1
|
Steppan D, Pan L, Gross KW, Kurtz A. Analysis of the calcium paradox of renin secretion. Am J Physiol Renal Physiol 2017; 315:F834-F843. [PMID: 29357428 DOI: 10.1152/ajprenal.00554.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The secretion of the protease renin from renal juxtaglomerular cells is enhanced by subnormal extracellular calcium concentrations. The mechanisms underlying this atypical effect of calcium have not yet been unraveled. We therefore aimed to characterize the effect of extracellular calcium concentration on calcium handling of juxtaglomerular cells and on renin secretion in more detail. For this purpose, we used a combination of experiments with isolated perfused mouse kidneys and direct calcium measurements in renin-secreting cells in situ. We found that lowering of the extracellular calcium concentration led to a sustained elevation of renin secretion. Electron-microscopical analysis of renin-secreting cells exposed to subnormal extracellular calcium concentrations revealed big omega-shaped structures resulting from the intracellular fusion and subsequent emptying of renin storage vesicles. The calcium concentration dependencies as well as the kinetics of changes were rather similar for renin secretion and for renovascular resistance. Since vascular resistance is fundamentally influenced by myosin light chain kinase (MLCK), myosin light chain phosphatase (MLCP), and Rho-associated protein kinase (Rho-K) activities, we examined the effects of MLCK-, MLCP-, and Rho-K inhibitors on renin secretion. Only MLCK inhibition stimulated renin secretion. Conversely, inhibition of MCLP activity lowered perfusate flow and strongly inhibited renin secretion, which could not be reversed by lowering of the extracellular calcium concentration. Renin-secreting cells and smooth muscle cells of afferent arterioles showed immunoreactivity of MLCK. These findings suggest that the inhibitory effect of calcium on renin secretion could be explained by phosphorylation-dependent processes under control of the MLCK.
Collapse
Affiliation(s)
- D Steppan
- Institute of Physiology, University of Regensburg , Regensburg , Germany
| | - L Pan
- Department of Pathology, Brigham and Women's Hospital , Boston, Massachusetts
| | - K W Gross
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute , Buffalo, New York
| | - A Kurtz
- Institute of Physiology, University of Regensburg , Regensburg , Germany
| |
Collapse
|
2
|
Ortiz-Capisano MC. Endothelin inhibits renin release from juxtaglomerular cells via endothelin receptors A and B via a transient receptor potential canonical-mediated pathway. Physiol Rep 2014; 2:2/12/e12240. [PMID: 25524278 PMCID: PMC4332218 DOI: 10.14814/phy2.12240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Renin is the rate-limiting step in the production of angiotensin II: a critical element in the regulation of blood pressure and in the pathogenesis of hypertension. Renin release from the juxtaglomerular (JG) cell is stimulated by the second messenger cAMP and inhibited by increases in calcium (Ca). Endothelins (ETs) inhibit renin release in a Ca-dependent manner. JG cells contain multiple isoforms of canonical transient receptor potential (TRPC) Ca-permeable channels. The proposed hypothesis is that endothelin inhibits renin release by activating TRPC store-operated Ca channels. RT-PCR and immunofluorescence revealed expression of both ETA and ETB receptors in mouse JG cells. Incubation of primary cultures of JG cells with ET-1 (10 nmol/L) decreased renin release by 28%. Addition of either an ETA or an ETB receptor blocker completely prevented the ET inhibition of renin release. Incubation with the TRPC blocker (SKF 96365, 50 μmol/L) completely reversed the Ca-mediated inhibition of renin release by ETs. These results suggest that endothelin inhibits renin release from JG cells via both ETA and ETB receptors, which leads to the activation of TRPC store-operated Ca channels.
