1
|
Sree Kumar H, Wisner AS, Schiefer IT, Alviter Plata A, Zubcevic J. Chronotropic and vasoactive properties of the gut bacterial short-chain fatty acids in larval zebrafish. Physiol Genomics 2024; 56:426-435. [PMID: 38557279 PMCID: PMC11368569 DOI: 10.1152/physiolgenomics.00013.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
Short-chain fatty acids (SCFAs) produced by the gut bacteria have been associated with cardiovascular dysfunction in humans and rodents. However, studies exploring effects of SCFAs on cardiovascular parameters in the zebrafish, an increasingly popular model in cardiovascular research, remain limited. Here, we performed fecal bacterial 16S sequencing and gas chromatography/mass spectrometry (GC-MS) to determine the composition and abundance of gut microbiota and SCFAs in adult zebrafish. Following this, the acute effects of major SCFAs on heart rate and vascular tone were measured in anesthetized zebrafish larvae using fecal concentrations of butyrate, acetate, and propionate. Finally, we investigated if coincubation with butyrate may lessen the effects of angiotensin II (ANG II) and phenylephrine (PE) on vascular tone in anesthetized zebrafish larvae. We found that the abundance in Proteobacteria, Firmicutes, and Fusobacteria phyla in the adult zebrafish resembled those reported in rodents and humans. SCFA levels with highest concentration of acetate (27.43 µM), followed by butyrate (2.19 µM) and propionate (1.65 µM) were observed in the fecal samples of adult zebrafish. Immersion in butyrate and acetate produced a ∼20% decrease in heart rate (HR), respectively, with no observed effects of propionate. Butyrate alone also produced an ∼25% decrease in the cross-sectional width of the dorsal aorta (DA) at 60 min (*P < 0.05), suggesting compensatory vasoconstriction, with no effects of either acetate or propionate. In addition, butyrate significantly alleviated the decrease in DA cross-sectional width produced by both ANG II and PE. We demonstrate the potential for zebrafish in investigation of host-microbiota interactions in cardiovascular health.NEW & NOTEWORTHY We highlight the presence of a core gut microbiota and demonstrate in vivo short-chain fatty acid production in adult zebrafish. In addition, we show cardio-beneficial vasoactive and chronotropic properties of butyrate, and chronotropic properties of acetate in anesthetized zebrafish larvae.
Collapse
Affiliation(s)
- Hemaa Sree Kumar
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States
| | - Alexander S Wisner
- Department of Medicinal and Biological Chemistry, University of Toledo College of Pharmacy and Pharmaceutical Sciences, Toledo, Ohio, United States
- Center for Drug Design and Development, University of Toledo College of Pharmacy and Pharmaceutical Sciences, Toledo, Ohio, United States
| | - Isaac T Schiefer
- Department of Medicinal and Biological Chemistry, University of Toledo College of Pharmacy and Pharmaceutical Sciences, Toledo, Ohio, United States
- Center for Drug Design and Development, University of Toledo College of Pharmacy and Pharmaceutical Sciences, Toledo, Ohio, United States
| | - Adriana Alviter Plata
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States
| | - Jasenka Zubcevic
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States
| |
Collapse
|
2
|
Dardi P, dos Santos-Eichler RA, de Oliveira S, Vinolo MAR, Câmara NOS, Rossoni LV. Reduced intestinal butyrate availability is associated with the vascular remodeling in resistance arteries of hypertensive rats. Front Physiol 2022; 13:998362. [PMID: 36246106 PMCID: PMC9558208 DOI: 10.3389/fphys.2022.998362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022] Open
Abstract
During hypertension an unbalance of short-chain fatty acids (SCFAs) production by intestinal bacteria is described. However, no data evaluate the association of SCFAs and vascular remodeling in hypertension, which is an important hallmark of this disease. Thus, the present study aims to evaluate the correlations between SCFAs availability and the resistance arteries remodeling in hypertension, as well as to identify the possible pathway by which the SCFAs could exert a structural and mechanical influence. Hence, male spontaneously hypertensive rats (SHR) and normotensive Wistar rats had blood pressure measured by tail-cuff plethysmography; fecal SCFAs content assessed by gas chromatography; gene expression of SCFAs-transporters in gut epithelium and SCFAs-sensing receptors on mesenteric resistance arteries (MRA) quantified by PCR; and MRA structural and mechanical parameters analyzed by pressure myograph. Reduced butyrate fecal content was found in SHR, with no changes in propionate and acetate, as well as decreased mRNA levels of SCFAs-transporters (MCT1, MCT4, and SMCT1) in the intestinal epithelium. In addition, lower gene expression of SCFAs-sensing receptors (GPR41, GPR43, and GPR109a, but not Olfr78) was identified in MRAs of SHR, which also shows inward eutrophic remodeling with stiffness. Butyrate content presented a negative correlation with systolic blood pressure and with the structural alterations found on MRAs, while a positive correlation between butyrate content and mechanical parameters was detected. Altogether the present study suggests that lower butyrate content due to ineffective SCFA bioavailability, associated with lower SCFAs-sensing receptors expression, could favor MRA remodeling, increasing peripheral vascular resistance and worsening hypertension prognosis.
