1
|
Okada Y. Physiology of the volume-sensitive/regulatory anion channel VSOR/VRAC: part 2: its activation mechanisms and essential roles in organic signal release. J Physiol Sci 2024; 74:34. [PMID: 38877402 PMCID: PMC11177392 DOI: 10.1186/s12576-024-00926-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/01/2024] [Indexed: 06/16/2024]
Abstract
The volume-sensitive outwardly rectifying or volume-regulated anion channel, VSOR/VRAC, which was discovered in 1988, is expressed in most vertebrate cell types, and is essentially involved in cell volume regulation after swelling and in the induction of cell death. This series of review articles describes what is already known and what remains to be uncovered about the functional and molecular properties as well as the physiological and pathophysiological roles of VSOR/VRAC. This Part 2 review article describes, from the physiological and pathophysiological standpoints, first the pivotal roles of VSOR/VRAC in the release of autocrine/paracrine organic signal molecules, such as glutamate, ATP, glutathione, cGAMP, and itaconate, as well as second the swelling-independent and -dependent activation mechanisms of VSOR/VRAC. Since the pore size of VSOR/VRAC has now well been evaluated by electrophysiological and 3D-structural methods, the signal-releasing activity of VSOR/VRAC is here discussed by comparing the molecular sizes of these organic signals to the channel pore size. Swelling-independent activation mechanisms include a physicochemical one caused by the reduction of intracellular ionic strength and a biochemical one caused by oxidation due to stimulation by receptor agonists or apoptosis inducers. Because some organic substances released via VSOR/VRAC upon cell swelling can trigger or augment VSOR/VRAC activation in an autocrine fashion, swelling-dependent activation mechanisms are to be divided into two phases: the first phase induced by cell swelling per se and the second phase caused by receptor stimulation by released organic signals.
Collapse
Affiliation(s)
- Yasunobu Okada
- National Institute for Physiological Sciences (NIPS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
- Department of Integrative Physiology, Graduate School of Medicine, Akita University, Akita, Japan.
- Department of Physiology, School of Medicine, Aichi Medical University, Nagakute, Japan.
- Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, Japan.
| |
Collapse
|
2
|
Okada Y, Numata T, Sabirov RZ, Kashio M, Merzlyak PG, Sato-Numata K. Cell death induction and protection by activation of ubiquitously expressed anion/cation channels. Part 3: the roles and properties of TRPM2 and TRPM7. Front Cell Dev Biol 2023; 11:1246955. [PMID: 37842082 PMCID: PMC10576435 DOI: 10.3389/fcell.2023.1246955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
Cell volume regulation (CVR) is a prerequisite for animal cells to survive and fulfill their functions. CVR dysfunction is essentially involved in the induction of cell death. In fact, sustained normotonic cell swelling and shrinkage are associated with necrosis and apoptosis, and thus called the necrotic volume increase (NVI) and the apoptotic volume decrease (AVD), respectively. Since a number of ubiquitously expressed ion channels are involved in the CVR processes, these volume-regulatory ion channels are also implicated in the NVI and AVD events. In Part 1 and Part 2 of this series of review articles, we described the roles of swelling-activated anion channels called VSOR or VRAC and acid-activated anion channels called ASOR or PAC in CVR and cell death processes. Here, Part 3 focuses on therein roles of Ca2+-permeable non-selective TRPM2 and TRPM7 cation channels activated by stress. First, we summarize their phenotypic properties and molecular structure. Second, we describe their roles in CVR. Since cell death induction is tightly coupled to dysfunction of CVR, third, we focus on their participation in the induction of or protection against cell death under oxidative, acidotoxic, excitotoxic, and ischemic conditions. In this regard, we pay attention to the sensitivity of TRPM2 and TRPM7 to a variety of stress as well as to their capability to physicall and functionally interact with other volume-related channels and membrane enzymes. Also, we summarize a large number of reports hitherto published in which TRPM2 and TRPM7 channels are shown to be involved in cell death associated with a variety of diseases or disorders, in some cases as double-edged swords. Lastly, we attempt to describe how TRPM2 and TRPM7 are organized in the ionic mechanisms leading to cell death induction and protection.
Collapse
Affiliation(s)
- Yasunobu Okada
- National Institute for Physiological Sciences (NIPS), Okazaki, Japan
- Department of Integrative Physiology, Graduate School of Medicine, AkitaUniversity, Akita, Japan
- Department of Physiology, School of Medicine, Aichi Medical Uniersity, Nagakute, Japan
- Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan
| | - Tomohiro Numata
- Department of Integrative Physiology, Graduate School of Medicine, AkitaUniversity, Akita, Japan
| | - Ravshan Z. Sabirov
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Makiko Kashio
- National Institute for Physiological Sciences (NIPS), Okazaki, Japan
- Department of Physiology, School of Medicine, Aichi Medical Uniersity, Nagakute, Japan
| | - Peter G. Merzlyak
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Kaori Sato-Numata
- Department of Integrative Physiology, Graduate School of Medicine, AkitaUniversity, Akita, Japan
| |
Collapse
|
3
|
Božič B, Zemljič Jokhadar Š, Kristanc L, Gomišček G. Cell Volume Changes and Membrane Ruptures Induced by Hypotonic Electrolyte and Sugar Solutions. Front Physiol 2020; 11:582781. [PMID: 33364974 PMCID: PMC7750460 DOI: 10.3389/fphys.2020.582781] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/06/2020] [Indexed: 01/09/2023] Open
Abstract
The cell volume changes induced by hypotonic electrolyte and sucrose solutions were studied in Chinese-hamster-ovary epithelial cells. The effects in the solutions with osmolarities between 32 and 315 mosM/L and distilled water were analyzed using bright-field and fluorescence confocal microscopy. The changes of the cell volume, accompanied by the detachment of cells, the formation of blebs, and the occurrence of almost spherical vesicle-like cells (“cell-vesicles”), showed significant differences in the long-time responses of the cells in the electrolyte solutions compared with the sucrose-containing solutions. A theoretical model based on different permeabilities of ions and sucrose molecules and on the action of Na+/K+-ATPase pumps is applied. It is consistent with the observed temporal behavior of the cells’ volume and the occurrence of tension-induced membrane ruptures and explains lower long-time responses of the cells in the sucrose solutions.
Collapse
Affiliation(s)
- Bojan Božič
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Špela Zemljič Jokhadar
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Luka Kristanc
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Gomišček
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
4
|
Tseng YT, Ko CL, Chang CT, Lee YH, Huang Fu WC, Liu IH. Leucine-rich repeat containing 8A contributes to the expansion of brain ventricles in zebrafish embryos. Biol Open 2020; 9:bio048264. [PMID: 31941702 PMCID: PMC6994961 DOI: 10.1242/bio.048264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/23/2019] [Indexed: 12/16/2022] Open
Abstract
The sodium osmotic gradient is necessary for the initiation of brain ventricle inflation, but a previous study predicted that organic and inorganic osmolytes play equivalently important roles in osmotic homeostasis in astrocytes. To test whether organic osmoregulation also plays a role in brain ventricle inflation, the core component for volume-regulated anion and organic osmolyte channel, lrrc8a, was investigated in the zebrafish model. RT-PCR and whole-mount in situ hybridization indicated that both genes were ubiquitously expressed through to 12 hpf, and around the ventricular layer of neural tubes and the cardiogenic region at 24 hpf. Knocking down either one lrrc8a paralog with morpholino oligos resulted in abnormalities in circulation at 32 hpf. Morpholino oligos or CRISPR interference against either paralog led to smaller brain ventricles at 24 hpf. Either lrrc8aa or lrrc8ab mRNA rescued the phenotypic penetrance in both lrrc8aa and lrrc8ab morphants. Supplementation of taurine in the E3 medium and overexpression csad mRNA also rescued lrrc8aa and lrrc8ab morphants. Our results indicate that the two zebrafish lrrc8a paralogs are maternal message genes and are ubiquitously expressed in early embryos. The two genes play redundant roles in the expansion of brain ventricles and the circulatory system and taurine contributes to brain ventricle expansion via the volume-regulated anion and organic osmolyte channels.
