29%. Alternatively, cfDNA mutation and methylation analysis detected tumor load in the majority of patients (90% and 93% of samples successfully analyzed, respectively). The aneuploidy score was positive in 35% of all patients. From all tumor measurements in blood, lactate dehydrogenase (LDH) levels were significantly correlated to variant allele frequency (P = 0.004). Furthermore, the presence of CTCs in DLA was associated with tumor burden (P < 0.001), whereas the presence of CTCs in peripheral blood was associated with number of lesions on radiological imaging (P < 0.001). In conclusion, DLA tended to increase the proportion of patients with detectable CTCs but was also associated with low recovery. Both cfDNA and CTCs were correlated with clinical parameters such as LDH levels and extracranial tumor burden.
Collapse
Affiliation(s)
- Manouk K. Bos
- Department of Medical OncologyErasmus MC Cancer Institute, University Medical CenterRotterdamThe Netherlands
| | - Jaco Kraan
- Department of Medical OncologyErasmus MC Cancer Institute, University Medical CenterRotterdamThe Netherlands
| | | | - Jean C. A. Helmijr
- Department of Medical OncologyErasmus MC Cancer Institute, University Medical CenterRotterdamThe Netherlands
| | - Noortje Verschoor
- Department of Medical OncologyErasmus MC Cancer Institute, University Medical CenterRotterdamThe Netherlands
| | - Maja J. A. De Jonge
- Department of Medical OncologyErasmus MC Cancer Institute, University Medical CenterRotterdamThe Netherlands
| | - Arjen Joosse
- Department of Medical OncologyErasmus MC Cancer Institute, University Medical CenterRotterdamThe Netherlands
| | - Astrid A. M. van der Veldt
- Department of Medical OncologyErasmus MC Cancer Institute, University Medical CenterRotterdamThe Netherlands
- Department of Radiology and Nuclear MedicineErasmus MCRotterdamThe Netherlands
| | - Peter A. W. te Boekhorst
- Department of HematologyErasmus MC Cancer Institute, University Medical CenterRotterdamThe Netherlands
| | - John W. M. Martens
- Department of Medical OncologyErasmus MC Cancer Institute, University Medical CenterRotterdamThe Netherlands
| | - Stefan Sleijfer
- Department of Medical OncologyErasmus MC Cancer Institute, University Medical CenterRotterdamThe Netherlands
| | - Saskia M. Wilting
- Department of Medical OncologyErasmus MC Cancer Institute, University Medical CenterRotterdamThe Netherlands
| |
Collapse
|
3
|
Clark MJ, Moser HJ, Anand RK. Dielectrophoretic capture and electrochemical enzyme-linked immunosorbent assay of single melanoma cells at an array of interlocked spiral bipolar electrodes. ChemElectroChem 2024; 11:e202400182. [PMID: 39483376 PMCID: PMC11526340 DOI: 10.1002/celc.202400182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Indexed: 11/03/2024]
Abstract
Analysis of single cancer cells is critical to obtain accurate patient diagnosis and prognosis. In this work, we report the selective dielectrophoretic capture and electrochemical analysis of single melanoma cells at an array of interlocked spiral bipolar electrodes (iBPEs). Following dielectrophoretic capture, individual melanoma cells are hydrodynamically transferred into picoliter-scale chambers for subsequent analysis. The interlocked spiral end of the iBPE (the sensing pole) is utilized to read out an electrochemical enzyme-linked immunosorbent assay (eELISA), which quantifies the expression of a cell surface antigen, melanoma cell adhesion marker (MCAM). The opposite pole of each BPE is located in a fluidically isolated compartment containing reagents for electrogenerated chemiluminescence (ECL), such that luminescence reports iBPE current. In a preliminary device design, the ECL intensity was insufficient to detect MCAM expression on single cells. To achieve single-cell analysis, we decreased the gap size between the interlocked spirals tenfold (5.0 μm to 0.5 μm), thereby creating a more sensitive biosensor by enhanced redox cycling of the product of eELISA. This work is significant because it allows for the selective isolation and sensitive analysis of individual melanoma cells in a device amenable to point-of-care (POC) application by combining dielectrophoresis (DEP) with interdigitated bipolar electrodes (IDBPEs).
Collapse
Affiliation(s)
- Morgan J Clark
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, IA 50011-1021
| | - Hanna J Moser
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, IA 50011-1021
| | - Robbyn K Anand
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, IA 50011-1021
| |
Collapse
|
4
|
Sementsov M, Ott L, Kött J, Sartori A, Lusque A, Degenhardt S, Segier B, Heidrich I, Volkmer B, Greinert R, Mohr P, Simon R, Stadler JC, Irwin D, Koch C, Andreas A, Deitert B, Thewes V, Trumpp A, Schneeweiss A, Belloum Y, Peine S, Wikman H, Riethdorf S, Schneider SW, Gebhardt C, Pantel K, Keller L. Mutation analysis in individual circulating tumor cells depicts intratumor heterogeneity in melanoma. EMBO Mol Med 2024; 16:1560-1578. [PMID: 38898234 PMCID: PMC11250829 DOI: 10.1038/s44321-024-00082-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Circulating tumor DNA (ctDNA) is the cornerstone of liquid biopsy diagnostics, revealing clinically relevant genomic aberrations from blood of cancer patients. Genomic analysis of single circulating tumor cells (CTCs) could provide additional insights into intra-patient heterogeneity, but it requires whole-genome amplification (WGA) of DNA, which might introduce bias. Here, we describe a novel approach based on mass spectrometry for mutation detection from individual CTCs not requiring WGA and complex bioinformatics pipelines. After establishment of our protocol on tumor cell line-derived single cells, it was validated on CTCs of 33 metastatic melanoma patients and the mutations were compared to those obtained from tumor tissue and ctDNA. Although concordance with tumor tissue was superior for ctDNA over CTC analysis, a larger number of mutations were found within CTCs compared to ctDNA (p = 0.039), including mutations in melanoma driver genes, or those associated with resistance to therapy or metastasis. Thus, our results demonstrate proof-of-principle data that CTC analysis can provide clinically relevant genomic information that is not redundant to tumor tissue or ctDNA analysis.
Collapse
Affiliation(s)
- Mark Sementsov
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leonie Ott
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julian Kött
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Amelie Lusque
- Biostatistics & Health Data Science Unit, Institut Claudius-Regaud, IUCT-Oncopole, Toulouse, France
| | - Sarah Degenhardt
- Department of Molecular Cell Biology, Skin Cancer Center Buxtehude, Elbe Kliniken Buxtehude, Buxtehude, Germany
| | - Bertille Segier
- Biostatistics & Health Data Science Unit, Institut Claudius-Regaud, IUCT-Oncopole, Toulouse, France
| | - Isabel Heidrich
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Beate Volkmer
- Department of Molecular Cell Biology, Skin Cancer Center Buxtehude, Elbe Kliniken Buxtehude, Buxtehude, Germany
| | - Rüdiger Greinert
- Department of Molecular Cell Biology, Skin Cancer Center Buxtehude, Elbe Kliniken Buxtehude, Buxtehude, Germany
| | - Peter Mohr
- Department of Dermatology, Elbe Kliniken Buxtehude, 21614, Buxtehude, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia-Christina Stadler
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Claudia Koch
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Antje Andreas
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Deitert
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Verena Thewes
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Andreas Schneeweiss
- National Center for Tumor Diseases, Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany
| | - Yassine Belloum
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sven Peine
- Department of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Harriett Wikman
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine Riethdorf
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan W Schneider
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoffer Gebhardt
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Laura Keller
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.
| |
Collapse
|
5
|
Beigi YZ, Lanjanian H, Fayazi R, Salimi M, Hoseyni BHM, Noroozizadeh MH, Masoudi-Nejad A. Heterogeneity and molecular landscape of melanoma: implications for targeted therapy. MOLECULAR BIOMEDICINE 2024; 5:17. [PMID: 38724687 PMCID: PMC11082128 DOI: 10.1186/s43556-024-00182-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
Uveal cancer (UM) offers a complex molecular landscape characterized by substantial heterogeneity, both on the genetic and epigenetic levels. This heterogeneity plays a critical position in shaping the behavior and response to therapy for this uncommon ocular malignancy. Targeted treatments with gene-specific therapeutic molecules may prove useful in overcoming radiation resistance, however, the diverse molecular makeups of UM call for a patient-specific approach in therapy procedures. We need to understand the intricate molecular landscape of UM to develop targeted treatments customized to each patient's specific genetic mutations. One of the promising approaches is using liquid biopsies, such as circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA), for detecting and monitoring the disease at the early stages. These non-invasive methods can help us identify the most effective treatment strategies for each patient. Single-cellular is a brand-new analysis platform that gives treasured insights into diagnosis, prognosis, and remedy. The incorporation of this data with known clinical and genomics information will give a better understanding of the complicated molecular mechanisms that UM diseases exploit. In this review, we focused on the heterogeneity and molecular panorama of UM, and to achieve this goal, the authors conducted an exhaustive literature evaluation spanning 1998 to 2023, using keywords like "uveal melanoma, "heterogeneity". "Targeted therapies"," "CTCs," and "single-cellular analysis".
Collapse
Affiliation(s)
- Yasaman Zohrab Beigi
- Laboratory of System Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hossein Lanjanian
- Software Engineering Department, Engineering Faculty, Istanbul Topkapi University, Istanbul, Turkey
| | - Reyhane Fayazi
- Laboratory of System Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mahdieh Salimi
- Department of Medical Genetics, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Behnaz Haji Molla Hoseyni
- Laboratory of System Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Ali Masoudi-Nejad
- Laboratory of System Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
6
|
Pícková M, Kahounová Z, Radaszkiewicz T, Procházková J, Fedr R, Nosková M, Radaszkiewicz KA, Ovesná P, Bryja V, Souček K. Orthotopic model for the analysis of melanoma circulating tumor cells. Sci Rep 2024; 14:7827. [PMID: 38570556 PMCID: PMC10991390 DOI: 10.1038/s41598-024-58236-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
Metastatic melanoma, a highly lethal form of skin cancer, presents significant clinical challenges due to limited therapeutic options and high metastatic capacity. Recent studies have demonstrated that cancer dissemination can occur earlier, before the diagnosis of the primary tumor. The progress in understanding the kinetics of cancer dissemination is limited by the lack of animal models that accurately mimic disease progression. We have established a xenograft model of human melanoma that spontaneously metastasizes to lymph nodes and lungs. This model allows precise monitoring of melanoma progression and is suitable for the quantitative and qualitative analysis of circulating tumor cells (CTCs). We have validated a flow cytometry-based protocol for CTCs enumeration and isolation. We could demonstrate that (i) CTCs were detectable in the bloodstream from the fourth week after tumor initiation, coinciding with the lymph node metastases appearance, (ii) excision of the primary tumor accelerated the formation of metastases in lymph nodes and lungs as early as one-week post-surgery, accompanied by the increased numbers of CTCs, and (iii) CTCs change their surface protein signature. In summary, we present a model of human melanoma that can be effectively utilized for future drug efficacy studies.
Collapse
Affiliation(s)
- Markéta Pícková
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zuzana Kahounová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Tomasz Radaszkiewicz
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jiřina Procházková
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Radek Fedr
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Michaela Nosková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Centre for Inflammation Research, University of Edinburgh Institute for Regeneration and Repair, Edinburgh, Scotland
| | | | - Petra Ovesná
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Vítězslav Bryja
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Karel Souček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
7
|
Scaini MC, Catoni C, Poggiana C, Pigozzo J, Piccin L, Leone K, Scarabello I, Facchinetti A, Menin C, Elefanti L, Pellegrini S, Aleotti V, Vidotto R, Schiavi F, Fabozzi A, Chiarion-Sileni V, Rosato A. A multiparameter liquid biopsy approach allows to track melanoma dynamics and identify early treatment resistance. NPJ Precis Oncol 2024; 8:78. [PMID: 38548846 PMCID: PMC10978909 DOI: 10.1038/s41698-024-00567-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 03/14/2024] [Indexed: 04/01/2024] Open
Abstract
Melanoma heterogeneity is a hurdle in metastatic disease management. Although the advent of targeted therapy has significantly improved patient outcomes, the occurrence of resistance makes monitoring of the tumor genetic landscape mandatory. Liquid biopsy could represent an important biomarker for the real-time tracing of disease evolution. Thus, we aimed to correlate liquid biopsy dynamics with treatment response and progression by devising a multiplatform approach applied to longitudinal melanoma patient monitoring. We conceived an approach that exploits Next Generation Sequencing (NGS) and droplet digital PCR, as well as the FDA-cleared platform CellSearch, to analyze circulating tumor DNA (ctDNA) trend and circulating melanoma cell (CMC) count, together with their customized genetic and copy number variation analysis. The approach was applied to 17 stage IV melanoma patients treated with BRAF/MEK inhibitors, followed for up to 28 months. BRAF mutations were detected in the plasma of 82% of patients. Single nucleotide variants known or suspected to confer resistance were identified in 70% of patients. Moreover, the amount of ctDNA, both at baseline and during response, correlated with the type and duration of the response itself, and the CMC count was confirmed to be a prognostic biomarker. This work provides proof of principle of the power of this approach and paves the way for a validation study aimed at evaluating early ctDNA-guided treatment decisions in stage IV melanoma. The NGS-based molecular profile complemented the analysis of ctDNA trend and, together with CMC analysis, revealed to be useful in capturing tumor evolution.
Collapse
Affiliation(s)
- Maria Chiara Scaini
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy.
| | - Cristina Catoni
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy
| | - Cristina Poggiana
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy.
| | - Jacopo Pigozzo
- Medical Oncology 2, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy
| | - Luisa Piccin
- Medical Oncology 2, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy
| | - Kevin Leone
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy
| | - Ilaria Scarabello
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy
| | - Antonella Facchinetti
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), Oncology Section, University of Padua, Padua, Italy
| | - Chiara Menin
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy
| | - Lisa Elefanti
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy
| | - Stefania Pellegrini
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy
| | - Valentina Aleotti
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy
| | - Riccardo Vidotto
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy
| | - Francesca Schiavi
- Familial Cancer Clinic, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy
| | - Alessio Fabozzi
- Oncology Unit 3, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy
| | | | - Antonio Rosato
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology - IOV IRCCS, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), Oncology Section, University of Padua, Padua, Italy
| |
Collapse
|
8
|
Castellani G, Buccarelli M, Arasi MB, Rossi S, Pisanu ME, Bellenghi M, Lintas C, Tabolacci C. BRAF Mutations in Melanoma: Biological Aspects, Therapeutic Implications, and Circulating Biomarkers. Cancers (Basel) 2023; 15:4026. [PMID: 37627054 PMCID: PMC10452867 DOI: 10.3390/cancers15164026] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Melanoma is an aggressive form of skin cancer resulting from the malignant transformation of melanocytes. Recent therapeutic approaches, including targeted therapy and immunotherapy, have improved the prognosis and outcome of melanoma patients. BRAF is one of the most frequently mutated oncogenes recognised in melanoma. The most frequent oncogenic BRAF mutations consist of a single point mutation at codon 600 (mostly V600E) that leads to constitutive activation of the BRAF/MEK/ERK (MAPK) signalling pathway. Therefore, mutated BRAF has become a useful target for molecular therapy and the use of BRAF kinase inhibitors has shown promising results. However, several resistance mechanisms invariably develop leading to therapeutic failure. The aim of this manuscript is to review the role of BRAF mutational status in the pathogenesis of melanoma and its impact on differentiation and inflammation. Moreover, this review focuses on the mechanisms responsible for resistance to targeted therapies in BRAF-mutated melanoma and provides an overview of circulating biomarkers including circulating tumour cells, circulating tumour DNA, and non-coding RNAs.