Collapse
Affiliation(s)
- Patrizia Dardi
- Laboratory of Vascular Physiology, Institute of Biomedical Science, Department of Physiology and Biophysics, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Sarah de Oliveira
- Laboratory of Immunoinflammation, Institute of Biology, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, Brazil
| | - Marco Aurélio Ramirez Vinolo
- Laboratory of Immunoinflammation, Institute of Biology, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, Brazil
| | - Niels Olsen Saraiva Câmara
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Science, Department of Immunology, University of Sao Paulo, Sao Paulo, Brazil
| | - Luciana Venturini Rossoni
- Laboratory of Vascular Physiology, Institute of Biomedical Science, Department of Physiology and Biophysics, University of Sao Paulo, Sao Paulo, Brazil
- *Correspondence: Luciana Venturini Rossoni,
| |
Collapse
|
3
|
Vézina-Audette R, Kantyka M, Gianotti G, Silverstein DC. Comparison of Mean Arterial Blood Pressure and Heart Rate Changes in Response to Three Different Randomized Isotonic Crystalloid Boluses in Hypotensive Anesthetized Dogs. Animals (Basel) 2022; 12:ani12141781. [PMID: 35883328 PMCID: PMC9312031 DOI: 10.3390/ani12141781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this prospective, randomized, nonblinded, controlled clinical trial was to compare mean arterial blood pressure (MAP) and heart rate (HR) during an intravenous bolus of three different balanced isotonic crystalloid solutions in euvolemic, anesthetized dogs with hypotension. Thirty healthy dogs (American Society of Anesthesiologists Physical Status I–II) weighing at least 15 kg that presented for elective orthopedic or dental surgical procedures at the Ryan Veterinary Hospital for Small Animals of the University of Pennsylvania were included in this study. Anesthetized hypotensive patients (defined as a MAP ≤ 65 mmHg), were administered an infusion of Lactated Ringer’s solution (LRS), Plasma-Lyte (PLYTE) or Canadian Plasma-Lyte (PLYTECA), selected at random. The infusion was administered over 15 min via a volumetric fluid pump. Differences in oscillometric MAP and HR between time points and across treatments were evaluated by mANOVA. Intravenous isotonic crystalloid infusions over 15 min did not significantly change MAP or HR in hypotensive dogs under general anesthesia. Neither LRS, PLYTE nor PLYTECA exacerbated hypotension or caused tachycardia.
Collapse
Affiliation(s)
- Raphaël Vézina-Audette
- Department of Clinical Studies, Matthew J. Ryan Veterinary Hospital, 3900 Delancey Street, University of Pennsylvania, Philadelphia, PA 19104, USA; (G.G.); (D.C.S.)