Collapse
Affiliation(s)
- Yen-Tzu Tseng
- Department of Animal Science and Technology, National Taiwan University, Taipei, 106, Taiwan
| | - Chun-Lin Ko
- Department of Animal Science and Technology, National Taiwan University, Taipei, 106, Taiwan
| | - Chia-Teng Chang
- Department of Animal Science and Technology, National Taiwan University, Taipei, 106, Taiwan
| | - Yen-Hua Lee
- Department of Animal Science and Technology, National Taiwan University, Taipei, 106, Taiwan
| | - Wei-Chun Huang Fu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 110 Taiwan
| | - I-Hsuan Liu
- Department of Animal Science and Technology, National Taiwan University, Taipei, 106, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, 106, Taiwan
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan
| |
Collapse
|
5
|
Roles of volume-regulatory anion channels, VSOR and Maxi-Cl, in apoptosis, cisplatin resistance, necrosis, ischemic cell death, stroke and myocardial infarction. CURRENT TOPICS IN MEMBRANES 2019; 83:205-283. [PMID: 31196606 DOI: 10.1016/bs.ctm.2019.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
Gandhi S, Koundal S, Kaur T, Khushu S, Singh AK. WITHDRAWN: Correlative 1H MRS and High Resolution NMR Metabolomics to study Neurometabolic alterations in Rat Brain due to Chronic Hypobaric Hypoxia. Brain Res 2018:S0006-8993(18)30448-7. [PMID: 30153457 DOI: 10.1016/j.brainres.2018.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/20/2018] [Accepted: 08/24/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Sonia Gandhi
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), Lucknow Road, Timarpur, Delhi 110054, India
| | - Sunil Koundal
- Department of Anesthesiology and Pediatric Anesthesiology, Yale University, New Haven, CT, United States
| | - Tanzeer Kaur
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Subash Khushu
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), Lucknow Road, Timarpur, Delhi 110054, India
| | - Ajay Kumar Singh
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), Lucknow Road, Timarpur, Delhi 110054, India
| |
Collapse
|
7
|
Windler C, Gey C, Seeger K. Skin melanocytes and fibroblasts show different changes in choline metabolism during cellular senescence. Mech Ageing Dev 2017; 164:82-90. [DOI: 10.1016/j.mad.2017.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/25/2017] [Accepted: 05/02/2017] [Indexed: 11/25/2022]
|
8
|
Abstract
The brain operates in an extraordinarily intricate environment which demands precise regulation of electrolytes. Tight control over their concentrations and gradients across cellular compartments is essential and when these relationships are disturbed neurologic manifestations may develop. Perturbations of sodium are the electrolyte disturbances that most often lead to neurologic manifestations. Alterations in extracellular fluid sodium concentrations produce water shifts that lead to brain swelling or shrinkage. If marked or rapid they can result in profound changes in brain function which are proportional to the degree of cerebral edema or contraction. Adaptive mechanisms quickly respond to changes in cell size by either increasing or decreasing intracellular osmoles in order to restore size to normal. Unless cerebral edema has been severe or prolonged, correction of sodium disturbances usually restores function to normal. If the rate of correction is too rapid or overcorrection occurs, however, new neurologic manifestations may appear as a result of osmotic demyelination syndrome. Disturbances of magnesium, phosphate and calcium all may contribute to alterations in sensorium. Hypomagnesemia and hypocalcemia can lead to weakness, muscle spasms, and tetany; the weakness from hypophosphatemia and hypomagnesemia can impair respiratory function. Seizures can be seen in cases with very low concentrations of sodium, magnesium, calcium, and phosphate.
Collapse
Affiliation(s)
- M Diringer
- Department of Neurology, Washington University, St. Louis, MO, USA.
| |
Collapse
|
9
|
Stauber T. The volume-regulated anion channel is formed by LRRC8 heteromers – molecular identification and roles in membrane transport and physiology. Biol Chem 2016; 396:975-90. [PMID: 25868000 DOI: 10.1515/hsz-2015-0127] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 04/02/2015] [Indexed: 11/15/2022]
Abstract
Cellular volume regulation is fundamental for numerous physiological processes. The volume-regulated anion channel, VRAC, plays a crucial role in regulatory volume decrease. This channel, which is ubiquitously expressed in vertebrates, has been vastly characterized by electrophysiological means. It opens upon cell swelling and conducts chloride and arguably organic osmolytes. VRAC has been proposed to be critically involved in various cellular and organismal functions, including cell proliferation and migration, apoptosis, transepithelial transport, swelling-induced exocytosis and intercellular communication. It may also play a role in pathological states like cancer and ischemia. Despite many efforts, the molecular identity of VRAC had remained elusive for decades, until the recent discovery of heteromers of LRRC8A with other LRRC8 family members as an essential VRAC component. This identification marks a starting point for studies on the structure-function relation, for molecular biological investigations of its cell biology and for re-evaluating the physiological roles of VRAC. This review recapitulates the identification of LRRC8 heteromers as VRAC components, depicts the similarities between LRRC8 proteins and pannexins, and discussed whether VRAC conducts larger osmolytes. Furthermore, proposed physiological functions of VRAC and the present knowledge about the physiological significance of LRRC8 proteins are summarized and collated.
Collapse
|
10
|
Figueroa-Méndez R, Rivas-Arancibia S. Vitamin C in Health and Disease: Its Role in the Metabolism of Cells and Redox State in the Brain. Front Physiol 2015; 6:397. [PMID: 26779027 PMCID: PMC4688356 DOI: 10.3389/fphys.2015.00397] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/04/2015] [Indexed: 01/07/2023] Open
Abstract
Ever since Linus Pauling published his studies, the effects of vitamin C have been surrounded by contradictory results. This may be because its effects depend on a number of factors such as the redox state of the body, the dose used, and also on the tissue metabolism. This review deals with vitamin C pharmacokinetics and its participation in neurophysiological processes, as well as its role in the maintenance of redox balance. The distribution and the concentration of vitamin C in the organs depend on the ascorbate requirements of each and on the tissue distribution of sodium-dependent vitamin C transporter 1 and 2 (SVCT1 and SVCT2). This determines the specific distribution pattern of vitamin C in the body. Vitamin C is involved in the physiology of the nervous system, including the support and the structure of the neurons, the processes of differentiation, maturation, and neuronal survival; the synthesis of catecholamine, and the modulation of neurotransmission. This antioxidant interacts with self-recycling mechanisms, including its participation in the endogenous antioxidant system. We conclude that the pharmacokinetic properties of ascorbate are related to the redox state and its functions and effects in tissues.
Collapse
Affiliation(s)
- Rodrigo Figueroa-Méndez
- Laboratorio de Estrés Oxidativo y Plasticidad Cerebral, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México México, Mexico
| | - Selva Rivas-Arancibia
- Laboratorio de Estrés Oxidativo y Plasticidad Cerebral, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México México, Mexico
| |
Collapse
|
11
|
Sutter R, Kaplan PW. What to see when you are looking at confusion: a review of the neuroimaging of acute encephalopathy. J Neurol Neurosurg Psychiatry 2015; 86:446-59. [PMID: 25091365 DOI: 10.1136/jnnp-2014-308216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Acute encephalopathy is a clinical conundrum in neurocritical care facing physicians with diagnostic and therapeutic challenges. Encephalopathy arises from several concurrent causes, and delayed diagnosis adds to its grim prognosis. Diagnosis is reached by melding clinical, neurophysiological and biochemical features with various neuroimaging studies. We aimed to compile the pathophysiology of acute encephalopathies in adults, and the contribution of cerebral CT, MRI, MR spectroscopy (MRS), positron emission tomography (PET) and single-photon emission CT (SPECT) to early diagnosis, treatment and prognostication. Reports from 1990 to 2013 were identified. Therefore, reference lists were searched to identify additional publications. Encephalopathy syndromes best studied by neuroimaging emerge from hypoxic-ischaemic injury, sepsis, metabolic derangements, autoimmune diseases, infections and rapidly evolving dementias. Typical and pathognomonic neuroimaging patterns are presented. Cerebral imaging constitutes an important component of diagnosis, management and prognosis of acute encephalopathy. Its respective contribution is dominated by rapid exclusion of acute cerebral lesions and further varies greatly depending on the underlying aetiology and the range of possible differential diagnoses. CT has been well studied, but is largely insensitive, while MRI appears to be the most helpful in the evaluation of encephalopathies. MRS may provide supplementary biochemical information and determines spectral changes in the affected brain tissue. The less frequently used PET and SPECT may delineate areas of high or low metabolic activity or cerebral blood flow. However, publications of MRS, PET and SPECT are limited only providing anecdotal evidence of their usefulness and sensitivity.
Collapse
Affiliation(s)
- Raoul Sutter
- Division of Neurosciences Critical Care, Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA Department of Neurology, Johns Hopkins Bayview Medical Center, Baltimore, Maryland, USA Clinic of Intensive Care Medicine, University Hospital Basel, Basel, Switzerland Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Peter W Kaplan
- Division of Neurosciences Critical Care, Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA Department of Neurology, Johns Hopkins Bayview Medical Center, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Voss FK, Ullrich F, Münch J, Lazarow K, Lutter D, Mah N, Andrade-Navarro MA, von Kries JP, Stauber T, Jentsch TJ. Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC. Science 2014; 344:634-8. [PMID: 24790029 DOI: 10.1126/science.1252826] [Citation(s) in RCA: 473] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Regulation of cell volume is critical for many cellular and organismal functions, yet the molecular identity of a key player, the volume-regulated anion channel VRAC, has remained unknown. A genome-wide small interfering RNA screen in mammalian cells identified LRRC8A as a VRAC component. LRRC8A formed heteromers with other LRRC8 multispan membrane proteins. Genomic disruption of LRRC8A ablated VRAC currents. Cells with disruption of all five LRRC8 genes required LRRC8A cotransfection with other LRRC8 isoforms to reconstitute VRAC currents. The isoform combination determined VRAC inactivation kinetics. Taurine flux and regulatory volume decrease also depended on LRRC8 proteins. Our work shows that VRAC defines a class of anion channels, suggests that VRAC is identical to the volume-sensitive organic osmolyte/anion channel VSOAC, and explains the heterogeneity of native VRAC currents.