Collapse
Affiliation(s)
- Giorgia Castellani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Maria Beatrice Arasi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Stefania Rossi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Maria Elena Pisanu
- High Resolution NMR Unit, Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Maria Bellenghi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Carla Lintas
- Research Unit of Medical Genetics, Department of Medicine, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| |
Collapse
|
9
|
Rapanotti MC, Cugini E, Campione E, Di Raimondo C, Costanza G, Rossi P, Ferlosio A, Bernardini S, Orlandi A, De Luca A, Bianchi L. Epithelial-to-Mesenchymal Transition Gene Signature in Circulating Melanoma Cells: Biological and Clinical Relevance. Int J Mol Sci 2023; 24:11792. [PMID: 37511550 PMCID: PMC10380315 DOI: 10.3390/ijms241411792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The most promising method for monitoring patients with minimal morbidity is the detection of circulating melanoma cells (CMCs). We have shown that CD45-CD146+ABCB5+ CMCs identify a rare primitive stem/mesenchymal CMCs population associated with disease progression. The epithelial-to-mesenchymal transition (EMT) confers cancer cells a hybrid epithelial/mesenchymal phenotype promoting metastatization. Thus, we investigated the potential clinical value of the EMT gene signature of these primitive CMCs. A reliable quantitative real-time polymerase chain reaction (qRT-PCR) protocol was settled up using tumor cell lines RNA dilutions. Afterwards, immune-magnetically isolated CMCs from advanced melanoma patients, at onset and at the first checkpoint (following immune or targeted therapy), were tested for the level of EMT hallmarks and EMT transcription factor genes. Despite the small cohort of patients, we obtained promising results. Indeed, we observed a deep gene rewiring of the EMT investigated genes: in particular we found that the EMT gene signature of isolated CMCs correlated with patients' clinical outcomes. In conclusion, We established a reliable qRT-PCR protocol with high sensitivity and specificity to characterize the gene expression of isolated CMCs. To our knowledge, this is the first evidence demonstrating the impact of immune or targeted therapies on EMT hallmark gene expressions in CMCs from advanced melanoma patients.
Collapse
Affiliation(s)
- Maria Cristina Rapanotti
- Department of Anatomic Pathology, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Elisa Cugini
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Elena Campione
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Cosimo Di Raimondo
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Gaetana Costanza
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Piero Rossi
- Surgery Division, Department of Surgery Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Amedeo Ferlosio
- Department of Anatomic Pathology, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Sergio Bernardini
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Augusto Orlandi
- Department of Anatomic Pathology, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Anastasia De Luca
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Luca Bianchi
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
10
|
Chen H, Osman SY, Moose DL, Vanneste M, Anderson JL, Henry MD, Anand RK. Quantification of capture efficiency, purity, and single-cell isolation in the recovery of circulating melanoma cells from peripheral blood by dielectrophoresis. LAB ON A CHIP 2023; 23:2586-2600. [PMID: 37185977 PMCID: PMC10228177 DOI: 10.1039/d2lc01113a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/31/2023] [Indexed: 05/17/2023]
Abstract
This paper describes a dielectrophoretic method for selection of circulating melanoma cells (CMCs), which lack reliable identifying surface antigens and are extremely rare in blood. This platform captures CMCs individually by dielectrophoresis (DEP) at an array of wireless bipolar electrodes (BPEs) aligned to overlying nanoliter-scale chambers, which isolate each cell for subsequent on-chip single-cell analysis. To determine the best conditions to employ for CMC isolation in this DEP-BPE platform, the static and dynamic dielectrophoretic response of established melanoma cell lines, melanoma cells from patient-derived xenografts (PDX) and peripheral blood mononuclear cells (PBMCs) were evaluated as a function of frequency using two established DEP platforms. Further, PBMCs derived from patients with advanced melanoma were compared with those from healthy controls. The results of this evaluation reveal that each DEP method requires a distinct frequency to achieve capture of melanoma cells and that the distribution of dielectric properties of PBMCs is more broadly varied in and among patients versus healthy controls. Based on this evaluation, we conclude that 50 kHz provides the highest capture efficiency on our DEP-BPE platform while maintaining a low rate of capture of unwanted PBMCs. We further quantified the efficiency of single-cell capture on the DEP-BPE platform and found that the efficiency diminished beyond around 25% chamber occupancy, thereby informing the minimum array size that is required. Importantly, the capture efficiency of the DEP-BPE platform for melanoma cells when using optimized conditions matched the performance predicted by our analysis. Finally, isolation of melanoma cells from contrived (spike-in) and clinical samples on our platform using optimized conditions was demonstrated. The capture and individual isolation of CMCs, confirmed by post-capture labeling, from patient-derived samples suggests the potential of this platform for clinical application.
Collapse
Affiliation(s)
- Han Chen
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
| | - Sommer Y Osman
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
| | - Devon L Moose
- Departments of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | - Marion Vanneste
- Departments of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | - Jared L Anderson
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
| | - Michael D Henry
- Departments of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
- Pathology, Urology and Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Robbyn K Anand
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
| |
Collapse
|
11
|
Ding L, Gosh A, Lee DJ, Emri G, Huss WJ, Bogner PN, Paragh G. Prognostic biomarkers of cutaneous melanoma. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2022; 38:418-434. [PMID: 34981569 DOI: 10.1111/phpp.12770] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/02/2021] [Accepted: 12/30/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND/PURPOSE Melanomas account for only approximately 4% of diagnosed skin cancers in the United States but are responsible for the majority of deaths caused by skin cancer. Both genetic factors and ultraviolet (UV) radiation exposure play a role in the development of melanoma. Although melanomas have a strong propensity to metastasize when diagnosed late, melanomas that are diagnosed and treated early pose a low mortality risk. In particular, the identification of patients with increased metastatic risk, who may benefit from early adjuvant therapies, is crucial, especially given the advent of new melanoma treatments. However, the accuracy of classic clinical and histological variables, including the Breslow thickness, presence of ulceration, and lymph node status, might not be sufficient to identify such individuals. Thus, there is a need for the development of additional prognostic melanoma biomarkers that can improve early attempts to stratify melanoma patients and reliably identify high-risk subgroups with the aim of providing effective personalized therapies. METHODS In our current work, we discuss and assess emerging primary melanoma tumor biomarkers and prognostic circulating biomarkers. RESULTS Several promising biomarkers show prognostic value (eg, exosomal MIA (ie, melanoma inhibitory activity), serum S100B, AMLo signatures, and mRNA signatures); however, the scarcity of reliable data precludes the use of these biomarkers in current clinical applications. CONCLUSION Further research is needed on several promising biomarkers for melanoma. Large-scale studies are warranted to facilitate the clinical translation of prognostic biomarker applications for melanoma in personalized medicine.
Collapse
Affiliation(s)
- Liang Ding
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Pathology, Buffalo General Medical Center, State University of New York, Buffalo, New York, USA
| | - Alexandra Gosh
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Delphine J Lee
- Division of Dermatology, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California, USA
- Division of Dermatology, Department of Medicine, The Lundquist Institute, Torrance, California, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Gabriella Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Wendy J Huss
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Paul N Bogner
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Gyorgy Paragh
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
12
|
Beasley AB, Chen FK, Isaacs TW, Gray ES. Future perspectives of uveal melanoma blood based biomarkers. Br J Cancer 2022; 126:1511-1528. [PMID: 35190695 PMCID: PMC9130512 DOI: 10.1038/s41416-022-01723-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 01/15/2022] [Accepted: 01/27/2022] [Indexed: 01/06/2023] Open
Abstract
Uveal melanoma (UM) is the most common primary intraocular malignancy affecting adults. Despite successful local treatment of the primary tumour, metastatic disease develops in up to 50% of patients. Metastatic UM carries a particularly poor prognosis, with no effective therapeutic option available to date. Genetic studies of UM have demonstrated that cytogenetic features, including gene expression, somatic copy number alterations and specific gene mutations can allow more accurate assessment of metastatic risk. Pre-emptive therapies to avert metastasis are being tested in clinical trials in patients with high-risk UM. However, current prognostic methods require an intraocular tumour biopsy, which is a highly invasive procedure carrying a risk of vision-threatening complications and is limited by sampling variability. Recently, a new diagnostic concept known as "liquid biopsy" has emerged, heralding a substantial potential for minimally invasive genetic characterisation of tumours. Here, we examine the current evidence supporting the potential of blood circulating tumour cells (CTCs), circulating tumour DNA (ctDNA), microRNA (miRNA) and exosomes as biomarkers for UM. In particular, we discuss the potential of these biomarkers to aid clinical decision making throughout the management of UM patients.
Collapse
Affiliation(s)
- Aaron B Beasley
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
| | - Fred K Chen
- Centre for Ophthalmology and Visual Sciences (incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia
- Department of Ophthalmology, Royal Perth Hospital, Perth, WA, Australia
- Department of Ophthalmology, Perth Children's Hospital, Perth, WA, Australia
| | - Timothy W Isaacs
- Centre for Ophthalmology and Visual Sciences (incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia
- Department of Ophthalmology, Royal Perth Hospital, Perth, WA, Australia
- Perth Retina, West Leederville, WA, Australia
| | - Elin S Gray
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia.
- Centre for Ophthalmology and Visual Sciences (incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia.
| |
Collapse
|
13
|
Janowska A, Iannone M, Fidanzi C, Romanelli M, Filippi L, Del Re M, Martins M, Dini V. The Genetic Basis of Dormancy and Awakening in Cutaneous Metastatic Melanoma. Cancers (Basel) 2022; 14:2104. [PMID: 35565234 PMCID: PMC9102235 DOI: 10.3390/cancers14092104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 01/27/2023] Open
Abstract
Immune dysregulation, in combination with genetic and epigenetic alterations, induces an excessive proliferation of uncontrolled melanoma cells followed by dissemination of the tumor cells to distant sites, invading organs and creating metastasis. Although immunotherapy, checkpoint inhibitors and molecular targeted therapies have been developed as treatment options for advanced melanoma, there are specific mechanisms by which cancer cells can escape treatment. One of the main factors associated with reduced response to therapy is the ability of residual tumor cells to persist in a dormant state, without proliferation. This comprehensive review aimed at understanding the genetic basis of dormancy/awakening phenomenon in metastatic melanoma will help identify the possible therapeutical strategies that might eliminate melanoma circulating tumor cells (CTCs) or keep them in the dormant state forever, thereby repressing tumor relapse and metastatic spread.
Collapse
Affiliation(s)
- Agata Janowska
- Unit of Dermatology, University of Pisa, 56126 Pisa, Italy; (M.I.); (C.F.); (M.R.); (M.M.); (V.D.)
| | - Michela Iannone
- Unit of Dermatology, University of Pisa, 56126 Pisa, Italy; (M.I.); (C.F.); (M.R.); (M.M.); (V.D.)
| | - Cristian Fidanzi
- Unit of Dermatology, University of Pisa, 56126 Pisa, Italy; (M.I.); (C.F.); (M.R.); (M.M.); (V.D.)
| | - Marco Romanelli
- Unit of Dermatology, University of Pisa, 56126 Pisa, Italy; (M.I.); (C.F.); (M.R.); (M.M.); (V.D.)
| | - Luca Filippi
- Unit of Neonatology, University of Pisa, 56126 Pisa, Italy;
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, University of Pisa, 56126 Pisa, Italy;
| | - Manuella Martins
- Unit of Dermatology, University of Pisa, 56126 Pisa, Italy; (M.I.); (C.F.); (M.R.); (M.M.); (V.D.)
| | - Valentina Dini
- Unit of Dermatology, University of Pisa, 56126 Pisa, Italy; (M.I.); (C.F.); (M.R.); (M.M.); (V.D.)
| |
Collapse
|
14
|
Promising Blood-Based Biomarkers for Melanoma: Recent Progress of Liquid Biopsy and Its Future Perspectives. Curr Treat Options Oncol 2022; 23:562-577. [PMID: 35298769 DOI: 10.1007/s11864-022-00948-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2021] [Indexed: 12/11/2022]
Abstract
OPINION STATEMENT Because the recent success of novel therapeutic approaches has dramatically changed the clinical management of melanoma, less invasive and repeatable monitoring tools that can predict the disease status, drug resistance, and the development of side effects are increasingly needed. As liquid biopsy has enabled us to diagnose and monitor disease status less invasively, substantial attention has been directed toward this technique, which is gaining importance as a diagnostic and/or prognostic tool. It is evident that microRNA, cell-free DNA, and circulating tumor cells obtained via liquid biopsy are promising diagnostic and prognostic tools for melanoma, and they also have utility for monitoring the disease status and predicting drug effects. Although current challenges exist for each biomarker, such as poor sensitivity and/or specificity and technical problems, recent technical advances have increasingly improved these aspects. For example, next-generation sequencing technology for detecting microRNAs or cell-free DNA enabled high-throughput analysis and provided significantly higher sensitivity. In particular, cancer personalized profiling by deep sequencing for quantifying cell-free DNA is a promising method for high-throughput analysis that provides real-time comprehensive data for patients at various disease stages. For wide clinical implementation, it is necessary to increase the sensitivity for the markers and standardize the assay procedures to make them reproducible, valid, and inexpensive; however, the broad clinical application of liquid biopsy could occur quickly. This review focuses on the significance of liquid biopsy, particularly related to the use of blood samples from patients with melanoma, and discusses its future perspectives.
Collapse
|
15
|
Recent Developments of Circulating Tumor Cell Analysis for Monitoring Cutaneous Melanoma Patients. Cancers (Basel) 2022; 14:cancers14040859. [PMID: 35205608 PMCID: PMC8870206 DOI: 10.3390/cancers14040859] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Circulating tumor cells (CTCs) originating from cutaneous melanoma patients have been studied for several decades as surrogates for real-time clinical status and disease outcomes. Here, we will review clinical studies from the last 15 years that assessed CTCs and disease outcomes for melanoma patients. Assessment of multiple molecular melanoma-associated antigen (MAA) markers by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) was the most common assay allowing for the improvement of assay sensitivity, to address tumor heterogeneity, and to predict patient outcomes. Multicenter studies demonstrate the utility of CTC assays reducing the bias observed in single-center trials. Recent development of CTC enrichment platforms has provided reproducible methods. CTC assessment enables both multiple mRNAs and DNAs genomic profiling. CTC provides specific important translational information on tumor progression, prediction of treatment response, and survival outcomes for cutaneous melanoma patients. Abstract Circulating tumor cells (CTCs) have been studied using multiple technical approaches for interrogating various cancers, as they allow for the real-time assessment of tumor progression, disease recurrence, treatment response, and tumor molecular profiling without the need for a tumor tissue biopsy. Here, we will review studies from the last 15 years on the assessment of CTCs in cutaneous melanoma patients in relation to different clinical outcomes. The focus will be on CTC detection in blood samples obtained from cutaneous melanoma patients of different clinical stages and treatments utilizing multiple platforms. Assessment of multiple molecular melanoma-associated antigen (MAA) markers by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) was the most common assay allowing for the improvement of assay sensitivity, tumor heterogeneity, and to predict patient outcomes. Multicenter studies demonstrate the utility of CTC assays reducing the bias observed in single- center trials. The recent development of CTC enrichment platforms has provided reproducible methods. CTC assessment enables both multiple mRNAs and DNAs genomic aberration profiling. CTC provides specific important translational information on tumor progression, prediction of treatment response, and survival outcomes for cutaneous melanoma patients. The molecular studies on melanoma CTCs have provided and may set standards for other solid tumor CTC analyses.