Collapse
Affiliation(s)
- M Cecilia Ortiz-Capisano
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| |
Collapse
|
3
|
Kohan DE. Role of collecting duct endothelin in control of renal function and blood pressure. Am J Physiol Regul Integr Comp Physiol 2013; 305:R659-68. [PMID: 23986358 DOI: 10.1152/ajpregu.00345.2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Over 26,000 manuscripts have been published dealing with endothelins since their discovery 25 years ago. These peptides, and particularly endothelin-1 (ET-1), are expressed by, bind to, and act on virtually every cell type in the body, influencing multiple biological functions. Among these actions, the effects of ET-1 on arterial pressure and volume homeostasis have been most extensively studied. While ET-1 modulates arterial pressure through regulation of multiple organ systems, the peptide's actions in the kidney in general, and the collecting duct in particular, are of unique importance. The collecting duct produces large amounts of ET-1 that bind in an autocrine manner to endothelin A and B receptors, causing inhibition of Na(+) and water reabsorption; absence of collecting duct ET-1 or its receptors is associated with marked salt-sensitive hypertension. Collecting duct ET-1 production is stimulated by Na(+) and water loading through local mechanisms that include sensing of salt and other solute delivery as well as shear stress. Thus the collecting duct ET-1 system exists, at least in part, to detect alterations in, and maintain homeostasis for, extracellular fluid volume. Derangements in collecting duct ET-1 production may contribute to the pathogenesis of genetic hypertension. Blockade of endothelin receptors causes fluid retention due, in large part, to inhibition of the action of ET-1 in the collecting duct; this side effect has substantially limited the clinical utility of this class of drugs. Herein, the biology of the collecting duct ET-1 system is reviewed, with particular emphasis on key issues and questions that need addressing.
Collapse
Affiliation(s)
- Donald E Kohan
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah
| |
Collapse
|
4
|
Abstract
The renin-angiotensin-aldosterone-system (RAAS) plays a central role in the pathophysiology of heart failure and cardiorenal interaction. Drugs interfering in the RAAS form the pillars in treatment of heart failure and cardiorenal syndrome. Although RAAS inhibitors improve prognosis, heart failure–associated morbidity and mortality remain high, especially in the presence of kidney disease. The effect of RAAS blockade may be limited due to the loss of an inhibitory feedback of angiotensin II on renin production. The subsequent increase in prorenin and renin may activate several alternative pathways. These include the recently discovered (pro-) renin receptor, angiotensin II escape via chymase and cathepsin, and the formation of various angiotensin subforms upstream from the blockade, including angiotensin 1–7, angiotensin III, and angiotensin IV. Recently, the direct renin inhibitor aliskiren has been proven effective in reducing plasma renin activity (PRA) and appears to provide additional (tissue) RAAS blockade on top of angiotensin-converting enzyme and angiotensin receptor blockers, underscoring the important role of renin, even (or more so) under adequate RAAS blockade. Reducing PRA however occurs at the expense of an increase plasma renin concentration (PRC). PRC may exert direct effects independent of PRA through the recently discovered (pro-) renin receptor. Additional novel possibilities to interfere in the RAAS, for instance using vitamin D receptor activation, as well as the increased knowledge on alternative pathways, have revived the question on how ideal RAAS-guided therapy should be implemented. Renin and prorenin are pivotal since these are at the base of all of these pathways.
Collapse
|
5
|
Atchison DK, Beierwaltes WH. The influence of extracellular and intracellular calcium on the secretion of renin. Pflugers Arch 2012; 465:59-69. [PMID: 22538344 DOI: 10.1007/s00424-012-1107-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 04/03/2012] [Indexed: 12/29/2022]
Abstract
Changes in plasma, extracellular, and intracellular calcium can affect renin secretion from the renal juxtaglomerular (JG) cells. Elevated intracellular calcium directly inhibits renin release from JG cells by decreasing the dominant second messenger intracellular cyclic adenosine monophosphate (cAMP) via actions on calcium-inhibitable adenylyl cyclases and calcium-activated phosphodiesterases. Increased extracellular calcium also directly inhibits renin release by stimulating the calcium-sensing receptor (CaSR) on JG cells, resulting in parallel changes in the intracellular environment and decreasing intracellular cAMP. In vivo, acutely elevated plasma calcium inhibits plasma renin activity (PRA) via parathyroid hormone-mediated elevations in renal cortical interstitial calcium that stimulate the JG cell CaSR. However, chronically elevated plasma calcium or CaSR activation may actually stimulate PRA. This elevation in PRA may be a compensatory mechanism resulting from calcium-mediated polyuria. Thus, changing the extracellular calcium in vitro or in vivo results in inversely related acute changes in cAMP, and therefore renin release, but chronic changes in calcium may result in more complex interactions dependent upon the duration of changes and the integration of the body's response to these changes.