Collapse
Affiliation(s)
- Felizia K Voss
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Almshawit H, Pouniotis D, Macreadie I. Cell density impacts onCandida glabratasurvival in hypo-osmotic stress. FEMS Yeast Res 2013; 14:508-16. [DOI: 10.1111/1567-1364.12122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 10/08/2013] [Accepted: 11/04/2013] [Indexed: 11/28/2022] Open
Affiliation(s)
- Hala Almshawit
- Applied Sciences; RMIT University; Bundoora Vic. Australia
| | - Dodie Pouniotis
- School of Medical Sciences; RMIT University; Bundoora Vic. Australia
| | - Ian Macreadie
- Applied Sciences; RMIT University; Bundoora Vic. Australia
| |
Collapse
|
14
|
Le-Corronc H, Rigo JM, Branchereau P, Legendre P. GABA(A) receptor and glycine receptor activation by paracrine/autocrine release of endogenous agonists: more than a simple communication pathway. Mol Neurobiol 2011; 44:28-52. [PMID: 21547557 DOI: 10.1007/s12035-011-8185-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 04/14/2011] [Indexed: 02/04/2023]
Abstract
It is a common and widely accepted assumption that glycine and GABA are the main inhibitory transmitters in the central nervous system (CNS). But, in the past 20 years, several studies have clearly demonstrated that these amino acids can also be excitatory in the immature central nervous system. In addition, it is now established that both GABA receptors (GABARs) and glycine receptors (GlyRs) can be located extrasynaptically and can be activated by paracrine release of endogenous agonists, such as GABA, glycine, and taurine. Recently, non-synaptic release of GABA, glycine, and taurine gained further attention with increasing evidence suggesting a developmental role of these neurotransmitters in neuronal network formation before and during synaptogenesis. This review summarizes recent knowledge about the non-synaptic activation of GABA(A)Rs and GlyRs, both in developing and adult CNS. We first present studies that reveal the functional specialization of both non-synaptic GABA(A)Rs and GlyRs and we discuss the neuronal versus non-neuronal origin of the paracrine release of GABA(A)R and GlyR agonists. We then discuss the proposed non-synaptic release mechanisms and/or pathways for GABA, glycine, and taurine. Finally, we summarize recent data about the various roles of non-synaptic GABAergic and glycinergic systems during the development of neuronal networks and in the adult.
Collapse
Affiliation(s)
- Herve Le-Corronc
- Institut National de la Santé et de la Recherche Médicale, U952, Centre National de la Recherche Scientifique, UMR 7224, Université Pierre et Marie Curie, 9 quai Saint Bernard, Paris, Ile de France, France
| | | | | | | |
Collapse
|
15
|
Setyawan EEM, Cooper TG, Widiasih DA, Junaidi A, Yeung CH. Effects of cryoprotectant treatments on bovine sperm function and osmolyte content. Asian J Androl 2009; 11:571-81. [PMID: 19668223 DOI: 10.1038/aja.2009.44] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The hypothesis that addition and removal of cryoprotectants to and from spermatozoa would initiate regulatory volume decrease, and lead to osmolyte loss and reduced sperm function, was tested. Common cryoprotectants, in the absence of freezing and thawing, affected bovine ejaculated spermatozoa by lowering their total and progressive motility in medium, reducing their migration through surrogate cervical mucus, damaging sperm head membranes and inducing sperm tail coiling. Sperm function was slightly better maintained after cryoprotectants were added and removed in multiple small steps rather than in a single step. The intracellular content of the polyol osmolytes, D-sorbitol and myo-inositol, exceeded that of the zwitterion osmolytes, L-carnitine and L-glutamate. Certain cryoprotectants reduced intracellular L-carnitine and L-glutamate concentration but not that of myo-inositol or D-sorbitol. Multistep treatments with some cryoprotectants had advantages over one-step treatments in mucus penetration depending on the original amount of intracellular carnitine and glutamate in the spermatozoa. Overall, sperm quality was best maintained by multistep treatment with glycerol and propanediols that were associated with decreased intracellular glutamate concentration. Bovine spermatozoa seem to use glutamate to regulate cryoprotectant-induced cell swelling.
Collapse
Affiliation(s)
- Erif E M Setyawan
- Centre of Reproductive Medicine and Andrology of the University Clinic, Münster D-48149, Germany
| | | | | | | | | |
Collapse
|
16
|
Kempson SA, Edwards JM, Osborn A, Sturek M. Acute inhibition of the betaine transporter by ATP and adenosine in renal MDCK cells. Am J Physiol Renal Physiol 2008; 295:F108-17. [PMID: 18448594 DOI: 10.1152/ajprenal.00108.2008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Extracellular ATP interacts with purinergic P2 receptors to regulate a range of physiological responses, including downregulation of transport activity in the nephron. ATP is released from cells by mechanical stimuli such as cell volume changes, and autocrine signaling by extracellular ATP could occur in renal medullary cells during diuresis. This was tested in Madin-Darby canine kidney (MDCK) cells, a model used frequently to study P1 and P2 receptor activity. ATP was released within 1 min after transfer from 500 to 300 mosmol/kgH2O medium. A 30-min incubation with ATP produced dose-dependent inhibition (0.01-0.10 mM) of the renal betaine/GABA transporter (BGT1) with little effect on other osmolyte transporters. Inhibition was reproduced by specific agonists for P2X (alpha,beta-methylene-ATP) and P2Y (UTP) receptors. Adenosine, the final product of ATP hydrolysis, also inhibited BGT1 but not taurine transport. Inhibition by ATP and adenosine was blocked by pertussis toxin and A73122, suggesting involvement of inhibitory G protein and PLC in postreceptor signaling. Both ATP and adenosine (0.1 mM) produced rapid increases in intracellular Ca2+, due to the mobilization of intracellular Ca2+ stores and Ca2+ influx. Blocking these Ca2+ increases with BAPTA-AM also blocked the action of ATP and adenosine on BGT1 transport. Finally, immunohistochemical studies indicated that inhibition of BGT1 transport may be due to endocytic accumulation of BGT1 proteins from the plasma membrane. We conclude that ATP and adenosine, through stimulation of PLC and intracellular Ca2+, may be rapidly acting regulators of BGT1 transport especially in response to a fall in extracellular osmolarity.
Collapse
Affiliation(s)
- Stephen A Kempson
- Department of Cellular and Intergrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | | | | | | |
Collapse
|
17
|
Cooper TG, Barfield JP, Yeung CH. The tonicity of murine epididymal spermatozoa and their permeability towards common cryoprotectants and epididymal osmolytes. Reproduction 2008; 135:625-33. [PMID: 18304983 DOI: 10.1530/rep-07-0573] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The permeability of murine cauda epididymidal spermatozoa was determined from the swelling caused by penetrating agents at isotonicity, which lies between 422 and 530 mmol/kg. Spermatozoa were permeable to a range of solutes with size <200 Da. Relative entry rates of cryoprotective agents (CPAs) were ethylene glycol approximately DMSO>propane-1,2-diol>glycerol>propane-1,3-diol. More polar compounds including major epididymal secretions were impermeant. None of the compounds entered spermatozoa through quinine-sensitive channels; rather, quinine increased the size of solute-swollen spermatozoa, suggesting that regulatory volume decrease and osmolyte loss occurred under these conditions. Volume responses to lowered osmolality revealed a greater volume-regulating ability of spermatozoa from the B6D2F1 strain than the C57BL6 strain. As the former strain displays better post-thaw fertility, their spermatozoa may have greater osmolyte loads enabling them to cope better with osmotic stress. Inadequate volume regulation, due to CPA-induced osmolyte loss, may affect post-thaw fertility. Knowing the permeability towards cryoprotectants will help to make a better choice of CPAs that are less damaging to sperm during cryopreservation.
Collapse
Affiliation(s)
- T G Cooper
- Institute of Reproductive Medicine of the University, Domagkstrasse 11, D-48129 Münster, Germany.
| | | | | |
Collapse
|
18
|
Klein T, Cooper TG, Yeung CH. The role of potassium chloride cotransporters in murine and human sperm volume regulation. Biol Reprod 2006; 75:853-8. [PMID: 16943364 DOI: 10.1095/biolreprod.106.054064] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Spermatozoa need to undergo regulatory volume decrease (RVD) upon ejaculation to counteract swelling due to the hypo-osmolality of female tract fluids. Defects in sperm RVD lead to failure in both cervical mucus penetration in humans and utero-tubal junction passage in mice. The role of K/Cl cotransporters (KCCs) in RVD was investigated by incubation of spermatozoa from the murine cauda epididymidis and from human ejaculates in media mimicking female tract fluid osmolalities in the presence of KCC inhibitors. Furosemide at 100 microM or more caused swelling of murine spermatozoa as detected with a flow cytometer by increased laser forward scatter over 30 to 75 min of incubation. Bumetanide, known to have low affinity for KCCs, was effective at 1 mM, whereas 10 microM and 20 microM of the specific inhibitor DIOA (dihydroindenyl-oxy alkanoic acid) increased cell volume. These drug doses were ineffective in human spermatozoa, which, however, responded to quinine, confirming the occurrence of RVD under control conditions. The molecular identity of the murine KCC isoform involved was determined at both mRNA and protein levels. Conventional RT-PCR indicated the presence of transcripts from Slc12a4 (KCC1), Slc12a6 (KCC3), and Slc12a7 (KCC4) in the testis, whereas RT-nested PCR revealed the latter two isoforms in sperm mRNA. Of these three isoforms, only SLC12A7 (KCC4) was detected in murine sperm protein by Western blotting. Therefore, besides organic osmolyte efflux and KCl release through separate K(+) and Cl(-) ion channels, SLC12A7 also is involved in murine but not human sperm RVD mechanisms.
Collapse
Affiliation(s)
- T Klein
- Institute of Reproductive Medicine, University of Münster, D-48129 Münster, Germany
| | | | | |
Collapse
|
19
|
Stutzin A, Hoffmann EK. Swelling-activated ion channels: functional regulation in cell-swelling, proliferation and apoptosis. Acta Physiol (Oxf) 2006; 187:27-42. [PMID: 16734740 DOI: 10.1111/j.1748-1716.2006.01537.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cell volume regulation is one of the most fundamental homeostatic mechanisms and essential for normal cellular function. At the same time, however, many physiological mechanisms are associated with regulatory changes in cell size meaning that the set point for cell volume regulation is under physiological control. Thus, cell volume is under a tight and dynamic control and abnormal cell volume regulation will ultimately lead to severe cellular dysfunction, including alterations in cell proliferation and cell death. This review describes the different swelling-activated ion channels that participate as key players in the maintenance of normal steady-state cell volume, with particular emphasis on the intracellular signalling pathways responsible for their regulation during hypotonic stress, cell proliferation and apoptosis.