- Correspondence:
| | - Marta Kantyka
- Section of Anaesthesiology and Pain Therapy, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland;
| | - Giacomo Gianotti
- Department of Clinical Studies, Matthew J. Ryan Veterinary Hospital, 3900 Delancey Street, University of Pennsylvania, Philadelphia, PA 19104, USA; (G.G.); (D.C.S.)
| | - Deborah C. Silverstein
- Department of Clinical Studies, Matthew J. Ryan Veterinary Hospital, 3900 Delancey Street, University of Pennsylvania, Philadelphia, PA 19104, USA; (G.G.); (D.C.S.)
| |
Collapse
|
4
|
Sodium acetate prevents nicotine-induced cardiorenal dysmetabolism through uric acid/creatine kinase-dependent pathway. Life Sci 2020; 257:118127. [PMID: 32707052 DOI: 10.1016/j.lfs.2020.118127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/09/2020] [Accepted: 07/17/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND Cigarette smoking or nicotine replacement therapy has been associated with cardiometabolic disorders (CMD). Hyperuricemia has been implicated in the pathogenesis of CMD and cardiorenal dysfunction. Gut microbiota-derived short chain fatty acids (SCFAs) have been reported to have beneficial glucoregulatory and cardiorenal protective effects. This study aimed at investigating the effect of acetate, a gut-derived SCFA, on nicotine-induced CMD and associated cardiorenal dysmetabolism. MATERIALS AND METHOD Twenty-four male Wistar rats (n = 6/group) were grouped as: vehicle (p.o.), nicotine-exposed (1.0 mg/kg; p.o.), and sodium acetate-treated (200 mg/kg; p.o.) with or without nicotine exposure daily for 6 weeks. Glucose regulation was evaluated by oral glucose tolerance test and homeostatic model assessment of insulin resistance. Cardiac and renal triacylglycerol (TG), lactate, nitric oxide (NO), uric acid (UA) levels, lactate dehydrogenase (LDH), creatine kinase (CK), adenosine deaminase (ADA), and xanthine oxidase (XO) activities were measured. RESULTS The CMD were confirmed in the nicotine-exposed rats that exhibited lower body weight, insulin resistance, endothelial dysfunction, glucose intolerance, increased cardiac and renal TG, TG/HDL-cholesterol, UA, lactate, lipid peroxidation, aspartate aminotransferase, alanine aminotransferase, gamma-glutamyl transferase, LDH, CK, ADA and XO activities. Concurrent treatment with acetate prevented nicotine-induced glucometabolic and cardiorenal alterations. CONCLUSION In summary, these results implied that nicotine exposure caused glucometabolic dysregulation and surplus lipid deposit in the heart and kidney through increased UA production and CK activity. Therefore, oral acetate administration prevents cardiorenal lipotoxicity and glucometabolic dysregulation via suppression of UA production and CK activity in nicotine-exposed rats.
Collapse
|
5
|
Abstract
The recognition that intestinal microbiota exert profound effects on human health has led to major advances in our understanding of disease processes. Studies over the past 20 years have shown that host components, including components of the host immune system, shape the microbial community. Pathogenic alterations in commensal microorganisms contribute to disease manifestations that are generally considered to be noncommunicable, such as inflammatory bowel disease, diabetes mellitus and liver disease, through a variety of mechanisms, including effects on host immunity. More recent studies have shed new light on how the immune system and microbiota might also drive the pathogenesis of renal disorders. In this Review, we discuss the latest insights into the mechanisms regulating the microbiome composition, with a focus both on genetics and environmental factors, and describe how commensal microorganisms calibrate innate and adaptive immune responses to affect the activation threshold for pathogenic stimulations. We discuss the mechanisms that lead to intestinal epithelial barrier inflammation and the relevance of certain bacteria to the pathogenesis of two common kidney-based disorders: hypertension and renal stone disease. Limitations of current approaches to microbiota research are also highlighted, emphasizing the need to move beyond studies of correlation to causation.