Collapse
Affiliation(s)
- Douglas K Atchison
- Hypertension and Vascular Research Division, Department Internal Medicine, Henry Ford Hospital, 7121 E&R Bldg., 2799 W. Grand Blvd., Detroit, MI 48202, USA
| | | |
Collapse
|
6
|
Abstract
Since its discovery in 1988 as an endothelial cell-derived peptide that exerts the most potent vasoconstriction of any known endogenous compound, endothelin (ET) has emerged as an important regulator of renal physiology and pathophysiology. This review focuses on how the ET system impacts renal function in health; it is apparent that ET regulates multiple aspects of kidney function. These include modulation of glomerular filtration rate and renal blood flow, control of renin release, and regulation of transport of sodium, water, protons, and bicarbonate. These effects are exerted through ET interactions with almost every cell type in the kidney, including mesangial cells, podocytes, endothelium, vascular smooth muscle, every section of the nephron, and renal nerves. In addition, while not the subject of the current review, ET can also indirectly affect renal function through modulation of extrarenal systems, including the vasculature, nervous system, adrenal gland, circulating hormones, and the heart. As will become apparent, these pleiotropic effects of ET are of fundamental physiologic importance in the control of renal function in health. In addition, to help put these effects into perspective, we will also discuss, albeit to a relatively limited extent, how alterations in the ET system can contribute to hypertension and kidney disease.
Collapse
Affiliation(s)
- Donald E Kohan
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah, USA.
| | | | | | | |
Collapse
|
7
|
Abstract
Endothelin (ET) peptides and their receptors are intimately involved in the physiological control of systemic blood pressure and body Na homeostasis, exerting these effects through alterations in a host of circulating and local factors. Hormonal systems affected by ET include natriuretic peptides, aldosterone, catecholamines, and angiotensin. ET also directly regulates cardiac output, central and peripheral nervous system activity, renal Na and water excretion, systemic vascular resistance, and venous capacitance. ET regulation of these systems is often complex, sometimes involving opposing actions depending on which receptor isoform is activated, which cells are affected, and what other prevailing factors exist. A detailed understanding of this system is important; disordered regulation of the ET system is strongly associated with hypertension and dysregulated extracellular fluid volume homeostasis. In addition, ET receptor antagonists are being increasingly used for the treatment of a variety of diseases; while demonstrating benefit, these agents also have adverse effects on fluid retention that may substantially limit their clinical utility. This review provides a detailed analysis of how the ET system is involved in the control of blood pressure and Na homeostasis, focusing primarily on physiological regulation with some discussion of the role of the ET system in hypertension.
Collapse
Affiliation(s)
- Donald E Kohan
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA.