Collapse
Affiliation(s)
- A Stutzin
- Centro de Estudios Moleculares de la Célula and Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | | |
Collapse
|
20
|
Kiesel M, Reuss R, Endter J, Zimmermann D, Zimmermann H, Shirakashi R, Bamberg E, Zimmermann U, Sukhorukov VL. Swelling-activated pathways in human T-lymphocytes studied by cell volumetry and electrorotation. Biophys J 2006; 90:4720-9. [PMID: 16565059 PMCID: PMC1471856 DOI: 10.1529/biophysj.105.078725] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Small organic solutes, including sugar derivatives, amino acids, etc., contribute significantly to the osmoregulation of mammalian cells. The present study explores the mechanisms of swelling-activated membrane permeability for electrolytes and neutral carbohydrates in Jurkat cells. Electrorotation was used to analyze the relationship between the hypotonically induced changes in the electrically accessible surface area of the plasma membrane (probed by the capacitance) and its permeability to the monomeric sugar alcohol sorbitol, the disaccharide trehalose, and electrolyte. Time-resolved capacitance and volumetric measurements were performed in parallel using media of different osmolalities containing either sorbitol or trehalose as the major solute. Under mild hypotonic stress in 200 mOsm sorbitol or trehalose solutions, the cells accomplished regulatory volume decrease by releasing cytosolic electrolytes presumably through pathways activated by the swelling-mediated retraction of microvilli. This is suggested by a rapid decrease of the area-specific membrane capacitance C(m) (microF/cm2). The cell membrane was impermeable to both carbohydrates in 200 mOsm media. Whereas trehalose permeability remained also very poor in 100 mOsm medium, extreme swelling of cells in a strongly hypotonic solution (100 mOsm) led to a dramatic increase in sorbitol permeability as evidenced by regulatory volume decrease inhibition. The different osmotic thresholds for activation of electrolyte release and sorbitol influx suggest the involvement of separate swelling-activated pathways. Whereas the electrolyte efflux seemed to utilize pathways preexisting in the plasma membrane, putative sorbitol channels might be inserted into the membrane from cytosolic vesicles via swelling-mediated exocytosis, as indicated by a substantial increase in the whole-cell capacitance C(C) (pF) in strongly hypotonic solutions.
Collapse
Affiliation(s)
- M Kiesel
- Lehrstuhl für Biotechnologie, Universität Würzburg, Biozentrum, Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sabirov RZ, Okada Y. ATP release via anion channels. Purinergic Signal 2005; 1:311-28. [PMID: 18404516 PMCID: PMC2096548 DOI: 10.1007/s11302-005-1557-0] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 07/19/2005] [Accepted: 07/26/2005] [Indexed: 11/30/2022] Open
Abstract
ATP serves not only as an energy source for all cell types but as an 'extracellular messenger' for autocrine and paracrine signalling. It is released from the cell via several different purinergic signal efflux pathways. ATP and its Mg(2+) and/or H(+) salts exist in anionic forms at physiological pH and may exit cells via some anion channel if the pore physically permits this. In this review we survey experimental data providing evidence for and against the release of ATP through anion channels. CFTR has long been considered a probable pathway for ATP release in airway epithelium and other types of cells expressing this protein, although non-CFTR ATP currents have also been observed. Volume-sensitive outwardly rectifying (VSOR) chloride channels are found in virtually all cell types and can physically accommodate or even permeate ATP(4-) in certain experimental conditions. However, pharmacological studies are controversial and argue against the actual involvement of the VSOR channel in significant release of ATP. A large-conductance anion channel whose open probability exhibits a bell-shaped voltage dependence is also ubiquitously expressed and represents a putative pathway for ATP release. This channel, called a maxi-anion channel, has a wide nanoscopic pore suitable for nucleotide transport and possesses an ATP-binding site in the middle of the pore lumen to facilitate the passage of the nucleotide. The maxi-anion channel conducts ATP and displays a pharmacological profile similar to that of ATP release in response to osmotic, ischemic, hypoxic and salt stresses. The relation of some other channels and transporters to the regulated release of ATP is also discussed.
Collapse
Affiliation(s)
- Ravshan Z. Sabirov
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki, 444-8585 Japan
| | - Yasunobu Okada
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki, 444-8585 Japan
| |
Collapse
|
22
|
Reuss R, Ludwig J, Shirakashi R, Ehrhart F, Zimmermann H, Schneider S, Weber MM, Zimmermann U, Schneider H, Sukhorukov VL. Intracellular delivery of carbohydrates into mammalian cells through swelling-activated pathways. J Membr Biol 2005; 200:67-81. [PMID: 15520905 DOI: 10.1007/s00232-004-0694-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 06/21/2004] [Indexed: 10/26/2022]
Abstract
Volume changes of human T-lymphocytes (Jurkat line) exposed to hypotonic carbohydrate-substituted solutions of different composition and osmolality were studied by videomicroscopy. In 200 mOsm media the cells first swelled within 1-2 min and then underwent regulatory volume decrease (RVD) to their original isotonic volume within 10-15 min. RVD also occurred in strongly hypotonic 100 mOsm solutions of di- and trisaccharides (trehalose, sucrose, raffinose). In contrast to oligosaccharide media, 100 mOsm solutions of monomeric carbohydrates (glucose, galactose, inositol and sorbitol) inhibited RVD. The complex volumetric data were analyzed with a membrane transport model that allowed the estimation of the hydraulic conductivity and volume-dependent solute permeabilities. We found that under slightly hypotonic stress (200 mOsm) the cell membrane was impermeable to all carbohydrates studied here. Upon osmolality decrease to 100 mOsm, the membrane permeability to monomeric carbohydrates increased dramatically (apparently due to channel activation caused by extensive cell swelling), whereas oligosaccharide permeability remained very poor. The size-selectivity of the swelling-activated sugar permeation was confirmed by direct chromatographic measurements of intracellular sugars. The results of this study are of interest for biotechnology, where sugars and related compounds are increasingly being used as potential cryo- and lyoprotective agents for preservation of rare and valuable mammalian cells and tissues.
Collapse
Affiliation(s)
- R Reuss
- Lehrstuhl für Biotechnologie, Biozentrum, Universität Würzburg, Am Hubland, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sitar G, Brambati B, Baldi M, Montanari L, Vincitorio M, Tului L, Forabosco A, Ascari E. The use of non-physiological conditions to isolate fetal cells from maternal blood. Exp Cell Res 2005; 302:153-61. [PMID: 15561097 DOI: 10.1016/j.yexcr.2004.08.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Revised: 07/24/2004] [Indexed: 11/24/2022]
Abstract
Fetal cells are always present in maternal blood starting in the first trimester of pregnancy, however a rapid, simple, and consistent procedure for their isolation for prenatal non-invasive genetic investigation is still lacking. Sensitivity and recovery of fetal cells is jeopardized by the minute amount of circulating fetal cells and their loss during the enrichment procedure. We report here a single-step approach to isolate fetal cells from maternal blood which relies on the use of non-physiological conditions to modify cell densities before their separation in a density gradient and in a newly developed cell separation device. Isolated fetal cells have been investigated using cytochemistry, Soret band absorption microscopy, monoclonal antibodies for epsilon- and gamma-chain-Hb, monoclonal antibody for i-antigen, and by fluorescence in situ hybridization (FISH). Fetal cells were always detected in all 105 maternal blood samples investigated and fetal aneuploidies were correctly diagnosed by FISH, in a pilot study of pathological pregnancies, in fetal cells isolated from maternal blood obtained either before or after invasive procedure.
Collapse
Affiliation(s)
- Giammaria Sitar
- Department of Medicine Policlinico San Matteo and University of Pavia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Yeung CH, Barfield JP, Anapolski M, Cooper TG. Volume regulation of mature and immature spermatozoa in a primate model, and possible ion channels involved. Hum Reprod 2004; 19:2587-93. [PMID: 15319384 DOI: 10.1093/humrep/deh466] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Human ejaculated sperm undergo volume regulation, and swollen cells fail to penetrate mucus. Study of an infertile mouse model indicates maturation of volume regulation mechanism in the epididymis. METHODS Sperm from the ejaculate and three regions of the epididymis of the cynomolgus monkey (Macaca fascicularis) were dispersed in BWW medium and changes in the cell volume and kinematics, and their responses to ion channel blockers, were monitored by flow cytometry and motion analysis. RESULTS Initially swollen cauda epididymidal spermatozoa regained their original volume within 20 min, but not in the presence of 0.25 mM quinine. Corpus epididymidal spermatozoa underwent such regulatory volume decrease (RVD) to a lesser extent, with a similar response to quinine. Caput sperm showed no swelling throughout incubation. The chloride channel inhibitor NPPB also caused swelling of cauda spermatozoa and both quinine and NPPB decreased the efficiency of forward progression. RVD of ejaculated spermatozoa was inhibited by the K+ channel blockers quinine and 4-aminopyridine (4-AP) but not by tetraethylammonium, Ba2+ or Gd3+, or the specific potassium channel blockers charybdotoxin, margatoxin, dendrotoxin, apamin, glybenclamide or clofilium. Quinine and 4-AP also altered ejaculated sperm kinematics as reported in human ejaculated spermatozoa. CONCLUSIONS Quinine- and 4-AP-sensitive (implying K+) and NPPB-sensitive (implying Cl-) channels are involved in RVD of primate sperm, which develop this volume regulatory ability in the epididymis.