Collapse
|
16
|
Beasley AB, Isaacs TW, Vermeulen T, Freeman J, DeSousa JL, Bhikoo R, Hennessy D, Reid A, Chen FK, Bentel J, McKay D, Conway RM, Pereira MR, Mirzai B, Calapre L, Erber WN, Ziman MR, Gray ES. Analysis of Circulating Tumour Cells in Early-Stage Uveal Melanoma: Evaluation of Tumour Marker Expression to Increase Capture. Cancers (Basel) 2021; 13:5990. [PMID: 34885099 PMCID: PMC8657240 DOI: 10.3390/cancers13235990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 01/07/2023] Open
Abstract
(1) Background: The stratification of uveal melanoma (UM) patients into prognostic groups is critical for patient management and for directing patients towards clinical trials. Current classification is based on clinicopathological and molecular features of the tumour. Analysis of circulating tumour cells (CTCs) has been proposed as a tool to avoid invasive biopsy of the primary tumour. However, the clinical utility of such liquid biopsy depends on the detection rate of CTCs. (2) Methods: The expression of melanoma, melanocyte, and stem cell markers was tested in a primary tissue microarray (TMA) and UM cell lines. Markers found to be highly expressed in primary UM were used to either immunomagnetically isolate or immunostain UM CTCs prior to treatment of the primary lesion. (3) Results: TMA and cell lines had heterogeneous expression of common melanoma, melanocyte, and stem cell markers. A multi-marker panel of immunomagnetic beads enabled isolation of CTCs in 37/43 (86%) patients with UM. Detection of three or more CTCs using the multi-marker panel, but not MCSP alone, was a significant predictor of shorter progression free (p = 0.040) and overall (p = 0.022) survival. (4) Conclusions: The multi-marker immunomagnetic isolation protocol enabled the detection of CTCs in most primary UM patients. Overall, our results suggest that a multi-marker approach could be a powerful tool for CTC separation for non-invasive prognostication of UM.
Collapse
Affiliation(s)
- Aaron B. Beasley
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; (A.B.B.); (J.F.); (A.R.); (M.R.P.); (L.C.); (M.R.Z.)
- Centre for Precision Health, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Timothy W. Isaacs
- Perth Retina, Subiaco, WA 6008, Australia;
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Perth, WA 6000, Australia; (J.-L.D.); (R.B.); (F.K.C.)
- Department of Ophthalmology, Royal Perth Hospital, Perth, WA 6000, Australia;
| | - Tersia Vermeulen
- Anatomical Pathology, PathWest Laboratory Medicine, Fiona Stanley Hospital, Murdoch, WA 6150, Australia; (T.V.); (J.B.)
- Anatomical Pathology, PathWest Laboratory Medicine, Royal Perth Hospital, Perth, WA 6000, Australia
| | - James Freeman
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; (A.B.B.); (J.F.); (A.R.); (M.R.P.); (L.C.); (M.R.Z.)
| | - Jean-Louis DeSousa
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Perth, WA 6000, Australia; (J.-L.D.); (R.B.); (F.K.C.)
- Department of Ophthalmology, Royal Perth Hospital, Perth, WA 6000, Australia;
| | - Riyaz Bhikoo
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Perth, WA 6000, Australia; (J.-L.D.); (R.B.); (F.K.C.)
- Department of Ophthalmology, Royal Perth Hospital, Perth, WA 6000, Australia;
| | - Doireann Hennessy
- Department of Ophthalmology, Royal Perth Hospital, Perth, WA 6000, Australia;
| | - Anna Reid
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; (A.B.B.); (J.F.); (A.R.); (M.R.P.); (L.C.); (M.R.Z.)
- Centre for Precision Health, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Fred K. Chen
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Perth, WA 6000, Australia; (J.-L.D.); (R.B.); (F.K.C.)
- Department of Ophthalmology, Royal Perth Hospital, Perth, WA 6000, Australia;
| | - Jacqueline Bentel
- Anatomical Pathology, PathWest Laboratory Medicine, Fiona Stanley Hospital, Murdoch, WA 6150, Australia; (T.V.); (J.B.)
| | - Daniel McKay
- Royal Victorian Eye & Ear Hospital, Melbourne, VIC 3000, Australia;
| | - R. Max Conway
- Ocular Oncology Unit, Sydney Eye Hospital and The Kinghorn Cancer Centre, Sydney, NSW 2000, Australia;
- Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia
| | - Michelle R. Pereira
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; (A.B.B.); (J.F.); (A.R.); (M.R.P.); (L.C.); (M.R.Z.)
| | - Bob Mirzai
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6000, Australia; (B.M.); (W.N.E.)
| | - Leslie Calapre
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; (A.B.B.); (J.F.); (A.R.); (M.R.P.); (L.C.); (M.R.Z.)
- Centre for Precision Health, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Wendy N. Erber
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6000, Australia; (B.M.); (W.N.E.)
| | - Melanie R. Ziman
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; (A.B.B.); (J.F.); (A.R.); (M.R.P.); (L.C.); (M.R.Z.)
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6000, Australia; (B.M.); (W.N.E.)
| | - Elin S. Gray
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; (A.B.B.); (J.F.); (A.R.); (M.R.P.); (L.C.); (M.R.Z.)
- Centre for Precision Health, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
17
|
Brendlin AS, Peisen F, Almansour H, Afat S, Eigentler T, Amaral T, Faby S, Calvarons AF, Nikolaou K, Othman AE. A Machine learning model trained on dual-energy CT radiomics significantly improves immunotherapy response prediction for patients with stage IV melanoma. J Immunother Cancer 2021; 9:jitc-2021-003261. [PMID: 34795006 PMCID: PMC8603266 DOI: 10.1136/jitc-2021-003261] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND To assess the additive value of dual-energy CT (DECT) over single-energy CT (SECT) to radiomics-based response prediction in patients with metastatic melanoma preceding immunotherapy. MATERIAL AND METHODS A total of 140 consecutive patients with melanoma (58 female, 63±16 years) for whom baseline DECT tumor load assessment revealed stage IV and who were subsequently treated with immunotherapy were included. Best response was determined using the clinical reports (81 responders: 27 complete response, 45 partial response, 9 stable disease). Individual lesion response was classified manually analogous to RECIST 1.1 through 1291 follow-up examinations on a total of 776 lesions (6.7±7.2 per patient). The patients were sorted chronologically into a study and a validation cohort (each n=70). The baseline DECT was examined using specialized tumor segmentation prototype software, and radiomic features were analyzed for response predictors. Significant features were selected using univariate statistics with Bonferroni correction and multiple logistic regression. The area under the receiver operating characteristic curve of the best subset was computed (AUROC). For each combination (SECT/DECT and patient response/lesion response), an individual random forest classifier with 10-fold internal cross-validation was trained on the study cohort and tested on the validation cohort to confirm the predictive performance. RESULTS We performed manual RECIST 1.1 response analysis on a total of 6533 lesions. Multivariate statistics selected significant features for patient response in SECT (min. brightness, R²=0.112, padj. ≤0.001) and DECT (textural coarseness, R²=0.121, padj. ≤0.001), as well as lesion response in SECT (mean absolute voxel intensity deviation, R²=0.115, padj. ≤0.001) and DECT (iodine uptake metrics, R²≥0.12, padj. ≤0.001). Applying the machine learning models to the validation cohort confirmed the additive predictive power of DECT (patient response AUROC SECT=0.5, DECT=0.75; lesion response AUROC SECT=0.61, DECT=0.85; p<0.001). CONCLUSION The new method of DECT-specific radiomic analysis provides a significant additive value over SECT radiomics approaches for response prediction in patients with metastatic melanoma preceding immunotherapy, especially on a lesion-based level. As mixed tumor response is not uncommon in metastatic melanoma, this lends a powerful tool for clinical decision-making and may potentially be an essential step toward individualized medicine.
Collapse
Affiliation(s)
- Andreas Stefan Brendlin
- Department of Diagnostic and Interventional Radiology, Universitätsklinikum Tübingen, Tubingen, Germany
| | - Felix Peisen
- Department of Diagnostic and Interventional Radiology, Universitätsklinikum Tübingen, Tubingen, Germany
| | - Haidara Almansour
- Department of Diagnostic and Interventional Radiology, Universitätsklinikum Tübingen, Tubingen, Germany
| | - Saif Afat
- Department of Diagnostic and Interventional Radiology, Universitätsklinikum Tübingen, Tubingen, Germany
| | - Thomas Eigentler
- Center of Dermatooncology, Department of Dermatology, Eberhard Karls Universitat Tubingen, Tubingen, Germany.,Department of Dermatology, Venereology and Allergology, Charite Universitatsmedizin Berlin, Berlin, Germany
| | - Teresa Amaral
- Center of Dermatooncology, Department of Dermatology, Eberhard Karls Universitat Tubingen, Tubingen, Germany
| | - Sebastian Faby
- Computed Tomography, Siemens Healthcare GmbH, Erlangen, Germany
| | | | - Konstantin Nikolaou
- Department of Diagnostic and Interventional Radiology, Universitätsklinikum Tübingen, Tubingen, Germany.,Image-guided and Functionally Instructed Tumor Therapies (iFIT), The Cluster of Excellence 2180, Tuebingen, Germany
| | - Ahmed E Othman
- Department of Diagnostic and Interventional Radiology, Universitätsklinikum Tübingen, Tubingen, Germany .,Institute of Neuroradiology, Johannes Gutenberg University Hospital Mainz, Mainz, Germany
| |
Collapse
|
18
|
Rapanotti MC, Cugini E, Nuccetelli M, Terrinoni A, Di Raimondo C, Lombardo P, Costanza G, Cosio T, Rossi P, Orlandi A, Campione E, Bernardini S, Blot-Chabaud M, Bianchi L. MCAM/MUC18/CD146 as a Multifaceted Warning Marker of Melanoma Progression in Liquid Biopsy. Int J Mol Sci 2021; 22:12416. [PMID: 34830300 PMCID: PMC8623757 DOI: 10.3390/ijms222212416] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/26/2022] Open
Abstract
Human malignant melanoma shows a high rate of mortality after metastasization, and its incidence is continuously rising worldwide. Several studies have suggested that MCAM/MUC18/CD146 plays an important role in the progression of this malignant disease. MCAM/MUC18/CD146 is a typical single-spanning transmembrane glycoprotein, existing as two membrane isoforms, long and short, and an additional soluble form, sCD146. We previously documented that molecular MCAM/MUC18/CD146 expression is strongly associated with disease progression. Recently, we showed that MCAM/MUC18/CD146 and ABCB5 can serve as melanoma-specific-targets in the selection of highly primitive circulating melanoma cells, and constitute putative proteins associated with disease spreading progression. Here, we analyzed CD146 molecular expression at onset or at disease recurrence in an enlarged melanoma case series. For some patients, we also performed the time courses of molecular monitoring. Moreover, we explored the role of soluble CD146 in different cohorts of melanoma patients at onset or disease progression, rather than in clinical remission, undergoing immune therapy or free from any clinical treatment. We showed that MCAM/MUC18/CD146 can be considered as: (1) a membrane antigen suitable for identification and enrichment in melanoma liquid biopsy; (2) a highly effective molecular "warning" marker for minimal residual disease monitoring; and (3) a soluble protein index of inflammation and putative response to therapeutic treatments.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- CD146 Antigen/blood
- CD146 Antigen/chemistry
- CD146 Antigen/genetics
- Disease Progression
- Female
- Follow-Up Studies
- Gene Expression
- Gene Expression Regulation, Neoplastic
- Humans
- Liquid Biopsy
- Longitudinal Studies
- Male
- Melanoma/blood
- Melanoma/genetics
- Melanoma/pathology
- Middle Aged
- Neoplasm Recurrence, Local/blood
- Neoplasm Recurrence, Local/genetics
- Neoplasm, Residual/blood
- Neoplasm, Residual/genetics
- Neoplastic Cells, Circulating/metabolism
- Skin Neoplasms/blood
- Skin Neoplasms/genetics
- Skin Neoplasms/pathology
- Solubility
- Young Adult
- Melanoma, Cutaneous Malignant
Collapse
Affiliation(s)
- Maria Cristina Rapanotti
- Department of Onco-Haematology, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (E.C.); (M.N.); (A.T.); (G.C.); (S.B.)
| | - Elisa Cugini
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (E.C.); (M.N.); (A.T.); (G.C.); (S.B.)
| | - Marzia Nuccetelli
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (E.C.); (M.N.); (A.T.); (G.C.); (S.B.)
| | - Alessandro Terrinoni
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (E.C.); (M.N.); (A.T.); (G.C.); (S.B.)
| | - Cosimo Di Raimondo
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.D.R.); (P.L.); (T.C.); (E.C.); (L.B.)
| | - Paolo Lombardo
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.D.R.); (P.L.); (T.C.); (E.C.); (L.B.)
| | - Gaetana Costanza
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (E.C.); (M.N.); (A.T.); (G.C.); (S.B.)
| | - Terenzio Cosio
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.D.R.); (P.L.); (T.C.); (E.C.); (L.B.)
| | - Piero Rossi
- Department of Surgery Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Augusto Orlandi
- Anatomic Pathology, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Elena Campione
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.D.R.); (P.L.); (T.C.); (E.C.); (L.B.)
| | - Sergio Bernardini
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (E.C.); (M.N.); (A.T.); (G.C.); (S.B.)
| | - Marcel Blot-Chabaud
- Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1076, Aix-Marseille University, UFR Pharmacy, 13005 Marseille, France;
| | - Luca Bianchi
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.D.R.); (P.L.); (T.C.); (E.C.); (L.B.)
| |
Collapse
|
19
|
Wang J, Wuethrich A, Lobb RJ, Antaw F, Sina AAI, Lane RE, Zhou Q, Zieschank C, Bell C, Bonazzi VF, Aoude LG, Everitt S, Yeo B, Barbour AP, Möller A, Trau M. Characterizing the Heterogeneity of Small Extracellular Vesicle Populations in Multiple Cancer Types via an Ultrasensitive Chip. ACS Sens 2021; 6:3182-3194. [PMID: 34264628 DOI: 10.1021/acssensors.1c00358] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Identifying small extracellular vesicle (sEV) subpopulations based on their different molecular signatures could potentially reveal the functional roles in physiology and pathology. However, it is a challenge to achieve this aim due to the nano-sized dimensions of sEVs, low quantities of biological cargo each sEV carries, and our incomplete knowledge of identifying features capable of separating heterogeneous sEV subpopulations. Here, a sensitive, multiplexed, and nano-mixing-enhanced sEV subpopulation characterization platform (ESCP) is proposed to precisely determine the sEV phenotypic heterogeneity and understand the role of sEV heterogeneity in cancer progression and metastasis. The ESCP utilizes spatially patterned anti-tetraspanin-functionalized micro-arrays for sEV subpopulation sorting and nanobarcode-based surface-enhanced Raman spectroscopy for multiplexed read-outs. An ESCP has been used for investigating sEV phenotypic heterogeneity in terms of canonical sEV tetraspanin molecules and cancer-associated protein biomarkers in both cancer cell line models and cancer patient samples. Our data explicitly demonstrate the selective enrichment of tetraspanins and cancer-associated protein biomarkers, in particular sEV subpopulations. Therefore, it is believed that the ESCP could enable the evaluation and broader application of sEV subpopulations as potential diagnostic disease biomarkers.