| | | | | | | |
Collapse
|
8
|
Castrop H, Höcherl K, Kurtz A, Schweda F, Todorov V, Wagner C. Physiology of Kidney Renin. Physiol Rev 2010; 90:607-73. [PMID: 20393195 DOI: 10.1152/physrev.00011.2009] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The protease renin is the key enzyme of the renin-angiotensin-aldosterone cascade, which is relevant under both physiological and pathophysiological settings. The kidney is the only organ capable of releasing enzymatically active renin. Although the characteristic juxtaglomerular position is the best known site of renin generation, renin-producing cells in the kidney can vary in number and localization. (Pro)renin gene transcription in these cells is controlled by a number of transcription factors, among which CREB is the best characterized. Pro-renin is stored in vesicles, activated to renin, and then released upon demand. The release of renin is under the control of the cAMP (stimulatory) and Ca2+(inhibitory) signaling pathways. Meanwhile, a great number of intrarenally generated or systemically acting factors have been identified that control the renin secretion directly at the level of renin-producing cells, by activating either of the signaling pathways mentioned above. The broad spectrum of biological actions of (pro)renin is mediated by receptors for (pro)renin, angiotensin II and angiotensin-( 1 – 7 ).
Collapse
Affiliation(s)
- Hayo Castrop
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Klaus Höcherl
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Armin Kurtz
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Frank Schweda
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Vladimir Todorov
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Charlotte Wagner
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
9
|
Beierwaltes WH. The role of calcium in the regulation of renin secretion. Am J Physiol Renal Physiol 2010; 298:F1-F11. [PMID: 19640903 PMCID: PMC2806121 DOI: 10.1152/ajprenal.00143.2009] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 07/23/2009] [Indexed: 12/20/2022] Open
Abstract
Renin is the enzyme which is the rate-limiting step in the formation of the hormone angiotensin II. Therefore, the regulation of renin secretion is critical in understanding the control of the renin-angiotensin-aldosterone system and its many biological and pathological actions. Renin is synthesized, stored in, and released from the juxtaglomerular (JG) cells of the kidney. While renin secretion is positively regulated by the "second messenger" cAMP, unlike most secretory cells, renin secretion from the JG cell is inversely related to the extracellular and intracellular calcium concentrations. This novel relationship is referred to as the "calcium paradox." This review will address observations made over the past 30 years regarding calcium and the regulation of renin secretion, and focus on recent observations which address this scientific conundrum. These include 1) receptor-mediated pathways for changing intracellular calcium; 2) the discovery of a calcium-inhibitable isoform of adenylyl cyclase associated with renin in the JG cells; 3) calcium-sensing receptors in the JG cells; 4) calcium-calmodulin-mediated signals; 5) the role of phosphodiesterases; and 6) connexins, gap junctions, calcium waves, and the cortical extracellular calcium environment. While cAMP is the dominant second messenger for renin secretion, calcium appears to modulate the integrated activities of the enzymes, which balance cAMP synthesis and degradation. Thus this review concludes that calcium modifies the amplitude of cAMP-mediated renin-signaling pathways. While calcium does not directly control renin secretion, increased calcium inhibits and decreased calcium amplifies cAMP-stimulated renin secretion.
Collapse
Affiliation(s)
- William H Beierwaltes
- Dept. of Medicine, Hypertension and Vascular Research Div, Henry Ford Hospital, 7121 E&R Bldg, 2799 W. Grand Blvd, Detroit, MI 48202, USA.
| |
Collapse
|
10
|
Navar LG, Arendshorst WJ, Pallone TL, Inscho EW, Imig JD, Bell PD. The Renal Microcirculation. Compr Physiol 2008. [DOI: 10.1002/cphy.cp020413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Ge Y, Huang Y, Kohan DE. Role of the renin-angiotensin-aldosterone system in collecting duct-derived endothelin-1 regulation of blood pressure. Can J Physiol Pharmacol 2008; 86:329-36. [PMID: 18516095 DOI: 10.1139/y08-028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Renal collecting duct (CD)-specific knockout of endothelin-1 (ET-1) causes hypertension and impaired Na excretion. A previous study noted failure to suppress the renin-angiotensin-aldosterone axis in these knockout (KO) mice, hence the current investigation was undertaken to examine the role of this system in CD ET-1 KO. Renal renin content was similar in kidneys from CD ET-1 KO and control mice during normal Na intake; high-Na intake suppressed renal renin content to a similar degree in KO and control. Plasma renin concentrations paralleled changes in renal renin content. Valsartan, an angiotensin receptor blocker (ARB), abolished the hypertension in CD ET-1 KO mice during normal Na intake. High-Na intake + ARB treatment increased blood pressure in CD ET-1 KO, but not in controls. High-Na intake was associated with reduced Na excretion in CD ET-1 KO animals, but no changes in water excretion or creatinine clearance were noted. Spironolactone, an aldosterone antagonist, also normalized blood pressure in CD ET-1 KO mice during normal Na intake, whereas high-Na intake + spironolactone raised blood pressure only in CD ET-1 KO animals. In summary, hypertension in CD ET-1 KO is partly due to angiotensin II and aldosterone. We speculate that CD-derived ET-1 may regulate, via a novel pathway, renal renin production.