Collapse
Affiliation(s)
- Felix Knauf
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - J Richard Brewer
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA. .,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Microbial short-chain fatty acids (SCFAs) are byproducts of microbial metabolism which can be absorbed into the bloodstream of the host, where they exert effects on host physiology. SCFAs have been known to influence several aspects of host physiology, including the regulation of blood pressure. In this review, we will consider recent studies linking SCFAs to blood pressure regulation. RECENT FINDINGS Several recent studies have found that changes in blood pressure often coordinate with expected changes in SCFAS. Efforts are now well underway to dissect and better understand this potential connection. One way that SCFAs can influence host cells is by interacting with host GPCRs, including Gpr41 and Olfr78, among others. Intriguingly, mice null for Olfr78 are hypotensive, whereas mice null for Gpr41 are hypertensive, implying that these pathways may be physiologically important links between SCFAs and host blood pressure control. In sum, these studies demonstrate that there does indeed appear to be a link between SCFAs and blood pressure, which likely involves host GPCRs, at least in part; however, the details and intricacies of these interactions are not yet fully understood and will greatly benefit from further studies.
Collapse
Affiliation(s)
- Jennifer L Pluznick
- Department of Physiology, Johns Hopkins University School of Medicine, 725 N Wolfe St, WBSB 205, Baltimore, MD, 21205, USA.
| |
Collapse
|
7
|
Battson ML, Lee DM, Weir TL, Gentile CL. The gut microbiota as a novel regulator of cardiovascular function and disease. J Nutr Biochem 2017; 56:1-15. [PMID: 29427903 DOI: 10.1016/j.jnutbio.2017.12.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023]
Abstract
The gut microbiome has emerged as a critical regulator of human physiology. Deleterious changes to the composition or number of gut bacteria, commonly referred to as gut dysbiosis, has been linked to the development and progression of numerous diet-related diseases, including cardiovascular disease (CVD). Most CVD risk factors, including aging, obesity, certain dietary patterns, and a sedentary lifestyle, have been shown to induce gut dysbiosis. Dysbiosis is associated with intestinal inflammation and reduced integrity of the gut barrier, which in turn increases circulating levels of bacterial structural components and microbial metabolites that may facilitate the development of CVD. The aim of the current review is to summarize the available data regarding the role of the gut microbiome in regulating CVD function and disease processes. Particular emphasis is placed on nutrition-related alterations in the microbiome, as well as the underlying cellular mechanisms by which the microbiome may alter CVD risk.
Collapse
Affiliation(s)
- Micah L Battson
- Department of Food Science & Human Nutrition, Colorado State University, Fort Collins, CO 80523
| | - Dustin M Lee
- Department of Food Science & Human Nutrition, Colorado State University, Fort Collins, CO 80523
| | - Tiffany L Weir
- Department of Food Science & Human Nutrition, Colorado State University, Fort Collins, CO 80523
| | - Christopher L Gentile
- Department of Food Science & Human Nutrition, Colorado State University, Fort Collins, CO 80523.
| |
Collapse
|
8
|
Ergin B, Kapucu A, Guerci P, Ince C. The role of bicarbonate precursors in balanced fluids during haemorrhagic shock with and without compromised liver function. Br J Anaesth 2016; 117:521-528. [DOI: 10.1093/bja/aew277] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2016] [Indexed: 12/18/2022] Open
|
9
|
Gut microbiota in renal physiology: focus on short-chain fatty acids and their receptors. Kidney Int 2016; 90:1191-1198. [PMID: 27575555 DOI: 10.1016/j.kint.2016.06.033] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 12/14/2022]
Abstract
A number of recent studies have begun to explore a new and exciting area: the interaction between the gut microbiome and renal physiology. In particular, multiple studies have focused on the role of microbially produced short chain fatty acids, which are generally thought to promote health. This review will focus on what is known to date regarding the influence of the microbiome on renal function, with emphasis on the cell biology, physiology, and clinical implications of short chain fatty acids and short chain fatty acid receptors. It is clear that microbe-host interactions are an exciting and ever-expanding field, which has implications for how we view diseases such as hypertension, acute kidney injury, and chronic kidney disease. However, it is important to recognize that although the potential promise of this area is extremely enticing, we are only the very edge of this new field.