Collapse
Affiliation(s)
- Jing Wang
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Alain Wuethrich
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Richard J. Lobb
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Fiach Antaw
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Abu Ali Ibn Sina
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Rebecca E. Lane
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Quan Zhou
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Chloe Zieschank
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Caroline Bell
- School of Cancer Medicine, Olivia Newton-John Cancer Research Institute and La Trobe University, 145 Studley Road, Heidelberg, Victoria 3084, Australia
| | - Vanessa F. Bonazzi
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Lauren G. Aoude
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Sarah Everitt
- Department of Radiation Therapy, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Belinda Yeo
- School of Cancer Medicine, Olivia Newton-John Cancer Research Institute and La Trobe University, 145 Studley Road, Heidelberg, Victoria 3084, Australia
- Austin Health, Heidelberg, Victoria 3084, Australia
| | - Andrew P. Barbour
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland 4102, Australia
- Queensland Melanoma Project, Princess Alexandra Hospital, Brisbane, Queensland 4102, Australia
| | - Andreas Möller
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
20
|
Kamińska P, Buszka K, Zabel M, Nowicki M, Alix-Panabières C, Budna-Tukan J. Liquid Biopsy in Melanoma: Significance in Diagnostics, Prediction and Treatment Monitoring. Int J Mol Sci 2021; 22:9714. [PMID: 34575876 PMCID: PMC8468624 DOI: 10.3390/ijms22189714] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/25/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023] Open
Abstract
Liquid biopsy is a common term referring to circulating tumor cells and other biomarkers, such as circulating tumor DNA (ctDNA) or extracellular vesicles. Liquid biopsy presents a range of clinical advantages, such as the low invasiveness of the blood sample collection and continuous control of the tumor progression. In addition, this approach enables the mechanisms of drug resistance to be determined in various methods of cancer treatment, including immunotherapy. However, in the case of melanoma, the application of liquid biopsy in patient stratification and therapy needs further investigation. This review attempts to collect all of the relevant and recent information about circulating melanoma cells (CMCs) related to the context of malignant melanoma and immunotherapy. Furthermore, the biology of liquid biopsy analytes, including CMCs, ctDNA, mRNA and exosomes, as well as techniques for their detection and isolation, are also described. The available data support the notion that thoughtful selection of biomarkers and technologies for their detection can contribute to the development of precision medicine by increasing the efficacy of cancer diagnostics and treatment.
Collapse
Affiliation(s)
- Paula Kamińska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.K.); (K.B.); (M.N.)
| | - Karolina Buszka
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.K.); (K.B.); (M.N.)
| | - Maciej Zabel
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, 65-046 Zielona Góra, Poland;
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.K.); (K.B.); (M.N.)
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, 34093 Montpellier, France;
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, 34000 Montpellier, France
| | - Joanna Budna-Tukan
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.K.); (K.B.); (M.N.)
| |
Collapse
|
21
|
Yin Q, Shi X, Lan S, Jin H, Wu D. Effect of melanoma stem cells on melanoma metastasis. Oncol Lett 2021; 22:566. [PMID: 34113394 PMCID: PMC8185701 DOI: 10.3892/ol.2021.12827] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/07/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer stem cells (CSCs) are involved in the metastatic process, the resistance of many types of cancer to therapeutic treatments and consequently the onset of recurrences. The CSC concept therefore significantly extends our understanding of melanoma biology. More recently, melanoma stem cells (MSCs) have been described in melanoma as expressing specific biomarkers. These primitive melanoma cells are not only capable of self-renewal and differentiation plasticity, but may also confer virulence via immune evasion and multidrug resistance, and potentially, via vasculogenic mimicry and transition to migratory and metastasizing derivatives. This review will present the specific biomarkers of MSCs, including CD133, ATP binding cassette subfamily B member 5, CD271, CD20 and aldehyde dehydrogenase, which can regulate the transduction of tumor-related signals. These signal molecules can reversely act on tumor cells and regulate tumor angiogenesis, leading to the occurrence of melanoma metastasis. Targeting these specific biomarkers could inhibit the progression of melanoma and may help the development of novel therapeutic strategies for melanoma.
Collapse
Affiliation(s)
- Qiliang Yin
- Department of Tumor Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiumin Shi
- Department of Tumor Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shijie Lan
- Department of Tumor Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Haofan Jin
- Department of Tumor Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Di Wu
- Department of Tumor Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
22
|
Pedri D, Karras P, Landeloos E, Marine JC, Rambow F. Epithelial-to-mesenchymal-like transition events in melanoma. FEBS J 2021; 289:1352-1368. [PMID: 33999497 DOI: 10.1111/febs.16021] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 11/30/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT), a process through which epithelial tumor cells acquire mesenchymal phenotypic properties, contributes to both metastatic dissemination and therapy resistance in cancer. Accumulating evidence indicates that nonepithelial tumors, including melanoma, can also gain mesenchymal-like properties that increase their metastatic propensity and decrease their sensitivity to therapy. In this review, we discuss recent findings, illustrating the striking similarities-but also knowledge gaps-between the biology of mesenchymal-like state(s) in melanoma and mesenchymal state(s) from epithelial cancers. Based on this comparative analysis, we suggest hypothesis-driven experimental approaches to further deepen our understanding of the EMT-like process in melanoma and how such investigations may pave the way towards the identification of clinically relevant biomarkers for prognosis and new therapeutic strategies.
Collapse
Affiliation(s)
- Dennis Pedri
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Belgium.,Laboratory of Membrane Trafficking, Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Panagiotis Karras
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Belgium
| | - Ewout Landeloos
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Belgium
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Belgium
| | - Florian Rambow
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Belgium
| |
Collapse
|
23
|
Beasley AB, Acheampong E, Lin W, Gray ES. Multi-Marker Immunomagnetic Enrichment of Circulating Melanoma Cells. Methods Mol Biol 2021; 2265:213-222. [PMID: 33704717 DOI: 10.1007/978-1-0716-1205-7_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Within the last decade, circulating tumor cells (CTCs) have emerged as a promising biomarker for prognostication, treatment monitoring, and detection of markers of treatment resistance, and their isolation can be used as a minimally invasive means of profiling tumors across multiple body sites. However, CTCs represent a minuscule fraction of the total circulating cells in a patient. Therefore, sensitive isolation methods are needed for the detection and downstream analysis of these cells. Herein we describe a sensitive method for melanoma CTC isolation using a multi-marker immunomagnetic bead method. This method has been purposely optimized to detect CTCs in melanoma patients.
Collapse
Affiliation(s)
- Aaron B Beasley
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Emmanuel Acheampong
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Weitao Lin
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Elin S Gray
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.
| |
Collapse
|
24
|
Kiniwa Y, Nakamura K, Mikoshiba A, Ashida A, Akiyama Y, Morimoto A, Okuyama R. Usefulness of monitoring circulating tumor cells as a therapeutic biomarker in melanoma with BRAF mutation. BMC Cancer 2021; 21:287. [PMID: 33731038 PMCID: PMC7968258 DOI: 10.1186/s12885-021-08016-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 03/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While molecularly targeted therapies and immune checkpoint inhibitors have improved the prognosis of advanced melanoma, biomarkers are required to monitor drug responses. Circulating tumor cells (CTCs) are released from primary and/or metastatic tumors into the peripheral blood. We examined whether CTCs have potential as biomarkers by checking the number of CTCs, as well as the BRAF genotype of individual CTCs, in melanoma patients undergoing BRAF/MEK inhibitor treatment. METHODS CTCs were isolated from peripheral blood using a high-density dielectrophoretic microwell array, followed by labeling with melanoma-specific markers (MART-1 and/or gp100) and a leukocyte marker (CD45). The numbers of CTCs were analyzed in fifteen patients with stage 0-III melanoma. Furthermore, changes in CTC numbers were assessed in five patients with stage IV melanoma at four time points during BRAF/MEK inhibitor treatment, and the BRAF genotype was analyzed in CTCs isolated from one patient. RESULTS We examined CTCs in patients with stage 0-III (five samples per stage: stage 0-I, stage II, and stage III), and detected CTCs even in patients with early disease (stage 0 and I). Interestingly, recurrence occurred in the lymph nodes of one stage I patient 2 years after the detection of a high number of CTCs in the patient's blood. The total number of CTCs in four of five patients with stage IV melanoma fluctuated in response to BRAF/MEK inhibitor treatment, suggesting that CTC number has potential for use as a drug response marker in advanced disease patients. Interestingly, one of those patients had CTCs harboring seven different BRAF genotypes, and the mutated CTCs disappeared upon BRAF/MEK inhibitor treatment, except for those harboring BRAFA598V. CONCLUSIONS CTCs are present even in the early stage of melanoma, and the number of CTCs seems to reflect patients' responses to BRAF/MEK inhibitor treatment. Furthermore, genetic heterogeneity of BRAF may contribute to resistance to BRAF/MEK inhibitors. Our findings demonstrate the usefulness of CTC analysis for monitoring responses to targeted therapies in melanoma patients, and for understanding the mechanism of drug resistance.
Collapse
Affiliation(s)
- Yukiko Kiniwa
- Department of Dermatology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Kenta Nakamura
- Department of Dermatology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Asuka Mikoshiba
- Department of Dermatology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Atsuko Ashida
- Department of Dermatology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Yasuyuki Akiyama
- Life Science Research Laboratory, Tosoh Corporation, Ayase, Kanagawa, Japan
| | - Atsushi Morimoto
- Life Science Research Laboratory, Tosoh Corporation, Ayase, Kanagawa, Japan
| | - Ryuhei Okuyama
- Department of Dermatology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan.
| |
Collapse
|
25
|
Michelakis D, Lasithiotakis K, Messaritakis I, Ioannou C, Perisynakis K, Souglakos I, Stamatiou D, Chlouverakis G, de Bree E, Romanos I, Zoras O. A feasibility study of circulating melanoma cells in the perioperative context of hyperthermic isolated limb perfusion (HILP) in 20 patients. Int J Hyperthermia 2021; 38:70-78. [PMID: 33487077 DOI: 10.1080/02656736.2021.1874062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 10/22/2022] Open
Abstract
INTRODUCTION Hyperthermic Ιsolated Limb Perfusion using melphalan and TNFα (TM-HILP) is a regional chemotherapy method for advanced melanoma. PURPOSE To explore the feasibility of the study of Circulating Melanoma Cells (CMCs) in the context of acute physiological changes induced by TM-HILP and their association with oncological outcomes. METHODS The study included 20 patients undergoing TM-HILP for unresectable in-transit melanoma of the limbs, stage III(B/C/D). CMCs in the peripheral blood were analyzed at 5-time points from the preoperative day until day 7 from surgery using the following biomarkers: MITF, Tyrosinase mRNA, Melan-A and S100b, through quantitative RT-PCR. RESULTS No CMCs according to Tyrosinase and Melan-A biomarkers were found in any sample. Friedman test showed significant alterations perioperatively for MITF (p < .001) and S100b (p = .001). Pairwise tests showed a significant increase of MITF levels on postoperative day 7 compared with postoperative day 1, intraoperative and preoperative levels (p < .05). Pairwise tests for S100b showed a significant difference between intraoperative sample and postoperative day 7 (p < .0001). Patients who experienced a complete response to TM-HILP (n = 12) had higher mean levels of MITF and the difference was significant at the time point immediately after the operation (0.29 ± 0.27 vs. 0.06 ± 0.06, p = .014) and on postoperative day 1 (1.48 ± 2.24 vs. 0.41 ± 0.65, p = .046). There was no association of MITF or S100b levels with 4-year disease specific survival. CONCLUSION TM-HILP is associated with increased levels of CMCs, but there was no association of this increase with survival. Patients with complete response to HILP demonstrate higher values of MITF shortly after the operation.
Collapse
Affiliation(s)
| | | | | | - Christos Ioannou
- Department of Vascular Surgery, University Hospital of Heraklion, Crete, Greece
| | - Kostas Perisynakis
- Department of Nuclear Medicine, University Hospital of Heraklion, Crete, Greece
| | - Ioannis Souglakos
- Department of Clinical Oncology, University Hospital of Heraklion, Crete, Greece
| | - Dimitrios Stamatiou
- Department of Surgical Oncology, University Hospital of Heraklion, Crete, Greece
| | - Gregory Chlouverakis
- Biostatistics Laboratory, Department of Social Medicine, School of Medicine, University of Crete, Crete, Greece
| | - Eelco de Bree
- Department of Surgical Oncology, University Hospital of Heraklion, Crete, Greece
| | - Ioannis Romanos
- Department of Surgical Oncology, University Hospital of Heraklion, Crete, Greece
| | - Odysseas Zoras
- Department of Surgical Oncology, University Hospital of Heraklion, Crete, Greece
| |
Collapse
|
26
|
Morici M, Lin W, Gray ES. Transcript-Based Detection of Circulating Melanoma Cells. Methods Mol Biol 2021; 2265:235-245. [PMID: 33704719 DOI: 10.1007/978-1-0716-1205-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Circulating tumor cells (CTCs) are cancer cells shed by the primary tumor or its metastases that circulate in the peripheral blood. CTCs are potential seeds for metastases, and their detection may allow early uncovering of metastatic dissemination and disease prognostication. To fully ascertain the biomarker potential of melanoma CTCs, sensitive and reliable methods are required. Melanoma-specific transcript analysis has been widely utilized as a standard approach for measuring the presence of CTCs. Here we describe a method for the analysis of CTCs through the detection of specific transcripts in CTC-enriched fractions.
Collapse
Affiliation(s)
- Michael Morici
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Weitao Lin
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Elin S Gray
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.
| |
Collapse
|
27
|
Minimal Residual Disease in Melanoma:molecular characterization of in transit cutaneous metastases and Circulating Melanoma Cells recognizes an expression panel potentially related to disease progression. Cancer Treat Res Commun 2020; 25:100262. [PMID: 33338742 DOI: 10.1016/j.ctarc.2020.100262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022]
Abstract
Isolating circulating melanoma cells (CMCs) represents a powerful method to monitor minimal residual disease. We documented that MCAM/MUC18/CD146 expression is strongly associated with disease progression. ABCB5 is melanoma-stem antigen with self-renewal, proliferation, differentiation, tumorigenicity capabilities. These findings supported us to improve CMC detection, investigating MCAM/MUC18/CD146 and ABCB5 as enrichment targets in MM progression. Moreover, we decided to compare possible molecular diversity of these CMC fractions with metastatic tissue expression, collecting concomitantly cutaneous in transit metastases (CTM). We enriched CMCs from eight melanoma patients staged ≥pT1b AJCC, who developed CTMs at baseline or during follow up. We assessed a gene expression panel comprising ABCB5, the differentiation markers (Tyrosinase, MART1), angiogenic factors (VEGF, bFGF), the cell-cell adhesion molecules (MCAM/MUC18/CD146 5'-portion, Long, and Short isoforms, E-Cadherin, N-Cadherin, VE-Cadherin) and matrix-metallo-proteinases (MMP2 and MMP9) via high-sensitive RT-PCR. Preliminary findings defined three distinct sub-populations: "endothelial" CD45-CD146+CMCs, "stem" CD45-ABCB5+CMCs and a "hybrid- stem-endothelial"- CD45-MCAM+ABCB5+CMCs. The expression panel documented that - almost high expression found in CTMs - like in 73.5% of CMCs resulted positive for at least one transcript at baseline, showing gene-expression variability. Longitudinal monitoring documented shut-down of all gene-expressions in "endothelial"- and "hybrid stem-endothelial"-subsets, whilst persistency or acquisition of MCAM/MUC18/CD146, VE-CADH and MMPs was documented in disease-progression status.Conversely, a drastic expression shut-down was documented when patients achieved clinical remission. The "stem"- CMCs fraction" showed quite lower gene expression frequencies. MCAM/MUC18/CD146 and ABCB5 as melanoma-specific-targets are effective in the selection of highly primitive CMCs and highlights those putative genes associated with disease spreading progression.