Collapse
Affiliation(s)
- Yuqiang Ge
- Division of Nephrology, University of Utah Health Sciences Center, 1900 East 30 North, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
12
|
|
13
|
Abstract
The aspartyl-protease renin is the key regulator of the renin-angiotensin-aldosterone system, which is critically involved in salt, volume, and blood pressure homeostasis of the body. Renin is mainly produced and released into circulation by the so-called juxtaglomerular epithelioid cells, located in the walls of renal afferent arterioles at the entrance of the glomerular capillary network. It has been known for a long time that renin synthesis and secretion are stimulated by the sympathetic nerves and the prostaglandins and are inhibited in negative feedback loops by angiotensin II, high blood pressure, salt, and volume overload. In contrast, the events controlling the function of renin-secreting cells at the organ and cellular level are markedly less clear and remain mysterious in certain aspects. The unravelling of these mysteries has led to new and interesting insights into the process of renin release.
Collapse
Affiliation(s)
- Frank Schweda
- Institute of Physiology, University of Regensburg, Germany; and
| | - Ulla Friis
- Department of Physiology and Pharmacology, Southern Denmark University at Odense, Odense, Denmark
| | | | - Ole Skott
- Department of Physiology and Pharmacology, Southern Denmark University at Odense, Odense, Denmark
| | - Armin Kurtz
- Institute of Physiology, University of Regensburg, Germany; and
| |
Collapse
|
14
|
Grünberger C, Obermayer B, Klar J, Kurtz A, Schweda F. The calcium paradoxon of renin release: calcium suppresses renin exocytosis by inhibition of calcium-dependent adenylate cyclases AC5 and AC6. Circ Res 2006; 99:1197-206. [PMID: 17068292 DOI: 10.1161/01.res.0000251057.35537.d3] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An increase in the free intracellular calcium concentration promotes exocytosis in most secretory cells. In contrast, renin release from juxtaglomerular (JG) cells is suppressed by calcium. The further downstream signaling cascades of this so called "calcium paradoxon" of renin secretion have been incompletely defined. Because cAMP is the main intracellular stimulator of renin release, we hypothesized that calcium might exert its suppressive effects on renin secretion via the inhibition of the calcium-regulated adenylate cyclases AC5 and AC6. In primary cultures of JG cells, calcium-dependent inhibitors of renin release (angiotensin II, endothelin-1, thapsigargin) suppressed renin secretion, which was paralleled by decreases in intracellular cAMP levels [cAMP]. When [cAMP] was clamped by membrane permeable cAMP derivates, renin release was not suppressed by any of the calcium liberators. Additionally, both endothelin and thapsigargin suppressed cAMP levels and renin release in isoproterenol or forskolin-pretreated As4.1 cells, a renin-producing cell line that expresses AC5 and AC6. The calcium-dependent inhibition of intracellular cAMP levels and renin release was prevented by small interfering RNA-mediated knockdown of AC5 and/or AC6 expression, underlining the functional significance of these AC isoforms in renin-producing cells. Finally, in isolated perfused mouse kidneys, angiotensin II completely inhibited the stimulation of renin secretion induced by adenylate cyclase activation (isoproterenol) but not by membrane permeable cAMP analogs, supporting the conclusion that the suppressive effect of calcium liberators on renin release is mediated by inhibition of adenylate cyclase activity.