Collapse
|
10
|
Shepard BD, Pluznick JL. How does your kidney smell? Emerging roles for olfactory receptors in renal function. Pediatr Nephrol 2016; 31:715-23. [PMID: 26264790 PMCID: PMC4752438 DOI: 10.1007/s00467-015-3181-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 06/24/2015] [Accepted: 07/22/2015] [Indexed: 12/12/2022]
Abstract
Olfactory receptors (ORs) are chemosensors that are responsible for one's sense of smell. In addition to this specialized role in the nose, recent evidence suggests that ORs are also found in a variety of additional tissues including the kidney. As this list of renal ORs continues to expand, it is becoming clear that they play important roles in renal and whole-body physiology, including a novel role in blood pressure regulation. In this review, we highlight important considerations that are crucial when studying ORs and present the current literature on renal ORs and their emerging relevance in maintaining renal function.
Collapse
|
11
|
Richards L, Li M, van Esch B, Garssen J, Folkerts G. The effects of short-chain fatty acids on the cardiovascular system. PHARMANUTRITION 2016. [DOI: 10.1016/j.phanu.2016.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Peti-Peterdi J, Kishore BK, Pluznick JL. Regulation of Vascular and Renal Function by Metabolite Receptors. Annu Rev Physiol 2015; 78:391-414. [PMID: 26667077 DOI: 10.1146/annurev-physiol-021115-105403] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To maintain metabolic homeostasis, the body must be able to monitor the concentration of a large number of substances, including metabolites, in real time and to use that information to regulate the activities of different metabolic pathways. Such regulation is achieved by the presence of sensors, termed metabolite receptors, in various tissues and cells of the body, which in turn convey the information to appropriate regulatory or positive or negative feedback systems. In this review, we cover the unique roles of metabolite receptors in renal and vascular function. These receptors play a wide variety of important roles in maintaining various aspects of homeostasis-from salt and water balance to metabolism-by sensing metabolites from a wide variety of sources. We discuss the role of metabolite sensors in sensing metabolites generated locally, metabolites generated at distant tissues or organs, or even metabolites generated by resident microbes. Metabolite receptors are also involved in various pathophysiological conditions and are being recognized as potential targets for new drugs. By highlighting three receptor families-(a) citric acid cycle intermediate receptors, (b) purinergic receptors, and
Collapse
Affiliation(s)
- János Peti-Peterdi
- Department of Physiology and Biophysics and Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California 90033;
| | - Bellamkonda K Kishore
- Department of Internal Medicine and Center on Aging, University of Utah Health Sciences Center, Department of Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah 84148;
| | - Jennifer L Pluznick
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| |
Collapse
|
13
|
Natarajan N, Pluznick JL. Olfaction in the kidney: 'smelling' gut microbial metabolites. Exp Physiol 2015; 101:478-81. [PMID: 26238273 PMCID: PMC5014223 DOI: 10.1113/ep085285] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/23/2015] [Indexed: 12/15/2022]
Abstract
New Findings What is the topic of this review? This review covers recent findings highlighting roles for renal and vascular sensory receptors that modify blood pressure control in response to changes in gut microbial metabolites. What advances does it highlight? This review highlights the novel roles that G‐protein‐coupled receptor 41 and olfactory receptor 78 play in blood pressure regulation.
The gut microbiota have recently been recognized as an important component of host physiology and pathophysiology. Our recent studies have shown that a subset of gut microbial metabolites, known as short‐chain fatty acids, act as ligands for host G‐protein‐coupled receptors (G‐protein‐coupled receptor 41 and olfactory receptor 78). Short‐chain fatty acid‐mediated activation of G‐protein‐coupled receptor 41 and olfactory receptor 78 modulates blood pressure control, both by modulating renin secretion and by modulating vascular tone directly. Further studies are needed in order to gain a better understanding of the underlying mechanism by which microbiota and microbial metabolites modulate host physiology and their potential implications in health and disease.
Collapse
|
14
|
Abstract
The maintenance of blood pressure homeostasis is a complex process which is carefully regulated by a variety of inputs. We recently identified two sensory receptors (Olfactory receptor 78 and G protein couple receptor 41) as novel regulators of blood pressure. Both Olfr78 and Gpr41 are receptors for short chain fatty acids (SCFAs), and we showed that propionate (a SCFA) modifies blood pressure in a manner which is differentially modulated by the absence of either Olfr78 or Gpr41. In addition, propionate modifies renin release in an Olfr78-dependent manner. Our study also demonstrated that antibiotic treatment modulates blood pressure in Olfr78 null mice, indicating that SCFAs produced by the gut microbiota likely influence blood pressure regulation. In this addendum, we summarize the findings of our recent study and provide a perspective on the implications of the interactions between the gut microbiota and blood pressure control.