Collapse
|
28
|
Pilla L, Alberti A, Di Mauro P, Gemelli M, Cogliati V, Cazzaniga ME, Bidoli P, Maccalli C. Molecular and Immune Biomarkers for Cutaneous Melanoma: Current Status and Future Prospects. Cancers (Basel) 2020; 12:E3456. [PMID: 33233603 PMCID: PMC7699774 DOI: 10.3390/cancers12113456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/18/2022] Open
Abstract
Advances in the genomic, molecular and immunological make-up of melanoma allowed the development of novel targeted therapy and of immunotherapy, leading to changes in the paradigm of therapeutic interventions and improvement of patients' overall survival. Nevertheless, the mechanisms regulating either the responsiveness or the resistance of melanoma patients to therapies are still mostly unknown. The development of either the combinations or of the sequential treatment of different agents has been investigated but without a strongly molecularly motivated rationale. The need for robust biomarkers to predict patients' responsiveness to defined therapies and for their stratification is still unmet. Progress in immunological assays and genomic techniques as long as improvement in designing and performing studies monitoring the expression of these markers along with the evolution of the disease allowed to identify candidate biomarkers. However, none of them achieved a definitive role in predicting patients' clinical outcomes. Along this line, the cross-talk of melanoma cells with tumor microenvironment plays an important role in the evolution of the disease and needs to be considered in light of the role of predictive biomarkers. The overview of the relationship between the molecular basis of melanoma and targeted therapies is provided in this review, highlighting the benefit for clinical responses and the limitations. Moreover, the role of different candidate biomarkers is described together with the technical approaches for their identification. The provided evidence shows that progress has been achieved in understanding the molecular basis of melanoma and in designing advanced therapeutic strategies. Nevertheless, the molecular determinants of melanoma and their role as biomarkers predicting patients' responsiveness to therapies warrant further investigation with the vision of developing more effective precision medicine.
Collapse
Affiliation(s)
- Lorenzo Pilla
- Division of Medical Oncology, San Gerardo Hospital, University of Milano-Bicocca School of Medicine, 20900 Monza, Italy; (P.D.M.); (M.G.); (V.C.); (M.E.C.); (P.B.)
| | - Andrea Alberti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Health Science and Public Health, University of Brescia, ASST Ospedali Civili, 25123 Brescia, Italy;
| | - Pierluigi Di Mauro
- Division of Medical Oncology, San Gerardo Hospital, University of Milano-Bicocca School of Medicine, 20900 Monza, Italy; (P.D.M.); (M.G.); (V.C.); (M.E.C.); (P.B.)
| | - Maria Gemelli
- Division of Medical Oncology, San Gerardo Hospital, University of Milano-Bicocca School of Medicine, 20900 Monza, Italy; (P.D.M.); (M.G.); (V.C.); (M.E.C.); (P.B.)
| | - Viola Cogliati
- Division of Medical Oncology, San Gerardo Hospital, University of Milano-Bicocca School of Medicine, 20900 Monza, Italy; (P.D.M.); (M.G.); (V.C.); (M.E.C.); (P.B.)
| | - Marina Elena Cazzaniga
- Division of Medical Oncology, San Gerardo Hospital, University of Milano-Bicocca School of Medicine, 20900 Monza, Italy; (P.D.M.); (M.G.); (V.C.); (M.E.C.); (P.B.)
| | - Paolo Bidoli
- Division of Medical Oncology, San Gerardo Hospital, University of Milano-Bicocca School of Medicine, 20900 Monza, Italy; (P.D.M.); (M.G.); (V.C.); (M.E.C.); (P.B.)
| | - Cristina Maccalli
- Laboratory of Immune and Biological Therapy, Research Department, Sidra Medicine, Doha 26999, Qatar;
| |
Collapse
|
29
|
Ahrens TD, Bang-Christensen SR, Jørgensen AM, Løppke C, Spliid CB, Sand NT, Clausen TM, Salanti A, Agerbæk MØ. The Role of Proteoglycans in Cancer Metastasis and Circulating Tumor Cell Analysis. Front Cell Dev Biol 2020; 8:749. [PMID: 32984308 PMCID: PMC7479181 DOI: 10.3389/fcell.2020.00749] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022] Open
Abstract
Circulating tumor cells (CTCs) are accessible by liquid biopsies via an easy blood draw. They represent not only the primary tumor site, but also potential metastatic lesions, and could thus be an attractive supplement for cancer diagnostics. However, the analysis of rare CTCs in billions of normal blood cells is still technically challenging and novel specific CTC markers are needed. The formation of metastasis is a complex process supported by numerous molecular alterations, and thus novel CTC markers might be found by focusing on this process. One example of this is specific changes in the cancer cell glycocalyx, which is a network on the cell surface composed of carbohydrate structures. Proteoglycans are important glycocalyx components and consist of a protein core and covalently attached long glycosaminoglycan chains. A few CTC assays have already utilized proteoglycans for both enrichment and analysis of CTCs. Nonetheless, the biological function of proteoglycans on clinical CTCs has not been studied in detail so far. Therefore, the present review describes proteoglycan functions during the metastatic cascade to highlight their importance to CTCs. We also outline current approaches for CTC assays based on targeting proteoglycans by their protein cores or their glycosaminoglycan chains. Lastly, we briefly discuss important technical aspects, which should be considered for studying proteoglycans.
Collapse
Affiliation(s)
- Theresa D. Ahrens
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sara R. Bang-Christensen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
- VarCT Diagnostics, Copenhagen, Denmark
| | | | - Caroline Løppke
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Charlotte B. Spliid
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Nicolai T. Sand
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Thomas M. Clausen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Ali Salanti
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mette Ø. Agerbæk
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
- VarCT Diagnostics, Copenhagen, Denmark
| |
Collapse
|
30
|
Szumera-Ciećkiewicz A, Bosisio F, Teterycz P, Antoranz A, Delogu F, Koljenović S, van de Wiel BA, Blokx W, van Kempen LC, Rutkowski P, Christopher van Akkooi A, Cook M, Massi D. SOX10 is as specific as S100 protein in detecting metastases of melanoma in lymph nodes and is recommended for sentinel lymph node assessment. Eur J Cancer 2020; 137:175-182. [PMID: 32781392 DOI: 10.1016/j.ejca.2020.06.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/22/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Sentinel lymph node (SLN) biopsy remains crucial for melanoma staging. The European Organisation for Research and Treatment of Cancer Melanoma Group recommends performing immunohistochemical stainings for reproducible identification of melanoma metastases. S100 protein (pS100) is a commonly used melanocytic antigen because of its high sensitivity in spite of relatively low specificity. SRY-related HMG-box 10 protein (SOX10) is a transcription factor characterising neural crest-derived cells. It is uniformly expressed mostly in the nuclei of melanocytes, neural, and myoepithelial cells. Pathologists sometimes prefer SOX10 as a melanoma marker, but it has not yet been investigated on a large-scale to confirm that it is reliable and recommendable for routine SLN evaluation. METHODS Four hundred one treatment-naïve lymph node (LN) metastatic melanomas were included in high-density tissue microarrays and were assessed for the presence of SOX10 and pS100 by immunohistochemistry. The slides were digitalised, shared and evaluated by a panel of experienced melanoma pathologists. RESULTS The vast majority of melanomas were double-positive for pS100 and SOX10 (93.2%); a small percentage of the cases (3.9%) were double-negative melanomas. Discordance between the two markers was observed: 1.9% pS100(-)/SOX10(+) and 0.75% pS100(+)/SOX10(-). SOX10 was not expressed by immune cell types in the LN, resulting in a less controversial interpretation of the staining. CONCLUSIONS SOX10 is as equally specific as pS100 for the detection of melanoma metastases in LNs. The interpretation of SOX10 staining is highly reproducible among different centres and different pathologists because of the absence of staining of immune cells.
Collapse
Affiliation(s)
- Anna Szumera-Ciećkiewicz
- Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland; Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine Warsaw, Poland.
| | - Francesca Bosisio
- Laboratory of Translational Cell and Tissue Research and Pathology Department, KU Leuven and UZ Leuven, Leuven, Belgium
| | - Paweł Teterycz
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Asier Antoranz
- Laboratory of Translational Cell and Tissue Research and Pathology Department, KU Leuven and UZ Leuven, Leuven, Belgium
| | - Francesco Delogu
- Department of Health Sciences, Clinical Pharmacology and Oncology Unit, University of Florence, Florence, Italy
| | - Senada Koljenović
- Department of Pathology, Erasmus MC, University Medical Centre Rotterdam, the Netherlands
| | - Bart A van de Wiel
- Department of Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Willeke Blokx
- Department of Pathology, Division of Laboratories, Pharmacy and Biomedical Genetics, University Medical Center, Utrecht, the Netherlands
| | - Léon C van Kempen
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | | - Martin Cook
- Histopathology, Royal Surrey County Hospital, Guildford, UK
| | - Daniela Massi
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, Florence, Italy
| | | |
Collapse
|
31
|
Chondroitin sulfate proteoglycan 4 enhanced melanoma motility and growth requires a cysteine in the core protein transmembrane domain. Melanoma Res 2020; 29:365-375. [PMID: 31140988 DOI: 10.1097/cmr.0000000000000574] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Chondroitin sulfate proteoglycan 4 (CSPG4) is a cell surface proteoglycan that enhances malignant potential in melanoma and several other tumor types. CSPG4 functions as a transmembrane scaffold in melanoma cells to activate oncogenic signaling pathways such as focal adhesion kinase (FAK) and extracellular signal regulated kinases 1,2, that control motility, invasion and anchorage independent growth. Here, we demonstrate that CSPG4 promotes directional motility and anchorage independent growth of melanoma cells by organizing and positioning a signaling complex containing activated FAK to lipid rafts within the plasma membrane of migrating cells. This FAK-containing signal transduction platform, which consists of syntenin-1, active Src and caveolin-1 requires the cytoplasmic domain of CSPG4 for assembly. Enhanced directional motility promoted by this complex also requires a CSPG4 transmembrane cysteine residue C2230. Substituting C2230 with alanine (CSPG4) still permits assembly of the signaling complex, however Src remains in an inactive state. CSPG4 also fails to promote anchorage independent growth and activation of extracellular signal regulated kinases 1,2. Therapies that target the transmembrane domain of CSPG4 could be a novel strategy for limiting progression by disrupting its function as a compartmentalized motogenic and growth-promoting oncogenic signaling node.
Collapse
|
32
|
Schneegans S, Lück L, Besler K, Bluhm L, Stadler JC, Staub J, Greinert R, Volkmer B, Kubista M, Gebhardt C, Sartori A, Irwin D, Serkkola E, Af Hällström T, Lianidou E, Sprenger-Haussels M, Hussong M, Mohr P, Schneider SW, Shaffer J, Pantel K, Wikman H. Pre-analytical factors affecting the establishment of a single tube assay for multiparameter liquid biopsy detection in melanoma patients. Mol Oncol 2020; 14:1001-1015. [PMID: 32246814 PMCID: PMC7191195 DOI: 10.1002/1878-0261.12669] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/11/2020] [Accepted: 03/12/2020] [Indexed: 12/18/2022] Open
Abstract
The combination of liquid biomarkers from a single blood tube can provide more comprehensive information on tumor development and progression in cancer patients compared to single analysis. Here, we evaluated whether a combined analysis of circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and circulating cell-free microRNA (miRNA) in total plasma and extracellular vesicles (EV) from the same blood sample is feasible and how the results are influenced by the choice of different blood tubes. Peripheral blood from 20 stage IV melanoma patients and five healthy donors (HD) was collected in EDTA, Streck, and Transfix tubes. Peripheral blood mononuclear cell fraction was used for CTC analysis, whereas plasma and EV fractions were used for ctDNA mutation and miRNA analysis. Mutations in cell-free circulating DNA were detected in 67% of patients, with no significant difference between the tubes. CTC was detected in only EDTA blood and only in 15% of patients. miRNA NGS (next-generation sequencing) results were highly influenced by the collection tubes and could only be performed from EDTA and Streck tubes due to hemolysis in Transfix tubes. No overlap of significantly differentially expressed miRNA (patients versus HD) could be found between the tubes in total plasma, whereas eight miRNA were commonly differentially regulated in the EV fraction. In summary, high-quality CTCs, ctDNA, and miRNA data from a single blood tube can be obtained. However, the choice of blood collection tubes is a critical pre-analytical variable.
Collapse
Affiliation(s)
- Svenja Schneegans
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Germany
| | - Lelia Lück
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Germany
| | - Katharina Besler
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Germany
| | - Leonie Bluhm
- Centre of Dermatology, Elbe Clinics, Buxtehude, Germany
| | - Julia-Christina Stadler
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Germany.,Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Germany
| | - Janina Staub
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Germany
| | | | - Beate Volkmer
- Centre of Dermatology, Elbe Clinics, Buxtehude, Germany
| | - Mikael Kubista
- TATAA Biocenter AB, Gothenburg, Sweden.,Department of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czech Republic
| | - Christoffer Gebhardt
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Germany
| | | | | | | | | | - Evi Lianidou
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, University of Athens, Greece
| | | | - Melanie Hussong
- QIAGEN Inc/GmbH, Frederick, MD, USA.,QIAGEN Inc/GmbH, Hilden, Germany
| | - Peter Mohr
- Centre of Dermatology, Elbe Clinics, Buxtehude, Germany
| | - Stefan W Schneider
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Germany
| | - Jonathan Shaffer
- QIAGEN Inc/GmbH, Frederick, MD, USA.,QIAGEN Inc/GmbH, Hilden, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Germany
| | - Harriet Wikman
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|
33
|
Tucci M, D’Oronzo S, Mannavola F, Felici C, Lovero D, Cafforio P, Palmirotta R, Silvestris F. Dual-procedural separation of CTCs in cutaneous melanoma provides useful information for both molecular diagnosis and prognosis. Ther Adv Med Oncol 2020; 12:1758835920905415. [PMID: 32206092 PMCID: PMC7074504 DOI: 10.1177/1758835920905415] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/15/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Circulating tumor cells (CTCs) have recently emerged as a new dynamic soluble marker for several malignancies including cutaneous melanoma (CM) and are suitable for prognostic evaluations and treatment monitoring. However, to date many limitations still hamper the wide-scale application of CTCs in CM setting, including the lack of standardized methods as well as both low levels and heterogeneity of these cells. METHODS We developed a protocol for CTC detection in CM based on immune-magnetic sorting to deplete CD45-, CD31- or CD34-positive cells, followed by dielectrophoretic DEPArray separation according to cell morphology and immunophenotype. To this end, we explored the expression of melanoma stem cell antigens (CD271, ABCB5, and RANK) and the epithelial-to-mesenchymal transition markers (N-Cad, -CD44, and -MCAM/CD146) on CTCs from 17 stage IV CM patients, and investigated their BRAF mutational status by droplet digital PCR. RESULTS The number of CTCs isolated from CM patients ranged from 2 to 91 cells (38 ± 6.4) with respect to healthy donors (p < 0.0002). To confirm the melanoma origin of isolated cells, we observed an 80% agreement between their BRAFV600 mutational status and matched primary tumors. The characterization of the immune phenotype of isolated cells revealed high interindividual and intraindividual heterogeneity that was found to correlate with the clinical outcome. CONCLUSIONS The dual-step protocol of immune-magnetic sorting and subsequent dielectrophoretic DEPArray separation, turned out to be a suitable method to isolate viable CTCs from stage IV melanoma patients and enabled quantitative and qualitative analyses on these cells, which may deserve prospective evaluation for potential use in the clinical practice.