Collapse
|
15
|
Abstract
In this review we aim to give a comprehensive overview over the current knowledge of the cellular control of renin release. We hereby focus on the inhibitory effects of calcium on the exocytosis of renin. After a short introduction into general aspects of the regulation of renin release, including a brief summary on the role of the second messengers cAMP and cGMP, we will discuss parts of the literature on the effects of calcium on the renin system together with recent studies from our laboratory, investigating putative calcium influx and extrusion pathways of juxtaglomerular cells. Finally, as the precise mechanisms by which calcium inhibits the exocytosis of renin are far from being understood, we will present some hypotheses on the intracellular events being involved in the suppression of renin release by calcium.
Collapse
Affiliation(s)
- F Schweda
- Institut für Physiologie, University of Regensburg, Regensburg, Germany
| | | |
Collapse
|
16
|
Li XX, Bek M, Asico LD, Yang Z, Grandy DK, Goldstein DS, Rubinstein M, Eisner GM, Jose PA. Adrenergic and endothelin B receptor-dependent hypertension in dopamine receptor type-2 knockout mice. Hypertension 2001; 38:303-8. [PMID: 11566895 DOI: 10.1161/01.hyp.38.3.303] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Polymorphism of the dopamine receptor type-2 (D(2)) gene is associated with essential hypertension. To assess whether D(2) receptors participate in regulation of blood pressure (BP), we studied mice in which the D(2) receptor was disrupted. In anesthetized mice, systolic and diastolic BPs (in millimeters of mercury) were higher in D(2) homozygous and heterozygous mutant mice than in D(2)+/+ littermates. BP after alpha-adrenergic blockade decreased to a greater extent in D(2)-/- mice than in D(2)+/+ mice. Epinephrine excretion was greater in D(2)-/- mice than in D(2)+/+ mice, and acute adrenalectomy decreased BP to a similar level in D(2)-/- and D(2)+/+ mice. An endothelin B (ET[B]) receptor blocker for both ET(B1) and ET(B2) receptors decreased, whereas a selective ET(B1) blocker increased, BP in D(2)-/- mice but not D(2)+/+ mice. ET(B) receptor expression was greater in D(2)-/- mice than in D(2)+/+ mice. In contrast, blockade of ET(A) and V(1) vasopressin receptors had no effect on BP in either D(2)-/- or D(2)+/+ mice. The hypotensive effect of an AT(1) antagonist was also similar in D(2)-/- and D(2)+/+ mice. Basal Na(+),K(+)-ATPase activities in renal cortex and medulla were higher in D(2)+/+ mice than in D(2)-/- mice. Urine flow and sodium excretion were higher in D(2)-/- mice than in D(2)+/+ mice before and after acute saline loading. Thus, complete loss of the D(2) receptor results in hypertension that is not due to impairment of sodium excretion. Instead, enhanced vascular reactivity in the D(2) mutant mice may be caused by increased sympathetic and ET(B) receptor activities.