Collapse
|
15
|
Pluznick JL. Renal and cardiovascular sensory receptors and blood pressure regulation. Am J Physiol Renal Physiol 2013; 305:F439-44. [PMID: 23761671 DOI: 10.1152/ajprenal.00252.2013] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Studies over the past decade have highlighted important roles played by sensory receptors outside of traditionally sensory tissues; for example, taste receptors participate in pH sensing in the cerebrospinal fluid, bitter taste receptors mediate bronchodilation and ciliary beating in the lung (Deshpande DA, Wang WC, McIlmoyle EL, Robinett KS, Schillinger RM, An SS, Sham JS, Liggett SB. Nat Med 16: 1299-1304, 2010; Shah AS, Ben-Shahar Y, Moninger TO, Kline JN, Welsh MJ. Science 325: 1131-1134, 2009), and olfactory receptors play roles in both sperm chemotaxis and muscle cell migration (Griffin CA, Kafadar KA, Pavlath GK. Cell 17: 649-661, 2009). More recently, several studies have shown that sensory receptors also play important roles in the regulation of blood pressure. This review will focus on several recent studies examining the roles that sensory receptors play in blood pressure regulation, with an emphasis on three pathways: the adenylate cyclase 3 (AC3) pathway, the Gpr91-succinate signaling pathway, and the Olfr78/Gpr41 short-chain fatty acid signaling pathway. Together, these pathways demonstrate that sensory receptors play important roles in mediating blood pressure control and that blood pressure regulation is coupled to the metabolism of the host as well as the metabolism of the gut microbiota.
Collapse
Affiliation(s)
- Jennifer L Pluznick
- Dept. of Physiology, Johns Hopkins Univ. School of Medicine, Baltimore, MD 21205.
| |
Collapse
|
16
|
Doucet JJ, Hall RI. Limited resuscitation with hypertonic saline, hypertonic sodium acetate, and lactated Ringer's solutions in a model of uncontrolled hemorrhage from a vascular injury. THE JOURNAL OF TRAUMA 1999; 47:956-63. [PMID: 10568730 DOI: 10.1097/00005373-199911000-00027] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Hypertonic sodium acetate-dextran solution (HAD) causes vasodilatation and buffers metabolic acidosis. In controlled hemorrhage models, HAD in small volumes increases cardiac output without increasing blood pressure, thus creating a "high flow-low pressure" state. The objective of this study was to determine whether limited resuscitation of uncontrolled hemorrhage with HAD solution improves gut perfusion as measured by intestinal mucosal tonometry. METHODS Three groups of 10 swine were bled 25 mL/kg by means of a femoral artery catheter to produce a mean blood pressure of 30 mm Hg. A 4-mm abdominal aortic laceration was then produced by pulling out a preimplanted wire loop. Groups were then randomly assigned to be resuscitated with either lactated Ringer's solution, a hypertonic saline-dextran solution or HAD solution sufficient to maintain a mean blood pressure of 45 mm Hg for 5 hours or until death. Outcomes were measured by survival, intraperitoneal blood loss, hemodynamic monitoring, and ileal mucosal tonometry. RESULTS HAD infusions caused transient worsening of hypotension and were associated with increased mortality (p = 0.038). Blood loss and volumes required for resuscitation were significantly increased in the lactated Ringer's solution group. HAD showed significant buffering effect against metabolic acidosis in arterial blood only, but intestinal ileal mucosal tonometry was not different among the groups. CONCLUSION HAD did not improve gut perfusion despite buffering the systemic acidosis of shock and caused increased mortality. Limited resuscitation with any of these solutions is associated with significant mucosal acidosis.