Collapse
Affiliation(s)
- Marco Tucci
- DIMO, Department of Biomedical Sciences and Clinical Oncology, University of Bari ‘Aldo Moro’, P.za Giulio Cesare, 11, Bari, 70124, Italy
- I.R.C.C.S - Giovanni Paolo II Cancer Institute, Bari, Italy
| | - Stella D’Oronzo
- DIMO, Department of Biomedical Sciences and Clinical Oncology, University of Bari ‘Aldo Moro’ Italy
- I.R.C.C.S - Giovanni Paolo II Cancer Institute, Bari, Italy
| | - Francesco Mannavola
- DIMO, Department of Biomedical Sciences and Clinical Oncology, University of Bari ‘Aldo Moro’ Italy
| | - Claudia Felici
- DIMO, Department of Biomedical Sciences and Clinical Oncology, University of Bari ‘Aldo Moro’ Italy
| | - Domenica Lovero
- DIMO, Department of Biomedical Sciences and Clinical Oncology, University of Bari ‘Aldo Moro’ Italy
| | - Paola Cafforio
- DIMO, Department of Biomedical Sciences and Clinical Oncology, University of Bari ‘Aldo Moro’ Italy
| | - Raffaele Palmirotta
- DIMO, Department of Biomedical Sciences and Clinical Oncology, University of Bari ‘Aldo Moro’ Italy
| | - Franco Silvestris
- DIMO, Department of Biomedical Sciences and Clinical Oncology, University of Bari ‘Aldo Moro’ Italy
| |
Collapse
|
34
|
Aya-Bonilla CA, Morici M, Hong X, McEvoy AC, Sullivan RJ, Freeman J, Calapre L, Khattak MA, Meniawy T, Millward M, Ziman M, Gray ES. Detection and prognostic role of heterogeneous populations of melanoma circulating tumour cells. Br J Cancer 2020; 122:1059-1067. [PMID: 32037400 PMCID: PMC7109152 DOI: 10.1038/s41416-020-0750-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/16/2020] [Accepted: 01/24/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Circulating tumour cells (CTCs) can be assessed through a minimally invasive blood sample with potential utility as a predictive, prognostic and pharmacodynamic biomarker. The large heterogeneity of melanoma CTCs has hindered their detection and clinical application. METHODS Here we compared two microfluidic devices for the recovery of circulating melanoma cells. The presence of CTCs in 43 blood samples from patients with metastatic melanoma was evaluated using a combination of immunocytochemistry and transcript analyses of five genes by RT-PCR and 19 genes by droplet digital PCR (ddPCR), whereby a CTC score was calculated. Circulating tumour DNA (ctDNA) from the same patient blood sample, was assessed by ddPCR targeting tumour-specific mutations. RESULTS Our analysis revealed an extraordinary heterogeneity amongst melanoma CTCs, with multiple non-overlapping subpopulations. CTC detection using our multimarker approach was associated with shorter overall and progression-free survival. Finally, we found that CTC scores correlated with plasma ctDNA concentrations and had similar pharmacodynamic changes upon treatment initiation. CONCLUSIONS Despite the high phenotypic and molecular heterogeneity of melanoma CTCs, multimarker derived CTC scores could serve as viable tools for prognostication and treatment response monitoring in patients with metastatic melanoma.
Collapse
Affiliation(s)
| | - Michael Morici
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Xin Hong
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | | | - Ryan Joseph Sullivan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - James Freeman
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Leslie Calapre
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Muhammad Adnan Khattak
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
- Department of Medical Oncology, Fiona Stanley Hospital, Murdoch, WA, Australia
- School of Medicine, University of Western Australia, Crawley, WA, Australia
| | - Tarek Meniawy
- School of Medicine, University of Western Australia, Crawley, WA, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Michael Millward
- School of Medicine, University of Western Australia, Crawley, WA, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Mel Ziman
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
- School of Biomedical Science, University of Western Australia, Crawley, WA, Australia
| | - Elin Solomonovna Gray
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia.
| |
Collapse
|
35
|
Khattak MA, Reid A, Freeman J, Pereira M, McEvoy A, Lo J, Frank MH, Meniawy T, Didan A, Spencer I, Amanuel B, Millward M, Ziman M, Gray E. PD-L1 Expression on Circulating Tumor Cells May Be Predictive of Response to Pembrolizumab in Advanced Melanoma: Results from a Pilot Study. Oncologist 2020; 25:e520-e527. [PMID: 32162809 PMCID: PMC7066715 DOI: 10.1634/theoncologist.2019-0557] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/04/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND PD-1 inhibitors are routinely used for the treatment of advanced melanoma. This study sought to determine whether PD-L1 expression on circulating tumor cells (CTCs) can serve as a predictive biomarker of clinical benefit and response to treatment with the PD-1 inhibitor pembrolizumab. METHODS Blood samples were collected from patients with metastatic melanoma receiving pembrolizumab, prior to treatment and 6-12 weeks after initiation of therapy. Multiparametric flow cytometry was used to identify CTCs and evaluate the expression of PD-L1. RESULTS CTCs were detected in 25 of 40 patients (63%). Patients with detectable PD-L1+ CTCs (14/25, 64%) had significantly longer progression-free survival (PFS) compared with patients with PD-L1- CTCs (26.6 months vs. 5.5 months; p = .018). The 12-month PFS rates were 76% versus 22% in the PD-L1+ versus PD-L1- CTCs groups (p = .012), respectively. A multivariate linear regression analysis confirmed that PD-L1+ CTC is an independent predictive biomarker of PFS (hazard ratio, 0.229; 95% confidence interval, 0.052-1.012; p = .026). CONCLUSION Our results reveal the potential of CTCs as a noninvasive real-time biopsy to evaluate PD-L1 expression in patients with melanoma. PD-L1 expression on CTCs may be predictive of response to pembrolizumab and longer PFS. IMPLICATIONS FOR PRACTICE The present data suggest that PD-L1 expression on circulating tumor cells may predict response to pembrolizumab in advanced melanoma. This needs further validation in a larger trial and, if proven, might be a useful liquid biopsy tool that could be used to stratify patients into groups more likely to respond to immunotherapy, hence leading to health cost savings.
Collapse
Affiliation(s)
- Muhammad A. Khattak
- Department of Medical Oncology, Fiona Stanley HospitalAustralia
- School of Medical and Health Sciences, Edith Cowan UniversityPerthAustralia
- Faculty of Health and Medical Sciences, University of Western AustraliaCrawleyAustralia
| | - Anna Reid
- School of Medical and Health Sciences, Edith Cowan UniversityPerthAustralia
| | - James Freeman
- School of Medical and Health Sciences, Edith Cowan UniversityPerthAustralia
| | - Michelle Pereira
- School of Medical and Health Sciences, Edith Cowan UniversityPerthAustralia
| | - Ashleigh McEvoy
- School of Medical and Health Sciences, Edith Cowan UniversityPerthAustralia
| | - Johnny Lo
- School of Engineering, Edith Cowan UniversityJoondalupAustralia
| | - Markus H. Frank
- School of Medical and Health Sciences, Edith Cowan UniversityPerthAustralia
- Transplantation Research Program, Boston Children's Hospital and Department of Dermatology, Brigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Harvard Stem Cell Institute, Harvard UniversityCambridgeMassachusettsUSA
| | - Tarek Meniawy
- Faculty of Health and Medical Sciences, University of Western AustraliaCrawleyAustralia
- Department of Medical Oncology, Sir Charles Gairdner HospitalNedlandsAustralia
| | - Ali Didan
- Department of Medical Oncology, Fiona Stanley HospitalAustralia
| | - Isaac Spencer
- School of Medical and Health Sciences, Edith Cowan UniversityPerthAustralia
| | | | - Michael Millward
- Faculty of Health and Medical Sciences, University of Western AustraliaCrawleyAustralia
- Department of Medical Oncology, Sir Charles Gairdner HospitalNedlandsAustralia
| | - Melanie Ziman
- School of Medical and Health Sciences, Edith Cowan UniversityPerthAustralia
- Faculty of Health and Medical Sciences, University of Western AustraliaCrawleyAustralia
| | - Elin Gray
- School of Medical and Health Sciences, Edith Cowan UniversityPerthAustralia
| |
Collapse
|
36
|
Wang J, Wuethrich A, Sina AAI, Lane RE, Lin LL, Wang Y, Cebon J, Behren A, Trau M. Tracking extracellular vesicle phenotypic changes enables treatment monitoring in melanoma. SCIENCE ADVANCES 2020; 6:eaax3223. [PMID: 32133394 PMCID: PMC7043913 DOI: 10.1126/sciadv.aax3223] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 12/10/2019] [Indexed: 05/13/2023]
Abstract
Monitoring targeted therapy in real time for cancer patients could provide vital information about the development of drug resistance and improve therapeutic outcomes. Extracellular vesicles (EVs) have recently emerged as a promising cancer biomarker, and EV phenotyping shows high potential for monitoring treatment responses. Here, we demonstrate the feasibility of monitoring patient treatment responses based on the plasma EV phenotypic evolution using a multiplex EV phenotype analyzer chip (EPAC). EPAC incorporates the nanomixing-enhanced microchip and the multiplex surface-enhanced Raman scattering (SERS) nanotag system for direct EV phenotyping without EV enrichment. In a preclinical model, we observe the EV phenotypic heterogeneity and different phenotypic responses to the treatment. Furthermore, we successfully detect cancer-specific EV phenotypes from melanoma patient plasma. We longitudinally monitor the EV phenotypic evolution of eight melanoma patients receiving targeted therapy and find specific EV profiles involved in the development of drug resistance, reflecting the potential of EV phenotyping for monitoring treatment responses.
Collapse
Affiliation(s)
- Jing Wang
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alain Wuethrich
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Abu Ali Ibn Sina
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rebecca E. Lane
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lynlee L. Lin
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Dermatology Research Centre, University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Yuling Wang
- Department of Molecular Sciences, ARC Centre of Excellence for Nanoscale BioPhotonics, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Jonathan Cebon
- Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
- Department of Medicine, University of Melbourne, Heidelberg, VIC 3084, Australia
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
- Department of Medicine, University of Melbourne, Heidelberg, VIC 3084, Australia
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
37
|
Lin SY, Chang SC, Lam S, Ramos RI, Tran K, Ohe S, Salomon MP, Bhagat AAS, Lim CT, Fischer TD, Foshag LJ, Boley CL, O’Day SJ, Hoon DS. Prospective Molecular Profiling of Circulating Tumor Cells from Patients with Melanoma Receiving Combinatorial Immunotherapy. Clin Chem 2020; 66:169-177. [PMID: 31672856 PMCID: PMC7193771 DOI: 10.1373/clinchem.2019.307140] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Blood molecular profiling of circulating tumor cells (CTCs) can enable monitoring of patients with metastatic melanoma during checkpoint inhibitor immunotherapy (CII) and in combination with targeted therapies. We developed a microfluidics-based CTC platform to explore CTC profiling utility in CII-treated patients with melanoma using a melanoma messenger RNA (mRNA)/DNA biomarker panel. METHODS Blood samples (n = 213) were collected prospectively from 75 American Joint Committee on Cancer-staged III/IV melanoma patients during CII treatment and those enriched for CTCs. CTC profiling was performed using 5 known melanoma mRNA biomarkers and BRAF V600E DNA mutation. CTC biomarker status associations with clinical outcomes were assessed. RESULTS CTCs were detected in 88% of blood samples from patients with melanoma. CTC-derived biomarkers and clinical variables analyzed using classification and regression tree analysis revealed that a combination of lactate dehydrogenase, CTC-mRNA biomarkers, and tumor BRAF-mutation status was indicative of clinical outcomes for patients with stage IV melanoma (n = 52). The panel stratified low-risk and high-risk patients, whereby the latter had poor disease-free (P = 0.03) and overall survival (P = 0.02). Incorporation of a DNA biomarker with mRNA profiling increased overall CTC-detection capability by 57% compared to mRNA profiling only. RNA sequencing of isolated CTCs identified significant catenin beta 1 (CTNNB1) overexpression (P <0.01) compared to nondisease donor blood. CTC-CTNNB1 was associated with progressive disease/stable disease compared to complete-responder patient status (P = 0.02). Serial CTC profiling identified subclinical disease in patients who developed progressive disease during treatment/follow-up. CONCLUSIONS CTC-derived mRNA/DNA biomarkers have utility for monitoring CII, targeted, and combinatorial therapies in metastatic melanoma patients.
Collapse
Affiliation(s)
- Selena Y. Lin
- Department of Translational Molecular Medicine, John Wayne
Cancer Institute, Saint John’s Health Center, PHS, Santa Monica, CA
| | - Shu-Ching Chang
- Medical Data Research Center, Providence Saint Joseph
Health, Portland, OR
| | - Stella Lam
- Department of Translational Molecular Medicine, John Wayne
Cancer Institute, Saint John’s Health Center, PHS, Santa Monica, CA
| | - Romela Irene Ramos
- Department of Translational Molecular Medicine, John Wayne
Cancer Institute, Saint John’s Health Center, PHS, Santa Monica, CA
| | - Kevin Tran
- Department of Translational Molecular Medicine, John Wayne
Cancer Institute, Saint John’s Health Center, PHS, Santa Monica, CA
| | - Shuichi Ohe
- Department of Translational Molecular Medicine, John Wayne
Cancer Institute, Saint John’s Health Center, PHS, Santa Monica, CA
| | - Matthew P. Salomon
- Department of Translational Molecular Medicine, John Wayne
Cancer Institute, Saint John’s Health Center, PHS, Santa Monica, CA
| | - Ali Asgar S. Bhagat
- Department of Biomedical Engineering and Department of
Mechanical Engineering, National University of Singapore, Singapore
| | - Chwee Teck Lim
- Department of Biomedical Engineering and Department of
Mechanical Engineering, National University of Singapore, Singapore
| | - Trevan D. Fischer
- Department of Surgical Oncology, John Wayne Cancer
Institute, PHS, Santa Monica, CA
| | - Leland J. Foshag
- Department of Surgical Oncology, John Wayne Cancer
Institute, PHS, Santa Monica, CA
| | - Christine L. Boley
- Department of Immuno-Oncology and Clinical Research, John
Wayne Cancer Institute, PHS, Santa Monica, CA
| | - Steven J. O’Day
- Department of Immuno-Oncology and Clinical Research, John
Wayne Cancer Institute, PHS, Santa Monica, CA
| | - Dave S.B. Hoon
- Department of Translational Molecular Medicine, John Wayne
Cancer Institute, Saint John’s Health Center, PHS, Santa Monica, CA
| |
Collapse
|
38
|
Bang-Christensen SR, Pedersen RS, Pereira MA, Clausen TM, Løppke C, Sand NT, Ahrens TD, Jørgensen AM, Lim YC, Goksøyr L, Choudhary S, Gustavsson T, Dagil R, Daugaard M, Sander AF, Torp MH, Søgaard M, Theander TG, Østrup O, Lassen U, Hamerlik P, Salanti A, Agerbæk MØ. Capture and Detection of Circulating Glioma Cells Using the Recombinant VAR2CSA Malaria Protein. Cells 2019; 8:E998. [PMID: 31466397 PMCID: PMC6769911 DOI: 10.3390/cells8090998] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/21/2019] [Accepted: 08/25/2019] [Indexed: 01/04/2023] Open
Abstract
Diffuse gliomas are the most common primary malignant brain tumor. Although extracranial metastases are rarely observed, recent studies have shown the presence of circulating tumor cells (CTCs) in the blood of glioma patients, confirming that a subset of tumor cells are capable of entering the circulation. The isolation and characterization of CTCs could provide a non-invasive method for repeated analysis of the mutational and phenotypic state of the tumor during the course of disease. However, the efficient detection of glioma CTCs has proven to be challenging due to the lack of consistently expressed tumor markers and high inter- and intra-tumor heterogeneity. Thus, for this field to progress, an omnipresent but specific marker of glioma CTCs is required. In this article, we demonstrate how the recombinant malaria VAR2CSA protein (rVAR2) can be used for the capture and detection of glioma cell lines that are spiked into blood through binding to a cancer-specific oncofetal chondroitin sulfate (ofCS). When using rVAR2 pull-down from glioma cells, we identified a panel of proteoglycans, known to be essential for glioma progression. Finally, the clinical feasibility of this work is supported by the rVAR2-based isolation and detection of CTCs from glioma patient blood samples, which highlights ofCS as a potential clinical target for CTC isolation.