Collapse
Affiliation(s)
- C H Yeung
- Institute of Reproductive Medicine of the University Clinic, Münster, Germany.
| | | | | | | |
Collapse
|
25
|
Davis CE, Patel MK, Miller JR, John JE, Jones LR, Tucker AL, Mounsey JP, Moorman JR. Effects of phospholemman expression on swelling-activated ion currents and volume regulation in embryonic kidney cells. Neurochem Res 2004; 29:177-87. [PMID: 14992277 DOI: 10.1023/b:nere.0000010447.24128.ac] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Phospholemman (PLM) is a 72-amino-acid phosphoprotein that is a major substrate for cAMP-dependent protein kinase, protein kinase C, and NIMA kinase. In lipid bilayers, PLM forms ion channels selective for Cl-, K+, and taurine. Effluxes of these abundant intracellular osmolytes play an important role in the control of dynamic cell volume changes in many cell types. We measured swelling-activated ion currents and regulatory volume decrease (RVD) in human embryonic kidney cells stably overexpressing canine cardiac PLM. In response to swelling, two clonal cell lines overexpressing PLM had increased swelling-activated ion current densities and faster and more extensive RVD. A third clonal cell line overexpressing mutant PLM showed reduced ion current densities and a diminished RVD response. These results suggest a role for PLM in the regulation of cell volume, perhaps as a modulator of an endogenous swelling-activated signal transduction pathway or possibly by participating directly in swelling-induced osmolyte efflux.
Collapse
Affiliation(s)
- Cristina E Davis
- Department of Biomedical Engineering, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
d'Anglemont de Tassigny A, Souktani R, Ghaleh B, Henry P, Berdeaux A. Structure and pharmacology of swelling-sensitive chloride channels, I(Cl,swell). Fundam Clin Pharmacol 2004; 17:539-53. [PMID: 14703715 DOI: 10.1046/j.1472-8206.2003.00197.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Since several years, the interest for chloride channels and more particularly for the enigmatic swelling-activated chloride channel (I(Cl,swell)) is increasing. Despite its well-characterized electrophysiological properties, the I(Cl,swell) structure and pharmacology are not totally elucidated. These channels are involved in a variety of cell functions, such as cardiac rhythm, cell proliferation and differentiation, cell volume regulation and cell death through apoptosis. This review will consider different aspects regarding structure, electrophysiological properties, pharmacology, modulation and functions of these swelling-activated chloride channels.
Collapse
|
27
|
Staines HM, Dee BC, Shen MR, Ellory JC. The effect of mefloquine and volume-regulated anion channel inhibitors on induced transport in Plasmodium falciparum-infected human red blood cells. Blood Cells Mol Dis 2004; 32:344-8. [PMID: 15121089 DOI: 10.1016/j.bcmd.2004.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2004] [Indexed: 11/18/2022]
Abstract
The malaria parasite Plasmodium falciparum activates new permeation pathways (NPP) in the host cell membrane of infected human red blood cells (RBCs), which are permeable to anions, cations and a range of organic solutes. It has been suggested from inhibitor and substrate selectivity studies that the NPP may be identical to the volume-activated anion channel (VRAC) present in many mammalian cell types. Here we have tested several known inhibitors of VRAC on the transport of choline and lactate in malaria-infected human RBCs and on parasite growth. Mefloquine, tamoxifen and clomiphene were all without effect on malaria-induced transport at concentrations up to 10 microM and only mefloquine (IC(50) = 24 nM) and, to a lesser degree, clomiphene (IC(50) = 6.2 microM) inhibited parasite growth below this level. It is concluded that the antimalarial effect of mefloquine does not involve the inhibition of malaria-induced transport via the NPP and there is no evidence at present for VRAC and the NPP being identical.
Collapse
Affiliation(s)
- Henry M Staines
- University Laboratory of Physiology, Oxford, Parks Road, Oxford OX1 3PT, UK.
| | | | | | | |
Collapse
|
28
|
Varela D, Simon F, Riveros A, Jørgensen F, Stutzin A. NAD(P)H Oxidase-derived H2O2 Signals Chloride Channel Activation in Cell Volume Regulation and Cell Proliferation. J Biol Chem 2004; 279:13301-4. [PMID: 14761962 DOI: 10.1074/jbc.c400020200] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular swelling triggers the activation of Cl(-) channels (volume-sensitive outwardly rectifying (VSOR) Cl(-) channels) in many cell types. Ensuing regulatory volume decrease has been considered the primary function of these channels. However, Cl(-) channels, which share functional properties with volume-sensitive Cl(-) channels, have been shown to be involved in other physiological processes, including cell proliferation and apoptosis, raising the question of their physiological roles and the signal transduction pathways involved in their activation. Here we report that exogenously applied H(2)O(2) elicited VSOR Cl(-) channel activation. Furthermore, activation of these channels was found to be coupled to NAD(P)H oxidase activity. Also, epidermal growth factor, known to increase H(2)O(2) production, activated Cl(-) channels with properties identical to swelling-sensitive Cl(-) channels. It is concluded that NAD(P)H oxidase-derived H(2)O(2) is the common signal transducing molecule that mediates the activation of these ubiquitously expressed anion channels under a variety of physiological conditions.
Collapse
Affiliation(s)
- Diego Varela
- Instituto de Ciencias Biomédicas and Centro de Estudios Moleculares de la Célula Facultad de Medicina Universidad de Chile, Santiago-6530499, Santiago, Chile
| | | | | | | | | |
Collapse
|
29
|
Cooper TG, Yeung CH, Wagenfeld A, Nieschlag E, Poutanen M, Huhtaniemi I, Sipilä P. Mouse models of infertility due to swollen spermatozoa. Mol Cell Endocrinol 2004; 216:55-63. [PMID: 15109745 DOI: 10.1016/j.mce.2003.10.076] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Transgenic mice with male infertility, the c-ros knockout (KO) and GPX5-Tag2 transgenic mouse models, are compared. Both exhibit severely angulated sperm flagella explaining the infertility. As angulated spermatozoa are swollen cells, a failure in volume regulation is indicated. Differences between genotypes were also found: caudal spermatozoa from c-ros KO, but not GPX5-Tag2, could fertilise eggs in vitro; flagellar angulation occurred more within the epididymis of GPX5-Tag2 than c-ros KO mice; the osmotic pressure of cauda epididymidal fluid was lower only in GPX5-Tag2 mice; angulation of caudal sperm from c-ros KO, but not GPX5-Tag2 mice, decreased upon demembranation. These observations indicate that GPX5-Tag2 mice express an earlier, more severe defect. Gene chip analyses of the epididymides revealed decreased expression of the CRES (cystatin-related epididymal-spermatogenic) and MEP17 (murine epididymal protein 17) genes in both genotypes. Further analysis could pinpoint genes essential for epididymal regulation of sperm volume, explain infertility and suggest modes of male contraception.
Collapse
Affiliation(s)
- Trevor G Cooper
- Institute of Reproductive Medicine of the University, Domagkstr. 11, D-48129 Munster, Germany.
| | | | | | | | | | | | | |
Collapse
|
30
|
Young TL, Cepko CL. A Role for Ligand-Gated Ion Channels in Rod Photoreceptor Development. Neuron 2004; 41:867-79. [PMID: 15046720 DOI: 10.1016/s0896-6273(04)00141-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2003] [Revised: 12/04/2003] [Accepted: 01/29/2004] [Indexed: 11/30/2022]
Abstract
Neurotransmitter receptors are central to communication at synapses. Many components of the machinery for neurotransmission are present prior to synapse formation, suggesting a developmental role. Here, evidence is presented that signaling through glycine receptor alpha2 (GlyRalpha2) and GABA(A) receptors plays a role in photoreceptor development in the vertebrate retina. The signaling is likely mediated by taurine, which is present at high levels throughout the developing central nervous system (CNS). Taurine potentiates the production of rod photoreceptors, and this induction is inhibited by strychnine, an antagonist of glycine receptors, and bicuculline, an antagonist of GABA receptors. Gain-of-function experiments showed that signaling through GlyRalpha2 induced exit from mitosis and an increase in rod photoreceptors. Furthermore, targeted knockdown of GlyRalpha2 decreased the number of photoreceptors while increasing the number of other retinal cell types. These data support a previously undescribed role for these ligand-gated ion channels during the early stages of CNS development.
Collapse
Affiliation(s)
- Tracy L Young
- Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | |
Collapse
|
31
|
Lamitina ST, Morrison R, Moeckel GW, Strange K. Adaptation of the nematode Caenorhabditis elegans to extreme osmotic stress. Am J Physiol Cell Physiol 2003; 286:C785-91. [PMID: 14644776 DOI: 10.1152/ajpcell.00381.2003] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ability to control osmotic balance is essential for cellular life. Cellular osmotic homeostasis is maintained by accumulation and loss of inorganic ions and organic osmolytes. Although osmoregulation has been studied extensively in many cell types, major gaps exist in our molecular understanding of this essential process. Because of its numerous experimental advantages, the nematode Caenorhabditis elegans provides a powerful model system to characterize the genetic basis of animal cell osmoregulation. We therefore characterized the ability of worms to adapt to extreme osmotic stress. Exposure of worms to high-salt growth agar causes rapid shrinkage. Survival is normal on agar containing up to 200 mM NaCl. When grown on 200 mM NaCl for 2 wk, worms are able to survive well on agar containing up to 500 mM NaCl. HPLC analysis demonstrated that levels of the organic osmolyte glycerol increase 15- to 20-fold in nematodes grown on 200 mM NaCl agar. Accumulation of glycerol begins 3 h after exposure to hypertonic stress and peaks by 24 h. Glycerol accumulation is mediated primarily by synthesis from metabolic precursors. Consistent with this finding, hypertonicity increases transcriptional expression of glycerol 3-phosphate dehydrogenase, an enzyme that is rate limiting for hypertonicity-induced glycerol synthesis in yeast. Worms adapted to high salt swell and then return to their initial body volume when exposed to low-salt agar. During recovery from hypertonic stress, glycerol levels fall rapidly and glycerol excretion increases approximately fivefold. Our studies provide the first description of osmotic adaptation in C. elegans and provide the foundation for genetic and functional genomic analysis of animal cell osmoregulation.