Collapse
MESH Headings
- Adrenergic alpha-Antagonists/pharmacology
- Angiotensin Receptor Antagonists
- Animals
- Antidiuretic Hormone Receptor Antagonists
- Antihypertensive Agents/pharmacology
- Blood Pressure/drug effects
- Body Weight
- Catechols/urine
- Endothelin Receptor Antagonists
- Endothelin-1/pharmacology
- Female
- Genotype
- Hypertension/drug therapy
- Hypertension/genetics
- Hypertension/physiopathology
- Losartan/pharmacology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Mice, Knockout
- Oligopeptides/pharmacology
- Phentolamine/pharmacology
- Piperidines/pharmacology
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptor, Endothelin A
- Receptor, Endothelin B
- Receptors, Adrenergic/drug effects
- Receptors, Adrenergic/physiology
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/physiology
- Receptors, Endothelin/agonists
- Receptors, Endothelin/physiology
- Sodium/urine
- Sodium-Potassium-Exchanging ATPase/metabolism
- Urodynamics
- Viper Venoms/pharmacology
Collapse
Affiliation(s)
- X X Li
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Renin secretion at the level of renal juxtaglomerular cells appears to be controlled mainly by classic second messengers such as Ca2+, cyclic AMP and cyclic GMP, which in turn exert their effects through oppositely acting protein kinases and probably also by affecting the activity of ion channels in the plasma membrane. Thus, protein kinase A stimulates renin secretion, whilst protein kinase C and protein kinase G II inhibit renin secretion. Moreover, Cl- channels could be involved in the mediation of the inhibitory action of Ca2+ on renin secretion. This review summarizes our present knowledge about the possible actions of these kinases in renal juxtaglomerular cells and considers pathways in the organ control of renin secretion.
Collapse
Affiliation(s)
- A Kurtz
- Institut für Physiologie der Universität Regensburg, D-93040 Regensburg, Germany.
| | | |
Collapse
|
18
|
Kurtz A, Wagner C. Role of nitric oxide in the control of renin secretion. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:F849-62. [PMID: 9843901 DOI: 10.1152/ajprenal.1998.275.6.f849] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Because of the significant constitutive expression of NO synthases in the juxtaglomerular apparatus, nitric oxide (NO) is considered as a likely modulator of renin secretion. In most instances, NO appears as a tonic enhancer of renin secretion, acting via inhibition of cAMP degradation through the action of cGMP. Depending on as yet unknown factors, the stimulatory effect of NO on renin secretion may also switch to an inhibitory one that is compatible with the inhibition of renin secretion by cGMP-dependent protein kinase activity. Whether NO plays a direct regulatory role or a more permissive role in the control of renin secretion remains to be answered.
Collapse
Affiliation(s)
- A Kurtz
- Institut für Physiologie, Universität Regensburg, Regensburg D-93040, Germany
| | | |
Collapse
|
19
|
Wagner C, Jensen BL, Krämer BK, Kurtz A. Control of the renal renin system by local factors. KIDNEY INTERNATIONAL. SUPPLEMENT 1998; 67:S78-83. [PMID: 9736259 DOI: 10.1046/j.1523-1755.1998.06716.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Local factors, such as prostaglandins (PGs), nitric oxide (NO), and endothelins (ETs), produced in the immediate vicinity of juxtaglomerular (JG) cells can exert significant effects on renin secretion and renin gene expression. PGE2, as the main renotubular PG, and PGI2, as the main endothelial prostanoid, both stimulate renin secretion and renin gene expression by activating cAMP formation in JG cells. Although the direct effect of NO on JG cells is less clear, its overall effect in vivo seems to be to stimulate the renin system. Evidence is emerging that stimulation by NO is related to the cAMP pathway, and cGMP-induced inhibition of cAMP-phosphodiesterase III (PDE-III) may mediate this effect. ETs, on the other hand, appear to inhibit the renin system, in particular in those pathways activated by cAMP, acting via Ca2+- and protein kinase C-related mechanisms. There is increasing evidence that both NO and PGs could be involved in the physiological regulatory mechanisms by which salt intake affects the renin system.