Collapse
Affiliation(s)
- Sara R Bang-Christensen
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
- VarCT Diagnostics, 2200 Copenhagen, Denmark
| | - Rasmus S Pedersen
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Marina A Pereira
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Thomas M Clausen
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Caroline Løppke
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Nicolai T Sand
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Theresa D Ahrens
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Amalie M Jørgensen
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Yi Chieh Lim
- Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Louise Goksøyr
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Swati Choudhary
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Tobias Gustavsson
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Robert Dagil
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Mads Daugaard
- Department of Urologic Sciences, University of British Columbia, and Vancouver Prostate Centre, BC V6H 3Z6 Vancouver, Canada
| | - Adam F Sander
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Mathias H Torp
- Centre for Genomic Medicine, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Max Søgaard
- ExpreS2ion Biotechnologies, SCION-DTU Science Park, 2970 Hørsholm, Denmark
| | - Thor G Theander
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Olga Østrup
- Centre for Genomic Medicine, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Ulrik Lassen
- Department of Oncology, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Petra Hamerlik
- Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Ali Salanti
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark.
| | - Mette Ø Agerbæk
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark.
| |
Collapse
|
39
|
Clonal heterogeneity of melanoma in a paradigmatic case study: future prospects for circulating melanoma cells. Melanoma Res 2019; 29:89-94. [PMID: 30222690 DOI: 10.1097/cmr.0000000000000510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The management of metastatic melanoma is a difficult matter. Nevertheless, the advent of target therapy has significantly improved patient outcome, provided that tumor molecular characteristics become available: the detection of drug-resistant clones can contribute to understanding the reasons for resistance onset, influencing the choice of subsequent therapy. This work aimed to provide a possible explanation for the early resistance to vemurafenib developed by a patient with melanoma, and concurrently to assess the extent, and role, of the tumor clonal heterogeneity. We analyzed tissue samples from different sites and time points: first/second primary, three lymph node metastases, and circulating melanoma cells (CMCs). We first investigated these samples by the routine Sanger sequencing for BRAF, NRAS, and KIT, and then, we focused on specific hotspots by droplet digital PCR. We detected a BRAF V600E mutation by Sanger sequencing in the second primary and distant lymph node metastases, but not in the first primary or sentinel lymph node. Interestingly, by droplet digital PCR, the V600E mutation was also detected in the first primary, and the V600K in the second primary and metastases. Moreover, we identified a rare KIT V569G mutation, appearing to be CMC exclusive. This finding confirms the potential of CMCs as a source of tumor material for genetic analysis, reflecting real-time systemic disease evolution and, most likely, the most aggressive, treatment-resistant clones. In summary, this work underlines the importance of CMCs in the early identification of tumor clones putatively responsible for therapy resistance.
Collapse
|
40
|
Marzagalli M, Raimondi M, Fontana F, Montagnani Marelli M, Moretti RM, Limonta P. Cellular and molecular biology of cancer stem cells in melanoma: Possible therapeutic implications. Semin Cancer Biol 2019; 59:221-235. [PMID: 31265892 DOI: 10.1016/j.semcancer.2019.06.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/27/2019] [Indexed: 01/17/2023]
Abstract
Malignant melanoma is a tumor characterized by a very high level of heterogeneity, responsible for its malignant behavior and ability to escape from standard therapies. In this review we highlight the molecular and biological features of the subpopulation of cancer stem cells (CSCs), well known to be characterized by self-renewal properties, deeply involved in triggering the processes of tumor generation, metastasis, progression and drug resistance. From the molecular point of view, melanoma CSCs are identified and characterized by the expression of stemness markers, such as surface markers, ATP-binding cassette (ABC) transporters, embryonic stem cells and intracellular markers. These cells are endowed with different functional features. In particular, they play pivotal roles in the processes of tumor dissemination, epithelial-to-mesenchymal transition (EMT) and angiogenesis, mediated by specific intracellular signaling pathways; moreover, they are characterized by a unique metabolic reprogramming. As reported for other types of tumors, the CSCs subpopulation in melanoma is also characterized by a low immunogenic profile as well as by the ability to escape the immune system, through the expression of a negative modulation of T cell functions and the secretion of immunosuppressive factors. These biological features allow melanoma CSCs to escape standard treatments, thus being deeply involved in tumor relapse. Targeting the CSCs subpopulation is now considered an attractive treatment strategy; in particular, combination treatments, based on both CSCs-targeting and standard drugs, will likely increase the therapeutic options for melanoma patients. The characterization of CSCs in liquid biopsies from single patients will pave the way towards precision medicine.
Collapse
Affiliation(s)
- Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy
| | - Michela Raimondi
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy
| | - Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy
| | | | - Roberta M Moretti
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy.
| |
Collapse
|
41
|
Wei W, Jiang D, Ehlerding EB, Barnhart TE, Yang Y, Engle JW, Luo Q, Huang P, Cai W. CD146-Targeted Multimodal Image-Guided Photoimmunotherapy of Melanoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801237. [PMID: 31065511 PMCID: PMC6498137 DOI: 10.1002/advs.201801237] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 02/01/2019] [Indexed: 05/23/2023]
Abstract
For melanoma resistant to molecularly targeted therapy and immunotherapy, new treatment strategies are urgently needed. A molecularly targeted theranostic pair may thus be of importance, where the diagnostic probe facilitates patient stratification and the therapeutic companion treats the selected cases. For this purpose, flow cytometry is used to assess the CD146 level in melanoma cells. Based on YY146, a CD146-specific monoclonal antibody, an imaging probe 89Zr-Df-YY146 is synthesized and its diagnostic performance is evaluated by positron emission tomography (PET) imaging. Furthermore, a photoimmunotherapy (PIT) agent IR700-YY146 is developed and the therapeutic effect of IR700-YY146 PIT is assessed comprehensively. CD146 is highly expressed in A375 and SK-MEL-5 cells. 89Zr-Df-YY146 PET readily detects CD146-positive A375 melanomas. Tumor accumulation of 89Zr-Df-YY146 peaks at 72 h with an uptake value of 26.48 ± 3.28%ID g-1, whereas the highest uptake of the nonspecific 89Zr-Df-IgG is 4.80 ± 1.75%ID g-1. More importantly, IR700-YY146 PIT effectively inhibits the growth of A375 tumors, owing to production of reactive oxygen species, decreased glucose metabolism, and reduced expression of CD146. To conclude, 89Zr-Df-YY146 and IR700-YY146 are a promising theranostic pair with the former revealing CD146 expression in melanoma as a PET probe and the latter specifically treating CD146-positive melanoma as an effective PIT agent.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear MedicineShanghai Jiao Tong University Affiliated Sixth People's Hospital600 Yishan RoadShanghai200233China
- Department of RadiologyUniversity of Wisconsin–MadisonMadisonWI53705USA
| | - Dawei Jiang
- Department of RadiologyUniversity of Wisconsin–MadisonMadisonWI53705USA
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingCarson International Cancer CenterLaboratory of Evolutionary TheranosticsSchool of Biomedical EngineeringHealth Science CenterShenzhen UniversityShenzhen518060China
| | - Emily B. Ehlerding
- Department of Medical PhysicsUniversity of Wisconsin–MadisonMadisonWI53705USA
| | - Todd E. Barnhart
- Department of Medical PhysicsUniversity of Wisconsin–MadisonMadisonWI53705USA
| | - Yunan Yang
- Department of RadiologyUniversity of Wisconsin–MadisonMadisonWI53705USA
| | - Jonathan W. Engle
- Department of Medical PhysicsUniversity of Wisconsin–MadisonMadisonWI53705USA
| | - Quan‐Yong Luo
- Department of Nuclear MedicineShanghai Jiao Tong University Affiliated Sixth People's Hospital600 Yishan RoadShanghai200233China
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingCarson International Cancer CenterLaboratory of Evolutionary TheranosticsSchool of Biomedical EngineeringHealth Science CenterShenzhen UniversityShenzhen518060China
| | - Weibo Cai
- Department of RadiologyUniversity of Wisconsin–MadisonMadisonWI53705USA
- Department of Medical PhysicsUniversity of Wisconsin–MadisonMadisonWI53705USA
- University of Wisconsin Carbone Cancer CenterMadisonWI53705USA
| |
Collapse
|
42
|
Prunk Zdravković T, Zdravković B, Lunder M, Ferk P. The effect of micro-sized titanium dioxide on WM-266-4 metastatic melanoma cell line. Bosn J Basic Med Sci 2019; 19:60-66. [PMID: 30383985 PMCID: PMC6387668 DOI: 10.17305/bjbms.2018.3674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 07/09/2018] [Indexed: 01/30/2023] Open
Abstract
Titanium dioxide (TiO2) is widely used as an inorganic UV-filter in cosmetic products; however, it has been classified as possibly carcinogenic to humans. While numerous studies demonstrated cytotoxic and genotoxic effects of nano-sized TiO2 in different cell lines, including human skin cells, studies investigating the effects of micro-TiO2 on human keratinocytes and melanocytes, in healthy and cancer cells, are scarce. Adenosine triphosphate (ATP) binding cassette subfamily B member 5 (ABCB5) is a plasma membrane protein known for its role in the tumorigenicity, progression, and recurrence of melanoma. Here, we investigated the effect of micro-TiO2 (average particle size ≤5 µm) on the metabolic activity, cytotoxicity and ABCB5 mRNA expression in metastatic melanoma cells. Metastatic melanoma cell line WM-266-4 was treated with different concentrations of micro-TiO2 for different incubation times to obtain dose- and time-dependent responses. Untreated WM-266-4 cells, cultured under the same conditions, were used as control. The cell metabolic activity was determined by MTT assay. Cytotoxicity of micro-TiO2 was analyzed by lactate dehydrogenase (LDH) cytotoxicity assay. The ABCB5 mRNA expression in melanoma cells was analyzed using quantitative reverse transcription polymerase chain reaction (RT-qPCR). After 120 hours of exposure to micro-TiO2 the metabolic activity of melanoma cells decreased, especially at the two highest micro-TiO2 concentrations. Comparably, the cytotoxicity of micro-TiO2 on melanoma cells increased after 48 and 120 hours of exposure, in a time-dependent manner. The ABCB5 mRNA expression in micro-TiO2-treated melanoma cells also decreased significantly after 24 and 48 hours, in a time-dependent manner. Overall, our results suggest inhibitory effects of micro-TiO2 on the metabolic activity and ABCB5 mRNA expression in metastatic melanoma cells, indicating its potential use as an anticancer agent.
Collapse
Affiliation(s)
- Tanja Prunk Zdravković
- Dermatovenerology Department, Celje General and Teaching Hospital, Celje, Slovenia Institute of Anatomy, Histology and Embryology, Faculty of Medicine, University of Maribor, Maribor, Slovenia.
| | | | | | | |
Collapse
|
43
|
Po JW, Ma Y, Balakrishna B, Brungs D, Azimi F, de Souza P, Becker TM. Immunomagnetic isolation of circulating melanoma cells and detection of PD-L1 status. PLoS One 2019; 14:e0211866. [PMID: 30735560 PMCID: PMC6368301 DOI: 10.1371/journal.pone.0211866] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/23/2019] [Indexed: 11/18/2022] Open
Abstract
Personalised medicine targeted to specific biomarkers such as BRAF and c-Kit has radically improved the success of melanoma therapy. More recently, further advances have been made using therapies targeting the immune response. In particular, therapies targeting the PD-1/PD-L1 or CTLA-4 axes alone or in combination have shown more sustained responses in 30–60% of patients. However, these therapies are associated with considerable toxicities and useful biomarkers to predict responders and non-responders are slow to emerge. Here we developed a reliable melanoma circulating tumor cell (CTC) detection method with PD-L1 evaluation on CTCs. A set of melanoma cell surface markers was tested as candidates for targeted melanoma CTC isolation and a melanoma specific immunostaining-based CTC identification protocol combined with PD-L1 detection was established. In vitro testing of the effect of exposure to blood cells on melanoma cell PD-L1 expression was undertaken. Immunomagnetic targeting isolated melanoma CTCs in up to 87.5% of stage IV melanoma patient blood samples and 3 8.6% of these had some PD-L1 expressing CTCs. Our in vitro data demonstrate PD-L1 induction on melanoma cells in the blood.This study established a robust, reliable method to isolate melanoma CTCs and detect expression of PD-L1 on these cells.