Collapse
Affiliation(s)
- J J Doucet
- Department of Surgery, Dalhousie University, and the Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
17
|
Jaraba M, Rodríguez-Benot A, Guerrero R, del Castillo D, Martín-Malo A, Rodríguez M, Aljama P. Cardiovascular response to hemodialysis: the effects of uremia and dialysate buffer. KIDNEY INTERNATIONAL. SUPPLEMENT 1998; 68:S86-91. [PMID: 9839290 DOI: 10.1046/j.1523-1755.1998.06819.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cardiovascular instability continues to be one of the primary clinical problems in hemodialysis. Acetate buffer in dialysate is one of the factors that may induce hypotension. Since uremia may have a direct effect on the regulation of the cardiovascular system, the present study was designed to investigate the separate effects of uremia and acetate hemodialysis on blood pressure in anesthesized dogs, as well as the hemodynamic parameters determined by invasive cardiovascular monitoring. Animals were separated into four groups: (1) group I, hemodialysis with acetate in controls; (2) group II, hemodialysis with acetate in uremic dogs; (3) group III, hemodialysis with bicarbonate in controls; and (4) group IV, hemodialysis with bicarbonate in uremic dogs. Acute uremia was induced by bilateral ureteral ligation and a 90-minute hemodialysis (acetate or bicarbonate) procedure was performed 72 hours later. The results obtained in this study show that, compared with dogs with normal renal function, acute uremia resulted in an elevation in mean arterial pressure (MAP; 178 +/- 13 vs. 115 +/- 23 mm Hg, P < 0.01), which was associated with an increase in cardiac index (CI) and left ventricular stroke work index (LVSWI). In these dogs, the pulmonary capillary wedge pressure (PCWP; preload) and the systemic vascular resistance index (SVRI; afterload) were not different than controls. In uremic dogs, hemodialysis with acetate, but not with bicarbonate, decreased the MAP to values similar to controls. The decrease in MAP induced by acetate hemodialysis in uremic dogs was associated with a decrease in SVRI and PCWP. These results suggest that in dogs with acute uremia, acetate hemodialysis (HD) decreases myocardial contractility that was previously increased by a direct effect of uremia. In controls, acetate produced a moderate decrease in MAP that was the result of a mild decrease in CI and SVR. Since PCWP was not significantly decreased after acetate HD, the decrease in CI can be attributed to a mild decrease in myocardial performance. In conclusion, this study in dogs suggests that uremia enhances myocardial contractility directly. Acetate hemodialysis reduces this elevated myocardial contractility to normal values.
Collapse
Affiliation(s)
- M Jaraba
- Nephrology Service and Research Unit, Hospital Reina Sofía, University of Córdoba, Spain
| | | | | | | | | | | | | |
Collapse
|
18
|
McKinnon W, Aaronson PI, Knock G, Graves J, Poston L. Mechanism of lactate-induced relaxation of isolated rat mesenteric resistance arteries. J Physiol 1996; 490 ( Pt 3):783-92. [PMID: 8683476 PMCID: PMC1158715 DOI: 10.1113/jphysiol.1996.sp021186] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
1. The effects of the sodium salt of the weak acid lactate on tension and intracellular pH (pH1) were studied in rat mesenteric small arteries mounted on a wire myograph. Sodium lactate was substituted iso-osmotically for sodium chloride. 2. At a concentration of 50 mM, both L- and D-stereoisomers of lactate markedly relaxed arteries preconstricted with noradrenaline (NA) within 10 min. The concentration-response relationship for L-lactate showed that the NA contracture was relaxed by 50% at approximately 26 mM. L-Lactate did not, however, relax arteries preconstricted with high-K+(45 mM) solution. 3. L-Lactate did not alter extracellular pH (pHo) but caused a small but significant decrease in pH1, measured using the pH-sensitive fluorochrome, 2',7'-bis(carboxyethyl)-5-(6)-carboxyfluorescein (BCECF). Relaxation to L-lactate was unaffected when this change in pHi was offset by the simultaneous addition of NH4Cl to the solution. 