Collapse
Affiliation(s)
- C Wagner
- Physiologisches Institut und Medizinische Klinik II der Universität Regensburg, Germany
| | | | | | | |
Collapse
|
20
|
Dodge AH, Reid IA, Inagami T. Renin and angiotensin II receptor expression in the brains of DES-treated Syrian hamsters. Anat Rec (Hoboken) 1997; 248:442-6. [PMID: 9214562 DOI: 10.1002/(sici)1097-0185(199707)248:3<442::aid-ar17>3.0.co;2-p] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND The renin angiotensin system (RAS) promotes vasoconstriction. Expression of RAS is induced by different factors. METHODS In this study, forebrain sections of hamster brains were studied by immunohistochemical methods to determine the location of renin-positive and angiotensin II receptor-positive cells. The brain sections were obtained from diethylstilbesterol- (DES-) treated hamsters, adult non-DES-treated hamsters, elderly non-DES-treated hamsters, neonatal hamsters, and 15-day fetal hamsters. Circulating renin activity was determined for all but the neonatal and 15-day fetal hamsters. RESULTS Renin-positive and angiotensin II receptor-positive vascular smooth muscle cells were observed in DES-treated hamsters. No positive cells were observed in neonatal, 15-day fetal, and adult non-DES-treated hamsters. Some expression was observed in elderly hamsters. CONCLUSIONS Therefore, focal expression of the renin angiotensin system in brain vasculature was induced by the synthetic estrogen DES.
Collapse
Affiliation(s)
- A H Dodge
- Department of Basic Sciences, California College of Podiatric Medicine, San Francisco 94115, USA
| | | | | |
Collapse
|
21
|
Abstract
1. The control of renin secretion from renal juxtaglomerular granular cells on the cellular level is not yet completely understood. 2. There is evidence that calcium- and cyclic nucleotide-related pathways exert an opposite control of renin secretion. 3. There is accumulating evidence that the electrical properties of juxtaglomerular cells are important for the regulation of renin secretion.
Collapse
Affiliation(s)
- A Kurtz
- Institut für Physiologie, Universität Regensburg, Germany.
| |
Collapse
|
22
|
Tharaux PL, Dussaule JC, Pauti MD, Vassitch Y, Ardaillou R, Chatziantoniou C. Activation of renin synthesis is dependent on intact nitric oxide production. Kidney Int 1997; 51:1780-7. [PMID: 9186867 DOI: 10.1038/ki.1997.245] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The present study investigated whether or not nitric oxide (NO) synthesis mediates mechanisms regulating activation of renin formation. Studies were performed on afferent arterioles freshly isolated from the rat kidney. We have shown previously that this preparation is a useful model to study regulation of renin synthesis and secretion. The expression of renin mRNA was assessed by ribonuclease protection assay, and total renin content and renin secretion by radioimmunoassay. In afferent arterioles isolated from rats treated with the angiotensin-converting enzyme inhibitor ramipril, renin mRNA levels, total renin content and renin secretion were increased threefold compared to untreated controls. Inhibition of NO-synthase by NG-nitro-L-arginine methyl ester (L-NAME) in the ramipril-treated rats, abolished the increase in renin mRNA levels, total renin content and renin secretion. In other animals furosemide, a diuretic acting on macula densa cells, activated renin synthesis to a level similar to that found in the ramipril-treated group. Addition of L-NAME to the furosemide-treated rats suppressed the increases in renin mRNA levels, total renin content and renin secretion, suggesting that NO acts on renin activation by a mechanism independent of angiotensin II. In separate experiments, the inhibitory effect of L-NAME on the activation of renin secretion was abolished when afferent arterioles were treated with nicardipine, an L-type Ca2+ channel blocker, suggesting that the suppression of renin activation during NO inhibition is due to increased Ca2+ entry. Since endothelin is a potent mediator of Ca2+ influx and an inhibitor of renin release, we tested whether or not endothelin could be involved in the inhibitory effect of L-NAME on renin secretion. Application of the endothelin receptor antagonist, bosentan, in vitro mimicked the effect of nicardipine. In addition, bosentan coadministered with L-NAME in vivo blunted the inhibitory effect of L-NAME and restored the increases in renin mRNA level, synthesis and secretion. These data indicate that the physiological mechanism(s) regulating activation of renin synthesis and secretion are impaired during NO inhibition, probably because of increased Ca2+ influx. This increase in calcium flux is mediated at least partially by the action of endothelin.
Collapse
|