Collapse
Affiliation(s)
- Joseph W. Po
- Centre for Circulating Tumor Cell Diagnostics & Research at the Ingham Institute for Applied Medical Research, Liverpool NSW, Australia
- Western Sydney University, School of Medicine, NSW, Australia
| | - Yafeng Ma
- Centre for Circulating Tumor Cell Diagnostics & Research at the Ingham Institute for Applied Medical Research, Liverpool NSW, Australia
- University of New South Wales, South Western Sydney Medical School, Liverpool NSW, Australia
| | | | - Daniel Brungs
- Centre for Circulating Tumor Cell Diagnostics & Research at the Ingham Institute for Applied Medical Research, Liverpool NSW, Australia
- Illawarra Cancer Centre, Wollongong Hospital, Wollongong, Australia
| | | | - Paul de Souza
- Centre for Circulating Tumor Cell Diagnostics & Research at the Ingham Institute for Applied Medical Research, Liverpool NSW, Australia
- Western Sydney University, School of Medicine, NSW, Australia
- University of New South Wales, South Western Sydney Medical School, Liverpool NSW, Australia
- Liverpool Hospital, Liverpool NSW, Australia
| | - Therese M. Becker
- Centre for Circulating Tumor Cell Diagnostics & Research at the Ingham Institute for Applied Medical Research, Liverpool NSW, Australia
- Western Sydney University, School of Medicine, NSW, Australia
- University of New South Wales, South Western Sydney Medical School, Liverpool NSW, Australia
- * E-mail:
| |
Collapse
|
44
|
Isolation and characterization of circulating melanoma cells by size filtration and fluorescent in-situ hybridization. Melanoma Res 2019; 28:89-95. [PMID: 29406397 DOI: 10.1097/cmr.0000000000000431] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Isolation of circulating tumor cells (CTCs) from blood of melanoma patients has been difficult owing to inconsistent expression of surface antigens. Here we report on the isolation, detection, and characterization of CTCs from blood of melanoma patients using microfiltration and fluorescent in-situ hybridization (FISH). Two tubes of blood from 15 patients with advanced melanoma were collected. These two tubes subsequently underwent filtration through a membrane with pore sizes of 7.5 μm. Isolated cells from one tube were analyzed by FISH for RREB1 (6p24), MYB (6q32), SE6 (D6Z1), and CCND1 (11q13) and the other paired specimen was analyzed by immunofluorescence for HMB45, melanoma-associated antigen recognized by T cells-1, tyrosinase and melanogenesis associated transcription factor. We identified CTCs in 10 out of 13 melanoma samples by immunofluorescence (2.5-99 CTCs/3 ml of blood) and in 13 specimens by FISH (7.2-76 CTCs/3 ml of blood) with more CTCs identified by FISH in 10 out 13 samples. Two filters failed. Our results show that CTCs are detectable in the majority of patients with advanced melanoma. These tools will be useful in characterizing treatment related changes of melanoma in CTCs.
Collapse
|
45
|
Aya-Bonilla C, Gray ES, Manikandan J, Freeman JB, Zaenker P, Reid AL, Khattak MA, Frank MH, Millward M, Ziman M. Immunomagnetic-Enriched Subpopulations of Melanoma Circulating Tumour Cells (CTCs) Exhibit Distinct Transcriptome Profiles. Cancers (Basel) 2019; 11:cancers11020157. [PMID: 30769764 PMCID: PMC6406574 DOI: 10.3390/cancers11020157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/28/2019] [Indexed: 02/06/2023] Open
Abstract
Cutaneous melanoma circulating tumour cells (CTCs) are phenotypically and molecularly heterogeneous. We profiled the gene expression of CTC subpopulations immunomagnetic-captured by targeting either the melanoma-associated marker, MCSP, or the melanoma-initiating marker, ABCB5. Firstly, the expression of a subset of melanoma genes was investigated by RT-PCR in MCSP-enriched and ABCB5-enriched CTCs isolated from a total of 59 blood draws from 39 melanoma cases. Of these, 6 MCSP- and 6 ABCB5-enriched CTC fractions were further analysed using a genome-wide gene expression microarray. The transcriptional programs of both CTC subtypes included cell survival maintenance, cell proliferation, and migration pathways. ABCB5-enriched CTCs were specifically characterised by up-regulation of genes involved in epithelial to mesenchymal transition (EMT), suggesting an invasive phenotype. These findings underscore the presence of at least two distinct melanoma CTC subpopulations with distinct transcriptional programs, which may have distinct roles in disease progression and response to therapy.
Collapse
Affiliation(s)
- Carlos Aya-Bonilla
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia.
| | - Elin S Gray
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia.
| | | | - James B Freeman
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia.
| | - Pauline Zaenker
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia.
| | - Anna L Reid
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia.
| | - Muhammad A Khattak
- School of Medicine, University of Western Australia, Crawley, WA 6009, Australia.
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia.
| | - Markus H Frank
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia.
- Transplantation Research Program, Boston Children's Hospital and Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| | - Michael Millward
- School of Medicine, University of Western Australia, Crawley, WA 6009, Australia.
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia.
| | - Mel Ziman
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia.
- School of Biomedical Science, University of Western Australia, Crawley, WA 6009, Australia.
| |
Collapse
|
46
|
Vishnoi M, Boral D, Liu H, Sprouse ML, Yin W, Goswami-Sewell D, Tetzlaff MT, Davies MA, Oliva ICG, Marchetti D. Targeting USP7 Identifies a Metastasis-Competent State within Bone Marrow-Resident Melanoma CTCs. Cancer Res 2018; 78:5349-5362. [PMID: 30026332 PMCID: PMC6139068 DOI: 10.1158/0008-5472.can-18-0644] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/12/2018] [Accepted: 07/13/2018] [Indexed: 02/03/2023]
Abstract
Systemic metastasis is the major cause of death from melanoma, the most lethal form of skin cancer. Although most patients with melanoma exhibit a substantial gap between onset of primary and metastatic tumors, signaling mechanisms implicated in the period of metastatic latency remain unclear. We hypothesized that melanoma circulating tumor cells (CTC) home to and reside in the bone marrow during the asymptomatic phase of disease progression. Using a strategy to deplete normal cell lineages (Lin-), we isolated CTC-enriched cell populations from the blood of patients with metastatic melanoma, verified by the presence of putative CTCs characterized by melanoma-specific biomarkers and upregulated gene transcripts involved in cell survival and prodevelopment functions. Implantation of Lin- population in NSG mice (CTC-derived xenografts, i.e., CDX), and subsequent transcriptomic analysis of ex vivo bone marrow-resident tumor cells (BMRTC) versus CTC identified protein ubiquitination as a significant regulatory pathway of BMRTC signaling. Selective inhibition of USP7, a key deubiquinating enzyme, arrested BMRTCs in bone marrow locales and decreased systemic micrometastasis. This study provides first-time evidence that the asymptomatic progression of metastatic melanoma can be recapitulated in vivo using patient-isolated CTCs. Furthermore, these results suggest that USP7 inhibitors warrant further investigation as a strategy to prevent progression to overt clinical metastasis.Significance: These findings provide insights into mechanism of melanoma recurrence and propose a novel approach to inhibit systematic metastatic disease by targeting bone marrow-resident tumor cells through pharmacological inhibition of USP7.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/18/5349/F1.large.jpg Cancer Res; 78(18); 5349-62. ©2018 AACR.
Collapse
Affiliation(s)
- Monika Vishnoi
- Biomarker Research Program Center, Houston Methodist Research Institute, Houston, Texas
| | - Debasish Boral
- Biomarker Research Program Center, Houston Methodist Research Institute, Houston, Texas
| | - Haowen Liu
- Biomarker Research Program Center, Houston Methodist Research Institute, Houston, Texas
| | - Marc L Sprouse
- Biomarker Research Program Center, Houston Methodist Research Institute, Houston, Texas
| | - Wei Yin
- Biomarker Research Program Center, Houston Methodist Research Institute, Houston, Texas
| | | | - Michael T Tetzlaff
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Isabella C Glitza Oliva
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dario Marchetti
- Biomarker Research Program Center, Houston Methodist Research Institute, Houston, Texas.
| |
Collapse
|
47
|
The Interplay between Circulating Tumor Cells and the Immune System: From Immune Escape to Cancer Immunotherapy. Diagnostics (Basel) 2018; 8:diagnostics8030059. [PMID: 30200242 PMCID: PMC6164896 DOI: 10.3390/diagnostics8030059] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/20/2018] [Accepted: 08/28/2018] [Indexed: 12/15/2022] Open
Abstract
Circulating tumor cells (CTCs) have aroused increasing interest not only in mechanistic studies of metastasis, but also for translational applications, such as patient monitoring, treatment choice, and treatment change due to tumor resistance. In this review, we will assess the state of the art about the study of the interactions between CTCs and the immune system. We intend to analyze the impact that the cells of the immune system have in limiting or promoting the metastatic capability of CTCs. To this purpose, we will examine studies that correlate CTCs, immune cells, and patient prognosis, and we will also discuss relevant animal models that have contributed to the understanding of the mechanisms of immune-mediated metastasis. We will then consider some studies in which CTCs seem to play a promising role in monitoring cancer patients during immunotherapy regimens. We believe that, from an accurate and profound knowledge of the interactions between CTCs and the immune system, new immunotherapeutic strategies against cancer might emerge in the future.
Collapse
|
48
|
Buder-Bakhaya K, Hassel JC. Biomarkers for Clinical Benefit of Immune Checkpoint Inhibitor Treatment-A Review From the Melanoma Perspective and Beyond. Front Immunol 2018; 9:1474. [PMID: 30002656 PMCID: PMC6031714 DOI: 10.3389/fimmu.2018.01474] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/13/2018] [Indexed: 12/26/2022] Open
Abstract
Background Immune checkpoint inhibition (ICI) with anti-CTLA-4 and/or anti-PD-1 antibodies is standard treatment for metastatic melanoma. Anti-PD-1 (pembrolizumab, nivolumab) and anti-PD-L1 antibodies (atezolizumab, durvalumab, and avelumab) have been approved for treatment of several other advanced malignancies, including non-small-cell lung cancer (NSCLC); renal cell, and urothelial carcinoma; head and neck cancer; gastric, hepatocellular, and Merkel-cell carcinoma; and classical Hodgkin lymphoma. In some of these malignancies approval was based on the detection of biomarkers such as PD-L1 expression or high microsatellite instability. Methods We review the current status of prognostic and predictive biomarkers used in ICI for melanoma and other malignancies. We include clinical, tissue, blood, and stool biomarkers, as well as imaging biomarkers. Results Several biomarkers have been studied in ICI for metastatic melanoma. In clinical practice, pre-treatment tumor burden measured by means of imaging and serum lactate dehydrogenase level is already being used to estimate the likelihood of effective ICI treatment. In peripheral blood, the number of different immune cell types, such as lymphocytes, neutrophils, and eosinophils, as well as different soluble factors, have been correlated with clinical outcome. For intra-tumoral biomarkers, expression of the PD-1 ligand PD-L1 has been found to be of some predictive value for anti-PD-1-directed therapy for NSCLC and melanoma. A high mutational load, particularly when accompanied by neoantigens, seems to facilitate immune response and correlates with patient survival for all entities treated by use of ICI. Tumor microenvironment also seems to be of major importance. Interestingly, even the gut microbiome has been found to correlate with response to ICI, most likely through immuno-stimulatory effects of distinct bacteria. New imaging biomarkers, e.g., for PET, and magnetic resonance imaging are also being investigated, and results suggest they will make early prediction of patient response possible. Conclusion Several promising results are available regarding possible biomarkers for response to ICI, which need to be validated in large clinical trials. A better understanding of how ICI works will enable the development of biomarkers that can predict the response of individual patients.
Collapse
Affiliation(s)
- Kristina Buder-Bakhaya
- Section of Dermatooncology, Department of Dermatology and National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Jessica C Hassel
- Section of Dermatooncology, Department of Dermatology and National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
49
|
Guo Q, Grimmig T, Gonzalez G, Giobbie-Hurder A, Berg G, Carr N, Wilson BJ, Banerjee P, Ma J, Gold JS, Nandi B, Huang Q, Waaga-Gasser AM, Lian CG, Murphy GF, Frank MH, Gasser M, Frank NY. ATP-binding cassette member B5 (ABCB5) promotes tumor cell invasiveness in human colorectal cancer. J Biol Chem 2018; 293:11166-11178. [PMID: 29789423 DOI: 10.1074/jbc.ra118.003187] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/23/2018] [Indexed: 12/29/2022] Open
Abstract
ABC member B5 (ABCB5) mediates multidrug resistance (MDR) in diverse malignancies and confers clinically relevant 5-fluorouracil resistance to CD133-expressing cancer stem cells in human colorectal cancer (CRC). Because of its recently identified roles in normal stem cell maintenance, we hypothesized that ABCB5 might also serve MDR-independent functions in CRC. Here, in a prospective clinical study of 142 CRC patients, we found that ABCB5 mRNA transcripts previously reported not to be significantly expressed in healthy peripheral blood mononuclear cells are significantly enriched in patient peripheral blood specimens compared with non-CRC controls and correlate with CRC disease progression. In human-to-mouse CRC tumor xenotransplantation models that exhibited circulating tumor mRNA, we observed that cancer-specific ABCB5 knockdown significantly reduced detection of these transcripts, suggesting that the knockdown inhibited tumor invasiveness. Mechanistically, this effect was associated with inhibition of expression and downstream signaling of AXL receptor tyrosine kinase (AXL), a proinvasive molecule herein shown to be produced by ABCB5-positive CRC cells. Importantly, rescue of AXL expression in ABCB5-knockdown CRC tumor cells restored tumor-specific transcript detection in the peripheral blood of xenograft recipients, indicating that ABCB5 regulates CRC invasiveness, at least in part, by enhancing AXL signaling. Our results implicate ABCB5 as a critical determinant of CRC invasiveness and suggest that ABCB5 blockade might represent a strategy in CRC therapy, even independently of ABCB5's function as an MDR mediator.
Collapse
Affiliation(s)
- Qin Guo
- From the Departments of Medicine.,the Division of Genetics.,the Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Tanja Grimmig
- the Department of Surgery, University of Würzburg, 97070 Würzburg, Germany
| | | | - Anita Giobbie-Hurder
- the Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, and
| | - Gretchen Berg
- From the Departments of Medicine.,the Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | | | - Brian J Wilson
- the Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115.,the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138.,Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Pallavi Banerjee
- From the Departments of Medicine.,the Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Jie Ma
- the Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | - Qin Huang
- Pathology, Veterans Affairs Boston Healthcare System, Boston, Massachusetts 02132
| | | | | | - George F Murphy
- the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138.,Department of Pathology, and
| | - Markus H Frank
- the Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115.,the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138.,Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Martin Gasser
- the Department of Surgery, University of Würzburg, 97070 Würzburg, Germany
| | - Natasha Y Frank
- From the Departments of Medicine, .,the Division of Genetics.,the Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115.,the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
50
|
Tsao SCH, Wang J, Wang Y, Behren A, Cebon J, Trau M. Characterising the phenotypic evolution of circulating tumour cells during treatment. Nat Commun 2018; 9:1482. [PMID: 29662054 PMCID: PMC5902511 DOI: 10.1038/s41467-018-03725-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 03/08/2018] [Indexed: 12/30/2022] Open
Abstract
Real-time monitoring of cancer cells' phenotypic evolution during therapy can provide vital tumour biology information for treatment management. Circulating tumour cell (CTC) analysis has emerged as a useful monitoring tool, but its routine usage is restricted by either limited multiplexing capability or sensitivity. Here, we demonstrate the use of antibody-conjugated and Raman reporter-coated gold nanoparticles for simultaneous labelling and monitoring of multiple CTC surface markers (named as "cell signature"), without the need for isolating individual CTCs. We observe cell heterogeneity and phenotypic changes of melanoma cell lines during molecular targeted treatment. Furthermore, we follow the CTC signature changes of 10 stage-IV melanoma patients receiving immunological or molecular targeted therapies. Our technique maps the phenotypic evolution of patient CTCs sensitively and rapidly, and shows drug-resistant clones having different CTC signatures of potential clinical value. We believe our proposed method is of general interest in the CTC relevant research and translation fields.
Collapse
Affiliation(s)
- Simon Chang-Hao Tsao
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, 4072, Australia.,Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.,Department of Surgery, University of Melbourne, Austin Health, Heidelberg, VIC, 3084, Australia
| | - Jing Wang
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yuling Wang
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, 4072, Australia. .,Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, 2109, Australia.
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Jonathan Cebon
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.,Department of Surgery, University of Melbourne, Austin Health, Heidelberg, VIC, 3084, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Matt Trau
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, 4072, Australia. .,School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|