Collapse
Affiliation(s)
- S Todd Lamitina
- Department of Anesthesiology,Vanderbilt University Medical Center, Nashville, TN 37232-2520, USA
| | | | | | | |
Collapse
|
32
|
Sergeeva OA, Chepkova AN, Doreulee N, Eriksson KS, Poelchen W, Mönnighoff I, Heller-Stilb B, Warskulat U, Häussinger D, Haas HL. Taurine-induced long-lasting enhancement of synaptic transmission in mice: role of transporters. J Physiol 2003; 550:911-9. [PMID: 12824447 PMCID: PMC2343077 DOI: 10.1113/jphysiol.2003.045864] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Taurine, a major osmolyte in the brain evokes a long-lasting enhancement (LLETAU) of synaptic transmission in hippocampal and cortico-striatal slices. Hippocampal LLETAU was abolished by the GABA uptake blocker nipecotic acid (NPA) but not by the taurine-uptake inhibitor guanidinoethyl sulphonate (GES). Striatal LLETAU was sensitive to GES but not to NPA. Semiquantitative PCR analysis and immunohistochemistry revealed that taurine transporter expression is significantly higher in the striatum than in the hippocampus. Taurine transporter-deficient mice displayed very low taurine levels in both structures and a low ability to develop LLETAU in the striatum, but not in the hippocampus. The different mechanisms of taurine-induced synaptic plasticity may reflect the different vulnerabilities of these brain regions under pathological conditions that are accompanied by osmotic changes such as hepatic encephalopathy.
Collapse
Affiliation(s)
- O A Sergeeva
- Department of Neurophysiology, Heinrich-Heine-Universität, Düsseldorf, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Goldstein L, Koomoa DL, Musch MW. ATP release from hypotonically stressed skate RBC: potential role in osmolyte channel regulation. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, COMPARATIVE EXPERIMENTAL BIOLOGY 2003; 296:160-3. [PMID: 12658722 DOI: 10.1002/jez.a.10228] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A variety of cells, including skate RBC, release osmolytes (e.g. taurine) when hypotonically swollen as part of a regulatory volume decrease. In this study we show that skate RBC also release ATP into the incubation medium under the same conditions. Furthermore extracellular ATP as well as other nucleotides likely to be released from the RBC, inhibit the hypotonically activated transport of taurine. Therefore, ATP and other nucleotides released from hypotonically stressed RBC have the potential to act as modulators of osmolyte release during hyposmotic stress.
Collapse
Affiliation(s)
- Leon Goldstein
- Brown University, Department of Molecular Pharmacology, Providence, Rhode Island 02912, USA.
| | | | | |
Collapse
|
34
|
Abstract
AIM This review describes molecular and functional properties of the following Cl- channels: the ClC family of voltage-dependent Cl- channels, the cAMP-activated transmembrane conductance regulator (CFTR), Ca2+ activated Cl- channels (CaCC) and volume-regulated anion channels (VRAC). If structural data are available, their relationship with the function of Cl- channels will be discussed. We also describe shortly some recently discovered channels, including high conductance Cl- channels and the family of bestrophins. We illustrate the growing physiological importance of these channels in the plasma membrane and in intracellular membranes, including their involvement in transepithelial transport, pH regulation of intracellular organelles, regulation of excitability and volume regulation. Finally, we discuss the role of Cl- channels in various diseases and describe the pathological phenotypes observed in knockout mice models.
Collapse
Affiliation(s)
- B Nilius
- KU Leuven, Laboratorium voor Fysiologie, Campus Gasthuisberg, Leuven, Belgium
| | | |
Collapse
|
35
|
Studies on Taurine Efflux from the Rat Cerebral Cortex During Exposure to Hyposmotic, High K+ and OuabainContaining aCSF. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003. [DOI: 10.1007/978-1-4615-0077-3_52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
36
|
|
37
|
Yeung CH, Anapolski M, Sipilä P, Wagenfeld A, Poutanen M, Huhtaniemi I, Nieschlag E, Cooper TG. Sperm volume regulation: maturational changes in fertile and infertile transgenic mice and association with kinematics and tail angulation. Biol Reprod 2002; 67:269-75. [PMID: 12080027 DOI: 10.1095/biolreprod67.1.269] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Laser light scatter analyzed by flow cytometry was used to monitor the volume of viable maturing murine spermatozoa. Upon release, dispersion, and dilution, epididymal sperm from fertile heterozygous c-ros knockout mice were smallest in the cauda region and largest in the corpus region. Cauda sperm from both infertile homozygous c-ros knockout and GPX5-Tag2 transgenic mice were abnormally large. When incubated, corpus and cauda sperm from normal mice became slightly enlarged and later returned to a smaller size. This suggests an immediate swelling due to high intracellular osmolality, which triggers a regulatory volume decrease (RVD) that results in a net volume reduction. Normal caput sperm increased in size continuously and became larger than the more mature sperm, indicating a lack of RVD. The ion-channel blocker quinine induced dose-dependent size increases in normal cauda sperm but not in caput sperm. Dose-dependent quinine action on mature sperm also included induction of tail angulation, and suppression of straight-line velocity and linearity. The kinematic effects were more sensitive, with a quicker onset, but they diminished with time in contrast to tail angulation, which intensified. These results suggest that kinematic changes are an early phenomenon of swelling, which gradually accumulates at the cytoplasmic droplet to cause flagellar angulation. Disruption of the epididymal maturation of sperm volume regulation capacity would hinder the transport of sperm in the female tract, and may thereby explain infertility under certain conditions, but may also provide a novel approach to male contraception.
Collapse
Affiliation(s)
- Ching-Hei Yeung
- Institute of Reproductive Medicine of the University, Domagkstrasse 11, D-48129 Münster, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Schüttert JB, Fiedler GM, Grupp C, Blaschke S, Grunewald RW. Sorbitol transport in rat renal inner medullary interstitial cells. Kidney Int 2002; 61:1407-15. [PMID: 11918747 DOI: 10.1046/j.1523-1755.2002.00285.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Sorbitol plays an important role in renal osmoregulation. In the rat renal inner medulla sorbitol synthesis and sorbitol degradation are located in different cell types. Whereas sorbitol synthesis can be detected in the inner medullary collecting duct cells, sorbitol degradation takes place in the interstitial cells. Therefore, one can speculate that the cooperation between epithelial and interstitial cells requires sorbitol transport into interstitial cells. METHODS Our studies were performed with an interstitial cell line derived from the renal inner medulla of Wistar rats. These cells have typical characteristics of renal fibroblasts. In addition, they possess a high activity of sorbitol dehydrogenase as determined in vivo. Uptake was measured by liquid scintillation counting. For studies on sorbitol metabolism sorbitol concentration was measured photometrically. RESULTS The results show that sorbitol transport into interstitial cells occurs via a yet to be described transport system. No saturation of sorbitol transport could be found up to an extracellular sorbitol concentration of 80 mmol/L. The transport was neither sodium nor chloride dependent. Trans-stimulation increased the sorbitol uptake. Sorbitol uptake was less inhibited by cytochalasin B than 2-deoxy-D-glucose uptake. The transport showed a high affinity for sorbitol and only little inhibition of sorbitol uptake by substances with a similar structure was observed. CONCLUSIONS Our results show a new sorbitol transport system in renal inner medullary interstitial cells, which is rather different from the described sorbitol permease in renal epithelial cells and from glucose transporters of the GLUT- and SGLT-family.
Collapse
Affiliation(s)
- Jan B Schüttert
- Department of Nephrology and Rheumatology, University Hospital Göttingen, Göttingen, Germany
| | | | | | | | | |
Collapse
|
39
|
Abstract
The early preimplantation mammalian embryo possesses mechanisms that regulate intracellular osmolarity and cell volume. While transport of osmotically active inorganic ions might play a role in this process in embryos, the major mechanisms that have been identified and studied are those that employ organic osmolytes. Organic osmolytes provide a substantial portion of intracellular osmotic support in embryos and are required for their development under in vivo conditions. The main osmolytes that have been identified in cleavage stage embryos are accumulated via two transport systems of the neurotransmitter transporter family active in early preimplantation embryos--the glycine transport system (GLY) and the beta-amino acid transport system (system beta). While system beta has been established to have a similar role in many other cells, this is a novel function for the GLY transport system. The intracellular concentration of organic osmolytes such as glycine in early preimplantation embryos is regulated by tonicity, allowing the embryo to regulate its volume against shrinkage and to control its internal osmolarity. In addition, the cells of the embryo can regulate against an increase in volume via controlled release of osmolytes from the cytoplasm. This is mediated by a swelling-activated anion channel that is also highly permeable to a range of organic osmolytes, and which closely resembles similar channels found in many other cell types (VSOAC channels). Together, these mechanisms appear to regulate cell volume in the egg through the early cleavage stages of embryogenesis, after which there are indications that the mechanisms of osmoregulation change.