4. Sodium pyruvate (50 mM) caused a significant intracellular acidosis but did not relax arteries preconstricted with NA. 5. L-Lactate-induced relaxations were unaffected by removal of the endothelium or when the synthesis of nitric oxide (NO) was inhibited by 10(-4) M N omega-nitro-L-arginine methyl ester (L-NAME). 6. The potassium channel blockers glibenclamide (10 microM), 4-aminopyridine (3 mM) and tetraethylammonium chloride (10 mM) did not affect L-lactate-induced relaxation in arteries preconstricted with NA. Inhibition of guanylate cyclase with Methylene Blue, or cyclooxgenase with indomethacin, also did not affect relaxation to L-lactate. 7. The Rp stereoisomer of adenosine-3',5'-cyclic monophosphothioate (Rp-cAMPS), an analogue of cAMP which inhibits competitively stimulation of protein kinase A, reduced significantly L-lactate-induced relaxation at a concentration of 25 microM. Rp-cAMPS also significantly reduced forskolin-induced relaxation of the NA contracture. 8. It is concluded that L-lactate-induced relaxation in this vascular bed is pHi-1 endothelium-, and nitric oxide-independent. It is not mediated by inhibition of voltage-gated Ca2+ channels, opening of K+ channels, prostacylin or cyclic GMP. cAMP may however play a role in L-lactate-induced relaxation.
Collapse
Affiliation(s)
- W McKinnon
- Department of Physiology, United Medical School, Guy's Hospital, London, UK
| | | | | | | | | |
Collapse
|
19
|
Aaronson PI, McKinnon W, Poston L. Mechanism of butyrate-induced vasorelaxation of rat mesenteric resistance artery. Br J Pharmacol 1996; 117:365-71. [PMID: 8789392 PMCID: PMC1909272 DOI: 10.1111/j.1476-5381.1996.tb15200.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. The vasorelaxant effect of the sodium salt of the short chain fatty acid, butyrate, on preconstricted rat small mesenteric arteries (mean inner diameter approximately 300 microns) was characterized. Isometric force development was measured with a myograph, and intracellular pH (pHi) was simultaneously monitored, in arteries loaded with the fluorescent dye BCECF in its acetomethoxy form. Sodium butyrate (substituted isosmotically for NaCl) was applied to arteries after noradrenaline (NA) or high K+ contractures were established. 2. Arteries preconstricted with a concentration of NA inducing an approximately half maximal contraction were relaxed by 91.5 +/- 6.3% by 50 mmol l-1 butyrate. This concentration of butyrate did not, however, cause a significant relaxation of contractures to a maximal (5 mumol l-1) NA concentration, and also failed to relax significantly contractures stimulated by high (45 and 90 mmol l-1) K+ solutions. Contractures elicited with a combination of NA (at a submaximal concentration) and 45 mmol l-1 K+ were, however, markedly relaxed by butyrate. 3. Investigation of the concentration-dependency of the butyrate-induced relaxation of the half maximal NA response revealed an EC50 for butyrate of approximately 22 mmol l-1. 4. Sodium butyrate (50 mmol l-1) caused pHi to decrease from 7.25 +/- 0.02 to 6.89 +/- 0.08 (n = 4, P < 0.001). However, the vasorelaxant effect of butyrate on the submaximal NA contracture was not significantly modified when this fall in intracellular pH was prevented by the simultaneous application of NH4Cl. 5. Butyrate-induced relaxation was also unaffected by endothelial denudation and inhibition of NO synthase with N omega-nitro-L-arginine methyl ester (100 mumol l-1). 6. The relaxation of the NA contracture by 50 mmol l-1 sodium butyrate was abolished in arteries pretreated with the cyclic AMP antagonist Rp-cAMPS (25 mumol l-1). 7. We conclude that the butyrate-induced relaxation of the NA contracture is independent of intracellular acidification. The ability of Rp-cAMPS to abolish the butyrate relaxation indicates that stimulation of the cyclic AMP second messenger system may play an important role in mediating this effect.
Collapse
Affiliation(s)
- P I Aaronson
- Department of Pharmacology, Guy's and St Thomas' Hospitals, London
| | | | | |
Collapse
|