Collapse
Affiliation(s)
- J M Baltz
- Ottawa Health Research Institute, Department of Obstetrics and Gynecology, University of Ottawa, Ontario, Canada
| |
Collapse
|
40
|
Osmoregulation of vasopressin secretion via activation of neurohypophysial nerve terminals glycine receptors by glial taurine. J Neurosci 2001. [PMID: 11549721 DOI: 10.1523/jneurosci.21-18-07110.2001] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Osmotic regulation of supraoptic nucleus (SON) neuron activity depends in part on activation of neuronal glycine receptors (GlyRs), most probably by taurine released from adjacent astrocytes. In the neurohypophysis in which the axons of SON neurons terminate, taurine is also concentrated in and osmo-dependently released by pituicytes, the specialized glial cells ensheathing nerve terminals. We now show that taurine release from isolated neurohypophyses is enhanced by hypo-osmotic and decreased by hyper-osmotic stimulation. The high osmosensitivity is shown by the significant increase on only 3.3% reduction in osmolarity. Inhibition of taurine release by 5-nitro-2-(3-phenylpropylamino)benzoic acid, niflumic acid, and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid suggests the involvement of volume-sensitive anion channels. On purified neurohypophysial nerve endings, activation of strychnine-sensitive GlyRs by taurine or glycine primarily inhibits the high K(+)-induced rise in [Ca(2+)](i) and subsequent release of vasopressin. Expression of GlyRs in vasopressin and oxytocin terminals is confirmed by immunohistochemistry. Their implication in the osmoregulation of neurohormone secretion was assessed on isolated whole neurohypophyses. A 6.6% hypo-osmotic stimulus reduces by half the depolarization-evoked vasopressin secretion, an inhibition totally prevented by strychnine. Most importantly, depletion of taurine by a taurine transport inhibitor also abolishes the osmo-dependent inhibition of vasopressin release. Therefore, in the neurohypophysis, an osmoregulatory system involving pituicytes, taurine, and GlyRs is operating to control Ca(2+) influx in and neurohormone release from nerve terminals. This elucidates the functional role of glial taurine in the neurohypophysis, reveals the expression of GlyRs on axon terminals, and further defines the role of glial cells in the regulation of neuroendocrine function.
Collapse
|
41
|
Shinozuka K, Tanaka N, Kawasaki K, Mizuno H, Kubota Y, Nakamura K, Hashimoto M, Kunitomo M. Participation of ATP in cell volume regulation in the endothelium after hypotonic stress. Clin Exp Pharmacol Physiol 2001; 28:799-803. [PMID: 11553018 DOI: 10.1046/j.1440-1681.2001.03525.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. The role of ATP in the regulatory volume decrease (RVD) after hypotonic cell swelling was examined in cultured endothelial cells isolated from the rat caudal artery. 2. Hypotonic stress increased [Ca2+]i in addition to increasing the overflow of ATP and cell volume. The hypotonicity induced increase in [Ca2+]i was prevented by pyridoxalphosphate-6-azophenyl-1-2',4'-disulphonic acid (PPADS; a P2 purinoceptor antagonist), U-73122 (a phospholipase C inhibitor) and thapsigargin (a Ca2+ pump inhibitor). However, the hypotonicity induced increase in cell volume was potentiated by PPADS, U-73122 and thapsigargin. 3. Similar changes were observed in cells treated with 2-methylthioATP, a P2Y purinoceptor agonist, but not by alpha,beta-methylene ATP, a P2X purinoceptor agonist. Thus, it appears that the responses observed following hypotonic stress are mediated by activation of P2Y purinoceptors. 4. On the basis of these findings, it is suggested that ATP, which is released by hypotonicity, may participate in the RVD as a substantial regulator or initiator via P2 purinoceptor-induced increases in [Ca2+]i.
Collapse
Affiliation(s)
- K Shinozuka
- Department of Pharmacology, School of Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Kinne RKH, Kipp H, Ruhfus B, Wehner F, Boese SH, Kinne-Saffran E. Organic Osmolyte Channels in the Renal Medulla: Their Properties and Regulation1. ACTA ACUST UNITED AC 2001. [DOI: 10.1668/0003-1569(2001)041[0728:oocitr]2.0.co;2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
43
|
Trouet D, Carton I, Hermans D, Droogmans G, Nilius B, Eggermont J. Inhibition of VRAC by c-Src tyrosine kinase targeted to caveolae is mediated by the Src homology domains. Am J Physiol Cell Physiol 2001; 281:C248-56. [PMID: 11401848 DOI: 10.1152/ajpcell.2001.281.1.c248] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We used the whole cell patch-clamp technique in calf pulmonary endothelial (CPAE) cells to investigate the effect of wild-type and mutant c-Src tyrosine kinase on I(Cl,swell), the swelling-induced Cl- current through volume-regulated anion channels (VRAC). Transient transfection of wild-type c-Src in CPAE cells did not significantly affect I(Cl,swell). However, transfection of c-Src with a Ser3Cys mutation that introduces a dual acylation signal and targets c-Src to lipid rafts and caveolae strongly repressed hypotonicity-induced I(Cl,swell) in CPAE cells. Kinase activity was dispensable for the inhibition of I(Cl,swell), since kinase-deficient c-Src Ser3Cys either with an inactivating point mutation in the kinase domain or with the entire kinase domain deleted still suppressed VRAC activity. Again, the Ser3Cys mutation was required to obtain maximal inhibition by the kinase-deleted c-Src. In contrast, the inhibitory effect was completely lost when the Src homology domains 2 and 3 were deleted in c-Src. We therefore conclude that c-Src-mediated inhibition of VRAC requires compartmentalization of c-Src to caveolae and that the Src homology domains 2 and/or 3 are necessary and sufficient for inhibition.
Collapse
Affiliation(s)
- D Trouet
- Laboratory of Physiology, Catholic University of Leuven, Campus Gasthuisberg, B-3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
44
|
Roman RM, Smith RL, Feranchak AP, Clayton GH, Doctor RB, Fitz JG. ClC-2 chloride channels contribute to HTC cell volume homeostasis. Am J Physiol Gastrointest Liver Physiol 2001; 280:G344-53. [PMID: 11171616 DOI: 10.1152/ajpgi.2001.280.3.g344] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Membrane Cl(-) channels play an important role in cell volume homeostasis and regulation of volume-sensitive cell transport and metabolism. Heterologous expression of ClC-2 channel cDNA leads to the appearance of swelling-activated Cl(-) currents, consistent with a role in cell volume regulation. Since channel properties in heterologous models are potentially modified by cellular background, we evaluated whether endogenous ClC-2 proteins are functionally important in cell volume regulation. As shown by whole cell patch clamp techniques in rat HTC hepatoma cells, cell volume increases stimulated inwardly rectifying Cl(-) currents when non-ClC-2 currents were blocked by DIDS (100 microM). A cDNA closely homologous with rat brain ClC-2 was isolated from HTC cells; identical sequence was demonstrated for ClC-2 cDNAs in primary rat hepatocytes and cholangiocytes. ClC-2 mRNA and membrane protein expression was demonstrated by in situ hybridization, immunocytochemistry, and Western blot. Intracellular delivery of antibodies to an essential regulatory domain of ClC-2 decreased ClC-2-dependent currents expressed in HEK-293 cells. In HTC cells, the same antibodies prevented activation of endogenous Cl(-) currents by cell volume increases or exposure to the purinergic receptor agonist ATP and delayed HTC cell volume recovery from swelling. These studies provide further evidence that mammalian ClC-2 channel proteins are functional and suggest that in HTC cells they contribute to physiological changes in membrane Cl(-) permeability and cell volume homeostasis.
Collapse
Affiliation(s)
- R M Roman
- Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | | | |
Collapse
|
45
|
Hussy N, Deleuze C, Desarménien MG, Moos FC. Osmotic regulation of neuronal activity: a new role for taurine and glial cells in a hypothalamic neuroendocrine structure. Prog Neurobiol 2000; 62:113-34. [PMID: 10828380 DOI: 10.1016/s0301-0082(99)00071-4] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Maintenance of osmotic pressure is a primary regulatory process essential for normal cell function. The osmolarity of extracellular fluids is regulated by modifying the intake and excretion of salts and water. A major component of this regulatory process is the neuroendocrine hypothalamo-neurohypophysial system, which consists of neurons located in the paraventricular and supraoptic nuclei. These neurons synthesize the neurohormones vasopressin and oxytocin and release them in the blood circulation. We here review the mechanisms responsible for the osmoregulation of the activity of these neurons. Notably, the osmosensitivity of the supraoptic nucleus is described including the recent data that suggests an important participation of taurine in the transmission of the osmotic information. Taurine is an amino acid mainly known for its involvement in cell volume regulation, as it is one of the major inorganic osmolytes used by cells to compensate for changes in extracellular osmolarity. In the supraoptic nucleus, taurine is highly concentrated in astrocytes, and released in an osmodependent manner through volume-sensitive anion channels. Via its agonist action on neuronal glycine receptors, taurine is likely to contribute to the inhibition of neuronal activity induced by hypotonic stimuli. This inhibitory influence would complement the intrinsic osmosensitivity of supraoptic neurons, mediated by excitatory mechanoreceptors activated under hypertonic conditions. These observations extend the role of taurine from the regulation of cell volume to that of the whole body fluid balance. They also point to a new role of supraoptic glial cells as active components in a neuroendocrine regulatory loop.
Collapse
Affiliation(s)
- N Hussy
- Biologie des Neurones Endocrines CNRS-UPR 9055 CCIPE, 141 rue de la Cardonille 34094 Cedex 5, Montpellier, France.
| | | | | | | |
Collapse
|
46
|
Shuba YM, Prevarskaya N, Lemonnier L, Van Coppenolle F, Kostyuk PG, Mauroy B, Skryma R. Volume-regulated chloride conductance in the LNCaP human prostate cancer cell line. Am J Physiol Cell Physiol 2000; 279:C1144-54. [PMID: 11003595 DOI: 10.1152/ajpcell.2000.279.4.c1144] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Patch-clamp recordings were used to study ion currents induced by cell swelling caused by hypotonicity in human prostate cancer epithelial cells, LNCaP. The reversal potential of the swelling-evoked current suggested that Cl(-) was the primary charge carrier (termed I(Cl,swell)). The selectivity sequence of the underlying volume-regulated anion channels (VRACs) for different anions was Br(-) approximately I(-) > Cl(-) > F(-) > methanesulfonate >> glutamate, with relative permeability numbers of 1.26, 1.20, 1.0, 0.77, 0.49, and 0.036, respectively. The current-voltage patterns of the whole cell currents as well as single-channel currents showed moderate outward rectification. Unitary VRAC conductance was determined at 9.6 +/- 1.8 pS. Conventional Cl(-) channel blockers 5-nitro-2-(3-phenylpropylamino)benzoic acid (100 microM) and DIDS (100 microM) inhibited whole cell I(Cl,swell) in a voltage-dependent manner, with the block decreasing from 39.6 +/- 9.7% and 71.0 +/- 11. 0% at +50 mV to 26.2 +/- 7.2% and 14.5 +/- 6.6% at -100 mV, respectively. Verapamil (50 microM), a standard Ca(2+) antagonist and P-glycoprotein function inhibitor, depressed the current by a maximum of 15%. Protein tyrosine kinase inhibitors downregulated I(Cl,swell) (genistein with an IC(50) of 2.6 microM and lavendustin A by 60 +/- 14% at 1 microM). The protein tyrosine phosphatase inhibitor sodium orthovanadate (500 microM) stimulated I(Cl,swell) by 54 +/- 11%. We conclude that VRACs in human prostate cancer epithelial cells are modulated via protein tyrosine phosphorylation.
Collapse
Affiliation(s)
- Y M Shuba
- Laboratoire de Physiologie Cellulaire, Institut National de la Santé et de la Recherche Médicale EPI 9938, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq, France.
| | | | | | | | | | | | | |
Collapse
|
47
|
Estevez AY, Song D, Phillis JW, O'Regan MH. Effects of the anion channel blocker DIDS on ouabain- and high K(+)-induced release of amino acids from the rat cerebral cortex. Brain Res Bull 2000; 52:45-50. [PMID: 10779702 DOI: 10.1016/s0361-9230(00)00236-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Amino acid release from the rat cerebral cortex was analyzed using an in vivo cortical cup perfusion model. Topical applications of ouabain or high extracellular K(+) were used to mimic two dimensions of ischemic conditions which promote cell swelling and amino acid release. Ouabain (30 microM) induced significant releases of taurine, gamma-aminobutyric acid (GABA), aspartate, glutamate and phosphoethanolamine. The anion channel blocker, 4, 4'-diisothiocyanatostilbene-2, 2'-disulfonic acid (DIDS; 1 mM), inhibited ouabain-induced release of all these amino acids except for glutamate. Exposure to high extracellular K(+) (75 mM) induced a delayed rise in the levels of taurine in the superfusates and an immediate increase in GABA levels. There were no significant releases of other amino acids. The release of taurine and GABA was sensitive to the blocking of anion channels with DIDS. Both ouabain- and high K(+)-induced taurine release is likely to be mediated by DIDS sensitive anion channels. The extracellular accumulation of the other amino acids, where insensitive to DIDS, may be mediated by mechanisms other than swelling-induced anion channels.
Collapse
Affiliation(s)
- A Y Estevez
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
48
|
Bitoun M, Tappaz M. Gene expression of taurine transporter and taurine biosynthetic enzymes in brain of rats with acute or chronic hyperosmotic plasma. A comparative study with gene expression of myo-inositol transporter, betaine transporter and sorbitol biosynthetic enzyme. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 77:10-8. [PMID: 10814827 DOI: 10.1016/s0169-328x(00)00034-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Cells exposed to hyperosmotic conditions maintain their volume by accumulating organic osmolytes. Taurine is considered as an osmolyte in brain cells. Accumulation of other osmolytes (sorbitol, myo-inositol and betaine), was shown in renal cells to result from an upregulation of the expression of the genes regulating osmolyte cell content. We have investigated the gene expression of the taurine transporter (TauT) and of the taurine biosynthetic enzymes, cysteine dioxygenase (CDO) and cysteine sulfinate decarboxylase (CSD) by measuring their mRNA levels in brain of salt-loaded rats. mRNA levels of genes previously identified as osmosensitive, namely aldose reductase (AR), myo-inositol transporter (SMIT) and betaine transporter (BGT1) were also determined. In whole brain, TauT-, SMIT- and BGT1-mRNA levels were significantly increased following acute salt-loading but SMIT-mRNA levels only remained elevated following chronic salt-loading while CDO-, CSD- and AR-mRNA levels remained unchanged in both conditions. Following acute salt-loading, mRNA levels of TauT, CDO, CSD, SMIT, BGT1 and AR were increased in cerebral cortex while SMIT- and BGT1-mRNA levels only were increased in striatum and habenula.TauT, CDO and CSD genes may be upregulated in brain of salt-loaded rats but the upregulation of the TauT gene appears more widespread. TauT, CDO and CSD are thus putative osmosensitive genes. However the actual pattern (amplitude, time course and regional occurrence) of the upregulation of each of the putative (TauT, CDO and CSD) and established (AR, SMIT and BGT1) osmosensitive genes differs markedly. This indicates that there exist other factors in brain cells which can selectively prevent the upregulation of these genes by hyperosmolarity.
Collapse
Affiliation(s)
- M Bitoun
- Institut National de la Santé et de la Recherche Médicale, Unité INSERM 433, Faculté de médecine RTH Laennec, Rue Guillaume Paradin, F 69372, Lyon, France
| | | |
Collapse
|
49
|
Thinnes FP, Hellmann KP, Hellmann T, Merker R, Brockhaus-Pruchniewicz U, Schwarzer C, Walter G, Götz H, Hilschmann N. Studies on human porin XXII: cell membrane integrated human porin channels are involved in regulatory volume decrease (RVD) of HeLa cells. Mol Genet Metab 2000; 69:331-7. [PMID: 10870851 DOI: 10.1006/mgme.2000.2976] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell volume regulation receives increasing attention not only as the basis of regulatory volume increase or regulatory volume decrease (RVD) of cells in surroundings of changing osmolarity, but also appears to be relevant in cell proliferation, differentiation, and apoptosis. A central event in RVD is the opening of a volume-sensitive chloride/anion channel(s), and blocking this pathway would abolish RVD. This is shown here with monoclonal mouse anti-human type-1 porin antibodies, proving that porin is involved in this process. HeLa cells preincubated with these antibodies dramatically increase their volume within about 1 min after a hypotonic stimulus by 70 mM NaCl Ringer solution, but do not move back toward their starting volume, thus indicating abolished RVD. Corresponding effects are induced by the established anion channel inhibitor DIDS. Video camera monitoring of cell size over time was used as a direct and noninvasive approach. We had already accumulated evidence that plasmalemma integrated eukaryotic porin channels form chloride/anion channels in this cell compartment and that they are involved in cell volume regulation. Finally, the present data again demonstrate the suitability of our anti-porin antibodies in physiological studies.
Collapse
Affiliation(s)
- F P Thinnes
- Abteilung Immunchemie, Max-Planck-Institut für experimentelle Medizin, Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Thinnes FP, Hellmann KP, Hellmann T, Merker R, Schwarzer C, Walter G, Götz H, Hilschmann N. Studies on human porin XXI: gadolinium opens Up cell membrane standing porin channels making way for the osmolytes chloride or taurine-A putative approach to activate the alternate chloride channel in cystic fibrosis. Mol Genet Metab 2000; 69:240-51. [PMID: 10767179 DOI: 10.1006/mgme.2000.2968] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We recently proposed that cell-membrane-integrated vertebrate porin/voltage-dependent anion-selective channel (VDAC) forms part of the outwardly rectifying chloride channel (ORCC) complex that may be involved in volume regulation. The results we present here support this thesis. According to light scattering measurements micromolar concentrations of Gd(3+) induce cell swelling of human healthy and cystic fibrosis (CF) B-lymphocyte cell lines in isotonic Ringer solution. In high-potassium Ringer solution additional swelling is observed. Gd(3+) induces excessive cell swelling of cell lines in hypotonic Ringer solutions, containing 70 mM NaCl or 135 mM taurine, respectively. The gadolinium effect is lost when NaCl is replaced by Na-gluconate. Using video camera monitoring we show that HeLa cells also swell in micromolar concentrations of Gd(3+) in isotonic taurine Ringer solution. The dose-dependent effect of the agonist was always blocked by extracellular application of anti-human type-1 porin antibodies. Together with data on a decreasing effect of micromolar amounts of gadolinium on the voltage dependence of reconstituted human porin the results prove the involvement of porin channels in the swelling behavior in different cell lines. As a mechanism we propose that ionic gadolinium opens up plasmalemma-integrated porin channels, chloride or taurine then following their concentration gradients into the cells. Furthermore, our data argue for a single pathway for inorganic and organic osmolytes during regulatory volume decrease after cell swelling. There is indirect evidence that porin forms part of the cystic fibrosis relevant ORCC channel. Gadolinium thus may work to open the alternate chloride channel in CF.
Collapse
Affiliation(s)
- F P Thinnes
- Abteilung Immunchemie, Max-Planck-Institut für Experimentelle Medizin, Hermann-Rein-Strasse 3, Göttingen, D-37075, Germany.
| | | | | | | | | | | | | | | |
Collapse
|